
Progress in Linear Programming-Based Algorithms for
Integer Programming: An Exposition

ELLIS L. JOHNSON, GEORGE L. NEMHAUSER, AND MARTIN W.P. SAVELSBERGH � Georgia Institute of Technology,
School of Industrial and Systems Engineering, Atlanta, GA 30332-0205,

Email: {ellis.johnson,george.nemhauser,martin.savelsbergh}@isye.gatech.edu

(Received: January 1997; revised: November 1998, August 1999; accepted: November 1999)

This paper is about modeling and solving mixed integer pro-
gramming (MIP) problems. In the last decade, the use of mixed
integer programming models has increased dramatically. Fif-
teen years ago, mainframe computers were required to solve
problems with a hundred integer variables. Now it is possible to
solve problems with thousands of integer variables on a per-
sonal computer and obtain provably good approximate solu-
tions to problems such as set partitioning with millions of
binary variables. These advances have been made possible by
developments in modeling, algorithms, software, and hardware.
This paper focuses on effective modeling, preprocessing, and
the methodologies of branch-and-cut and branch-and-price,
which are the techniques that make it possible to treat problems
with either a very large number of constraints or a very large
number of variables. We show how these techniques are useful
in important application areas such as network design and crew
scheduling. Finally, we discuss the relatively new research ar-
eas of parallel integer programming and stochastic integer pro-
gramming.

T his paper is about solving the model of maximizing a
linear function subject to linear inequality and equality con-
straints, where some or all of the variables are required to be
integral, by a methodology known as linear programming-
based branch-and-bound. The model

max cx
Ax � b

l � x � u
xj integral, j � 1, . . . , p

is called a mixed integer program (MIP). The input data are the
matrices c (1 � n), A (m � n), b (m � 1), l (1 � n), and u (1 �
n), and the n-vector x is to be determined. We assume 1 �
p � n, otherwise the problem is a linear program (LP). If p �
n, the problem is a pure integer program (PIP). A PIP in which
all variables have to be equal to 0 or 1 is called a binary
integer program (BIP), and a MIP in which all integer vari-
ables have to be equal to 0 or 1 is called a mixed binary integer
program (MBIP). Binary integer variables occur very fre-
quently in MIP models of real problems.

We consider problems in which the matrix A has no
special structure and also some structured problems that are
natural to formulate as MIPs. The latter class includes the
traveling salesman problem, fixed-charge network flow

problems, facility location problems, and numerous other
combinatorial optimization problems, many of which are
defined on graphs or networks.

LP-based branch-and-bound is a very general algorithm
that does not require any structure other than linearity, and
linearity is not very restrictive in problem formulation.
However, structure can be used to great advantage in LP-
based branch-and-bound to obtain vastly improved algo-
rithms. We will discuss this use of structure.

There are several other significant approaches to discrete
optimization that are beyond the scope of this paper. These
include such important topics as constraint programming,
Lagrangian duality, semidefinite programming, basis reduc-
tion, approximation algorithms, and heuristics such as sim-
ulated annealing, TABU search, and genetic algorithms.

Our intention is for this paper to be accessible to readers
who are not already specialists in integer programming
including students who are exploring the possibility of do-
ing research in integer programming; users of integer pro-
gramming models and software who would like to under-
stand more about the methodology so that they might, for
example, make more knowledgeable choices; and operations
researchers, management scientists, computer scientists, and
mathematicians who are just curious about recent develop-
ments in this very active branch of optimization. The integer
programming specialist is unlikely to find unfamiliar mate-
rial here but might be interested in comparing his or her
opinions on recent and future important developments with
ours. Limited space requires that we do no more than intro-
duce and sketch the numerous developments that we have
chosen to present. We do, however, point the reader to the
papers that contain the detailed results.

In the last decade, the use of MIP models has changed and
increased dramatically. The ability to solve relatively large
problems in relatively small amounts of time has made
integer programming much more widespread. Fifteen years
ago, mainframe computers were required to solve problems
with a hundred integer variables. Now we solve problems
with thousands of binary variables on a personal computer
or a workstation, and we also have the capability of getting
provably good approximate solutions to problems such as
set partitioning with millions of variables. These advances

Subject classifications: Combinatorial optimization.
Other key words: Mixed integer programming, branch-and-cut, branch-and-price, lifting.

2
INFORMS Journal on Computing 0899-1499� 100 �1201-0002 $05.00
Vol. 12, No. 1, Winter 2000 © 2000 INFORMS

Copyright © 2000. All rights reserved.

have been made possible by developments in hardware,
software, and algorithms. This paper focuses on the algo-
rithmic advances and implementation issues. A cautionary
note is appropriate. There exist very small binary integer
programs that are currently beyond the reach of modern
solvers[29] and it also appears that problems with general
integer variables are much more difficult than problems
with binary variables.

The LP relaxation of a MIP is obtained by dropping the
integrality restrictions. The main use of the LP relaxation in
solving a MIP is that the optimal value of the LP relaxation
provides an upper bound on the optimal value of the cor-
responding MIP. In addition, if an optimal solution to the LP
relaxation is found that satisfies the integrality restrictions,
then that solution is also optimal to the MIP. If the LP
relaxation is infeasible, then the MIP is also infeasible.

While other relaxations such as those based on Lagrang-
ian duality and semidefinite programming are undoubtedly
useful in special situations, LP is still the champion upper-
bound producer for MIPs. LP generally gives reasonably
tight bounds, and the methodology for solving LPs is very
efficient and reliable. Since a very large fraction of the time
consumed by a branch-and-bound algorithm is spent on LP
solving, the orders of magnitude speed improvements in
simplex algorithm codes that have taken place in the last
decade have been extremely important. Moreover, modern
simplex codes easily deal with the addition of rows (con-
straints) and columns (variables) during the solution pro-
cess, which is essential for the new branch-and-bound algo-
rithms called branch-and-cut and branch-and-price. Interior
point methods are also quite useful for solving large-scale
LPs, but they are not widely employed in branch-and-bound
algorithms because it is cumbersome to reoptimize an LP
with an interior point code after rows or columns have been
added.

The basic structure of branch-and-bound is an enumera-
tion tree (Fig. 1). The root node of the tree corresponds to the
original problem. As the algorithm progresses, the tree
grows by a process called branching, which creates two or
more child nodes of the parent node. Each of the problems
at the child nodes is formed by adding constraints to the
problem at the parent node. Typically, the new constraint is

obtained by simply adding a bound on a single integer
variable, where one child gets an upper bound of some
integer d, and the other child gets a lower bound of d � 1. An
essential requirement is that each feasible solution to the
parent node problem is feasible to at least one of the child
node problems.

The fundamental paradigm of branch-and-bound with LP
relaxations for solving MIPs has not really changed. The
difference is that advances have made it possible to signifi-
cantly curtail the enumeration. In other words, the branch-
and-bound trees have many fewer nodes, and although the
time required to process a node can be higher, there can be
a substantial decrease in the overall computing time.

To motivate the methodological advances, it is essential to
understand the use of lower and upper bounds on the
optimal value of the objective function. To achieve this un-
derstanding, we briefly sketch a basic LP-based branch-and-
bound algorithm for MIP.

Any feasible solution to MIP provides a lower bound. Let
zbest be the value of the greatest lower bound over all avail-
able feasible solutions.

Let MIP(0) be the original MIP and let MIP(k) be the
problem at node k. At node k of the tree we solve the LP
relaxation LP(k) of MIP(k). At this stage of our presentation,
we assume that LP(k) is feasible and bounded and that its
optimal value is z(k). If an optimal solution x(k) to LP(k) is
found that happens to satisfy the integrality constraints,
then x(k) is also optimal to MIP(k), in which case if z(k) �
zbest, we update zbest. We can forget about node k. Otherwise,
if x(k) does not satisfy all of the integrality constraints, there
are two possibilities. If z(k) � zbest, an optimal solution to
MIP(k) cannot improve on zbest. Again, we can forget about
node k. On the other hand, if z(k) � zbest, MIP(k) requires
further exploration, which is done by branching as ex-
plained above. Create q new subproblems (children)
MIP(k(i)), i � 1, . . . , q, q � 2 of MIP(k). Each feasible solution
to MIP(k) must be feasible to at least one child and, con-
versely, each feasible solution to a child must be feasible to
MIP(k). Moreover, the solution x(k) must not be feasible to
any of the LP relaxations of the children. A simple realiza-
tion of these requirements is to select a variable xj, j � p, such
that xj(k) is not integral and to create two children; in one of
these we add the constraint xj � xj(k), which is the round
down of xj(k), and in the other we add xj � xj(k), which is
the round up of xj(k). The child nodes of node k correspond-
ing to these subproblems are added to the tree, and the tree
grows.

Large trees are a result of many branchings, and to avoid
branching insofar as is possible is equivalent to avoiding the
case z(k) � zbest. What control do we have here? For one, we
can apply fast heuristics to try to obtain high values of zbest.
Another complementary approach is to add a constraint,
called a cut, to LP(k) that has the property that x(k) is not
satisfied by the cut but that every feasible solution to MIP(k)
is satisfied by the cut. Adding such cuts will increase the
possibility that no branching is required from node k be-
cause it may result in a decrease of z(k) or an integer solu-
tion. Finally, most MIPs have many different formulations in
terms of variables and constraints. The LP relaxations of

Figure 1. Branch-and-bound tree.

3
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

different formulations can be vastly different in terms of the
quality of the bounds they provide. So we can control the
size of the tree by providing a good initial formulation.

We have now set the stage for what follows. In the next
section, we will discuss good formulations. Section 2 dis-
cusses preprocessing. The objectives are to fix variables, to
eliminate redundant constraints, and to derive logical ine-
qualities. Section 3 presents branching rules for searching
the tree efficiently. In Section 4, we give primal heuristics for
finding feasible solutions. The two fundamental algorithms
presented are branch-and-cut in Section 5 and branch-and-
price in Section 6. In branch-and-cut, we add cuts to the LP
relaxations at nodes of the tree. In branch-and-price, we
have a formulation with a huge number of variables, largely
because such a formulation provides good bounds, and then
we begin with a small subset of the variables and generate
the others on an “as needed only” basis throughout the tree.
Section 7 deals with some important implementation issues
of branch-and-cut and branch-and-price, and in Sections 8
and 9 we discuss software, and testing and computing,
respectively. Section 10 presents two important applica-
tions—network design, which is solved by branch-and-cut,
and crew scheduling, which is solved by branch-and-price.
In Section 11, we present two new research areas of integer
programming—stochastic integer programming and paral-
lel integer programming.

A wealth of information and references on many aspects
of integer programming can be found in the books by Schri-
jver,[84] Nemhauser and Wolsey,[79] Williams,[89] and Wol-
sey.[91] In this paper we only give a small sample of refer-
ences with emphasis on recent publications.

1. Formulation Principles
The LP relaxations of two different formulations of the same
MIP may provide different upper bounds. Everything else
being equal, we prefer the formulation whose LP relaxation
provides the better bound. The lower the bound, the stron-
ger or tighter the formulation is said to be. Good formula-
tions are characterized by LP relaxations that provide strong
or tight bounds.

We begin with an example that illustrates how modified
constraints can provide a better formulation, and then we
present another example to show how properly selected
variables can improve a formulation. We then discuss some
general principles of good formulations. Finally, we illus-
trate the significance of using both an exponential number of
constraints and an exponential number of variables to obtain
good formulations.

Consider the “pigeon hole” problem. There are n � 1
pigeons and n holes. We want to place all of the pigeons in
the holes but in such a way that no pair of pigeons is in the
same hole. Obviously there is no solution since there are
more pigeons than holes. But how do you prove this? Let
xij � 1(0) if pigeon i is in (not in) hole j. We want to assign
every pigeon to a hole, so we have the pigeon constraints

�
j�1

n

xij � 1 i � 1, . . . , n � 1.

But pigeons i and k cannot go into the same hole so we have
the hole constraints

xij � xkj � 1 i � 1, . . . , n , k � i � 1, . . . , n � 1,

j � 1, . . . , n .

This system is infeasible in binary variables, but when the
integrality restrictions are relaxed, xij � 1/n for all i and j is
a feasible solution to the relaxation. Moreover, after many
branchings, the LP relaxation remains feasible so that nearly
total enumeration is required and the LP relaxation is of no
use.

Now observe that the hole constraints are equivalent to

�
i�1

n�1

xij � 1 j � 1, . . . , n ,

i.e., no more than one pigeon per hole. The LP relaxation
with these n constraints, each containing n � 1 variables
replacing about n3 constraints and each containing two vari-
ables, is much tighter. In fact, it is easy to show that it is
infeasible. The second set of hole constraints are known as
clique constraints. Even if they are not present in the original
formulation, they can be derived in preprocessing (Section
2).

Now we consider a problem where the right choice of
variables is important. Consider an uncapacitated, discrete
time, finite horizon, economic lot-sizing model. There is a
given demand dt in period t for t � 1, . . . , T, which can be
satisfied by production in any of the periods k � 1, . . . , t. In
period t, there is a per unit production cost, a per unit
holding cost, and a setup cost that is incurred only if the
production in period t is positive. By uncapacitated we mean
that there is no explicit capacity on the amount yt produced
in period t. However, there is the implicit bound

yt � �
k�t

T

dk � Dt t � 1, . . . , T .

The periods are linked by nonnegative inventory variables

st � st�1 � yt � dt t � 1, . . . , T ,

where we assume s0 � 0. The setup costs are modeled with
binary variables xt and the variable upper bound constraints

yt � Dtxt t � 1, . . . , T .

Assuming positive setup costs, in the LP relaxation with
0 � xt � 1 we will obtain

xt � yt/Dt t � 1, . . . , T .

Hence, if yt is positive and not at its upper bound, then xt

will be fractional. Since it would not be optimal to produce
all current and future demand in more than one period, all
but one of the positive xt will be fractional. We conclude that
this LP relaxation is not very good.

It is possible to eliminate the inventory variables by using
variables ytk representing the quantity produced in period t

4
Johnson, Nemhauser, and Savelsbergh

Copyright © 2000. All rights reserved.

to meet demand in period k where k � t. Now the demand
constraints are

�
t�1

k

ytk � dk k � 1, . . . , T ,

and the variable upper bound constraints are

ytk � dkxt k � 1, . . . , T , t � 1, . . . , k .

These variable upper bound constraints are much better for
the LP relaxation. In particular, it can be shown that there
are optimal solutions to the MIP and to the LP relaxation
such that ytk positive implies ytk � dk. This result implies that
by solving the LP relaxation, we also solve the MIP.

The two examples illustrate general principles that are
useful in obtaining good formulations. The pigeon hole
problem showed how we can get clique constraints that are
stronger than the original constraints with respect to the LP
relaxation. This idea will be pursued further in the discus-
sion of preprocessing. The lot-sizing example illustrated the
importance of tight bounds in variable upper bound con-
straints. Again, we will elaborate on this under prepro-
cessing.

Constraint disaggregation is another general principle for
obtaining good formulations. In constraint disaggregation for
0-1 variables,

xj � x0 , j � 1, . . . , m

is used to represent the constraints x0 � 0 implies xj � 0, j �
1, . . . , m, rather than the single constraint

x1 � · · · � xm � mx0 ,

which gives a weaker LP relaxation.
An experienced modeler should use these principles in

developing an initial formulation. However, although it will
take some time, preprocessing can automatically execute
many of these transformations.

To obtain strong bounds, it may be necessary to have a
formulation in which either the number of constraints or the
number of variables (or possibly both) is exponential in the
size of the natural description of the problem. These kinds of
formulations are practical now because we have LP algo-
rithms that are flexible enough to add variables and con-
straints on an “as needed” basis. Techniques for handling
these kind of formulations within a branch-and-bound
framework are presented in Sections 5, 6, and 7.

The traveling salesman problem (TSP) provides a well-
known example of the use of an exponential number of
constraints. Given a graph G � (V, E), where V is the node
set and E is the edge set, a feasible solution or tour is a set of
edges forming a simple cycle that contains all of the nodes.
An optimal solution is a tour in which the sum of the edge
costs is minimum. We introduce 0-1 variables to represent
the selection of edges, with xe � 1 if edge e is in the tour and
xe � 0 otherwise. Feasible solutions can be described by
constraints stating that:

1. Each node is met by exactly two edges. Let �(v) be the set
of edges that are incident to node v, then

�
e���v	

xe � 2 @v � V .

2. The subgraph consisting of the selected edges is con-
nected.

Connectivity can be enforced by requiring that, for each
set U � V, the number of edges with one node in U and the
other in V�U be at least two, i.e.,

�
e���U	

xe � 2 @U � V , 2 � �U � � �V
2 �  ,

where �(U) is the set of edges that are incident to precisely
one node in U.

The number of these subtour elimination constraints is
exponential in �V�, so it is not possible to include all of them
in the initial LP relaxation. Nevertheless, this formulation is
preferred to some others that preserve connectivity with a
small number of constraints since the quality of the LP
relaxation is superior.

In many situations, good formulations of set partitioning
problems require an exponential number of columns. Sup-
pose a given set M � {1, . . . , m} is to be partitioned into
subsets. The subsets have required characteristics, e.g., on
their number of elements, types of elements, etc., and costs.
The problem is to find a partition of minimum total cost. An
example is a political districting problem[76] in which the
counties of a state are to be partitioned into congressional
districts. In one type of formulation, there is a variable xij �
1 if element i � M is put in subset j, and xij � 0 otherwise.
This type of formulation is compact but generally inferior in
modeling capability and quality of LP relaxation to the
formulation in which each feasible subset is (implicitly) enu-
merated, and there is a variable xi � 1 if subset i is selected
and xi � 0 otherwise. The latter formulation allows one to
capture complex restrictions on the structure and costs of the
subsets. However, in this model, the number of variables
typically grows exponentially with M. For example, in-
stances with �M� � 100 can have millions of variables.

Finally, we observe that there are some parts of a model
that may be captured better in branching than by adding 0-1
variables. For example, in a production scheduling problem,
consider a job whose processing on a machine cannot be
interrupted but, in a discrete time model, if production is
started late in period t, then production may not end until
some time in period t � 1. Let xkt be the fraction of job k done
in period t. Then 0 � xkt � 1,
t xkt � 1, xkt may be positive
for at most two values of t and equal to 2 only if the two
periods are consecutive. The last condition can be modeled
with binary variables and linear constraints, but it is better to
leave the condition out of the LP relaxation and, instead, to
enforce it through special branching rules, as explained in
Section 3. See Gue et al.[53] for a practical application with
these characteristics.

5
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

2. Preprocessing
We have stressed the importance of tight linear program-
ming relaxations. Preprocessing applies simple logic to re-
formulate the problem and tighten the linear programming
relaxation. In the process, preprocessing may also reduce the
size of an instance by fixing variables and eliminating con-
straints. Sometimes preprocessing may detect infeasibility.

The simplest logical testing is based on bounds. Let Li be
any lower bound on the value of the ith row Aix subject only
to l � x � u, and let Ui be any upper bound on the value of
the ith row Aix subject only to l � x � u. A constraint Aix �
bi is redundant if Ui � bi and is infeasible if Li � bi. A bound
on a variable may be tightened by recognizing that a con-
straint becomes infeasible if the variable is set at that bound.
These considerations apply to linear programs as well as to
integer programs. However, such tests may be unnecessary
for linear programs. For mixed integer programs, one is
willing to spend more time initially in order to reduce the
possibility of long solution times. In the case of 0-1 variables,
the initial lower and upper bounds on the variables are 0
and 1, respectively. If these bounds are improved, then the
variable can be fixed. For example, if the upper bound of a
0-1 variable is less than 1, then it can be fixed to 0. Of course,
if the lower bound is positive and the upper bound is less
than 1, then the problem is integer infeasible. In summary,
considering one row together with lower and upper bounds
may lead to dropping the row if it is redundant, declaring
the problem infeasible if that one row is infeasible, or tight-
ening the bounds on the variables.

These relatively simple logical testing methods can be-
come powerful when combined with probing. Probing means
temporarily setting a 0-1 variable to 0 or 1 and then redoing
the logical testing. If the logical testing shows that the prob-
lem has become infeasible, then the variable on which we
probe can be fixed to its other bound. For example, 5x1 �
3x2 � 4 becomes infeasible when x1 is set to 0. We conclude
that x1 must be 1 in every feasible solution. If the logical
testing results in another 0-1 variable being fixed, then a
logical implication has been found. Consider 5x1 � 4x2 �
x3 � 8. If x1 is set to 1, then subsequent bound reduction will
fix x2 to 0. Thus, we have found the logical implication x1 �
1 implies x2 � 0, which can be represented by the inequality
x1 � x2 � 1. Adding this inequality tightens the LP relax-
ation since (1, 0.75, 0) is feasible for the original inequality
but is infeasible for the implication inequality. If the logical
testing shows that a constraint has become redundant, then
it can be tightened by what is called coefficient reduction or
coefficient improvement. For example, 2x1 � x2 � x3 � 1
becomes strictly redundant when x1 is set to 1. Whenever a
variable being set to 1 leads to a strictly redundant � con-
straint, then the coefficient of the variable can be reduced by
the amount that the constraint became redundant. There-
fore, 2x1 � x2 � x3 � 1 can be tightened to x1 � x2 � x3 � 1.
Note that (0.5, 0, 0) is no longer feasible to the LP relaxation
of the tightened constraint. Less obvious coefficient im-
provements can also be found during probing. For example,
if there are inequalities

x1 � x2 , x1 � x3 , and x2 � x3 � 1, (1)

then setting x1 to 1 leads to a strictly redundant inequality
x2 � x3 � 1, and the coefficient of x1, namely 0, can be
lowered to �1. Clearly, (1) and

x1 � x2 , x1 � x3 and �x1 � x2 � x3 � 1

have the same set of 0-1 solutions. However, the fractional
solution (0.5, 0.5, 0.5) is allowed by the first set of inequali-
ties but not by the strengthened second set. One important
aspect of probing, and especially of coefficient improve-
ment, is that it applies to the important mixed 0-1 case and
not just to pure 0-1 problems.

An inequality of the form
j�S xj � 1 is called a clique
inequality. These inequalities can be derived as strength-
ened implication inequalities. For example, the three impli-
cation inequalities x1 � x2 � 1, x2 � x3 � 1, and x1 � x3 � 1
together imply the stronger clique inequality x1 � x2 � x3 �
1. (Note that (0.5, 0.5, 0.5) is feasible for the initial set of
implication inequalities but not for the clique inequality.) A
more general form of these inequalities, called a generalized
clique inequality, possibly involves �1 coefficients and is
derived from implication inequalities of the form x1 � x2 �
1 (x1 � 1 implies x2 � 0), x1 � x2 (x1 � 1 implies x2 � 1), and
x1 � x2 � 1 (x1 � 0 implies x2 � 1). A generalized clique
inequality has the form

�
j�S�

xj � �
j�S�

xj � 1 � �S�� .

These inequalities have the property that for j � S�, if xj is
set to 1, then all other xj can be fixed to 0 for j � S� and to
1 for j � S�. Similarly, for j � S�, if xj is set to 0, then all the
other xj can be fixed as before. These inequalities are gener-
ated from smaller such inequalities. For example, from x1 �
x2 � 1, x2 � x3 � 0, and x1 � x3 � 0, we can derive the
stronger inequality x1 � x2 � x3 � 0. The generalized clique
inequalities can be derived from coefficient improvement as
a result of probing. In the small example just given, if x3 is
set to 0, then both x1 and x2 can be fixed to 0 and the
inequality x1 � x2 � 1 becomes strictly slack and, therefore,
can be strengthened to x1 � x2 � x3 � 0.

Another class of inequalities based on implications, which
may be found by probing, is of the form

yj � ujxk .

This inequality is valid whenever xk � 0 forces the contin-
uous variable yj � uj to be 0. Similar inequalities may be
derived whenever probing on a 0-1 variable xk forces a
continuous variable to its lower or upper bound. Therefore,
probing will automatically disaggregate constraints. In the
previous section, we argued that we should use

xj � x0 , j � 1, . . . , m

rather than the single constraint

x1 � · · · � xm � mx0

because it gives a stronger LP relaxation. It is easy to see that
probing on the variable x0 will automatically perform this
reformulation.

In summary, preprocessing may identify infeasibility and

6
Johnson, Nemhauser, and Savelsbergh

Copyright © 2000. All rights reserved.

redundant constraints, improve bounds, fix variables, and
generate new valid inequalities. Coefficient improvement
leads to simply replacing an inequality with a stronger one.
Thus, it can be done in a preprocessing phase independent
of solving the linear program. Clique inequalities on 0-1
variables and implication inequalities linking 0-1 and con-
tinuous variables may be found by probing and, in the case
of clique inequalities, may be strengthened by probing on
the clique inequalities themselves. Since there may be many
clique and implication inequalities, one strategy is to gener-
ate clique and implication inequalities, store them in sepa-
rate tables, and only add them to the linear program when
they are violated by a current LP solution.

To give some idea of the relative computational difficulty
of the various preprocessing techniques, any of the tech-
niques applied to only one row is not likely to take much
time and will almost always be worth doing. This remark
applies to fixing, identifying redundant rows, bound reduc-
tion, coefficient improvement, and finding implication
inequalities.

Saving and preprocessing separate implication and clique
tables is the next level of difficulty. Especially if the clique
table becomes large, probing on the clique table may require
much more time. For example, if the original problem is set
partitioning, then the resulting clique table includes the
original problem.

Full probing on the matrix is the most time consuming
part of preprocessing. The clique table gives a way to speed
up probing in that whenever a 0-1 variable is set, the impli-
cations from the clique tables can be fixed before returning
to the relatively more complex probing on the matrix. Also,
probing may be restricted to variables that are fractional in
the current LP solution. Despite efficient implementations,
probing remains a possibly effective but sometimes too time
consuming preprocessing technique that requires care in
practice.

The papers by Brearley et al.,[22] Dietrich et al.,[36] Escud-
ero et al.,[39] Guignard and Spielberg,[54] Hoffman and Pad-
berg,[57] Johnson,[62] Johnson and Padberg,[63] and Savels-
bergh[82] discuss preprocessing and probing.

3. Branching
In the normal course of a branch-and-bound algorithm, an
unevaluated node is chosen (initially MIP(0)), the LP relax-
ation is solved, and a fractional variable (if there is one) is
chosen on which to branch. If the variable is a 0-1 variable,
one branch sets the variable to 0 (the down branch) and the
other sets it to 1 (the up branch). If it is a general integer
variable and the LP value is, for instance, 31⁄2, then one
branch constrains it to be �3 and the other constrains it to be
�4. Even in this simple framework, there are two choices to
be made: 1) which active node to evaluate and 2) the frac-
tional variable on which to branch.

The variable choice can be critical in keeping the tree size
small. A simple rule is to select a variable whose fractional
value is closest to 1

2
, i.e., with the maximum integer infeasi-

bility. More sophisticated rules, which are used by many
commercial solvers, try to choose a variable that causes the

LP objective function to deteriorate quickly in order to make
the LP values at the child nodes as small as possible. This is
done in an attempt to prune one or both of the child nodes
using the fact that a node can be pruned if its LP value is less
than or equal to the best known IP solution. Early branching
on variables that cause big changes can be critical in keeping
the tree small.

It would be too expensive to compute the actual objective
function changes for all candidate variables every time that
branching was required. Instead, estimates of the rate of
objective function change on both the down and up
branches, called pseudocosts, are used. The pseudocosts can
be obtained from dual information at the node, or they can
be based on actual changes from previous branchings in-
volving the variable. Instead of using an estimate of the
change, we can also explicitly perform one or more dual
simplex iterations to obtain a lower bound on the change
and use this lower bound to choose among variables. A
recent variant of this idea has become known as strong
branching. In strong branching, a fairly large number of dual
simplex iterations is carried out but only for a small set of
candidate branching variables. Strong branching has been
shown to be very effective for large traveling salesman
problems and large set partitioning problems.[3, 68]

The variable choice rules discussed above do not depend
on knowledge of the problem structure and, therefore, are
well suited for general purpose optimizers. However, when
we do know something about the problem structure, it is
often possible to do better by specifying a priority order on
the variables. The idea here is to select more important
variables first, i.e., variables that correspond to more impor-
tant decisions in the underlying problem.

Consider a capacitated facility location problem in which
each customer requires single sourcing, i.e., each customer’s
demand has to be fully satisfied from a single facility. A set
of potential sites for the facilities has been identified and the
company wants to decide which of these sites to use as well
as the set of customers that will be served by each of the
facilities. Integer programs to model these situations involve
two types of binary variables: yi to indicate whether a facility
will be located at potential site i (yi � 1) or not (yi � 0) and
xij to indicate whether customer j is served from a facility at
site i (xij � 1) or not (xij � 0). Because the decision of
whether or not to locate a facility at a certain site affects the
overall solution more than the decision to serve a particular
customer from one site or another, it is better to branch on
the y variables before branching on the x variables.

Node choice rules are partially motivated by the desire to
find good feasible solutions early in the search. This is
important for two reasons: if time runs out, then a good
answer may be all one gets, and a good lower bound inhibits
growth of the tree. A common node choice rule is to choose
one of the two newly created nodes, i.e., go depth-first, as
long as the objective function value of one of the children is
not too low. However, if the current bound becomes too low,
then choose from among all active nodes either one with the
highest bound or one with highest estimate of the value of a
feasible solution. Such an estimate can be obtained using
pseudocosts.

7
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

It is difficult to balance the relative advantages and dis-
advantages of selecting nodes near the top or bottom of the
tree. In general, the number of active nodes may rapidly
increase if the active node is always chosen high up in the
tree. On the other hand, if the node is always chosen from
down low in the tree, the number of active nodes stays
small, but it may take a long time to improve the upper
bound.

More complicated branching involves sets of variables.
An example of branching on a set of variables is the use of
special ordered sets of type 1 (SOS1). It consists of splitting
an ordered set into two parts, one for each branch. That is,
for a constraint such as

x1 � x2 � x3 � x4 � x5 � 1,

one branch could be

x1 � x2 � 1 �with x3 � 0, x4 � 0, and x5 � 0	 ,

and the other branch could be

x3 � x4 � x5 � 1 �with x1 � 0 and x2 � 0	 .

The same type of branching applies to generalized cliques:
the constraint

x1 � x2 � x3 � x4 � x5 � �1

can be branched on by forming two branches having x1 �
x4 � 0 (with x2 � 0, x3 � 0, and x5 � 1) and x2 � x3 � x5 �
0 (with x1 � 0 and x4 � 1). When the clique constraints are
inequalities, the slack variable has to be included in the
branching but need not be explicitly introduced, e.g., x1 �
x2 � x3 � x4 � x5 � 1 can be branched on with two branches,
x1 � x2 � 1 (with x3 � 0, x4 � 0, and x5 � 0) and x3 � x4 �
x5 � 1 (with x1 � 0 and x2 � 0). Most commercial codes
require special ordered sets to be disjoint. However, in terms
of the branching rules outlined here, there is no reason to
impose this restriction.

The “ordered” in special ordered sets means that the set of
variables must be given an order and that the split must be
done in that order. However, in some cases there may be no
natural order. Then the split has to be determined in some
way “on the fly” rather than using a predetermined order. In
problems where the order makes sense, it can provide for
more powerful branching.

Consider the fleet assignment problem,[56] in which air-
craft types have to be assigned to flight segments based on
forecasted demands. Since exactly one aircraft type has to be
assigned to each flight segment, the model contains con-
straints

�
t�T

xst � 1 @s � S ,

where T is the set of aircraft types and S is the set of flight
segments, and xst � 1 if aircraft type t is assigned to flight s.
The set of aircraft types is naturally ordered based on pas-
senger capacities. A split now corresponds to deciding that
the capacity on a flight segment has to be less than or greater
than a certain number of seats. Such a number may be
determined from the solution to the LP relaxation.

The above branching scheme can also be viewed as
branching on constraints rather than branching on variables.
Another example is branching on the connectivity con-
straints in the TSP formulation given earlier. Recall that
connectivity in the TSP can be ensured by the constraints

�
e���U	

xe � 2 @U � V , 2 � �U � � �V
2 �  .

In fact, in any tour z �
e��(U) xe will be equal to 2k for some
k � 1. Therefore, if this is not the case, for instance, for U�, we
have z � 2.5; then we can branch on a connectivity constraint
by defining one branch to be the set of tours that satisfy

�
e���U�	

xe � 2

and defining the other branch to be the set of tours that
satisfy

�
e���U�	

xe � 4.

Finally, we return to the example mentioned in the for-
mulation section with the constraint: no more than two vari-
ables from an ordered set can be positive, and if there are two
positive variables, then their indices must be consecutive. These
are special ordered sets of type 2 (SOS2). Here we show how
to enforce SOS2 constraints by branching.

Again, consider

x1 � x2 � x3 � x4 � x5 � 1

and suppose {1, 2, 3, 4, 5} is an SOS2 set. The LP solution x1 �
0, x2 � 0.5, x3 � 0, x4 � 0.5, and x5 � 0 does not satisfy SOS2.
Note that x2 positive implies x4 � 0 and x5 � 0 and that x4

positive implies x1 � 0 and x2 � 0. Thus, we can branch by
imposing x1 � 0 and x2 � 0 on one child node and x4 � 0 and
x5 � 0 on the other. The current LP solution is infeasible to
the problems at both child nodes. This is known as SOS2
branching. Note that x3 � 0 does not appear on either
branch, which is the difference between SOS1 and SOS2
branching.

Many other logical relationships can be handled by
branching. For example, a variable x with domain 0, [a, b]
with a � 0 is called semi-continuous. Excluding an LP solu-
tion with 0 � x � a obviously can be done by branching.

The LP-based branch-and-bound algorithm for integer
programming was developed by Land and Doig.[69] The
following papers are representative of the research on
branching: Beale,[12] Bénichou et al.,[13] Driebeek,[37] Forrest
et al.,[40] and Tomlin.[86] A recent survey of branching tech-
niques is presented by Linderoth and Savelsbergh.[73]

4. Primal Heuristics
As mentioned in the introduction, large trees are the result
of many branchings, and avoiding branching, insofar as is
possible, is equivalent to avoiding the case z(k) � zbest. Recall
that the variable choice rule based on pseudocosts tries to
accomplish that by choosing a variable that causes the ob-
jective function to deteriorate quickly, i.e., that results in low
values of z(k). In this section, we focus on trying to avoid the

8
Johnson, Nemhauser, and Savelsbergh

Copyright © 2000. All rights reserved.

case z(k) � zbest by improving the value zbest, i.e., by finding
better feasible solutions. For large-scale instances there is yet
another maybe even more important reason to put some
effort in finding good feasible solutions: good feasible solu-
tions may be all we can hope for!

Obviously, if we know the structure of the problem, then
any known heuristic for it can be used to provide an initial
value zbest. For example, branch-and-cut algorithms for the
TSP may use the iterated Lin-Kernighan heuristic[75] to get
an initial, usually very good, feasible solution. Such heuris-
tics do not use any LP information. In this section, we
concentrate on LP-based heuristics that can be used
throughout the solution process.

Machine scheduling contains several examples of optimi-
zation problems for which effective LP-based heuristics
have been developed.[55] The basic idea of the LP-based
heuristics for machine scheduling problems is to infer an
ordering of the jobs from the solution to the LP relaxation of
some IP formulation of the problem. Recently, there has
been theoretical as well as empirical evidence that LP-based
heuristics are among the best available approximation algo-
rithms for machine scheduling. For example, for the prob-
lem of minimizing the total weighted completion time on a
single machine subject to release dates, it has recently been
shown by Goemans[44] that an LP-based approximation al-
gorithm has a competitive performance ratio (worst case
performance ratio) of 2, which makes it the best-known
approximation algorithm for this problem. In fact, LP-based
approximation algorithms are the only known approxima-
tion algorithms that give a constant competitive perfor-
mance ratio for many scheduling problems. Furthermore,
empirical studies have revealed that LP-based heuristics also
perform well in practice.[83]

Only a few LP-based heuristics for general integer pro-
grams have been developed. The pivot-and-complement
heuristic for BIPs[8] is based on the observation that in any
feasible LP solution in which all the slack variables are basic,
all the regular variables must be nonbasic at one of their
bounds. This means that all regular variables are either 0 or
1 and, thus, the solution is integer feasible. The idea now is
to pivot slack variables into the basis to obtain such LP
solutions.

A completely different approach to finding feasible solu-
tions to BIPs is based on enumerating 0-1 vectors in the
neighborhood of the current LP solution and checking
whether they are feasible. To make this work, the 0-1 vectors
must be enumerated in some sensible order. The OCTANE
heuristic[7] generates 0-1 vectors by enumerating extended
facets of the octahedron. More precisely, given a point x in
the hypercube (for example, x is the current LP solution) and
a search direction d, the algorithm generates the extended
facets of the octahedron in the order in which they are
intersected by the ray originating at point x with direction d.
The main drawback of this approach is that it seems to be
very difficult to define a search direction that has a high
probability of leading to feasible solutions. An alternative
enumeration scheme[43] examines the rays of the cone gen-
erated by the LP basic solution and looks at their intersec-

tions with the hyperplanes of the unit cube to determine
coordinates of candidate solutions.

Successive rounding heuristics use a simple iterative
scheme in which fractional variables are rounded one after
the other until either an integral solution is found or infea-
sibility is detected. Obviously, the order in which the frac-
tional variables are rounded can have a significant impact on
the chance of finding an integral solution. Successive round-
ing heuristics are often referred to as diving heuristics be-
cause rounding of a fractional variable can be viewed as
branching on that variable and exploring only one of the
child nodes. Unfortunately, the performance of successive
rounding heuristics varies greatly from instance to instance.

5. Branch-and-Cut
A valid inequality for a MIP is an inequality that is satisfied by
all feasible solutions. Here we are interested in valid ine-
qualities that are not part of the current formulation and that
are not satisfied by all feasible points to the LP relaxation.
Such valid inequalities are called cuts. A cut that is not
satisfied by the given optimal solution to the LP relaxation is
called a violated cut. If we have a violated cut, we can add it
to the LP relaxation and tighten it. By doing so, we modify
the current formulation in such a way that the LP feasible
region becomes smaller but the MIP feasible region does not
change. Then we can resolve the LP and repeat the process,
if necessary, so long as we can continue to find violated cuts.

Branch-and-cut is simply a generalization of branch-and-
bound where, after solving the LP relaxation and having not
been successful in pruning the node on the basis of the LP
solution, we try to find a violated cut. If one or more violated
cuts are found, they are added to the formulation and the LP
is solved again. If no violated cuts are found, we branch.
Branch-and-cut generalizes both pure cutting plane algo-
rithms in which cuts are added at the root node until
an optimal MIP solution is found as well as branch-and-
bound.

Consider the IP

max 115x1 � 60x2 � 50x3 � 30x4

subject to

93x1 � 49x2 � 37x3 � 29x4 � 111

xj � 0 or 1, j � 1, . . . , 4.

The optimal LP solution is x* � (0.796, 0, 1, 0). Since x1 � 1
implies that all other variables have to be equal to 0 and
when x1 � 0 at most two of the other variables can be equal
to 1, the constraint

2x1 � x2 � x3 � x4 � 2

is a valid inequality. Moreover, it is a violated cut since it is
not satisfied by x*. By adding this constraint to the LP
relaxation, we tighten the LP bound.

Given a solution to the LP relaxation of a MIP that does
not satisfy all of the integrality constraints, the separation
problem is to find a violated cut. It can be shown that a
violated cut must exist. In particular, there must be a vio-

9
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

lated cut among the finite set of linear inequalities that
define the set of all convex combinations of feasible solu-
tions. For general MIPs or IPs, these so-called facet defining
inequalities are extremely difficult to find and to separate.
Moreover, there can be a tradeoff between the strength of
cuts and the time it takes to find them. Since when no cut is
found in reasonable time we can always branch, separation
routines are frequently based on fast heuristics that may fail
to find a cut of a certain type even though such cuts exist.

At a very high level, there are three types of valid in-
equalities that can be used to achieve integrality.

Type I—No Structure. These inequalities are based only
on variables being integral or binary. Therefore, they can
always be used to separate a fractional point. However, they
may not be very strong.

Type II—Relaxed Structure. These inequalities are de-
rived from relaxations of the problem, for example, by con-
sidering a single row of the constraint set. Therefore, they
can at best only separate fractional points that are infeasible
to the convex hull of the relaxation. However, these inequal-
ities are frequently facets of the convex hull of the relaxation
and therefore may be stronger than Type I inequalities.

Type III—Problem-Specific Structure. These inequalities
are typically derived from the full problem structure or from
a substantial part it. They are usually very strong in that they
may come from known classes of facets of the convex hull of
feasible solutions. Their application is limited to the partic-
ular problem class and to the known classes of inequalities
for that problem class.

We now give examples of the three types of cuts.
The earliest and best known class of Type I inequalities

are the Gomory-Chvátal (GC) inequalities for PIPs intro-
duced by Gomory in the 1950s.[46, 27] If all the variables in
the inequality

�
j

a ijxj � bi

are required to be nonnegative integers, then a GC cut is
given by

�
j

aijxj � bi ,

where � is the integer part or round down of the real
number �. When the aij are integers and bi is not an integer,
the GC inequality tightens the LP relaxation. If there is a
fractional variable in an LP-optimal basic solution, it is well-
known that a GC cut can be derived easily from a row with
a fractional basic variable. Moreover, a PIP can be solved
solely by adding GC cuts to optimal LP solutions that do not
satisfy the integrality conditions. This approach is easily
extended to inequalities with both integer and continuous
variables.[45]

Early computational experiments with pure cutting plane
algorithms using GC cuts yielded very slow convergence.
However, recent empirical results with GC cuts in a branch-
and-cut algorithm have been more positive.[6]

A different class of Type I inequalities that has yielded
some positive computational results in a branch-and-cut

algorithm for both BIPs and MBIPs is the class of lift-and-
project inequalities.[5] These cuts are derived from the fol-
lowing basic ideas from disjunctive programming:

1. xj binary is equivalent to xj � xj
2.

2. The convex hull of feasible solutions to a MBIP can be
obtained by taking the convex hull with respect to one
binary variable and then iterating the process.

After selecting a binary variable xj, the original constraint
system Ax � b is multiplied by xj and separately by (1 � xj).
Then xj

2 is replaced by xj and, for k
 j, xkxj is replaced by yk,
where yk satisfies yk � xk, yk � xj, and yk � xk � xj � 1. The
cuts are obtained in the (x, y)-space and then projected back
to the x-space. Separation for these inequalities requires the
solution of an LP problem and, therefore, can be very ex-
pensive. However, given any fractional solution, a violated
inequality can always be found.

The first Type II inequalities used in the solution of MBIPs
were derived from knapsack relaxations.[31] Consider a
knapsack inequality

�
j�N

ajxj � b , xj � �0, 1� for j � N .

Every row of a BIP is of this form and MBIP rows without
continuous variables are as well. Also, we can relax a MBIP
row with bounded continuous variables to a pure 0-1 row by
fixing continuous variables to a bound depending on the
sign of its coefficient. Without loss of generality, for a single
knapsack inequality, we can assume that aj � 0 since if aj �
0, we can replace xj by the binary variable 1 � xj. Suppose C
is a minimal set such that

�
j�C

aj 	 b .

Then C is called a minimal cover and we have the valid cover
inequality

�
j�C

xj � �C � � 1, (2)

which gives a facet for the convex hull of solutions to

�
j�C

ajxj � b , xj � �0, 1� for j � C , xj � 0 for j � N�C .

To separate on cover inequalities, rewrite (2) as

�
j�C

�1 � xj	 � 1.

Then an LP solution x* satisfies all of the cover inequalities
with respect to the given knapsack if and only if

min� �
j�N

�1 � x*j	 zj :�
j�N

ajzj 	 b , zj � �0, 1� for j � N � � 1.

If the minimum is less than 1, then C � { j � N�zj � 1} defines
a cover inequality that is most violated by x*. This separation
problem is a knapsack problem, which is typically solved
heuristically using a greedy algorithm. The greedy solution

10
Johnson, Nemhauser, and Savelsbergh

Copyright © 2000. All rights reserved.

defines a minimal cover that may or may not be violated
by x*.

To make this inequality strong, it must be lifted to include
the variables in N�C. However, before lifting, it is advanta-
geous to fix the variables with x*j � 1 from the cover inequal-
ity. This yields the lower dimensional inequality

�
j�C1

xj � �C1� � 1, (3)

where C1 � { j � C�xj � 1}, which is valid if xj � 1 for j �
C2 � C�C1.

Now (3) can be lifted to a valid inequality for the original
knapsack problem of the form

�
j�C1

xj � �
j�N�C

� jxj � �
j�C2

 jxj � �C1� � 1 � �
j�C2

 j .

This inequality, called a lifted cover inequality, is at least as
strong and generally stronger than the initial cover inequal-
ity, and if the coefficients �j for j � N�C and
j for j � C2 are
as large as possible, the inequality gives a facet of the convex
hull of solutions to the original knapsack problem. The
coefficients can be computed by dynamic programming.
Lifted cover inequalities have proven to be very effective in
branch-and-cut algorithms for BIPs and MBIPs.[52]

Type II cuts can be improved by tightening the relaxation
from which they are derived. For example, for problems
with clique (sometimes called GUB) inequalities, the knap-
sack relaxation can be tightened by considering the relax-
ation formed by the knapsack inequality and the clique
inequalities. From this relaxation, we can derive lifted GUB
cover inequalities that, when applicable, are stronger than
lifted cover inequalities. However, they are more expensive
to compute. Generally, tighter relaxations yield stronger
inequalities but are more expensive to compute.

Cover inequalities can only be derived from rows with
continuous variables by fixing these variables at bounds. To
obtain stronger inequalities from rows with both binary and
continuous variables, different relaxations are needed. Two
kinds of relaxations have been used to derive classes of Type

II inequalities that have been used successfully in branch-
and-cut algorithms.

Flow cover inequalities[81] are derived from a system con-
sisting of a flow balance equation

�
j�N�

yj � �
j�N�

yj � d

and variable upper bound constraints on the flows

yj � mjxj j � N ,

where N � N� � N�. The system can be viewed as a single
node-capacitated network design model. The y variables are
arc flows that are constrained by the flow balance equation,
with an external demand of d, and the variable upper bound
constraints, where mj is the capacity of arc j and xj is a 0-1
variable that indicates whether arc j is open or not. The
usefulness of this system for general MBIPs arises from the
fact that a general inequality in a MBIP that contains both
continuous and binary variables can be relaxed to this form.

Recently, classes of Type II inequalities have been ob-
tained from a relaxation of the form

�
j�N

ajxj � b � s , xj � �0, 1� for j � N , s � 0,

which is called a continuous knapsack set.[74]

To illustrate the Type III inequalities, we again consider
the TSP and the example shown in Fig. 2. Suppose we solve
the LP relaxation consisting of the degree, connectivity, and
nonnegativity constraints. The solution x � (1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1, 1,

1) satisfies these constraints and could be an optimal solu-
tion to the LP relaxation since it is an extreme point. This
fractional solution is cut off by the valid inequality

x1 � x2 � x3 � x7 � x8 � x9 � 4.

The inequality is valid since, if we look at the subgraph
generated by these edges and try to put as many of them as
possible in a tour, we could include e7, e8, and e9, but then
the degree constraints would forbid us from taking more
than one edge from e1, e2, and e3. Similarly, if we take two

Figure 2. TSP instance with LP solution.

11
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

edges from e1, e2, and e3, then we can take no more than two
edges from e7, e8, and e9.

In general, consider a subset of nodes H and an odd set of
node disjoint edges T, each having one end in H as shown in
Fig. 3. The figure resembles a comb, with handle H and teeth
T. Let E(H) be the set of edges with both ends in H. How
many edges can we take from E(H) � T in a tour? Arguing
as above, we see that we should take all of T, but then a
simple counting argument shows that the maximum num-
ber of edges we can take from E(H) is �H� � �T/2�. Hence,
we get the simple comb inequality[28]

�
e�E�H	

xe � �
e�T

xe � �H � �  �T/ 2 � .

These simple comb inequalities can be separated in poly-
nomial time, and in some instances they define facets of the
convex hull of tours. It is interesting to note that they can be
derived as Gomory-Chvátal cuts. Moreover, they can be
generalized by also using the subtour elimination con-
straints.[50, 51]

The TSP also demonstrates where cuts can be used to
exclude integer solutions that are not feasible. The initial
formulation of the TSP cannot include all of the connectivity
constraints since the number of them is exponential in the
size of the TSP input. Without all of the connectivity con-
straints, an optimal solution to the LP relaxation can be
integral but not feasible, i.e., a set of two or more subtours
that contain all of the nodes. When this occurs, at least one
connectivity constraint must be a violated cut. Connectivity
constraints can also be used to cut off fractional solutions.

There is a vast literature on specialized branch-and-cut
algorithms for many combinatorial optimization problems.
A network design problem will be discussed in Section 11.
For some families of cuts, such as connectivity constraints
and combs, the separation problem can be solved exactly
and rapidly. For more complex families of cuts, especially

when the separation problem is NP-hard, we use heuristics
that may fail to find an existing violated cut. The problem of
how much time should be spent on finding violated cuts,
with failure meaning wasted computing time, must be re-
solved empirically on a case-by-case basis.

The use of cutting planes to solve combinatorial optimi-
zation problems dates back to the early years of the field
when Dantzig et al.[32, 33] were able to solve a 49-city trav-
eling salesman problem. Caprara and Fischetti[26] provide
numerous references on branch-and-cut algorithms. A sur-
vey of the developments specifically for the TSP can be
found in Jünger et al.[64] Among the first papers to describe
the use of cutting planes throughout the branch-and-bound
tree are Grötschel et al.[47] and Padberg and Rinaldi.[80]

6. Branch-and-price
The generalized assignment problem (GAP) is the problem of
finding a maximum profit assignment of m tasks to n ma-
chines such that each task is assigned to precisely one ma-
chine, subject to capacity restrictions on the machines. The
standard integer programming formulation of GAP is

max �
1�i�m

�
1�j�n

pijzij

�
1�j�n

zij � 1 i � 1, . . . , m

�
1�i�m

wijzij � dj j � 1, . . . , n

zij � �0, 1� i � 1, . . . , m ,
j � 1, . . . , n ,

(4)

where pij is the profit associated with assigning task i to
machine j, wij is the amount of the capacity of machine j used
by task i, dj is the capacity of machine j, and zij is a 0-1
variable indicating whether task i is assigned to machine j.

Alternatively, the problem can be viewed as that of par-
titioning the set of tasks into subsets that can be performed
on a specific machine. This yields the following (re)formu-
lation:

max �
1�j�n

�
1�k�Kj

� �
1�i�m

pijyik
j � �k

j

�
1�j�n

�
1�k�Kj

yik
j �k

j � 1 i � 1, . . . , m

�
1�k�Kj

�k
j � 1 j � 1, . . . , n

�k
j � �0, 1� j � 1, . . . , n ,

k � 1, . . . , Kj ,
(5)

where the first m entries of a column, given by yk
j � (y1k

j , y2k
j ,

. . . , ymk
j), satisfy the knapsack constraint

�
1�i�m

wijxi � dj

xi � �0, 1� i � 1, . . . , m ,

Figure 3. Simple comb.

12
Johnson, Nemhauser, and Savelsbergh

Copyright © 2000. All rights reserved.

and Kj denotes the number of feasible solutions to the knap-
sack constraint. In other words, the first m entries of a
column represent a feasible assignment of tasks to a ma-
chine.

The LP relaxation of (5) can be obtained from a Dantzig-
Wolfe decomposition of the LP relaxation of (4). The LP
relaxation of (5) is tighter than the LP relaxation of (4) since
fractional solutions that are not convex combinations of 0-1
solutions to the knapsack constraints are not feasible to (5).
However, the number of columns in (5) is exponential in the
size of the input. Fortunately, it is possible to handle the
huge number of columns implicitly rather than explicitly.
The basic idea is simple. Leave most columns out of the LP
relaxation because there are too many columns to handle
efficiently; most of them will have their associated variable
equal to zero in an optimal solution anyway. Then, as in
column generation for linear programming, to check the
optimality of an LP solution, a subproblem, called the pricing
problem, is solved to try to identify columns to enter the
basis. If such columns are found, the LP is reoptimized; if
not, we are done. To solve the LP relaxation of the set-
partitioning formulation of the GAP, pricing or column gen-
eration is done by solving n knapsack problems.

Obviously, the LP relaxation may not have an integral
optimal solution and then we have to branch. However,
applying a standard branch-and-bound procedure over the
existing columns is unlikely to find an optimal (or even good
or even feasible) solution to the original problem. Therefore,
it may be necessary to generate additional columns in order
to solve the LP relaxations at non-root nodes of the search
tree. Branch-and-bound algorithms in which the LP relax-
ations at nodes of the search tree are solved by column
generation are called branch-and-price algorithms.

There are two fundamental difficulties in applying col-
umn generation techniques to solve the linear programs
occurring at the nodes of the search tree.

• Conventional integer programming branching on vari-
ables may not be effective because fixing variables can
destroy the structure of the pricing problem.

• Solving these LPs and the subproblems to optimality may
not be efficient, in which case different rules will apply for
managing the search tree.

Consider the set-partitioning formulation of the GAP.
Standard branching on the �-variables creates a problem
along a branch where a variable has been set to zero. Recall
that yk

j represents a particular solution to the jth knapsack
problem. Thus, �k

j � 0 means that this solution is excluded.
However, it is possible (and quite likely) that the next time
the jth knapsack problem is solved, the optimal knapsack
solution is precisely the one represented by yk

j . In that case,
it would be necessary to find the second-best solution to the
knapsack problem. At depth l in the branch-and-bound tree,
we may need to find the lth-best solution. Fortunately, there
is a simple remedy to this difficulty. Instead of branching on
the �s in the master problem, we use a branching rule that
corresponds to branching on the original variables zij. When
zij � 1, all existing columns in the master problem that do

not assign task i to machine j are deleted and task i is
permanently assigned to machine j, i.e., variable xi is fixed to
1 in the jth knapsack. When zij � 0, all existing columns in
the master problem that assign job i to machine j are deleted,
and task i cannot be assigned to machine j, i.e., variable xi is
removed from the jth knapsack. Note that each of the knap-
sack problems contains one fewer variable after the branch-
ing has been done.

One reason for considering formulations with a huge
number of variables is that they may provide tighter bounds
than compact formulations. Another reason for considering
such formulations is that when a compact formulation has a
symmetric structure, it causes branch-and-bound algorithms
to perform poorly because the problem barely changes after
branching. A formulation with a huge number of variables
may eliminate this symmetry.

Consider the GAP in which all machines are identical.
With identical machines, there is an exponential number of
solutions that differ only by the names of the machines, i.e.,
by swapping the assignments of two machines we get two
solutions that are the same but have different values for the
variables. This statement is true for fractional as well as for
0-1 solutions. The implication is that when a fractional so-
lution is excluded at some node of the tree, it pops up again
with different variable values somewhere else in the tree. In
addition, the large number of alternate optima dispersed
throughout the tree renders pruning by bounds nearly use-
less.

Here, the set-partitioning reformulation provides an alter-
native in which it is easier to handle the symmetry. First,
observe that in the set-partitioning formulation of the GAP
with identical machines we do not need a separate subprob-
lem for each machine. This implies that the �k

j can be aggre-
gated by defining �k �
j �k

j and that the convexity con-
straints can be combined into a single constraint
1�k�K �k �
n where �k is restricted to be integer.

In some cases the aggregated constraint will become re-
dundant and can be deleted altogether. An example of this
is when the objective is to minimize
 �k, i.e., the number of
machines needed to process all the tasks. Note that this
special case of GAP is equivalent to a 0-1 cutting stock
problem.

To handle the symmetry, we apply a branching scheme
that focuses on pairs of tasks. In particular, we consider
rows corresponding to tasks r and s. Branching is done by
dividing the solution space into one set in which r and s
appear together, in which case they can be combined into
one task when solving the knapsack and into another set in
which they must appear separately, in which case a con-
straint xr � xs � 1 is added to the knapsack.

In the reformulation of the GAP, the original formulation
has been decomposed into a set-partitioning master problem
and knapsack pricing problem. Such a decomposition fre-
quently occurs in formulations with a huge number of vari-
ables and often has a natural interpretation in the contextual
setting allowing for the incorporation of additional impor-
tant constraints. As an example, consider a distribution
problem in which a set of trucks, each with a certain capac-
ity, has to make deliveries to a set of customers, each with a

13
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

certain demand. In the set-partitioning formulation of this
problem, rows represent customers and columns represent
feasible delivery routes. Additional constraints, such as de-
livery time windows for the customers, only affect the pric-
ing problem and, therefore, are easier to incorporate than in
a compact formulation of the problem.

Johnson[62] was one of the first to realize the potential and
complexity of branch-and-price algorithms. The ideas and
methodology of branch-and-price as well as a survey of
some of its application areas can be found in Barnhart et
al.[10] Routing and scheduling has been a particularly fruit-
ful application area of branch-and-price. Desrosiers et al.[35]

survey these results.

7. Row and Column Management
Although the theoretical foundations of branch-and-cut and
branch-and-price algorithms are now well-known and well-
documented, there are still many algorithmic and imple-
mentation issues that need to be resolved or require more
thorough investigation. In this section, we focus on some of
these computational issues.

In branch-and-cut algorithms, the search for violated cuts
to tighten the LP relaxation affects computation time in two
ways. First, there is the additional time spent on trying to
generate violated cuts, and this time is spent regardless of
whether any violated cuts are found. Second, if one or more
violated cuts are found, they are added to the active linear
program, which is then resolved. Therefore, we may be
solving several linear programs per node. Moreover, the
linear programs become larger and typically harder to solve.
Consequently, we have to be careful and try to make sure
that the extra time spent on evaluating nodes of the search
tree does result in a smaller search tree and, more impor-
tantly, does result in a smaller overall solution time.

Cut management refers to strategies embedded in branch-
and-cut algorithms to ensure effective and efficient use of
cuts in an LP-based branch-and-bound algorithm. These
strategies decide when to generate cuts, which of the gen-
erated cuts (if any) to add to the active linear program, and
when to delete previously generated cuts from the active
linear program.

Several strategies have been investigated that try to de-
crease the time spent on generating cuts without reducing
the effectiveness of the branch-and-cut algorithm. This can
be done in two ways: 1) by limiting the number of times cuts
are generated during the evaluation of a node, or 2) by not
generating cuts at every node of the search tree.

The number of times violated cuts are generated during
the evaluation of a node is often referred to as the rounds of
cut generation. A popular strategy is to limit the rounds of cut
generation to k1 in the root node and to k2 in all the other
nodes with k1 � k2. Limiting the number of times violated
cuts are generated during the evaluation of a node is not
only important for reducing time spent on cut generation,
but it also prevents so-called tailing-off. Tailing-off refers to
the phenomenon observed frequently that, after several
rounds of cut generation, the objective function value hardly
changes, i.e., even though violated cuts are identified and

added to the active linear program, their addition does not
lead to a substantial bound improvement. When tailing-off
occurs, it may be beneficial to branch rather than generate
cuts, since we may be spending a significant amount of time
on cut generation without producing stronger bounds and,
thus, without decreasing the size of the search tree.

Tailing-off raises the important issue of how to measure
the quality of a cut. One measure of quality that has been
used and appears to be reasonably effective is the orthogo-
nal distance from the current optimal LP point to the cut.
This measure is used in the obvious way: only add a violated
cut if the orthogonal distance from the current optimal LP
point to the cut is larger than a certain threshold value.

Several strategies have been developed that generate vi-
olated cuts at only a subset of the nodes of the search tree.
The simplest such strategy is to generate violated cuts only
at the root node. The resulting branch-and-cut algorithm is
often called a cut-and-branch algorithm. A generalization of
this strategy generates cuts only in the top part of the search
tree, i.e., at all nodes with depth less than or equal to some
given parameter t. The rationale behind these strategies is
that generating cuts in the top part of the search tree is more
important since it affects all the nodes in the search tree.
Another strategy is to generate violated cuts at every tth
node. The rationale behind this strategy is that after evalu-
ating t nodes we have hopefully entered a different part of
the search space and we will be able to generate violated
cuts relevant for it.

Another reason for the increase in time to evaluate nodes
is that the addition of cuts leads to larger and more complex
linear programs. To minimize the negative effects of larger
and more complex linear programs, a strategy is required
that controls the size of the active linear program. (Note that
we have already seen one possible way to accomplish this—
only adding some of the generated cuts, e.g., only adding the
k cuts with the highest orthogonal distance from the current
optimal LP point to the cut.) The basic idea behind most
control strategies is to have only a limited number of all the
available cuts in the active linear program. Since most of the
cuts will not be binding in an optimal solution anyway, this
seems reasonable. The cuts that are not part of the active
linear program are kept in a so-called cut pool.

Combining these ideas, we obtain the following basic cut
management scheme:

1. Solve the active linear program.
2. Identify inactive cuts. If successful, delete them from the

active linear program and move them to the cut pool.
3. Search the cut pool for violated cuts. If successful, select a

subset of them, add them to the active linear program,
and go to 1.

4. Generate violated cuts. If successful, add them to the cut
pool and go to 3.

Many implementation issues need to be addressed relat-
ing to this scheme. First, we want to minimize the adminis-
trative overhead as much as possible. For example, we do
not want to move cuts back and forth between the active
linear program and the cut pool all the time. Therefore, we
have to be careful in defining when a cut becomes inactive.

14
Johnson, Nemhauser, and Savelsbergh

Copyright © 2000. All rights reserved.

In the typical definition, a cut is called inactive if the dual
variable associated with it has been equal to zero for k
consecutive iterations. Second, we want to minimize the
time it takes to search the cut pool for violated cuts. There-
fore, a cut pool typically has a fixed size: the cut pool size. A
small cut pool size obviously results in faster search times.

Most of the issues discussed in this section in the context
of branch-and-cut algorithms apply to branch-and-price al-
gorithms as well.

8. Software
Anyone who has ever attempted to use integer program-
ming in practice knows that the road from a real-life deci-
sion problem to a satisfactory solution can be quite long and
full of complications. The process involves developing a
model (which typically involves making simplifying as-
sumptions), generating an instance of the model (which may
involve gathering huge amounts of data), solving the in-
stance (which involves transforming the instance data into a
machine-readable form), verifying the solution and the
model (which involves validating the appropriateness of the
simplifying assumptions), and, if the need arises, repeating
these steps. In addition, models may have to be modified
when changes occur in the problem or when user needs
become different. This iterative process represents the mod-
eling life cycle in which a model evolves over time.

Although this paper concentrates on how to solve integer
programs, it is important to realize that this is only a single
step in the overall process. Ideally, a computer-based inte-
ger-programming modeling environment has to nurture the
entire modeling life cycle and has to support the manage-
ment of all resources used in the modeling life cycle, such as
data, models, solvers, and solutions.

Two components of this ideal modeling environment
have received the most attention and are now widely avail-
able—the modeling module and the solver module. A mod-
eling module provides an easy to use yet powerful language
for describing a decision problem. Most modeling modules
available today are based on an algebraic paradigm to con-
ceptualize the model. A solver module provides an opti-
mizer that reads an instance produced by the modeling
module and then solves it. Obviously, the modeling module
and the solver module need to be able to communicate with
each other. The simplest but least efficient way to accom-
plish this is through files. The MPS format is a generally
accepted format for the specification of an instance of an
integer linear program. All modeling modules are able to
produce an MPS input file and to process an MPS output
file. All solver modules are able to process an MPS input file
and to produce an MPS output file. Since reading and writ-
ing files are slow processes, other more efficient interfaces
have also been developed. There are also some integrated
systems that provide both a modeling module and a solver
module.

As we have emphasized throughout the paper, it is often
essential to use the structure of the underlying problem to
enhance the performance of general-purpose integer-pro-
gramming software. Such enhancements range from speci-

fying a priority order to be used for branching to developing
primal heuristics and cut generation routines. To support
such special-purpose functions, software developers have
started to provide either “hooks” into the software that
allow users to add on their own routines or a callable library
version of the software so that users can invoke the integer-
programming optimizer from within their own programs.

Although the availability of hooks and callable libraries
greatly facilitates the development of special-purpose opti-
mizers, it still remains time consuming because it usually
requires a deep and often low-level understanding of the
software. To overcome these difficulties and, thus, to speed
up the development process, systems such as ABACUS[66]

and MINTO[78] have been built that run on top of the com-
mercial optimizers and provide an easier-to-use interface for
the development of a special-purpose optimizer. Using these
systems, a full-blown special-purpose branch-and-cut algo-
rithm incorporating primal heuristics, special branching
schemes, and specific cut generation routines typically can
be developed in a matter of weeks rather than months.

Widely used modeling systems include GAMS,[23]

AMPL,[41] and AIMMS.[16] Solvers include CPLEX,[30]

OSL,[60] and XPRESS-MP.[34]

9. Testing and Computation
What makes a good integer-programming optimizer? How
do you test the performance of an integer-programming
optimizer? What features should a good integer-program-
ming optimizer have? There do not seem to be easy answers
to any of these questions.

A common approach to finding some partial answers is to
compare the performance of optimizers on a standard set of
test problems. For integer programming, MIPLIB is the only
standard set of test problems. MIPLIB is a collection of
integer programs in the form of MPS files that contains BIPs,
MBIPs, and MIPs. It was created in 1992[17] and the latest
version (3.0) is described in Bixby et al.[18] However, as
indicated earlier, comparisons provide only partial answers.
What is important? Total CPU time? Number of nodes in the
search tree? Quality of the bound at the root node? This
issue is complicated even more by the fact that the perfor-
mance of optimizers with respect to any of the mentioned
measures varies widely from instance to instance. Although
the availability of MIPLIB does not allow us to identify the
best integer-programming optimizer, it has stimulated the
improvement and development of many of the more sophis-
ticated integer-programming techniques discussed in this
paper.

There is, however, one important deficiency with MIPLIB.
Because MIPLIB contains instances of integer programs in
the form of MPS files, the underlying model is completely
lost. As indicated earlier, it is often essential to use the
underlying problem structure to be able to solve integer
linear programs. Therefore, it is important to create a library
that contains models as well as instances of the models. This
would not only allow the evaluation of general-purpose
techniques but also the evaluation of special-purpose tech-
niques for specific types of integer linear-programming

15
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

models, i.e., the evaluation of specific branching rules, pri-
mal heuristics, and classes of valid inequalities.

We present a small computational experiment to show the
effects of enhancing a linear programming-based branch-
and-bound algorithm with some of the techniques discussed
in the previous sections. We have run MINTO (version 3.0)
with six different settings and a time limit of 30 minutes on
a Pentium II processor with 64 Mb internal memory running
at 200 Mhz on a subset of the MIPLIB 3.0 instances. The six
different settings are:

1. Plain LP-based branch-and-bound selecting the fractional
variable with fraction closest to 0.5 for branching and
selecting the unevaluated node with the best bound for
processing.

2. Add pseudocost branching to 1.
3. Add preprocessing to 2.
4. Add a primal heuristic to 3.
5. Add cut generation to 3.
6. Add a primal heuristic as well as cut generation to 3.

In Table I, we present the number of constraints, the
number of variables, the number of integer variables, and
the number of 0-1 variables for each of the instances used in
our computational experiment. In Table II, we report for
each instance its name, the value of the best solution found,
the value of the LP relaxation at the root node, the number
of evaluated nodes, and the elapsed CPU time. Table III
contains summary statistics on the performance for each of
the different settings.

The results presented clearly show that these enhance-
ments significantly improve the performance. In particular,
the setting that includes all of the enhancements is best
(solves most instances) and plain branch-and-bound is worst
(solves fewest instances). However, for some instances, the
extra computational effort is not worthwhile and even de-
grades the performance.

In instance blend2, we see that cut generation increases the
solution time even though it reduces the number of evalu-
ated nodes. Generating cuts takes time and unless it signif-
icantly reduces the size of the search tree, this may lead to an
increase in the overall solution time. On the other hand, in
instances fiber and p2756, we see that cut generation is es-
sential. Without cut generation, these instances cannot be
solved. Cut generation is also very important in solving

vpm1 efficiently. In instance gt2, we see that preprocessing is
the key to success. Even though cut generation may not
always allow you to solve an instance, it may help in finding
good feasible solutions. This can be observed in instance
harp2, where we find a feasible solution within the given
time limit only when cuts are generated. In instance vpm1,
we see that the use of a primal heuristic may sometimes
increase the solution time. The optimal solution is found
very quickly (although, of course, this is not known at the
time), so all the time spent in the primal heuristic after that
is wasted.

10. Applications
In this section we present two applications—one that illus-
trates branch-and-cut and another that illustrates branch-
and-price. Moreover, these applications have had a great
deal of impact in their respective industries because the
solutions obtained have yielded substantial cost savings.
The significance of integer-programming models and appli-
cations is demonstrated by the number of recent Edelman
prize papers that use integer programming, e.g., Arntzen et
al.,[4] Bertsimas et al.,[14] Botha et al.,[21] Camm et al.,[24]

Hueter and Swart,[59] and Sinha et al.[85]

10.1 Network Design
Fiber-optic technology is rapidly being deployed in commu-
nication networks throughout the world because of its
nearly unlimited capacity, reliability, and cost-effectiveness.
The high capacity provided by fiber optics results in much
sparser network designs with larger amounts of traffic car-
ried by each link than is the case with traditional bandwidth-
limited technologies. This raises the possibility of significant
service disruptions due to the failure of a single link or
single node in the network. Hence, it is vital to take into
account such failure scenarios and their potential negative
consequences when designing fiber communication net-
works.

The major function of a communication network is to
provide connectivity between users in order to provide a
desired service. The term survivability refers to the ability to
restore network service in the event of a failure, such as the
complete loss of a communication link or a switching node.
Service could be restored by means of routing traffic around
the damage, if this contingency is provided in the network

Table I. Instance Characteristics

Name
Number of
Constraints

Number of
Variables

Number of
Integer Variables

Number of
0-1 Variables

EGOUT 98 141 55 all
BLEND2 274 353 264 231
FIBER 363 1298 1254 all
GT2 29 188 188 24
HARP2 112 2993 2993 all
MISC07 212 260 259 all
P2756 755 2756 2756 all
VPM1 234 378 168 all

16
Johnson, Nemhauser, and Savelsbergh

Copyright © 2000. All rights reserved.

Table II. Computational Results on a Subset of MIPLIB 3.0 Instances

Name Setting zbest* zroot Number of Nodes CPU (sec.)

EGOUT 1 568.10 149.59 60779 561.97
EGOUT 2 568.10 149.59 8457 39.14
EGOUT 3 568.10 511.62 198 1.13
EGOUT 4 568.10 511.62 218 1.22
EGOUT 5 568.10 565.95 3 0.33
EGOUT 6 568.10 565.95 3 0.30

BLEND2 1 7.60 6.92 31283 928.92
BLEND2 2 7.60 6.92 17090 226.66
BLEND2 3 7.60 6.92 14787 141.39
BLEND2 4 7.60 6.92 12257 126.50
BLEND2 5 7.60 6.98 10640 381.56
BLEND2 6 7.60 6.98 8359 359.11

FIBER 1 156082.52 30619 1800.00
FIBER 2 405935.18 156082.52 83522 1800.00
FIBER 3 405935.18 156082.52 81568 1800.00
FIBER 4 413622.87 156082.52 74286 1800.00
FIBER 5 405935.18 384805.50 677 39.89
FIBER 6 405935.18 384805.50 379 34.75

GT2 1 13460.23 38528 1800.00
GT2 2 13460.23 39917 1800.00
GT2 3 21166.00 20146.76 1405 8.80
GT2 4 21166.00 20146.76 1912 12.48
GT2 5 21166.00 20146.76 1405 7.16
GT2 6 21166.00 20146.76 1912 12.53

HARP2 1 �74353341.50 24735 1800.00
HARP2 2 �74353341.50 37749 1800.00
HARP2 3 �74325169.35 37813 1800.00
HARP2 4 �74325169.35 33527 1800.00
HARP2 5 �73899781.00 �74207104.67 26644 1800.00
HARP2 6 �73899727.00 �74207104.67 21631 1800.00

MISC07 1 2810.00 1415.00 12278 1800.00
MISC07 2 2810.00 1415.00 43583 1244.67
MISC07 3 2810.00 1415.00 61681 1635.69
MISC07 4 2810.00 1415.00 66344 1800.00
MISC07 5 2810.00 1415.00 62198 1800.00
MISC07 6 2810.00 1415.00 43927 1300.52

P2756 1 2688.75 33119 1800.00
P2756 2 2688.75 35383 1800.00
P2756 3 2701.14 37707 1800.00
P2756 4 3334.00 2701.14 33807 1800.00
P2756 5 3124.00 3117.56 461 140.66
P2756 6 3124.00 3117.56 137 74.56

VPM1 1 15.42 42270 1800.00
VPM1 2 20.00 15.42 179402 1631.84
VPM1 3 20.00 16.43 77343 624.14
VPM1 4 20.00 16.43 146538 1339.64
VPM1 5 20.00 19.25 16 0.72
VPM1 6 20.00 19.25 1 0.84

*No value means that no feasible solution was found.

17
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

architecture. A network topology could provide protection
against a single link failure if it remains connected after the
failure of any link. Such a network is called 2-edge con-
nected since at least two edges have to be removed to
disconnect the network. Similarly, protection against a sin-
gle node failure can be provided by a 2-node connected
network. In the case of fiber-optic communication networks
for telephone companies, two-connected topologies provide
an adequate level of survivability since most failures typi-
cally can be repaired quickly, and a statistical analysis has
shown that it is very unlikely that a second failure will occur
while the first failure is being repaired.

The survivability conditions are expressed is terms of
edge or node connectivity requirements of the graph G �
(V, E) representing the network. For each node s � V, a
nonnegative integer rs is specified. We say that the network
N � (V, F) to be designed, with F � E, satisfies the node
survivability conditions if, for each pair of nodes s, t � V of
distinct nodes, N contains at least rst � min{rs, rt} node-
disjoint s, t-paths. Similarly, we say that the network N �
(V, F) satisfies the edge survivability conditions if, for each
pair of nodes s, t � V of distinct nodes, N contains at least rst

edge-disjoint s, t-paths.
The design of a survivable network now can be formu-

lated as the integer program

min cx
x��G�W		 � con�W	 for all W � V , � � W � V (6)

x��G�Z�W		 � con�W	 � �Z�

xij � �0, 1�

for all pairs s, t � V, s � t, and
for all � � Z � V��s, t�

with �Z� � rst � 1
and for all W � V�Z

with s � W, t �� W
for all ij � E, (7)

where the variable xij indicates whether edge {i, j} is selected
to be part of the network (xij � 1) or not (xij � 0), x(F) �

e�Fxe, �G(W) denotes the set of edges with exactly one
endpoint in W, and con(W) � maxs�W,t�W rst. Constraints (6)
ensure the edge survivability conditions by requiring that
for every pair s, t � V and any subset W � V with s � W and
t � V�W, the number of edges in the network with one
endpoint in W is at least as large as rst. Constraints (7) ensure
the node survivability conditions by requiring that for any
pair s, t � V, any subset Z � V with s, t � Z and �Z� � rst �
1, and any subset W � V�Z with s � W and t � V�(W � Z),
the number of edges in the network with one endpoint in W

and one endpoint not in W is at least as large as rst � �Z�
when we drop the nodes Z and all edges incident with nodes
in Z from the network. Note that (6) is a special case of (7)
with Z � �.

The structure of the convex hull of the set of feasible
solutions to this integer program has been studied exten-
sively and a branch-and-cut algorithm, based on these re-
sults, to compute a minimum cost network satisfying the
survivability conditions has been developed (see Grötschel
et al.[48, 49]). Their algorithm has been tested on several real-
life instances with sizes ranging from 36 nodes and 65 edges
to 116 nodes and 173 edges.

Many real-world instances have sparse graphs that can be
decomposed and, thus, simplify the solution. These decom-
positions are based on the observation that some edges have
to be used by any feasible solution. If such edges exist, then
it is possible to decompose the problem into several sub-
problems that can be solved independently. Good heuristics
are also available,[77] and the results of the branch-and-cut
algorithm showed that these heuristics indeed produce
high-quality solutions.

10.2 Crew Scheduling
In a crew-scheduling or -pairing problem, sequences of
flights, called pairings, are assigned to crews so that each
flight segment is assigned to exactly one crew. The problem
is defined by a flight schedule, time period, legality rules,
and a cost structure. The time period is dictated by the
periodic property of the schedule. Domestic schedules for
the major U.S. carriers repeat almost daily, with some ex-
ceptions on the weekends. Thus, the period is generally
taken to be one day. For international flights, a weekly
period is more appropriate. For simplicity, we will consider
daily problems. The first segment in a daily pairing must
depart from the crew’s base, each subsequent segment de-
parts from the station where the previous one arrived, and
the last segment must return to the base. A sequence can
represent several days of flying, typically up to three to five
days for a domestic daily problem.

Good pairings have the crews spending as much of the
elapsed time of the pairing as is legally possible flying. Bad
pairings have a lot of wasted time between flights. For
example, a crew arrives at 11 pm, but because of required
rest cannot leave with the airplane that departs at 7 am.
Since no other planes of this type arrive at this airport, the
crew wastes the day and flies the plane departing at 7 am, 32
hours after its arrival. When this unfortunate situation oc-
curs, there is always an unoccupied crew at the station and
two crews are there overnight, even though there is only one
arrival and one departure each day.

Pairings are subject to a number of constraints resulting
from safety regulations and contract terms. These con-
straints dictate restrictions such as the maximum number of
hours a pilot can fly in a day, the maximum number of days
before returning to the base, and minimum overnight rest
times. In addition, the cost of a pairing is a messy function of
several of its attributes. Wasted time is the main one.

For these reasons, it is not desirable to formulate a crew-
scheduling problem with variables zij where zij � 1 if crew i

Table III. Summary Statistics

Settings 1 2 3 4 5 6

Number of problems solved 2 4 5 4 6 7
Number of times with the fewest

number of nodes
0 1 1 0 2 5

Number of times with the fastest
solution time

0 1 0 1 2 3

18
Johnson, Nemhauser, and Savelsbergh

Copyright © 2000. All rights reserved.

is assigned to segment j since the constraints on zij and the
cost are highly nonlinear and difficult to express. The alter-
native approach is to enumerate (implicitly or explicitly)
feasible pairings and then to formulate a set partitioning
problems in which each column or variable corresponds to a
pairing, each row corresponds to a flight, and the objective
is to partition all of the flights into a set of minimum cost
pairings.

Although enumerating feasible pairings is complex be-
cause of all of the rules that must be observed, it can be
accomplished by first enumerating all feasible possibilities
for one day of flying and then combining the one-day sched-
ules to form pairings. The major drawback is the total num-
ber of pairings, which grows exponentially with the number
of flights. Problems with 1,000 flights are likely to have
billions of pairings.

One approach for solving a 1,000-flight problem, which is
a typical large fleet problem for a U.S. domestic carrier, is to
enumerate in advance about 100,000 low-cost pairings, a
very small fraction of the total. Then, with this fixed set of
columns, attempt to solve or get a good feasible solution to
the set-partitioning problem defined by these 100,000 pairings,
which itself is a very difficult task. Since only a tiny fraction of
all of the pairings are available to the integer program or its
linear programming relaxation, this methodology may not pro-
duce a solution that is close to being optimal to the problem in
which all the pairings are considered.

Theoretically, branch-and-price can implicitly consider all
of the pairings. It is possible to represent pairings as suitably
constrained paths in a network and then to evaluate their
costs, i.e., price out nonbasic columns, using a multilabel
shortest path or multistate dynamic programming algo-
rithm. However, in practice, the memory requirements of
the full multilabel shortest path and multistate dynamic
programming algorithms are prohibitive, and scaled-down
versions have to be used.

It may be important to generate columns during the so-
lution of LPs throughout the tree. For example, in a small
400-segment instance, 9,400 pairings were generated to solve
the initial LP relaxation. The LP bound was 1,600. The only
IP solution that could be found using this small set of
candidate pairings had cost 13,000. (The run was terminated
after two days of CPU time). By generating columns in the
tree, an IP solution with cost 800 was found! This cost is less
than the cost of the LP relaxation at the root node because of
approximations in the pricing algorithm that prevented fully
optimizing the LP relaxation (see Vance et al.[87]).

Crew-pairing problems also illustrate the special kind of
branching that is required when column generation is used.
Instead of branching on whether a particular pairing is in the
solution or not, since the not branch would mess up the
shortest-path calculation needed in the column generation,
branching is done on whether or not segment i follows
segment j in some pairing. With this dichotomy, the network
can be reconfigured so that the shortest-path paradigm is
preserved.

A survey of recent work on crew pairing is contained in
Barnhart et al.[11] Other recent papers include Anbil et al.,[2]

Hoffman and Padberg,[58] Barnhart et al.,[9] Vance et al.,[88]

and Klabjan et al.[68] Dynamic column generation ap-
proaches to crew pairing are presented in Vance et al.[87] and
Anbil et al.[1]

11. Promising Research Areas
One might be tempted to conclude that mixed-integer pro-
gramming is a mature field and that further research is
unlikely to yield large payoffs. On the contrary, recent suc-
cesses have fostered industry’s wishes to solve larger mod-
els and to get solutions in real time. We will present one
example of this phenomenon from our experience, but many
others exist.

The new generation of crew-scheduling algorithms dis-
cussed in the previous section have typically reduced excess
pay (above pay from flying time) from around 10% to 1%.
However, these results are from planning models and could
only be achieved if the flight schedule was actually flown.
Because of adverse weather and mechanical difficulties,
some flights must be delayed or canceled and the crews
must be rescheduled. Consequently, excess pay may jump
back up to 5–8%.

The need to reschedule raises the issue of the robustness
of the original schedule determined from the planning
model. In fact, the planning model should have been formu-
lated as a stochastic integer program that allows for consid-
eration of many scenarios. However, a k-scenario model is at
least k times the size of a deterministic, i.e., 1-scenario,
model. The need to solve such a model justifies the need for
algorithms that are capable of solving problems an order of
magnitude larger than our current capabilities.

The crew-scheduling problem exemplifies the past,
present, and future of integer programming in logistics and
manufacturing. Through the 1980s, integer programming
could only be used for small planning models. Presently, it
is successful on larger planning models. In the future, inte-
ger programming needs to have the capability of dealing
with at least two new types of models.

1. Robust models that integrate planning and operations.
These will be massively large, multi-scenario stochastic
models for which several hours of solution time may be
acceptable.

2. Recourse models whose solutions provide the real-time
operational corrections to the planning solutions. These
models will have to be solved in seconds or minutes
depending on the application.

These observations lead us to two promising directions of
the field—stochastic integer programming and parallel inte-
ger programming.

11.1 Stochastic Integer Programming
The linear stochastic scenario programming model for a
two-stage problem is

max c0x � � k pkckyk

A0x � b0

Akx � Bkyk � bk , k � 1, . . . , K
x , yk � 0, k � 1, . . . , K ,

19
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

where K is the number of scenarios and pk is the probability
of the kth scenario. This model finds a solution x to use in the
current time period that is robust with respect to several
outcomes for the next time period. If we knew which sce-
nario would hold for the next time period, then we would
solve the problem with only that scenario present. When
there are several possible scenarios, this formulation forces a
single solution x to be used and solves for what the optimum
yk would be for that x in one model whose objective is to
maximize expected two-stage profit. Expositions of multi-
scenario, multi-stage stochastic programming are given in
the books by Birge and Louveau,[15] Infanger,[61] and Kall
and Wallace.[67]

Benders’ decomposition is a well-known approach to
solving the two-stage linear model (often called the
L-shaped solution method in the literature on stochastic
linear programs). The idea is that fixing the linking variables
x breaks up the problem into separate subproblems for each
scenario. The subproblem solutions generate objective func-
tion cuts for the master problem that has the constraints
A0x � b0 and all of the cuts from previous iterations. The
algorithm cycles between solving the master problem and
the subproblems. The fact that these models and algorithms
do not enjoy wider use can only be attributed to the com-
plexity of the models and the difficulty of solving them. The
main difficulties with Benders’ decomposition are that con-
vergence may be slow and many possibly dense constraints
are being added to the master.

Integer constraints on the variables may be needed in
order for the models to be usable. Many situations have
some degree of discreteness and some amount of stochas-
ticity. Although one might assume that any model ade-
quately capturing these two aspects of problems will be
computationally intractable, large improvements in effi-
ciency of optimization methodology and resulting software
combined with cheaper, faster computers offering parallel
processing capabilities should make it possible to reduce
solution times of these large models to practical levels.

Recently, several researchers have considered solving the
stochastic scenario problem with integrality restrictions on
some or all of the x in the first phase using Benders’ decom-
position.[70] The complication is that the master problem is
now an integer program. Several ways can be suggested for
adapting the general Benders’ method to this stochastic MIP
model. The key algorithmic issue is how to enforce the
integrality of the x variables. At one extreme, the integrality
conditions are fully imposed each time the master problem
is solved, i.e., Benders’ cuts are only obtained after getting
an optimal solution to the master problem. At the other
extreme, we solve only the LP relaxation at each node of the
tree and derive Benders’ cuts from these possibly fractional
solutions. In the first approach, we may get very good cuts,
and convergence to an optimal solution is obvious, but we
pay the extravagant price of having to solve an integer
program at each major iteration. It has been proved that,
under mild assumptions, the second approach also con-
verges to an optimal solution. However, the cuts will be
much weaker and, therefore, more of them may be needed,
which could make the LP relaxations difficult to solve and

may cause slow convergence. Seeing the extremes from this
unified point of view suggests many intermediate alterna-
tives that may be computationally far superior to the ex-
tremes.

Benders’ decomposition lends itself well to parallelliza-
tion. This brings us to the next promising direction of integer
programming.

11.2 Parallel Integer Programming
Tremendous progress in the size of problems that can be
solved and in the time it takes to solve them will, undoubt-
edly, come from parallel computing. Research in parallel
computing has matured to the point where there is an un-
derstanding of its potential and limitations. There have been
numerous studies in the domain of scientific computation
that show that the promise of parallel computing is realiz-
able. Whether and to what extent this promise can be ful-
filled in the domain of integer programming is still a matter
of speculation. However, initial experiences with parallel
computing have been encouraging.

Tree search algorithms, such as the LP-based branch-and-
bound algorithm that forms the core of mixed-integer opti-
mizers, are natural candidates for parallellization. Because
the subproblems associated with each node of the search
tree are completely independent, parallelism can be ex-
ploited by evaluating multiple nodes of the search tree si-
multaneously. Due to the exponential growth of the search
tree, parallel search algorithms can lead to substantial im-
provements. Parallelization of tree search algorithms has
attracted considerable attention over the last few years. The
bulk of this work has come from the computer science
community and has focused on scalable parallel task sched-
uling and distribution strategies.

There seems to be great potential for parallel branch-and-
cut and parallel branch-and-price for two reasons. First, they
both have weak synchronization and consistency require-
ments, which provides the flexibility that is necessary to be
able to exploit parallelism successfully. For example, the
correctness of a branch-and-cut algorithm does not depend
on whether cuts are generated or when cuts are generated.
Second, the search trees in these algorithms are still too large
to be manageable in a serial context.

The fundamental issue in parallelizing a branch-and-cut
algorithm is the management of the set of cuts. A good
distributed cut management scheme should aim to achieve
the following goals simultaneously:

• Minimize total cut generation time over all processors. A
careful design may allow communication to beat cut gen-
eration, thus reducing overall cut generation time.

• Maximize “useful sharing” of cuts. Since sharing of cuts
involves communication, we would like to share only
relevant cuts.

• Minimize latency of access to cuts. If there exists a rele-
vant cut, the processes should be able to readily find it.

• Minimize bandwidth. We do not want to flood the com-
munication system with cuts.

These goals are interrelated, and tradeoffs have to be ex-
ploited by varying the degrees to which each is satisfied.

20
Johnson, Nemhauser, and Savelsbergh

Copyright © 2000. All rights reserved.

One straightforward implementation for distributed cut
management consists of a central processor that holds all the
cuts and acts as a server to all the other processors. The
advantage of such a centralized scheme is the sharing of
information. This sharing results in minimal duplication of
effort in cut generation and potentially in some synergism
because a cut generated at one processor may be found to be
effective for nodes of another processor as well—this second
processor benefits from the cut, which it may never have
been able to generate itself. The disadvantage of this ap-
proach is high contention and latency; the central process
can become a bottleneck and communication costs can be
high. Clearly, this scheme does not scale well with the
number of processors.

Another approach to distributed cut management is to
make the cut pools fully distributed and independent, where
every process maintains its own cut pool locally and no
sharing takes place. The advantages of the independent
distributed sets are that the latency of access to a cut is
almost constant and it is bounded by the maximum cut
generation time. However, at least two undesirable phenom-
ena occur. First, duplication of effort takes place in terms of
cut generation and memory requirements for storing the
cuts. Second, since the cuts that are generated are typically
globally valid, irrespective of the processor at which they are
generated, the advantage of sharing the global information
is lost in a distributed implementation. Hybrid cut manage-
ment schemes may be necessary to have a proper balance
between the two extremes.

Branch-and-price poses many challenges to the parallel
implementor as well. Should there be a single central pool of
generated columns? Is there an advantage to sharing gener-
ated column information between processors? If so, how? If
information is not shared, should the task-scheduling algo-
rithm be adjusted to take into account that some processors
may be able to solve some problems faster than others,
having already generated most of the applicable columns?
Because columns are typically not globally valid, it may be
better to have a subtree as a unit of work instead of a node,
which is typically the case in branch-and-cut algorithms.

A survey and synthesis of parallel branch-and-bound al-
gorithms can be found in Gendron and Crainic.[42] Parallel
algorithms for integer programming are presented in Bixby
et al.,[19] Boehning et al.,[20] Cannon and Hoffman,[25] Eck-
stein,[38] Jünger and Störmer,[65] and Linderoth.[72]

12. Conclusions
We have tried to convey the message that integer program-
ming is a vibrant subject with respect to both research and
applications. The increased and widespread use of integer-
programming software in the last decade has resulted from
faster algorithms that are capable of solving much larger
problems, reliable and easy to use software, and inexpensive
hardware whose bottleneck is memory rather than speed.
This success is proven, for example, in the significant num-
ber of Edelman prize papers that use integer programming
models. The computational improvements have arisen from
better modeling, preprocessing, primal heuristics, branch-
and-cut, and branch-and-price.

Current research in integer programming is, of course,
dedicated to further improvements. Users are interested in
being able to solve even larger problems and with greater
reliability. There is a significant need for methods to deal
with stochastic and nonlinear models. The successful algo-
rithms of the 1990s that have integrated heuristics, branch-
and-bound, cutting planes, and column generation, which
were considered to be independent approaches in the 1970s,
suggest that even more integration is needed. For example,
efforts are underway to integrate constraint-logic program-
ming with LP-based branch-and-bound.[90] Whether the
next breakthrough will come from integration, as was the
case with branch-and-cut, or an entirely new development
like the polynomial time algorithm for integer programming
with a fixed number of variables,[71] is anyone’s guess.

Acknowledgments

This research was supported by National Science Foundation
Grant No. DDM-9700285. We are grateful to anonymous referees
whose comments led to significant improvements in the exposition.

References

1. R. ANBIL, J.J. FORREST, and W.R. PULLEYBLANK, 1998. Column
Generation and the Airline Crew Pairing Problem, Documenta
Mathematica III, 677–686.

2. R. ANBIL, R. TANGA, and E. JOHNSON, 1991. A Global Optimi-
zation Approach to Crew Scheduling, IBM Systems Journal 31,
71–78.

3. D. APPLEGATE, R.E. BIXBY, V. CHVÁTAL, and W.J. COOK, 1997.
ABCC TSP, 16th International Symposium on Mathematical
Programming, Lausanne, Switserland.

4. B.C. ARNTZEN, G.B. BROWN, T.P. HARRISON, and L.L. TRAFTON,
1995. Global Supply Chain Management at Digital Equipment
Corporation, Interfaces 25, 69–93.

5. E. BALAS, S. CERIA, and G. CORNUÉJOLS, 1993. A Lift-and-Project
Cutting Plane Algorithm for Mixed 0-1 Programs, Mathematical
Programming 58, 295–324.

6. E. BALAS, S. CERIA, G. CORNUEJOLS, and N. NATRAJ, 1996. Go-
mory Cuts Revisited, Operations Research Letters 19, 1–9.

7. E. BALAS, S. CERIA, M. DAWANDE, F. MARGOT, and G. PATAKI.
OCTANE: A New Heuristic for Pure 0-1 Programs, Operations
Research, in press.

8. E. BALAS and R. MARTIN, 1980. Pivot and Complement: A
Heuristic for 0-1 Programming, Management Science 26, 86–96.

9. C. BARNHART, E.L. JOHNSON, R. ANBIL, and L. HATAY, 1994. A
Column Generation Technique for the Long-Haul Crew Assign-
ment Problem, in Optimization in Industry II, T.A. Ciriani and
R.C. Leachman, (eds.), Wiley, Chichester, 7–24.

10. C. BARNHART, E.L. JOHNSON, G.L. NEMHAUSER, M.W.P. SAVELS-
BERGH, and P.H. VANCE, 1998. Branch-and-Price: Column Gen-
eration for Solving Integer Programs, Operations Research 46,
316–329.

11. C. BARNHART, E.L. JOHNSON, G.L. NEMHAUSER, and P.H.
VANCE, 1999. Crew Scheduling, in Handbook of Transportation
Science, R.W. Hall, (ed.), Kluwer, Boston, 493–521.

12. E.M.L. BEALE, 1979. Branch and Bound Methods for Mathemat-
ical Programming Systems, in Discrete Optimization II, P.L. Ham-
mer, E.L. Johnson, and B.H. Korte, (eds.), North-Holland, Am-
sterdam, 201–219.

13. M. BÉNICHOU, J.M. GAUTHIER, P. GIRODET, G. HENTGES, G.

21
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

RIBIÈRE, and O. VINCENT, 1971. Experiments in Mixed-Integer
Linear Programming, Mathematical Programming 1, 76–94.

14. D. BERTSIMAS, C. DARNELL, and R. SOUCY, 1999. Portfolio Con-
struction Through Mixed-Integer Programming at Grantham,
Mayo, Van Otterloo and Company, Interfaces 29, 49–66.

15. J. BIRGE and F. LOUVEAUX, 1997. Introduction to Stochastic Pro-
gramming, Springer-Verlag, New York.

16. J. BISSCHOP and R. ENTRIKEN, 1993. AIMMS The Modeling System,
Paragon Decision Technology.

17. R.E. BIXBY, E.A. BOYD, S.S. DADMEHR, and R.R. INDOVINA, 1992.
The MIPLIB Mixed Integer Programming Library, Technical
Report R92-36, Rice University, Houston, Texas.

18. R.E. BIXBY, S. CERIA, C. MCZEAL, and M.W.P. SAVELSBERGH,
1998. An Updated Mixed Integer Programming Library: MIPLIB
3.0, Optima 58, 12–15.

19. R.E. BIXBY, W. COOK, A. COX, and E. LEE, 1995. Parallel Mixed
Integer Programming, Technical Report CRPC-TR5554, Rice
University, Houston, Texas.

20. R.L. BOEHNING, R.M. BUTLER, and B.E. GILLETT, 1988. A Parallel
Integer Linear Programming Algorithm, European Journal of Op-
erations Research 34, 393–398.

21. S. BOTHA, I. GRYFFENBERG, F.R. HOFMEYR, J.L. LAUSBERG, R.P.
NICOLAY, W.J. SMIT, S. UYS, W.L. VAN DER MERWE, and G.J.
WESSELS, 1997. Guns or Butter: Decision Support for Determin-
ing the Size and Shape of the South African National Defense
Force, Interfaces 27, 7–28.

22. A.L. BREARLEY, G. MITRA, and H.P. WILLIAMS, 1975. Analysis of
Mathematical Programming Problems Prior to Applying the
Simplex Algorithm, Mathematical Programming 8, 54–83.

23. A. BROOKE, D. KENDRICK, and A. MEERAUS, 1988. GAMS, A
User’s Guide, Scientific Press, Redwood City, CA.

24. J.D. CAMM, T.E. CHORMAN, F.A. DILL, J.R. EVANS, D.J. SWEENEY,
and G.W. WEGRYN, 1997. Blending OR/MS, Judgement, and
GIS: Restructuring P&G’s Supply Chain, Interfaces 27, 128–142.

25. T.L. CANNON and K.L. HOFFMAN, 1990. Large-Scale 0-1 Pro-
gramming on Distributed Workstations, Annals of Operations
Research 22, 181–217.

26. A. CAPRARA and M. FISCHETTI, 1997. Branch-and-Cut Algo-
rithms, in Annotated Bibliographies in Combinatorial Optimization,
M. Dell’Amico, F. Maffioli, and S. Martello, (eds.), Wiley, Chich-
ester, 45–63.

27. V. CHVÁTAL, 1973. Edmonds Polytopes and a Hierarchy of
Combinatorial Problems, Discrete Mathematics 4, 305–327.

28. V. CHVÁTAL, 1973. Edmonds Polytopes and Weakly Hamilto-
nian Graphs, Mathematical Programming 5, 29–40.

29. G. CORNUEJOLS and M. DAWANDE, 1998. A Class of Hard Small
0-1 Programs, in Proceedings of the 6th International IPCO Confer-
ence, R.E. Bixby, E.A. Boyd, and R.Z. Rios-Mercado, (eds.),
Springer-Verlag, Berlin, 284–293.

30. CPLEX OPTIMIZATION, INC., 1994. Using the CPLEX Callable Li-
brary and CPLEX Mixed Integer Library, Version 3.0.

31. H. CROWDER, E. JOHNSON, and M. PADBERG, 1983. Solving
Large-Scale Zero-One Linear Programming Problems, Opera-
tions Research 31, 803–834.

32. G.B. DANTZIG, D.R. FULKERSON, and S.M. JOHNSON, 1954. Solu-
tion of a Large-Scale Traveling Salesman Problem, Operations
Research 2, 393–410.

33. G.B. DANTZIG, D.R. FULKERSON, and S.M. JOHNSON, 1959. On a
Linear Programming, Combinatorial Approach to the Traveling
Salesman Problem, Operations Research 7, 58–66.

34. DASH ASSOCIATES, 1994. XPRESS-MP User Manual.
35. J. DESROSIERS, Y. DUMAS, M.M. SOLOMON, and F. SOUMIS, 1995.

Time Constrained Routing and Scheduling, in Handbooks in
Operations Research and Management Science, Volume 8: Network

Routing, M.O. Ball, T.L. Magnanti, C. Monma, and G.L. Nem-
hauser, (eds.), Elsevier, Amsterdam, 35–140.

36. B.L. DIETRICH, L.F. ESCUDERO, and F. CHANCE, 1993. Efficient
Reformulation for 0-1 Programs: Methods and Computational
Results, Discrete Applied Mathematics 42, 147–175.

37. N.J. DRIEBEEK, 1966. An Algorithm for the Solution of Mixed
Integer Programming Problems, Management Science 12, 576–
587.

38. J. ECKSTEIN, 1994. Parallel Branch-and-Bound Algorithms for
General Mixed Integer Programming on the CM-5, SIAM Journal
on Optimization 4, 794–814.

39. L.F. ESCUDERO, S. MARTELLO, and P. TOTH, 1996. A Framework
for Tightening 0-1 Programs Based on Extensions of Pure 0-1 KP
and SS Problems, in Proceedings of the 4th International IPCO
Conference, E. Balas and J. Clausen, (eds.), Springer, Berlin, 110–
123.

40. J.J.H. FORREST, J.P.H. HIRST, and J.A. TOMLIN, 1974. Practical
Solution of Large Scale Mixed Integer Programming Problems
with UMPIRE, Management Science 20, 736–773.

41. R. FOURER, D.M. GAY, and B.W. KERNIGHAN, 1993. AMPL: A
Modeling Language for Mathematical Programming, Scientific
Press, Redwood City, CA.

42. B. GENDRON and T. CRAINIC, 1994. Parallel Branch-and-Bound
Algorithms: Survey and Synthesis, Operations Research 42, 1042–
1066.

43. F. GLOVER, 1996, personal communication.
44. M.X. GOEMANS, 1997. Improved Approximation Algorithms for

Scheduling with Release Dates, Proceedings of the 8th ACM-SIAM
Symposium on Discrete Algorithms, 591–598.

45. R. GOMORY, 1960. An Algorithm for the Mixed Integer Problem,
Technical Report RM-2597, The Rand Corporation, Santa
Monica, CA.

46. R.E. GOMORY, 1958. Outline of an Algorithm for Integer Solu-
tions to Linear Programs, Bulletin of the American Mathematical
Society 64, 275–278.

47. M. GRÖTSCHEL, M. JÜNGER, and G. REINELT, 1984. A Cutting
Plane Algorithm for the Linear Ordering Problem, Operations
Research 32, 1195–1220.

48. M. GRÖTSCHEL, C.L. MONMA, and M. STOER, 1992. Computa-
tional Results with a Cutting Plane Algorithm for Designing
Communication Networks with Low-Connectivity Constraints,
Operations Research 40, 309–330.

49. M. GRÖTSCHEL, C.L. MONMA, and M. STOER, 1995. Design of
Survivable Networks, in Handbooks in Operations Research and
Management Science, Volume 7: Network Models, M.O. Ball, T.L.
Magnanti, C. Monma, and G.L. Nemhauser, (eds.), Elsevier,
Amsterdam, 617–672.

50. M. GRÖTSCHEL and M.W. PADBERG, 1979. On the Symmetric
Traveling Salesman Problem II: Lifting Theorems and Facets,
Mathematical Programming 16, 281–302.

51. M. GRÖTSCHEL and W.R. PULLEYBLANK, 1986. Clique Tree Ine-
qualities and the Symmetric Traveling Salesman Problem, Math-
ematics of Operations Research 11, 537–569.

52. Z. GU, G.L. NEMHAUSER, and M.W.P. SAVELSBERGH, 1998. Cover
Inequalities for 0-1 Integer Programs: Computation, INFORMS
Journal on Computing 10, 427–437.

53. K. GUE, G.L. NEMHAUSER, and M. PADRON, 1997. Production
Scheduling in Almost Continuous Time, IIE Transactions 29,
341–358.

54. M. GUIGNARD and K. SPIELBERG, 1981. Logical Reduction Meth-
ods in Zero-One Programming, Operations Research 29, 49–74.

55. L.A. HALL, A.S. SCHULZ, D.B. SHMOYS, and J. WEIN, 1997. Sched-
uling to Minimize Average Completion Time: Off-Line and

22
Johnson, Nemhauser, and Savelsbergh

Copyright © 2000. All rights reserved.

On-Line Approximation Algorithms, Mathematics of Operations
Research 22, 513–544.

56. C. HANE, C. BARNHART, E.L. JOHNSON, R. MARSTEN, G.L. NEM-
HAUSER, and G.C. SIGISMONDI, 1995. The Fleet Assignment Prob-
lem: Solving a Large Integer Program, Mathematical Program-
ming 70, 211–232.

57. K. HOFFMAN and M. PADBERG, 1991. Improving LP-Represen-
tations of Zero-One Linear Programs for Branch-and-Cut, ORSA
Journal of Computing 3, 121–134.

58. K. HOFFMAN and M. PADBERG, 1993. Solving Airline Crew-
Scheduling Problems by Branch-and-Cut, Management Science
39, 667–682.

59. J. HUETER and W. SWART, 1998. An Integrated Labor-Manage-
ment System for Taco Bell, Interfaces 28, 75–91.

60. IBM CORPORATION, 1990. Optimization Subroutine Library, Guide
and Reference.

61. G. INFANGER, 1994. Planning Under Uncertainty, Scientific Press,
Redwood City, CA.

62. E.L. JOHNSON, 1989. Modeling and Strong Linear Programs for
Mixed Integer Programming, in Algorithms and Model Formula-
tions in Mathematical Programming, NATO ASI Series 51, S.W.
Wallace (ed.), 1–41.

63. E.L. JOHNSON and M. PADBERG, 1982. Degree-Two Inequalities,
Clique Facets and Biperfect Graphs, Annals of Discrete Mathemat-
ics 16, 169–187.

64. M. JÜNGER, G. REINELT, and G. RINALDI, 1995. The Traveling
Salesman Problem, in Handbooks in Operations Research and Man-
agement Science, Volume 7: Network Models, M.O. Ball, T.L. Mag-
nanti, C. Monma, and G.L. Nemhauser, (eds.), Elsevier, Amster-
dam, 225–330.

65. M. JÜNGER and P. STÖRMER, 1995. Solving Large-Scale Traveling
Salesman Problems with Parallel Branch-and-Cut, Technical Re-
port 95.191, Universität zu Köln, Cologne, Germany.

66. M. JÜNGER and S. THIENEL, 1998. Introduction to ABACUS: A
Branch-And-Cut System, Operations Research Letters 22, 83–95.

67. P. KALL and S.W. WALLACE, 1994. Stochastic programming,
Wiley, New York.

68. D. KLABJAN, E.L. JOHNSON, and G.L. NEMHAUSER, 1999. Solving
Large Airline Crew Scheduling Problems, Technical Report TLI-
99-11, Georgia Institute of Technology, Atlanta, GA.

69. H.A. LAND and A.G. DOIG, 1960. An Automatic Method for
Solving Discrete Programming Problems, Econometrica 28, 497–
520.

70. G. LAPORTE and F.V. LOUVEAUX, 1993. The Integer L-Shaped
Method for Stochastic Integer Programs, Operations Research
Letters 13, 133–142.

71. H.W. LENSTRA, JR., 1983. Integer Programming with a Fixed
Number of Variables, Mathematics of Operations Research 8, 538–
547.

72. J. LINDEROTH, 1998. Topics in Parallel Integer Programming, Ph.D.
Thesis, Georgia Institute of Technology, Atlanta, GA.

73. J. LINDEROTH and M.W.P. SAVELSBERGH, 1999. Search Strategies
for Mixed Integer Programming, INFORMS Journal on Comput-
ing 11, 173–187.

74. H. MARCHAND and L. A. WOLSEY, 1999. The 0–1 Knapsack
Problem with a Single Continuous Variable, Mathematical Pro-
gramming 85, 15–33.

75. O. MARTIN, S.W. OTTO, and E.W. FELTEN, 1992. Large Step
Markov Chains for the TSP Incorporating Local Search Heuris-
tics, Operations Research Letters 11, 219–224.

76. A. MEHROTRA, E.L. JOHNSON, and G.L. NEMHAUSER, 1998. An
Optimization Based Heuristic for Political Districting, Manage-
ment Science 44, 1100–1114.

77. C.L. MONMA and D.F. SHALLCROSS, 1989. Methods for Design-
ing Communication Networks with Certain Two-Connected
Survivability Constraints, Operations Research 37, 531–541.

78. G.L. NEMHAUSER, M.W.P. SAVELSBERGH, and G.C. SIGISMONDI,
1993. MINTO: A Mixed INTeger Optimizer, Operations Research
Letters 15, 47–58.

79. G.L. NEMHAUSER and L.A. WOLSEY, 1988. Integer and Combina-
torial Optimization, Wiley, New York.

80. M.W. PADBERG and G. RINALDI, 1987. Optimization of a 532 City
Symmetric Traveling Salesman Problem by Branch and Cut,
Operations Research Letters 6, 1–7.

81. M.W. PADBERG, T.J.V. ROY, and L.A. WOLSEY, 1985. Valid Linear
Inequalities for Fixed Charge Problems, Operations Research 33,
842–861.

82. M.W.P. SAVELSBERGH, 1994. Preprocessing and Probing Tech-
niques for Mixed Integer Programming Problems, ORSA Journal
on Computing 6, 445–454.

83. M.W.P. SAVELSBERGH, R.M. UMA, and J. WEIN, 1998. An Exper-
imental Study of LP-Based Approximation Algorithms for
Scheduling Problems, Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, 453–462.

84. A. SCHRIJVER, 1986. Theory of Linear and Integer Programming,
Wiley, Chichester.

85. G.P. SINHA, B.S. CHANDRASEKARAN, N. MITTER, G. DUTTA, S.B.
SINGH, A.R. CHOUDHURY, and P.N. ROY, 1995. Strategic and
Operational Management with Optimization at Tata Steel, In-
terfaces 25, 6–19.

86. J.A. TOMLIN, 1971. An Improved Branch-and-Bound Method for
Integer Programming, Operations Research 19, 1070–1075.

87. P.H. VANCE, A. ATAMTURK, C. BARNHART, E. GELMAN, E.L.
JOHNSON, A. KRISHNA, D. MAHIDHARA, G.L. NEMHAUSER, and
R. REBELLO, 1997. A Heuristic Branch-and-Price Approach for
the Airline Crew Pairing Problem, Technical Report LEC-97-06,
Georgia Institute of Technology, Atlanta, GA.

88. P.H. VANCE, C. BARNHART, E.L. JOHNSON, and G.L. NEM-
HAUSER, 1997. Airline Crew Scheduling: A New Formulation
and Decomposition Algorithm, Operations Research 45, 188–200.

89. H.P. WILLIAMS, 1978. Model Building in Mathematical Program-
ming, Wiley, Chichester.

90. H.P. WILLIAMS and J.M. WILSON, 1998. Connections Between
Integer Linear Programming and Constraint Logic Program-
ming: An Overview and Introduction to the Cluster of Articles,
INFORMS Journal on Computing 10, 261–264.

91. L.A. WOLSEY, 1998. Integer Programming, Wiley, New York.

23
LP-Based Integer Programming Algorithms

Copyright © 2000. All rights reserved.

