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Overview of Constraint-Based
Modeling Sessions

. Reconstructing metabolic networks and flux
balance analysis

. Finding alternate solutions and predicting the
effects of gene knockout

. Improving models using optimization

. Using models for metabolic engineering



Reconstruction of Metabolic
Networks
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Genome-scale Metabolic Model
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Network Assembly and Representation

Reconstruction of Glycolytic Pathway
Abbr. Glycolytic Reactions Genes
HEX1 |[clglc +atp U g6p + adp gk
PGI [clg6p U f6p pgi
PFK [clatp + fép I adp + fdp + h pfkA,pfkB
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Network Evaluation

* Precursor Metabolite Formation

o
HEXI]
GPDH__ PGL _ PGDH

o g g 2 g0
o =~ * Incorporating Biomass Composition

* Filling Network Gaps

SN O VN

"]

A\

._O__‘“' o D =0.1 % (W/w)
™ [ Proteins
w0 Amino Acids 45.0
- Free Amino Acids 1.1 . .
Mé Carbohydrates + ATP Maintenance Calculation
[row Monosaccharides -
-Q Disaccharides
| e Trehalose 0.8 —
- Oligosaccharides - é
Polysaccharides QU)
v Glycogen 8.4 3
. L Mannan 13.1 £ ATP
O. Other Carbohydrates 18.4 £ m
o \7 Nucleotides E
~d P RNA 6.3 <
DNA 0.4 Apriomass
o ) o Lipids 2.9
Ash 5.0 D (1/h)
"-(\ /O Total 101.4
o \g o
 Physiological Data Comparison * Knockout Data Comparison
Knockout strains
3 c
2 S an
2 oy
] = cM
£ g 8 nu
. £ H
ON o~ c SU
5] S 8
< O Experiment O Experiment . °
—Model —Model § or
D (1/h) D (1/h) g
- - . AA
 P/O Ratio Calculation §
1.5 H 3H* 2
g’NU Paiie By i
Outer Membrane Zor o — ——— :;h-,-- f
L2 I LI IV o | |ETS
Inner Membrane II ATPase

3H*




Nucleotide sugars
metabolism
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Filling in the Gaps — an Example”

Amino Acid Requirements

« Experiments determine — SECi e
which amino acids are Arg
taken up by H. pylori -
vs. which can be =
produced in vivo g:;
« Missing steps of amino i
acid biosynthesis are Leu
added if necessary on g
the basis of this o

I I I Ser
physiological evidence -

Trp
Tyr

in vivo in silico)



Inferred Reactions

« Some reactions are included based on
indirect physiological evidence (by
inference)

— Assumption: the cell must be able to produce
all biomass components to grow

— Reactions are added if necessary
— Generally transporters, etc.

— Most tentative; should be examined more
carefully

12



Integrating “-omics™ Data

Genomics
ORF annotation

Transcriptomics
mRNA levels

Proteomics
protein levels

Fluxomics”
flux measurements




http://gcrg.ucsd.edu/organisms/ecoli_GPR.html
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Availability of Metabolic
Reconstructions
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Oberhardt et al. Mol Sys Bio. 2009.77
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[] Archaca [J] Eukaryota [[] Bacteia  Qberhardt et al. Mol Sys Bio. 2009.77



Size and Content of Available
Reconstructions

Human'
Human?

A. thakana

. :

16 8 0 8 16

# Models
D 3300 E
- s = Yeast*
§2720 § s
S8
g 2140 3
® i 3 E. coli |l Mouss
2 1560 2
g §Q 2 Human
@ 980 [V 4
- 3
400
16 8 0 8 16
# Models # Species

Oberhardt et al. Mol Sys Bio. 2009.77 Prokaryotes Eukaryotes



Constraint-Based Models
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Constraints on Metabolic Networks

1. Steady-State Mass Balance Constraints
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For each metabolite: For all metabolites:
Zsij'Vproduce=Z'Sij'Vconsume Sv=0

2. Enzyme Capacity Constraints: o= v; < 3
3. Thermodynamic Constraints: v; 2 0

4. Regqulatory Constraints: o, = 0 if associated
genes are un-expressed



Constraint-Based Analysis

How often have I said to you that when
you have eliminated the impossible,
whatever remains, however improbable,
must be the truth?

—Sherlock Holmes, A Study in Scarlet

Genomics, Physiology Prediction of
and Biochemistry Cellular Phenotypes

Application of (\ (\
‘ \\\ \ S

Constraints
> X
\ \
\ ‘\.'
Energy and
Biomass Constituents

Mathematical Representation of Constraints
Sev=0
a<v<fp

Application of Constraints

Stochiometric, Thermodynamic,
Enzyme Capacity, Regulatory

V2
Vi
v
3 v
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16 Bi-linear
concentration cone

Constralnt Based Methods

3 Dynamic simulations

Optimal Solutions
j 1. FBA

2. Flux Variability
Flux Dependencies

olutlons An tiTe:

solution

Biomass (g L-1)

14 Flux coupling

i Wy 1. Robustness
ER coupled 2. Phase Planes
Partially coupled | —

Network
reconstruction
enomi

Allowable
solution space

3. Flux Coupling

All Allowable Solutions
1. Extreme Pathways
2. Elementary Modes
3. Sampling

Altering Phenotypes
1. Genetic Mutations
2. Strain Design

Application of Additional

B ey bt Constraints

functions analysis i Pui 1 . Regulatlon

2. Energy Balance

Application of
i constraints

EP; EPEP;EP,

Price, Reed, and Palsson Nat. Reviews Microbiol. 2004



Flux Balance Analysis



FBA Optimization Problem Statement

* Objective Function:
A function that is
maximized or L
minimized to identify ~ >uchthat S.v=b=0
optimal solutions A asVvsp

Maximize: c-v

 Constraints: Place
limits on the
allowable values the
solutions can take
on.




Escherichia coli Metabolism *
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Growth (GAR) and Non-Growth
(NGAR) Associated ATP Requirements

In Chemostat:

D = F/V = cell growth rate @ SS S. oneidensis MR-1
25
i =220.22x + 1.03
— 1. Fix growth rate and =00 )Flz2= o,
1 substrate uptake 33 |
rate S g 15-
. . ©
2. Maximize the 2.
amount of excess o £
Y ATP that can be <& 54
made (i.e. hydrolysis 0 : : : :
——- of ATP) 0.00 002 004 006 008 0.10
F Dilution Rate or Growth Rate (1/h)
1000 B L. plantarum W S. coelicolor
W L. /acti 0 B. subtilis —
100 OE (f(f,,-'s W S. oneidensis GAR - 2202
m G. sulfurreducens
B M. tuberculosis (mmOI ATP /QAFDW)

ATP Requirement
=

o
e

—_
L

NGAR
(mmol/gAFDW/h)

NGAR =1.03
(mmol ATP /gAFDW/hr)

GAR
(mmol/gAFDW) Pinchuk et al. PLoS Comp Biol. 6(6) (2010)



Predicted vs. Experimental Biomass
Yields (Shewanella oneidensis)
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Pinchuk et al. PLoS Comp Biol. 6(6)
(2010)



b

Growth rate

FBA Predicted Maximal Growth
Rates vs. Experimental Growth
Rates in Batch Culture

— 0.35 .

- 0.3
025 . g 0.25 -

- s 02

y=0.0229x-0.0521 g S y=0.0233x - 0.0987

0.15 R*=0.8665 I R?=0.7980

g1 . 0.1
— 0.05 .

0 T T T I 1 0 ' ' ' )
& 10 12 14 18 18 T
Acetate uptake rate Oxygen uptake rate

Edwards, Ibarra, Palsson. Nature Biotechnology. 19:125-130 (2001).



3728 VARMA AND PALSSON

O Oxygen E = 1.5 mmol/g DW-hr

s04 4 Glucose E=0.3 mmol/g DW-hr In Chemostat:

&
é - 157 F
g &
S
: 2 10
o3 3 *
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0-_.-.——q—-.—|-q—l—l . . l -I_’F

0.0 0.2 0.4 0.6 0.8

D (1/hr)

FIG. 6. Analysis of aerobic chemostat culture showing the glucose
and oxygen uptake rates and the acetate secretion rate as functions of
the dilution or growth rate. The chemostat was not limited for
minerals. The solid lines represent the flux balance model simulations. :

. . 43 . Vi d Pal App. E :
E, average deviation between predictions of the model and experimen- S A ron
) . Microbiol. 60(10): 3723-3731

tal measurements; DW, dry weight. (1994)



S. typhimurium Genome Size 4,857,432 bp

Ap p roaCh Open Reading Frames 4553

Genome Comparison [RR1083 in silico S. typhimurium characteristics

. |\/|G1_655 vs LT2 | Genes 1083

* Reciprocal best hits _

. Identity > 70% Proteins 973

Draft Reconstruction REacHons el

« Fillin Gaps Gene associated 1018

«  Organism Specific Non-Gene associated 69
Pathways Intracellular Metabolites 744

« Biomass Components

Generate Model & Compare
Predicted Growth
Phenotypes w/
Experimental Data

« Carbon Sources
 Gene deletions

M CARBOHYDRATE

BMNUCLECTIDE
AMINO ACID
W CELL WALL
N B TRANSPORT
LIPID
M COFAC
METC

B OTHERS

Refine Metabolic
Reconstruction

A. Raghunathan, et al. BMC Systems Biology, 3:38 (2009).



Qualitative Growth Phenotypes

BIOLOG Phenotype MicroArrays™ JOURNAL OF BACTERIOLOGY, Oct. 1969, p. 215-219 Vol. 100, No. 1
PM1 MicroPlate™ Salmonella typhimurium LT2 Copyright © 1969 American Society for Microbiol Printed in U.S.A.
S (R VP S—— ESI ARURN [ PN N NS ¥R
+ |+ |+ |+ |+ |+ |+ |+ |+ |+ ]|+ .
T e i e [ Pl B [ [T [ B Compounds Which Serve as the Sole Source of
+ |+ |+ |+ |+ |+ |+ |+ |+ |+ |+ |+ .
e B o B o P e e B B e Carbon or Nitrogen for Salmonella
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m: = .|+...¢ = -’: o -:- w Gl L Ls = Fo e w+ DAVID GUTNICK,! JOSEPH M. CALVO, TADEUSZ KLOPOTOWSKI, ano BRUCE N. AMES
i G e [P e National Institutes of Health, Bethesda, Maryland 20014, Department of Biochemistry and Molecular Biology,
. + + . + + + - w _ + - + o - + - + - + Cornell University, Ithaca, New York 14850, Institute of Biochemistry and Biophysics, Polish Academy
Aot Clto A Mnectet e aAs [ tusine |Frosone Ak tule & N Cvoneses o onteoce | mecne of Sciences, Warsaw 12, Poland, and Department of Biochemistry, University of California,
+ + w + + + + + + Berkeley, California 94720
e [Goarie [ orme [ Comonn [ S| Priaroms oot s o oo [ o [Sonos |G see ) -
outame Ao | A Umnocamee | suosinata Received for publication 7 August 1969
+ | + + | + | + + | + | + +
°°°°°°° - =T L i I e R e e About 600 compounds were screened as possible carbon or nitrogen sources for
+ + + + W W + Salmonella typhimurium LT-2. About 100 utilizable compounds were found.

FIGURE 1. Carbon Sources in PM1 MicroPlate

Model Predictions Exp. Growth Exp. No Growth No Data Total
Growth (Carbon) 75 21 (FP) 17 113
No Growth (Carbon) 1 (FN) 28 21 50
Growth (Nitrogen) 37 5 (FP) 8 50
No Growth (Nitrogen) 9 (FN) 23 16 48

*Overall Accuracy = 82% and Untested = 24%

‘False Positives (missing regulation) > False Negatives (missing reactions)
*13 of the 21 false positive carbon sources can serve as nitrogen sources

A. Raghunathan, et al. BMC Systems Biology, 3:38 (2009).



Interpretting the Dual:
Reduced Costs & Shadow Prices

Shadow Price Reduced Cost

Positive  Removing metabolite Increasing flux will
iIncreases objective.  increase objective. (usually
occurs when fluxes are at
their “.up’ bounds).

Negative Adding metabolite Increasing flux will
Increases objective  decrease objective.
Zero Adding/removing Changing flux will not

metabolite does not  change objective
change objective



Maximal Production of Metabolites Under
Glucose Aerobic Conditions

TABLE 2
Maximum stoichiometric yields of biosynthetic precursors on glucose for an aerobic
non-growing cell

ATP shadow

Metabolite Yield Carbon conversion price Constraint
3PG 2 100%, 0 None
PEP 2 100%, 0
Pyr 2 100% 0
OA 2 133-3% ¢
G6P (908 90-8% 0-046 Energy
F6P 0-908 90-8%, 0-046
RSP 1-08 90% (055
E4P 1-33 88-7% 0-068
T3P 1-73 86-5%, 0-088
AcCoA 2 667, 0 Stotchiometry
«KG 1 83-3% 0
SuccCoA 1 66:7% 0

1aIT J11aUUVwW pPl1ILED al T 1iuluplicu Uy =1 LU DT LULIDISLETIL WILLT QUL UCHITHUVILT Ul S11auuw pPrives

Varma and Palsson, J Theoretical Biology.
165:477-502 (1993)



Evaluate Shadow Prices for
Model Corrections

* You can use shadow prices and reduced
costs to evaluate your results.

* For example: If you maximize growth rate
and find zero growth, you can identify
metabolites which are needed in order to

grow (those with a negative shadow price).
— This is useful if you are debugging a network.



FBA Using GAMS



Metabolic Network Example

Reaction List S Matrix
V1 A_)B V1V2b1b2b3
Vi A= G Af-1-1100
b, B— c
2 0 1 00-1)
by C—
Metabolic Map

biAy Bt~ g/laxri]rr;:]ze §= c_:-\(/)=v1
St uch that V=
_______ O <V < 10




sets
metabolites /4,B,C,D/
reactions /vl1l,v2,bl,b2,b3/;

parameters

c (reactions)

S (metakbolites, reactions)
/A.vl -1

Define S

0w
. ::: .
%}
|
[

O W
o
;]
|
’_)

b3 -1/;

wvariables
v (reactions)
Z;

egquations
masskalance (metabolites)
objectivefunction;

Define Equations (Z=c-v and S-v=0)
massbalance (metabolites)..] sum(reactions, S (metabolites,reactions) *v(reactions))

objectivefunction.. Z=e=s (reactions,c(xreactions) *v(reactions)):

Mg Apply Variable Bounds: Upper (.up)
v.up (reactions)=10; Lower (IO)
c('v1")=1; Define C, ie. pick flux to optimize

model FBA /all/:;
solve FBA using lp maximizing Z;

=e=0;




Constraint and Variable

O w

oo o4 <
(ST NI

\Values

EQU massbalance

LOWER UPPER MARGINAL
-1.000 _
1-000 S-v = level
EPS
EPS
LOWER UPPER MARGINAL
EQU chiective~ i ) 1.000 Z-cv = level
VAR Ww

Klux Map

0.000 . I 10 =10
/B |

0.000 -1.000 |
0.000 1.000 10 _>| A

\ I
10.000 . O C

LOWER

UPPER MARGINAL

MARGINAL




Review of Shadow Prices & Reduced
Costs

« Shadow Prices (SP):
— One for each constraint or metabolite
— dZ/db,

— SP<0 means adding metabolite (ie. change b=0 to
b<0) would increase Z.

— SP>0 means removing metabolite (ie. change b=0 to
b>0) would increase Z.

* Reduced Costs (RC):

— One for each variable or flux.
— dZ/dy; (for zero fluxes)
— RC < 0 means increasing flux (v;) would reduce Z.



Shadow Prices (1 per metabolite)

*If we change b, from zero to 1: we are saying the production of A has to be
higher than the consumption of A by 1 unit (remember S-v=production-

consumption).

*A lower consumption of A means that the flux through v1 will have to go
down by 1 unit. Hence, dZ/db, = -1.

*For example, if by, =1 then Z=09. Flux Map
SP.=SP, = EPS (~0) = This is because if | 10~ B0
you added B or C to the network they 10 = A\ :
wouldn’t allow for higher flux through v,. | 0>*C—0

-—-—— EQU massbalance

LOWER LEVEL UPPER MARGINATL

)y o




Central Metabolic Network
(ie. CoreTextbookModel.gms)



Glycolysis

Pentose
Phosphate
Pathway

TCA
Cycle

Oxidative
Phosphorylation

101 Genes
63 Metabolites
62 Reactions

Core E. coli Metabolic Network

I
weoriC)
X iac-D(e) EX for




Common Flux Abbreviations

* Biomass: this is a drain of biomass components in

their appropriate ratios.

« Exchange fluxes:

— (+) values secretion
— (-) values means uptake

EX glc e
EX ac e
EX succ e
EX for e
EX etoh e
EX 02 e

Glucose
Acetate
Succinate
Formate
Ethanol
Oxygen



Running FBA

**¥THIS CODE WAS WRITTEN FOR CBE 782 J.REED {3/2811)
$onecho = cplex.opt
eprhs 8

epopt 8

ot e lolerances
$of fecho

*Read in the appropriate S matrix
$include EcoliCoreTextbookModel .gms

*Place limits on the exchange fluxes based on the minimal media for a negative flux through the exchange reactions implies that
*the metabolites are being taken up or consumed by the cell. By default the upperlimits of the exchange fluxes are all set to
*the VYmax, indicating that the cell can secrete any of the extracellular metabolites.

UpperLimits{j)=Ymax;
LowerLimits(exch)=0;

ohd lower limits for exchange flux

Define Carbon Source
and Uptake Rate

*allow coZ,pi,oZ,h,h2o to be taken up by the cell
LowerLimits{ 'EX_co2_e ' )=-Ymax;
LowerLimits{ 'EX_h2o_e ' )=-Ymax;

Oxygen Uptake Rate

Parnmeter

c{j) used to define the objective function for FBA /Biomass 1/;



Running FBA

VYariables
v{j) flux values through reaction in network
Obj this is the value of the objective function for the FBA solutions;

Equations
massbalance(i) mass balance equations for each metabolite
calcobj calculates the dot product of the ¢ vector the flux vector;

massbalance(i).. sum{ j,5(i,i)v(i) J=e=8; Mass Balance: Sev=0
calcobj.. Obj=e=sum{ j,c(iyv{i) ); Objective: Obj:C.V

Model FBA /massbalance, calcobj/;
FBA.optfile=1;

v.lo{j)=LowerLimits{j); o
v.up(d)=UpperL inits(i); Flux Limits: asv<sp

solve FBA using lp maximizing Obj;



GAMS Results: LST File

———— 376 VARIABLE v.L flux values through reaction in network Non-ze ro Fluxes

ACONT 1.917, AKGDH 1.3389, ATPS4r 15.193, Biomass A.49a, cozt -9.168, CS 1.917
CYTBD 17.188, END 6.798, EX_coZ_e 9.166, EX_glc_e -5.000, EX_h2o_e 16.6857, EX_h_e 5.181
EX_oZ2_e -5.594, EX_pi_e -1.862, FBA 3.345, FUM 1.3389, GePDHZY 3.504, GAPD 7.538
GLCpts 5.60008, GND 3.504, Hz0t -16.6857, ICDHyr 1.917, MDH 1.3389, NADH11 15.7983
0zt 8.594, PDH 3.753, PFK 3.345, PGI 1.396, PGK -7.538, PGL 3.504
PGM -6.793, PIt -1.862, PPC 1.463, PYK a.148, RPE 1.934, RPI -1.526
SUCD1i 1.3389, SUCD4 1.3389, SUCOAS -1.389, TALA 1.6386, TKT1 1.6386, TKT2 a.904
TPI 3.345

— 376 VARIABLE Obj.L

.49 this - Growth Rate@ive function for the Fea solution
S

—_— 376 EQUATION massbalance.M mass balance equations for each metabolite Non-Ze ro Shad OW Prices

13dpg_c -8.849, Z2pg_c -8.844, 3pg_c -8.844, bpgc_c  -8.898, epgl_c -8.896, ac_c -8.825
ac_e -8.824, accoa_c -8.838, actp_c -8.838, adp_c a.8a85, akg_c -8.868, akg_e -8.866
amp_c a.889, cit_c -8.878, coZ_c EPS, coZ_e EPS, dhap_c  -8.855, edp_c -8.872
etoh_c  -8.843, etoh_e -8.841, fép_c -8.184, fadhZ_c -8.883, fdp_c -a.118, for_c EPS
for_e EPS, fum_c -8.852, fum_e -8.849, g3p_c -8.855, gép_c -8.184, glc_D_e -8.895
glx_c -a.822, h2o_c EPS, hZo_e EPS, h_c 8.8z, h_e EPS, icit_c -0.878
lac_D_c -8.844, lac_D_e -8.843, mal_L_c -8.852, nad_c a.88g, nadph_c -8.818, 02_c EPS
02_e EPS, 0aa_c -8.846, pep_c -8.844, pi_c EPS, pi_e EPS, pyY_c -8.838

pyrY_e -8.836, qohZ_c  -8.883, rop_c -8.888, rusp_D_c -8.888, s7p_c -8.121, succ_c  -8.855
succ_e  -8.852, succoa_c -8.868, xusp_D_c -8.888



FBA Calculations: Using Glucose

. What is the maximum growth rate for glucose aerobic
growth (max. glucose uptake rate of 5)?

. What is the maximum growth rate for glucose anaerobic
(no oxygen uptake) growth (max. glucose uptake rate of

5)?

. What are the by-products that are secreted during maximal
glucose anaerobic growth?

. What are the aerobic and anaerobic biomass yields (gDW/g
glucose)? Hint: Your flux units are mmol/gDW/h for
exchanges and 1/h for biomass.

. What is the molar yield for ethanol under anaerobic
conditions (mmol ethanol/mmol glucose)



1.

2.

FBA Calculations: Using
What is the maximuﬁJMﬁ!Q{wglucose aerobic growth

(max. glucose uptake rate of 5)?
« 0.491/hr

What is the maximum growth rate for glucose anaerobic (no
oxygen uptake) growth (max. glucose uptake rate of 5)?

« 0.20 1/hr

What are the by-products that are secreted during glucose
anaerobic growth?

. acetate, ethanol, formate

What are the aerobic and anaerobic biomass yields (gDW/g
glucose)? Hint: Your flux units are mmol/gDW/h for exchanges and
1/h for biomass.

. Aen;obic = (0.49 1/h)/(5 mmol glc/gDW-h)/(0.180 g glc/mmol
glc
«  Aerobic = 0.54 gDW/g glucose

Anaerobic =(0.20 1/h)/(5 mmol glc/gDW-h)/(0.180 g glc/
mmol glc)

 Anaerobic = 0.22 gDW/g glucose

What is the molar yield for ethanol under anaerobic conditions
(mmol ethanol/mmol glucose)

« Ethanol Yield = (EX_etoh_e)/(EX_glc_e) = 3.4/5
 Yield = 0.68 mmol ethanol/mmol glucose



FBA Calculations: Other
Conditions

6. Can E. coli grow anaerobically on acetate ?
(hint: to get a feasible solution set lowerlimit
to -6 for EX _ac e and upperlimit to 0)

/.Looking at the shadow prices for oxygen
(02) do you think that the cells could grow
with acetate aerobically?

8.Looking at the reduced costs for the

exchange fluxes, what compounds if added
would allow for growth?



FBA Calculations: Other
6. Can E. coli &)Qggalyg)rllgly on acetate ?

* No

/. Looking at the shadow prices for oxygen
(02) do you think that the cells could grow
with acetate aerobically?

 Yes, since the shadow price for 02 is
negative it means that if you added it
growth would increase.

8. Looking at the reduced costs for the
exchange fluxes, what compounds if added
would allow for growth?

« akg, fum, glc, lacD, 02, pyr

« Each EX_ flux has a negative shadow
price meaning if flux decreased
(uptake of nutrient) then growth would
increase.



Overview of Constraint-Based
Modeling Sessions

. Reconstructing metabolic networks and flux
balance analysis

. Finding alternate solutions and predicting the
effects of gene knockout

. Improving models using optimization

. Using models for metabolic engineering



1. Alternate Solutions

Flux Variability Analysis
Corner Point Solutions



Equivalent Optimal Solutions Exist:

Growth Rate

4 Projected Solution Space

‘ FBA

Some Flux




How many solutions are there?

 Most FBA solutions in genome-scale networks
are not unique.
— The value of the objective function is unique.

— The set of fluxes giving rise to the objective
function are often not unique.

e For E. coli optimal growth (GS network), there
are likely thousands of equivalent optimal
solutions.



Flux Variability Analysis



Flux Variability Analysis:

e First, identify the maximum value of the objective function
and constrain objective function to this value.

e Second, minimize and maximize each flux independently to
identify flexibility in the fluxes across alternate optima.

V,I

gg * Alternate or
eir Equivalent Optima
i
Flux Variabllity
for V,
I u I
v,

If we have n fluxes, we basically solve 1+2n FBA problems



H. pylori E. coli S. cerevisiae
389 rxns 740 rxns 1173 rans
number of blocked reactions
Complex Media (Aerobic) 38 103 338
Glucose (Aerobic) 66 207 460
Glucose (Anaerobic) 210 315
Optimal Glucose (Aerobic) 77 408 774
Optimal Glucose (Anaerobic) 407 791

. 60%4— | BE coli
=
"g 50%
k]
< 40%
o
:
S 30%-
&
= 20%-
S 10%- ‘ : |
0%~N coli
S | H. pylori
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Figure 4 Total numbers and percentages of blocked reactions for the

three networks under different growth conditions.

S. cerevisaie

Distribution of

Blocked
Reactions

The number of blocked
reactions (those which
can not carry flux),
depend on:

1) Network
2) Growth Condition

Burgard, AP, et al. Genome
Research. 14(2):301-12 (2004).



Reaction
Distribution

Blocked
(32%)

Optimal
(38%)

Detected Protein
Distribution

Blocked Reactions (15 out of 129)

Superoxide Dismutase
Amino Acid tRNA Synthetases
Cofactor Biosynthesis

eHeme

eUbiquinone

Suboptimal Reactions (34 out of 129)
Peroxidases
Respiration
eCytochrome bd oxidase
¢DMSO reductase
Fermentation
eLactate Dehydrogenase
ePyruvate Formate Lyase
Futile Cycles
ePhosphoenolpyruvate Synthase & Pyruvate Kinase
eFructose Bisphosphatase & Phosphofructokinase
Purine Biosynthesis (4)
Amino Acid Biosynthesis (9):
eThreonine, Cysteine, Arginine, Asparagine

Raghunathan et al. BMC Systems Biology, 3:38 (2009)



fonecho > cplex.opt . ) . . .
eprhs 1e-S Makes a file called cplex.opt with the following lines in it.
epopt 1e-9 This changes the default tolerances for how exact the equations
epint 1e-9 are (eprhs), how close to the optimal solution we are (epopt),
foffecho and how close to integer values we are (epint).
LowerLimits ('EX glc e')=-5;

UpperLimits ('EX glc e')=0; Define Media Inputs

*g3llow coZ,pi,o02,h, k2o to be taken up by the cell . | limit
LowerLimits ('EX co2 e')=-Vimax; (negative lower limits)
LowerLimits ('EX h2o e')=-Vnax;

LowerLimits ('EX h e')=-Vmax’

LowerLimits ('EX o2 e')=0;

LowerLimits ('EX pi e')=-Vmax;

Set objective(j) /Biowass/; | (—— Pjck Flux to Optimize (here as a subset)

Note: to calculate the variability
sing lp maximizing Obj: across all solutions not just

.fx {objective)=v.l{cbfje optimal ones just comment out

c(J)=0; the four lines with a *

Fix the level of flux to
optimal value

c(objective)=1;

ive) ;

loop (duplicate j,c(duplicate j)=1;
solve fluxvariability using lp maximizing Obhj;
store_maxs (duplicate_j)=0bj.l;

solve fluxvariability using lp minimizing Obj;
store mins(duplicate 3j)=0bj.1l;

c(duplicate 3j)=0; ).




Flux Variability Calculations: Max u

e How many fluxes vary for anaerobic optimal
growth on glucose (where you are maximizing
biomass).

* What does it imply about the number of alternate
optima if there are no varying fluxes?

 How many fluxes can vary if you look at solutions
which have at least 90% of the maximum growth
rate (ie. biomass flux)?

— HINT: Instead of fixing flux at optimal value change line
to be:

v.lo(objective)=0.9*v.l(objective);



Flux Variability Calculations:
Max Ethanol Production

* How many fluxes vary for anaerobic
production of ethanol from glucose (where
now you first optimize for the EX_etoh e

flux)?

* How many fluxes are fixed to non-zero
value?

* How many reactions are not needed for
maximal ethanol production? Could fluxes
through these reactions reduce ethanol

production?



Flux Variability Calculations: Max u

* How many fluxes vary for anaerobic optimal growth
on glucose (where you are maximizing biomass).

— ANS: 2

 What does it imply about the number of alternate
optima if there are no varying fluxes?

— ANS: It means there is only one solution and it is unique.

* How many fluxes can vary if you look at solutions
which have at least 90% of the maximum growth rate
(i.e. biomass flux)?

— ANS: 70



Flux Variability Calculations:
Max Ethanol Production

 How many fluxes vary for anaerobic production of
ethanol from glucose (where now you first
optimize for the EX_etoh_e flux)?
— ANS: 18

* How many fluxes are fixed to non-zero value?
— ANS: 15

* How many reactions are not needed for maximal
ethanol production? Could fluxes through these
reactions reduce ethanol production?

— ANS: 44

— Non-zero fluxes through these reactions will reduce
ethanol production or make your problem infeasible.



Enumerating Corner Point
Solutions



Equivalent Optimal Solutions Exist:

Growth Rate

4 Projected Solution Space

‘ FBA

Some Flux




Algorithm For Identifying Different
“Corner” Points

 GOAL: given your past solutions, find a new one
that uses a different set of non-zero fluxes in the
solution.

* The result is that you will identify all the different
corner point solutions that have the same
objective function value.

* Any optimal solution, can be written as the
weighted sum of the corner point optimal
solutions.



Enumeration Using Integer Cuts

max c-v
such that §-v=0
ya;=v;=y,b;

My, s|NZ' -1 fork=1,2..n-1
jeENz*

yj E {091}

NZ¥is the subset of fluxes that were non-zero in previous iteration k
|NZ¥| is the number of fluxes that were non-zero in previous iteration k



Flux Variability vs. Alternate Optima
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Only 100 Alt.
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Figure 1 Comparisons of properties for sampled optima with all op-
tima. The number of variable fluxes and the allowable ranges for these
fluxes across all optima were calculated using a flux variability analysis.
Each line is for one of the 88 carbon sources capable of supporting

aerobic growth. (A) shows that as the number of calculated optima in-
creases, the number of variable fluxes found in these sampled optimal

Reed and Palsson. Genome
Research (2004). 14:1797-1805

solutions approaches the total number of variable fluxes. (B) shows how
the magnitude of the flux variations is represented by the sampled op-
tima relative to the actual flux variability across all optima.




Fraction of Mixed Optimal
Solutions Using a Reaction (fopt)
o
(&a]

Reaction Usage Across 136 Different
Environmental Conditions

—_

o
w0

o
o

o
\I

o
o))

o
~

o
w

o
)

o
—

o

5t Central Metabolism,

Arrllino Acid Metabc;Iism,
Nucleotide Biosynthesis,
Membrane Lipid, Folate

Amino Acid Metabolism,

Nucleotide Salvage

Transport, Alternate

Carbon, Glyoxylate,

Nitrogen, Methylglyoxal, Putatives

Cofactors, Cell Envelope,

Oxidative Phosphorylation
| 1 |

100 200 300 400 500 600 700 800 900
Reactions in iJR904 (rank ordered)

o

201 Reactions Were
Always Used:

81 Reactions Associated
With Essential Genes in
Rich Media

20 Reactions Lack
Associated Genes

20 Reactions Have
Multiple Isozymes

Reed and Palsson. Genome
Research (2004). 14:1797-1805



Usage by Metabolic Subsytem

[Subsystems in iJR904 No. fopt
0.00 0.00 0.00

MOSTLY NEVER USED

Nitrogen
Methylglyoxal Metabolism
Oxidative phosphorylation 40
Unassigned 9

Transport, Extracellular

Alternate Carbon Metabolism
Glyoxylate Metabolism

Putative Transporter 0.00
cine and Serne Metabolism

Glutamate metabolism 5 L
Citrate Cycle (TCA) 13 0.15 015
Glycolysis/Gluconeogenesis 18 0.1 011
Alanine and aspartate metabolism 10 0.30 0.30
Arginine and Proline Metabolism 43 014 037
Nucleotide Salvage Pathways 36 0.36 026
Pyruvate metabolism 7 014 029
Pentose Phosphate Cycle 10 0.00 020
Anaplerotic reactions 7 0.00 043

ysteine Metabolism

ethionine Metabolism
embrane Lipid Metabolism

yrosine, Tryptophan, and Phenylalanine Metaholism

olate Metabolism

hreonine and Lysine Metabolism
aline, leucine, and isoleucine metabolism

istidine Metabolism




Correlated Reaction Sets in E. coli

L~

N
Correlated Reaction Sets: Reactions N7
where a non-zero flux through one k EH § Ei
reaction implies a non-zero flux through
all other reactions in the set (and vice
versa).




Set of Rxns that Distingu

ish Alt Optima

*Nefine reactions that are used in distinguishing between alternate opt _zmif solutions
#31Ff vou want all reactions to be used just use "Sets subj{j)" without the Wist of reactions
Sets subj(]j) KACKr,ACONT,ADHEr,ADKI,AKGDH,ATPS4r,CS,CYTBD,ENO,FBA,FBP,FRD,FUH,GSPDHZr,GAPD,GND,

ICDHyr, ICL,LDH D,MALS,MDH, ME1, ME2,NADH11,NADTRHD, PDH, PFK, PFL, PGI, PGK, PGL, PGM, PPC|,

PYK, RPE,RPI,SUCD1i, SUCD4, SUCOLS, TALA, THDZ, TKT1, TKTZ, TPI/

k how many alternate solutions to look for Jfalternatel*alternatezl/;

PPCK, PPS,PTAr,

How Many to Search For

Parameter
c¢(j) selects which fluxes are maximized in FBA /Biomass 1/
Objcrit stores the optimal wvalue for the FBEA objective function

Set the objective

PreviousNzZ (subj, k)

fluxes that are non-zero in previous solutions

EquivOptimai(j, k)
PreviousSun (k)
epsilon /0.000000001/;

PreviousNZ(subj, k) =0

VYariables
vid)
Ohj

v.lo(j)=LowerLimits(]j):
wv.up (j)=UpperLimits(]j):

saves the flux distributions from previous solutions
stores how many non-zero fluxes there were in previous solutions

flux walues through reaction in network
this is the walue o0f the objective function for the FBA solutions:;

Binary| variable y(subj): Y isa binary variable

A flux less than epsilon is considered to be zero

*Tnitialize PreviousSum and PreviousNZ so that future iterations don't constrain
*the current i1teration {i e. PreviousSum 1s a large number and PreviousNZ is zerjo)
PreviousSum (k) -cardt )+1: |nitialize all |[NZ¥| to a large n er so future integer cut

constraints have no affect.
Initialize all NZ¥ to be zero (i.e. empty)




Equations

massbhalance (1) mass balance equations for each metabolite

calcob]j calculates the dot product of the ¢ vector the flux vector
integercut (k) ensures that at least one non-zero flux from previous iterations
upperbound(subj) constrains fluxes by integer variable ¥y

lowerboundi(sub]j) constrains fluxes by integer variable ¥y

All integer cut constraints, for

massbhalance (i) .. sumi( j,3(1i,3)*v(]) )=e=0; . .

el pobe . Ghimemunet 4] ®els) 0 past and future iterations.
integercut (k) .. sum(subj, visub]j) *PreviousNZ(subj,k))=1=PreviousSum(k)-1;

upperbound(subj).. visubj)=1=( y(sub]j) *UpperLimitsisubi) ): For future iteractions
lowerboundisubj) .. visub]j)=g=( yvi(sub]) *LowerLimitsi(subj) ):

PreviousNZ will be zero and

del FEA frnassbalance, CalCDbjz’{; PreviousSum Wi” be Iarge
del AltOptima /massbalance,calcobj, integercut, loverbound, upperbound/ ;

FEA.optfile=1; AltOptima.optfile=1; AltOptima.OptCr=0;

solve FBA using lp maximizing Obj; ) . .
Objerit=0by.1: Solve for first optimal solution

EquivOptima(j, 'alternatel')=v.1(]):

alias (k,temp):

*Use AltOptima to find other egquivalent solutions
loop (temp, For iterations greater than 1
if (ord(temp) >1,
if (abs (Cbjcrit-Obj. 1) <=epsilon, If last solution was still an optimal solution
PreviousSum(temp-1)=0;
loop (subj, Find NZ and |NZ| from last solution

if ([ abs(v.l(subj))>epsilon, PrewviousNZ(subj,temp-1)=1; Prewviousiu

) ; . . . :
solve AltOptima using mip maximizing Obi: Find another solution with the integer cut

EquivOptima(j, temp)=v.1{3):);: ): constraint from previous solution
modified so that it is now constraining



Alternate Optima Calculations

* How many alternate solutions are there for glucose
aerobic growth, where you maximize for biomass

production?

 What if instead you maximize for ethanol production:
— How many alternate solutions are there?

— Are the differences in fluxes across solutions because of
exchange reactions or due to internal metabolic reactions?

— Do cells need oxygen to make the maximum amount of
ethanol from glucose?



Alternate Optima Calculations

* How many alternate solutions are there for glucose
aerobic growth, where you maximize for biomass

production?
— ANS: Only 1 solution

 What if instead you maximize for ethanol production:
— How many alternate solutions are there?

ANS: ten solutions

— Are the differences in fluxes across solutions because of
exchange reactions or due to internal metabolic reactions?

ANS: internal metabolic reactions, exchanges are the same.

— Do cells need oxygen to make the maximum amount of
ethanol from glucose?

ANS: internal metabolic reactions, exchanges are the same.



2. Gene Deletions

FBA
MOMA
ROOM



FBA Optimization Problem Statement

Objective Function: A
function that is
maximized or
minimized to identify
optimal solutions

Constraints: Place
limits on the allowable
values the solutions
can take on.

Maximize: c-v

Such that S -v=Db =0
asv=s_P




FBA: Wildtype vs. Knockout Mutant

Maximize: c-v Maximize: c-v
Such that S v =0 Such that S v =0
asvsp asv=s_[
v, =0
A A
V2 “ V2
\ X
Vi
\4! A4



c ~4 400 Genes
:g in MG 1655
Model vs. Experimental Results 8
 —
G E iali GI | - 3,888 Viable
ene Sfe-ntm ity or? ycero § e
Minimal Medium 3 Rich Medium
£
> Notin KO
L Collection:
: 119 Lethal 3.769 Viable Essential or
% Unavailable

” s

~4 400 Genes
in MG1655

o || (35) | 742 | 44

Overall Model is 91 % Accurate




Discrepancies Generate Hypotheses

TABLE 2. Discrepancies between experimental identification and model prediction for essential and nonessential genes®

Rationale Subsystem Gene(s) (Blattner no.)
False negatives Essential Ex J)erlmentall Model Predlcts Growth
Molecules not included in biomass biquinone biosynt esis G (b2232); wbiH (b2907)
Pyridoxine biosynthesis pdxA (b0052); pdxB (b2320); pdxH (b1638); pdxJ (b2564)
Thiamine biosynthesis iscC (b2530)
Model includes altemative pathways/ Amino acid biosynthesis carA (b0032); carB (b0033); gipD (b3426); gly4 (b2551);
isozymes proA (b0243); proB (b0242); theB (b0003); thrC (BD004)
Model predicts impaired but not lethal ~ ATP synthase aipA (b3734); atpB (b3738); atpC (b3731); atpF (b3736);
phenotype atpG (b3733); atpH (b3735)
Regulatory effect on gipK PTS/PEP mectabolism ar (b2417); gipK (b3926); ppc (b3956); ptsI (b2416); fruR
(b00S0)
False positives Non-Essential Experimentally, Model Predicts No Growth
Model biomass components which Fatty acid and lipid biosynthesis cls (b1249); fabF (b1005)
might not be essential components Glycogen glgA (b3429); gleC (b3430)
LPS synthesis dgkA (b4042); gmhA (b0222); gmhB (b0200); lpxl.

(b1054); msbB (b1855); rfaC (b3621); rfaD (b3619);
rfaE (b3052); rfaF (b3620); rfaG (b3631); rfal (b3627);
rfal (b3626); rfal. (b3622)

Spermidine synthesis pfs (B0159); speD (b0120); speE (b0121)
Unaccounted-for transport mechanisms ~ Ammonium transport amtB (b0451)
Glycerol transport gipF (b3927)
Sulfate transport cysW (b2423)
Unaccounted-for metabolic enzymes Arginine biosynthesis argB (b3959); argC (b3958); argD (b3359); argG (b3172)
Aspartate biosynthesis b0923
Branced amino acid biosynthesis ivY (b3773); ilvE (b3770); bp (bOSSY)
Central metaboli aldA (b1415)
Cofactor biosynthesis coaA (b3974); coaE (b0103); pabC (b1096)
Glycolytic pgi (b4025)
Lysine biosynthesis dapF (b3809); ush4 (b0480); ksR (b2839)

Nucleotide biosynthesis and salvage  pyl (b4244); rxB (b0888); ndk (b2518)

“ Twenty-six false-negative cases in which the model incorrectly predicted growth of the gene deletion strain were identified, in addition to 42 false-positive cases in
which the model incorrectly predicted that genes were essential. Each case is grouped based on the likely rationale for the discrepancy and the gene functional
annotation.




MOMA: Minimize Distance Between Wildtype
& Mutant Flux Distributions

Metabolic Model

Wildtype Solution Space
Knockout Solution Space

A

Growth Rate

Some Non-Essential Flux




MOMA Prediction Algorithm

Maximize: cv Minimize: %, (v\**-v)?
Such that Sv=0 Such that S v =0
asvs=p asvsf
SOLUTION = vt Vi =0

A
v th
2 o




FBA vs. MOMA Mutant Growth Rate Predictions

gapAC ()
pek ()
rpiAB (-)
tktAB (-)

gltA () 4 opmAB

acnAB () | fha (-) ®

| icda tpiA (-)

atpA \
o -

0.2 04 0.6 0.8
j wr o
Voo ! Vao (FBA)

1

Both FBA and MOMA predict

lethal phenotypes, agreeing with
experimental data

Both FBA and MOMA predict non-
lethal phenotypes, agreeing with
experimental data

Only MOMA predicts a lethal
phenotype, agreeing with
experimental data



FBA vs. MOMA Flux Level Predictions
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What Happens if Cells Evolve?
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Day of Evolution

Faster growing cells outcompete others and select for cells
with higher growth rates

Fong et al. Nature Genetics. 36(10):
1056-1058 (2004)



Deletion Strain Evolution
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e 39 0f 50 cases correctly predicted computationally (within 10%) Fong et al. Nature

e Parallel cultures exhibit similar endpoint phenotypes Genetics. 36(10):
e Average GR increase of 87% observed 1056-1058 (2004)
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ROOM: Minimize the Number

of Fluxes that Change

‘m,—l— LJ L4 L

&

:

8

Significant flux changes
g 3

g

lj Iﬂ
pykl  pyem pykdd  pgiel poral azwfl  oafal  gndh  ppeh
Knockout experiment

Fig. 4. Number of significant flux changes between the flux distribution of
the wild-type strain and the flux distributions predicted by FBA, MOMA, and
ROOM for five knocked-out organisms, under different growth conditions.
The marking on the x axis is explained in the caption of Fig. 3.

Shlomi et al. PNAS (2005). 102(21):7695-700



Method Comparison to Experimental Data
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Knockout experiment Knockout experiment

Fig. 3. Flux and growth-rate comparison among FBA, MOMA, and ROOM for five knocked-out organisms, under different growth conditions. The marking
x-y on the x axis denotes knockout of gene »ooc-y in a mutant strain grown on media y. |, m, h, and al stand for glucose-low, glucose-medium, glucose-high, and
ammonia-low, respectively. (a) Pearson correlations between experimental fluxes and predictions. (b) Relative errors in growth rate predictions, calculated by
subtracting the experimentally measured growth rate from the predicted growth rate and dividing by the experimentally measured growth rate.

e|n 8 out of 9 cases ROOM has better or equal prediction
capabilities with respect to flux over MOMA.

*MOMA tends to more significantly underpredict growth rate
(quantitative comparison)

Shlomi et al. PNAS (2005). 102(21):
7695-700



Final Points

FBA will always predict higher (or equal) growth
rates as compared to MOMA or ROOM.

The MOMA solution is unique given a single
wildtype flux distribution.

The ROOM solution is not unique, there are often
multiple flux distributions with the same number
of altered fluxes.

FBA better at predicting adaptive evolutionary
outcomes.



MOMA: Minimize Distance Between Wildtype
& Mutant Flux Distributions

Metabolic Model

Wildtype Solution Space
Knockout Solution Space

A

Growth Rate

Some Non-Essential Flux




ROOM, MOMA and FBA Predictions for Mutants

LowerLimits ('EX glc e')=-5;
UpperLimits ('EX glc e')=0

*31low coZ,pi,oZ, h, hZo to be taken up bv the celﬂ

LowerLimits ('EX coz e')=-Vmax;

LowerLimits ('EX hio e')=-Vmax;

LowerLimits ('EX h e')=-Vmax;

LowerLimits ('EX o2 e')=-Vmax’

LowerLimits ('EX pi e')=-Vmax’

*Define reactions that are used in the ROOM objective function 1f vou want to
*consider all reactions then use 'alias(subj,j),' instead.

Set subj(j) /ACKr,ACONT, ADHEr, ADK1, ATPS4r,CS, CYTED, ENO, FEL, FEP, FRD, FUN, GEPDHZr
GAPD, GND, ICDHyr, ICL,LDH D, MALS,MDH, ME1, ME2,NADH11, PDH, PFK, PFL, PGI, PGK, PGL, PGH
PPC,PPCK,PPS, PTAr, PYK, PYRt2r, RPE, RPI, SUCD1i, SUCD4, SUCOAS, TALL, AKGDH, NADTRHD

THD2 , TKT1, TKT2, TPI1/; . .
Define Which Reaction(s)

Set fdeletedrxns(j) /TKT1/ — to Delete
G Define What to Maximize to get the

Parameter “Wildtype” Flux Distribution
c(3) used to define the objective function for FEBA

wildtype w(j) used to store wildtype FBA fluxes

mutant room(j) used to store mutant MOMA fluxes

mutant fba(j) wused to store mutant FEA fluxes

mutant rmoma(j) used to store mutant MOMA fluxes

delta used to indicate what f£lux changes are significant ([(ROOHM)

epsilon used to indicate what flux changes are significant (ROOHM)

wL(subj) used to indicate what flux changes are significant (ROOHM)

wl(subj) used to indicate what flux changes are significant (ROOH):;



ROOM, MOMA and FBA Predictions for Mutants

*This section calculates the FBA solution for maximizing b1omass
*#for the wildtvpe strain and stores the fluxes in the wildtvpe v parameter
v.lo(j)=LowerLimits(]):
v.up(j)=UpperLimits(3j):
o (WTObi)=1; Calculate the WT flux
solve FBA using lp maximizing Obj: distribution
wildtype wi(j)=v.1l(3)’
*Defines allowable variation before becoming significant for ROOM calculations
wU(subj)=wildtype visubj)+delta*abs(vildtype vi(subj))+epsilon;
wL(subj)=wildtype visubj)-delta*abs(wvildtype v(subj))-epsilon;
v.fx (deletedrxns)=0; Fix all fluxes in the deletedrxn set to be 0
*This section calculates the ROOM and MOMA solutions for the appropriate knock: .].
*indicated by the line v.Efx('rxnname')=0,
*Tt also calculates the FBA solution for this sap fn;:“"uu
Calculate the ROOM Mutant

solve ROOM using mip minimizing minnwaber:;
distribution

solve MOMA using nlp minimizing distance: Calculate the MOMA Mutant
mutant mona(j)=v.1l(3j); distribution

lve FBA using 1 imizing Ob3:
solve uslng -p Waximlzlng 22J Calculate the FBA Mutant

mutant room(j)=v.l(j):

rutant fbha(j)=v.1l(Jj): . . .
distribution



Knockout Calculations

1. What are the maximum growth rates for the
wildtype and mutant strains predicted using:
MOMA, ROOM and FBA for the following
cases:

— tpi mutant (glucose aerobic)
— pgi mutant (glucose aerobic)
— acnA, acnB double mutant (glucose aerobic)



Knockout Calculations

2. If you delete ACONT, all methods predict a lethal
phenotype. Looking at the shadow prices for the Mutant
FBA prediction what metabolite can this mutant no longer
produce that is needed for biomass production?

BIOMASS REACTION

1.496 3pg + 3.7478 accoa + 1.0789 akg + 55.703 atp + 0.361
ed4p + 0.0709 f6p + 0.129 g3p + 0.205 gbp + 55.703 h20 +
3.547 nad + 18.225 nadph + 1.7867 oaa + 0.5191 pep +
2.8328 pyr + 0.8977 r5p

— 55.703 adp + 3.7478 coa + 41.025 h + 3.547 nadh +
18.225 nadp + 55.703 pi



Knockout Calculations (1. Ans)

* tpi mutant (delete TPI reaction)
* 0.49(WT FBA)
e 0.08(Mutant MOMA)
* O(Mutant ROOM)*
e 0.35(Mutant FBA),

* pgi mutant (delete PGI reaction)
* 0.49(WT FBA)
* 0.47(Mutant MOMA)
* 0.262 (Mutant ROOM)*
* 0.49(Mutant FBA)

* acnA+acnB mutant (delete ACONT reaction)

* 0.49(WT FBA)
e All predict methods predict O



Knockout Calculations (2. Ans)

2. Only a few compounds have negative
shadow prices:

akg = a-ketoglutarate
Icit = isocitrate
glx = glyoxylate
akg e = a-ketoglutarate
- Only akg is part of the biomass equation.



Overview of Constraint-Based
Modeling Sessions

. Reconstructing metabolic networks and flux
balance analysis

. Finding alternate solutions and predicting the
effects of gene knockout

. Improving models using optimization

. Using models for metabolic engineering



Model Corrections

1. SMILEY (metabolic)
2. GROWMATCH (metabolic)
3. GENEFORCE (metabolic & regulatory)



Constraints on Metabolic Networks

[' i '—j ~5f*:} g c i
LI VI &t bt (AT
For each metabolite: For all metabolites:
zsij'vproducezz_sij'Vconsume Sv=0

2. Enzyme Capacity Constraints: v, S V; S V.,
3. Thermodynamic Constraints: v; 2 0

4. Regulatory Constraints: v
genes are not expressed

min’? Y max

v__. =0 if associated



Current Status of E. coli Genome

Table 3. Numbers and types of known and predicted gene products of

E.coli K-12

Code Gene product type Number Percentage”

o Eame e #3 ¢ About 10% of genes have

t T It 133 .

W Teasponter, recicted unknown functions.

r Regulator 9.1

pr Regulator, predicted

m Membrane 5.7

pm Membrane, predicted

f F 47

B Factor, predicted * Another 26% have

$ Structural component . 2.8 . . 2 .

o Stctuml comprsest, prdiced . predicted” functions.

pc g;r;ier, predicted is

n

Ip Lipoprotein 1.0

cp Cell process 13

I i s - is  * Of these, roughly half

i Site (oriC) <0.1 . .

b PhageflS in common 63 might have metabolic
(including 15 pseudogenes)

d Partial inf: i 46 33

o Untnown fonto roles.

Total 44 100.0

'Genes in common to strains MG1655 and W3110.
*The percentage is calculated from the sum of known and predicted gene types.



Model Driven Discovery Via High Throughput
Testing

IN SILICO EXPERIMENTAL
MODEL \ / MEASUREMENTS

Comparisons:

Model vs. Experiment
eg. Minimal Media

WT and A Growth Capabilities

Gene Expression

=1

oooooooo

OOOOOOOOO | *
Improvement & Experimental

: Design
Refinement INCONSISTENCIES
. /

° Can be used to
. design
-/ experiments and
© Experiment update
il the model
&

CONSISTENCIES

Can be used to

help Interpretation
interpret | = e e e e e e e l
o Experiment|

experimental
=Model .
observations

Growth Data Comparisons: Two Failure Modes
1. Predicted Growth but NO Experimental Growth
- Missing regulation or falselv included reaction
2. Experime redicted Growth
- Missing metabolic transport or enzymatic reactions

- Incorrect regulation



Iterative Methods for Enzyme Identification

Phenotypes vs. Model Predictions

. Exp. Growth (+)

O ‘ O O . ‘ Pred. Growth (-)

Exp. Growth (-)

. O O . O O Pred. Growth (-)
OCO00O0O

Exp. Growth (+)
Pred. Growth (+)

Computational Algorithm
minimize 3 a;+ > b;
such that:
S'v+Uy+Xz=0
Vpiomass > 0.05 hr!
Vmin,i s V,i = Vmax,i
& YminjS Yj S 8j Ymax,j
B Zinin,k = Zk = P Zimax
a,bc{0,1}
For multiple solutions, at iteration g
include the additional g-1 constraints:
>a+>b=aa"+bb"-1 (7)
where n=1...9-1

(1)
(@)
(3)
(4)
()
(6)

4

1 Cellular
Metabolism

METABOLIC
RECONSTRUCTION

9.
= o

Gene Expression

% 1.0

q>) W Lactate

—Cl 0.8 | L-galactonate
RS

206

L

oY

Relati@® Ex
[ =
*
(0]

o

ormdafics 'Edlﬂs YijN

enes

L-galactonate M9 Minimal Medium

1.0 .
. —BW25113 —AYijL
pression Data — AyjM
S
20.6
®
n 0.4
o
0.2
0
0 12 24 36 48 60 72
Time (Hrs )

Reed et al.

PNAS 103°(46):17480-4 (2006)




Computational Algorithm
minimize > a;+ > b;
such that:
Sv+Uy+Xz=0
Vpiomass > 0-05 hr!

Vmin,i = V,i = Vmax,i

aj°ymin,j = yj S aj°ymax,j

Oy Zinink = Zk = By Zimax

a,b €{0,1}
For multiple solutions, at iteration g
include the additional g-1 constraints:

da+yb=aa"+bb"-1
where n=1...9-1

(1)
(2)
(3)
(4)
(5)
(6)

(7)

a,b are indicator
variables of whether a
reaction is allowed to
OCCUT.

U, X are stoichiometric
matrices for KEGG
reations and “transport”
reactions.

y, z are fluxes through
these additional
reactions.

Equation 7 uses integer cuts so that we don't revisit the same

solutions

Reed et al. PNAS 103'(46):17480-4 (2006)



Case 1: Growth on D-Malate

Extracellular

Growth on D-Malate

—BW25113
— AyeaT
— AyeaU
— AdctA

A SfCA
— A maeB
— AyeaV

A dcuA

A dcuB
— AdcuC
— A dcuD'

Time (Hours)

D-Malate 08
07 -
dcuABCD .
T 05
5
S 04 -
(@)
D- Malate o 03~
sfc 0.2
ae \ 0.1
Pyruvate Maleate .
Fumarate
14
.CEJ 19 . 575 fold m Lactate ~
) @ D-malate c
S 1.0 {_ > @
= 1.9 fold £95
X 7% 54fold g a
"o < 2
2 2
T 047 1.1 fold & E
() | c
0.0 - : : : | €
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GrowMatch: Correcting Under and

Over Model Predictions
in vivo data

Keio
collection

in Silico model
iIAF1260 model growth  no growth

TSSSOTOWIh[1000 GG 72 GNG

no growth| 38 NGG 150 NGNG

Figure 3. Classification of mutants based on comparison of in
silico vs. in vivo data used in this study.

Kumar and Maranas. PLoS Computational Biology. 5(3):e1000308 (2009)



Comparison of Mutant Phenotypes

in vivo data
growth no growth

growth G GNG
no growth NGNG |

 Add isozymes

in silico model

* Add new enzymatic or transport reactions
* Reaction directionality

Kumar and Maranas. PLoS Computational Biology. 5(3):e1000308 (2009)



Correcting NGG (model=NG/data=G)

Discrepancies
Minimize Z Y
Jebatabase y are indicator variables
s.t of whether a database
vj= 0. v ‘ (;neckj _ l(&’./\'EK()I‘ reaCtIOn IS allowed tO
OCCUT.
Z S{j\’j = 0,‘, i=1...M
J .
| Database includes:
11N
Vbiomass = vgiomass OKEGG & Metacyc
Varp = V7 reactions
uptake *Transport reactions

Vuptake =V

_ *Reversible version of
LB] < \’j < LrB i V]EJ[ ()(lé’ /

model reactions
LBjy;<v;<UB;y; VjeDatabase

Kumar and Maranas. PLoS Computational
y;=10,1} VjeDatabase Biology. 5(3):e1000308 (2009)



38 Instances of NGG

*8 genes may have other genes that can compensate (e-value by
BLAST<1x103)

*Secretion of products may explain 3 discrepancies
*Addition of reactions may explain 3 discrepancies

Table 4. Resolution of NGG mutants by allowing secretion of

metabolites.

NGG Secreted Metabolite

Mutant

AaldA glycoaldehyde

Aluxs S-Ribosyl-L-homocysteine

AfolD 3 A-dihydroxy-2-butanone 4-phosphate

Kumar and Maranas. PLoS Computational
Biology. 5(3):€1000308 (2009)



Comparison of Mutant Phenotypes

in vivo data
growth no _growth
growth B |
nogrowth | |NGG N l

in silico model

* Remove Reactions
* Remove Isozymes
e Add Metabolites to Biomass

Kumar and Maranas. PLoS Computational
Biology. 5(3):€1000308 (2009)



Correcting GNG (model=G/data=NG)

Discrepancies

Minimize Vijmes y are indicator vgnal_oles
of a model reaction is
deleted (i.e. v;=0).

s.t  Maximize Vpiomass |Inner|

—ZS(I'W:O i=1...M i
. Outer problem deletes

Vap = reactions so that the

Vuptake = VP12Ke maximum biomass is the
lowest (i.e. growth=0)

VAID

| LBjy;<v;i< UBjy; VjeModel |

y;=0, Vj| G = 1&keKO" Inner problem calculates

| maximum biomass given

Z (I—y;)<n’ deleted reactions chosen
! by the outer problem

V= {0,1} VieModel Kumar and Maranas. PLoS Computational

Biology. 5(3):e1000308 (2009)



/2 GNG Discrepancies

72
GNG single gene-deletion mutants

22 26 24
Gene products have Gene product(s) catalyze blocked In silico flux distribution is
isozymes reactions affected
24 2
Blocked under all Blocked under
conditions studied conditions

Kumar and Maranas. PLoS

Computational Biology.
5(3):e1000308 (2009)



/2 GNG Discrepancies

Table 2. Resolution of GNG mutants in which deleted genes
encoding for isozymes.

GNG Mutant Associated Essential Reaction (Pathway)

AaroE SHK3Dr (Tyrosine, Tryptophan and Phenylalanine metabolism)
Acan HCO3E (Unassigned)

AddlB ALAAIAr (Cell Envelope Biosynthesis)

AfabZ 12 reactions (Cell Envelope Biosynthesis)

AfolA DHFR (Cofactor and Prosthetic Group Biosynthesis)
Aftsl MCTP1App (Murein Biosynthesis)

AginA GLNS (Glutamate metabolism)

AilvA THRD_L (Valine, Leucine and Isoleucine metabolism)
AmetC CYSTL (Methionine Metabolism)

AmetE METS (Methionine metabolism)

Ametl ASPK or HSDY (Threonine and Lysine metabolism)
AmrdA MCTP1App (Murein Biosynthesis)

AthrA ASPK or HSDY (Threonine and Lysine metabolism)
AubiD OPHBDC (Cofactor and Prosthetic Group Biosynthesis)
AyshA H20tex (Transport, Outer Membrane)

AcarA and AcarB
CBMKr&J CBPS |OXAMTC
— carbamoyl
phosphate

T e
T o

L-arglmne

JUMP

pyrimidine ribonucleotides interconversion

Kumar and Maranas. PLoS Computational Biology. 5(3):e1000308 (2009)



Model Refinement

Adding Reactions to Expand Model
Working with SEED Models



Slightly Modified Version of SMILEY

a,b are indicator variables of

.. whether a flux is allowed to
mlnlmlzez a, + Ebl. OCCUr.
such that U is a matrix of reactions.
. o y are fluxes these additional
S v+U y—<= 0 reactions.

LowerLimit . = v . < UpperLimit .
J J pp J -z is a flux representing the

a.-v . . < <a - removal of a metabolite from
€ Vmink = Vi € max.k the system (pos value=removal
bi . Zmin,i

and neg value=addition).

V piomass = 0.05 Note S and U must have the
same number of rows which
must be aligned!

<z,=b 7

max,i



| SMILEY.gms

v{j) flux values through reaction in existing network
y{k) flux values through reaction in the database
z{i) flux values through transport reactions

Obj number of needed reactions;

Binary VYariable
ak) binary variables
b{i) binary variables;

Binary variables indicating whether a reaction in genome-scale
model is added (a=1) or if you need to uptake/secrete a
metabolite (b=1)

Parameters

z_max{i) universal transport reaction maximum fluxes

z_min{i) universal transport reaction maximum fluxes;

Set Lower and Upper limits for uptake/secretion reactions.

Zz_max{1 )=VYmax; : :
(1) ’ Zmin=0 means the metabolite can only be secreted.

z_min{i)=0;
y_max(k y=\max; Set Upper Limits for fluxes in Genome-scale model (lower limits y_min
are defined in the EcoliMatrices.gms file)

¥ Define Compounds In Media That Aren't In Current Model
z_min{ 'nh4_e ' )==\max; : . . )
z_minE 's04_e '%:-'Jmax; Some metabolites are present in the media but don’t have

exchange fluxes in the smaller model. So we allow them to be

taken up by setting z_min to be -Vmax



Constraints in SMILEY (no integer-cuts)

calcobj.. Obj=e=sum{ k,alk))+ sum{ i,b{i));

massbalance(i).. sum{ 3,5(i,3v{3) )+ sum{ k,U{i,k)*v(k) ) -z{i) =e=0;
ranges_up_y{k).. v{k)=1={ alk)*y_max{k) );

ranges_low_y{k).. y{k)=g=( alk y*y_min{k) };

ranges_up_z{i).. z{i)=1l={ b{i)*z_max{i) );

ranges_low_z{i).. z{i)=0=( b{iy*z_min{i) );

growth.. v{ 'Biomass')=g=0.085;

Calcobj: Calculates the number of a and b variables that are 1,
and hence the associated fluxes that are non-zero

Mass balance: Now metabolite production and consumption can
be balanced using reactions in genome-scale model (using y) or
uptake/secretion into media (using z)

If a or b are zero then the associated fluxes must be zero using
the ranges_up and ranges_low values.

Growth must be positive



OUTPUT: RequiredReactions.txt

"Model status: ",1.68
"Solver status: ",1.68
"Number of Added Fluxes",4.08

"Reactions from Universal Database"
"XYLI1",1.2337,-1.88,"xy[-D",1.88,"xylu-D"

"XYLK" ,1.2337,-1.88,"atp" ,-1.688,"xylu-D",1.68,"adp" ,1.688,"h",1.88,"xusp-D"
"X¥Labc",1.2337,-1.08,"atp" ,-1.88,"h20" ,-1.08,"xy|-D_e",1.88,"adp" ,1.68,"h",1.688,"pi",1.88,"xy[-D"

"Transport Reactions {Pos=Secretion, Neg=Uptake)"
"xyl-D_e",-1.2337

Displays the Number of Fluxes you need to add

Tells you the name of the reaction, the flux value, and the reaction
(stoichiometric coefficients followed by metabolite)

Tells you the name of the transport reaction and flux value
(negative flux means the metabolite had to be added and positive
flux means the metabolite needed to be consumed)



Example: Expand E.coli Core Model Using
Reactions from Genome-Scale Model

* How many reactions do you need to add to
the core model to get aerobic growth on
fumarate (fum) as a carbon source?

* How many reactions do you need to add to
the core model to get aerobic growth on
arabinose (arab-L) as a carbon source?



Example: Expand E.coli Core Model Using
Reactions from Genome-Scale Model

e How many reactions do you need to add to the core
model to get aerobic growth on fumarate (fum)as a
carbon source?

— Since there already is an exchange flux in the core model,
change carbon source use: LowerLimits(‘EX_fum_e’)=-10;

— No reactions are needed, meaning the core model can
already do this

* How many reactions do you need to add to the core
model to get aerobic growth on arabinose (arab-L) as a
carbon source?

— Since there already is no exchange flux in the core model,
use: z_min(‘arab-L_e’)=-10;
— 5 reactions are needed, do these make sense?



Example: Expand E.coli Core Model Using
Reactions from Genome-Scale Model

* How many reactions do you need to add to produce
Hexadecanoate (hdca) a n-C16:0 fatty acid from
glucose under aerobic conditions?

* Try and find another solution that does not secrete ppi
(or does not use the PPA reaction).

* How many reactions do you need to make biomass
using the genome-scale biomass reaction
(BiomassEcoli). Note make sure that nh4 and so4 are in
the media by setting their corresponding z_min values
to —Vmax;



Example: Expand E.coli Core Model Using
Reactions from Genome-Scale Model

How many reactions do you need to add to produce hdca from glucose
under aerobic conditions?

— Two Options: Change growth constraint to z(‘hdca’)=g=1; or add line before the solve
statement that z.lo(‘hdca’)=1;

— 21 reactions are needed.

Try and find another solution that does not secrete ppi (or does not use
the PPA reaction).

— Two Options: add line before the solve statement that z.fx(‘hdca’)=0; or y.fx(‘PPS’)=0;

— The two options are to either secrete ppi or convert ppi into (2)pi using the PPA reaction

How many reactions do you need to make biomass using the genome-
scale biomass reaction (BiomassEcoli). Note make sure that nh4 and so4
are in the media by setting their corresponding z_min values to -Vmax;

— Two options: Change growth constraint to y(‘BiomassEcoli’)=g=0.05; or add line before
the solve statement that y.lo(‘BiomassEcoli’)=0.05;

— 227 Reactions are needed. These are all the biosynthetic pathways for amino acids,
nucleotides, etc.



SEED Database



Overview of
ModelSEED
Process

Assembled genome
sequence

SEED subsystems

Template biomass
reaction

SEED reaction
database

Biolog phenotyping
array data

Gene essentiality
data

B Data sources
M Pipeline steps
B Model versions

RAST annotation server

Annotated genome
in SEED

Preliminary
reconstruction

Auto-completion

Analysis-ready
model

Model analysis

Biolog consistency

analysis
I Gene essentiality

I consistency analysis

-y

Model optimization
(GapFill and GapGen)

Optimized
model



How many reactions are needed to
complete the models so they can
predict growth? How many reactions
can carry flux?

E1,600—

3

£1,200 4

£

0

5 800 -

?,

9.’ 400 - ‘.

g s > L

= 0 +——F— T T T T T 0 T T T T T
0 20 40 60 80 100 120 140 0 100 200 300 400 500

Auto-completion reactions Inactive reactions

Henry et al. Nat Biotech. 28(9): 977-984 (2010).



Four Steps to Improve/Optimize
Models

. Evaluate consistency with Biolog data
(growth phenotypes in different conditions)
to identify missing transporters.

. Evaluate consistency with gene essentiality
data to find GPR conflicts.

. Add reactions from universal database
(transport, enzymatic, reversibility changes).

. Create gaps to remove reactions.

Henry et al. Nat Biotech. 28(9): 977-984 (2010).



Adding Reactions To Model

R
Minimiﬂez (1 + Pri+ Px,i + Pssi + Ppi— fssi — fp,i)zi
1=0

z, — binary variable indicating whether reaction is added

P, — penalty for transport rxns (4=biomass or 2=non-biomass)
Py ; — penalty for non-kegg rxns (0O=kegg or 2=non-kegg)

Pss i — penalty for seed subsytems(0, 1 or 3)

fsg; — bonus if other rxns in same subsystem are already in model
fp; — bonus if other rxns in short linear pathway are already in model

Henry et al. Nat Biotech. 28(9): 977-984 (2010).



Access to ModelSEED

e http://seed-viewer.theseed.org/
seedviewer.cgi?page=ModelView

e Recommend using firefox for ModelSEED

* |f you want to have private models you will
need to have your own account.



What About Transcriptional
Regulatory Models



Integrated Models of Metabolism and

Regulation
—Envirqnmental Conditions < Metabolite
(media, temperature, etc.) Uptake &
Secretion

Transcription Factor Status:
TF = 0 (TF low DNA affinity)

b : . Int I
TF Boo]iegIF hlglh DNA affinity) Metabolic

Regulatory Rules Fluxes

Gene Expression Status:
GE = 0 (not expressed)
GE = 1 (expressed)

GPR Rules l Constraints on

Reaction Activity: Metabosh\cl: le(;xes v)

Y = 0 (inactive)
Y = 1 (active)

L ] ‘ 4 L ]
Y Vmin_ vy vmax

Transcriptional Regulation Metabolism



Approach for Relaxing Regulatory
Constraints to Improve Accuracy

Metabolic Model lixt

p N OPTIMIZATION PROBLEM
0 Find the MINIMUM number of genes
(currently OFF) that must be turned ON.
Axt 5> A mmmGamn)- B mnGem—m)-

A

VBiomass2 0
0 0

D (10)C0'—5)—>Biomass

Modified Integrated Model 1‘3\’“

th
Integrated Model ~N
R C
=] T
' R i I el G112
Axt mEm>- A\ mmmmGumm)- B _-_>C A \'3 =Vinreshold
E O OMass = resno
VBiomass 2 O O
T 0 0 — D (10C 05 —>» Biomass
(10)C———>» Biomass
[TF2=1] >

Barua, Kim and Reed. PLoS Comput
Biol 6(10):€1000970 (2010)



How Many Changes Are Needed to Correct
Each False Prediction?

Total of 3,079 Cases (+/+/-; exp/met/metreg)

3000 [ I I I I [ [
| Before Corrections

2 1000} - _E
v ]
© i ]
O : :
£ 100 ]
+ ; ?
© : :
3 10¢ ‘;
E L ]
= : ]
Z I I :

1 2 3 4 5 §) 7 8 9 10

Number of Genes



11 Common GeneForce Corrections

Table 1. E. coli model refinements and the conditions under which they were identified by GeneForce.

Refinement
Step Gene Original Rule Refined Rule Condition™ Comment
A meriNG NOT Metd) GPR comection Gly-Met (N) Unknown transporter for
Met-Ala (N) L-methionine (PMID: 4604763)
A gmu NagC) ON) N-acetyi-D-glucosamine ICN) Essentlal gene (PMID:
N-acetyl-D-mannosamine {CN) BAOTTET)
N-acety-neuraminic add (N)
A Y NOT val-Lig)=0) ON) b3773 (ivY) a-acetolactate or a-
aceto hiyd rosybutyrate inducer
for ivY (PMID: 10588699)
A VG fivy) Y AND NOT (val-L{e)=-0)) b3773 (IvY) Constltutive expression of vl
OR INOT ivY) in lIvY strain (PMID: 6783625)
A sdaC* fCrp AND (NOT Lrp OR {{Crp AND (NOT Lrp OR Lserine (N) Trarsporters for ser-L; saoC
fleu-Lie)=-0)) fleui(e)==0])) OR ser-L spedific, ssfT major, rdeC
Eer-Lie)=-0) anaeroblc (PMID: 8026499)
A oA NOT Lrp OR (leu-Le)=0)) INOT GovE) D-alanine (CN) No Lp binding: CycA ransporter
for 6 amino adids (PMID: 19118351)
A gevl NOT Govit AND GovA) D-alanine (CN) New regulatory small RNA
PMID: 10972807
A asdX GPR comection DsdC or D-serine (CN) New ser-D transporter (This
DsdC and Crp) study, PMID: 16952954);
regulation PMID: 7592420)
A rpiRt NOT (rib-Die) =) NOT (al-Die) =0 OR b2914 (rpiA) UR904 requires rpiB for mplA
rib-Die)=-0)]) strain PMID: 10559180)
A anA Sms) fON) b0118 (acnB) Two aconitases
PMID: 9202458)
A ihA* NOT Lrp OR (leu-L{e)=>=0)) ON) b2797 (sdaB) Lserine/L-theeonine deaminases;

SdaA (anaerobic), TdcB (anaewmbic),
IvA (PMID: 13405870, 15155761)



E. coli’s Regulation of D-Alanine Transporter

Experimental Result:
E.coli grows on D-alanine

Modeling Result:
Transporter is not expressed—> No

growth

Transcription

Factor
=
-

I*Q

Gene Protein

Barua, Kim and Reed. PLoS Comput Biol 6(10) (2010)

2.0

1.6 -

1.2 -

0.8}

No Leucine

¥

Lrp Active

¥

CycA Not Expressed

—_—BW25113
AdsdX

AcycA
AcycAAdsdX

O 10 20 30 40

Time (Hours)



Other Experimentally Tested
Corrections for Alrp Mutant

Growth on L-Malate

Growth on Glucose

' 2
AdctA ' Irp::kanAdctA Irp::kanAilvB Irp::kanAilvN
1.5¢ 1 1.5} s [p::ka@nAilvH Irp::kanAilvl
0.5t
)] — - | B . ! l .
0 10 20 30 40 0 10 20 30 40
Time (Hours) Time (Hours)
| Gene Original Rule | NewRule
dctA (CRP NoMAN) AND NOT(ArcA) AND (DcuR) ON
ilvB NOT([leu]>0 OR [val]>0) AND Crp AND Lrp ON

ilvN NOT([leu]>0 OR [val]>0) AND Crp AND Lrp ON



Effect of Model Corrections

3000

Number of (+/+/-) Cases

Before 3,079 Cases; After 445 Cases

1000 ;

100

-
o

[ Before Corrections
] After Corrections

2 3 4 5 6 7 8 9

Number of Genes




Rescue Non-Growth Phenotypes
(cells can’t grow due to regulation)

Table 3. Single genes or operons that are predicted to rescue
non-growth phenotypes under aerobic conditions.

Media Gene Condition
Citrate citT Carbon Source
Sucrose xylA Carbon Source
1,2 propanediol fucO Carbon Source
Butyrate atoDAEB Carbon Source
L-tartrate ttdAB Carbon Source
Allantoin allC Nitrogen Source

Nitrite nirBD Nitrogen Source




Overview of Constraint-Based
Modeling Sessions

. Reconstructing metabolic networks and flux
balance analysis

. Finding alternate solutions and predicting the
effects of gene knockout

. Improving models using optimization

. Using models for metabolic engineering



Metabolic Engineering

1. Knockout Prediction Tools
(FBA, MOMA, ROOM)

2. OptKnock



Leveraging Biochemical Networks

Metabolic Engineering: Adjust metabolic behavior by engineering strains to produce
useful chemicals

Drugs Commodity Biofuels
Ch em ica IS | Lignocellulose ar|1d hemicellulose
Pentoses Hexoses
'—‘—\
- Xyl Ara Man Glc Gal
’ P .
X5P G6P <« GIP

HO~ " “OH

3 . br alkanes
The miracles of science~ Formate e

lipid fuels

Pyr Mal- CoA
Sorona ® Z/’Bh&m‘

and

Artem|S|n|n \ QTCAcycle / butanol

Alper & Stephanopoulos
Nat Rev Microbiol (2009)




MOMA: Minimize Distance Between Wildtype

& Mutant Flux Distributions
Metabolic Model

Wildtype Solution Space

A

Knockout Solution Space

‘ FBA

Q MOMA

Growth Rate

Some Non-Essential Flux




Relative in silico Lycopene
Production Yields

MOMA for Increasing Lycopene Production

0.025

gdhA
i & Tabk 1
3 Experimental results of single and multipk gene knockouts
g @,cyoA
% 0015 Knockout construct Growth rate Percent increase in
= lycopene content (PPM)
s gpmA 0
E 0010 gﬁg’B Q/PPC None 0.67 0% (4700 PPM)
o Single knodkouts
oo o @Eg/yA gdha 0.55 13% (+4)
gpma 0.44 —8% (1+3)
/ : \ In silico Genome gmb (.55 7% (1 2)
0.000 00 01 ¥ 02 : 013'— == 0_; 05 acee 0.52 9% ('j' 4)
In silico Growth Yield fdhf 0.57 4% (13)
Double knodkouts
gdhA | aceE 0.52 13% (+4)
gdhA | gpmA 0.37 12% (1 3)
gdhA | gpmB 0.49 18% (1 3)
- 5 gdhA, talB 0.46 3% (1+4)
: l ‘dl au
' m ' Triple knockouts
: : gdhA | aceE, talB 0.44 19% (+4)
' : : gdhA | aceE, fdhF 0.38 37% (£ 3) (6600 PPM)
oP __: :
gahA gpmA/ aceE  fhF  talB § g:mmg/ accE  fhF B é fdhF  toiB . '
Wid Type Sk  pgohd Asced Alper, Jin, Moxley, & Stephanopoulos. Metabolic

Engineering. 7:155-64 (2005)

Knockout Background
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Fig. 3.

Improving Valine Production in E. coli

0.1 4

SAABIID 110 « pIKA/B
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In silico L-valine production rate (mmol x gOW' x hr')
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Double Gene Deletion
(AaceF)
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In silico growth rate (hr")

O

In sifico Lvaline production rate (mmol x gDW' x hr")
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0.3
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» Val
(PKKIIVBN)

Triple Gene Deletion
(AaceFApka )

0.1 0.2 0.3 0.4
In silico growth rate (hr")

0.5

Results of in silico gene knockout simulations by using the genome-scale metabolic model of E. coli MBEL979. The results of single (&), double (B), and

triple (C) gene knockout simulations with respect to L-valine production and growth rates are shown. Only the five best candidates with respect to the L-valine
production rate are shown for each stage of knockout simulation. Slashes indicate isoenzymes or subunits of the enzyme complex. The L-valine production and
growth rates of the control Val strain harboring pKKIilvBN are also indicated for comparison.

Park, J.H. Lee, K.H., Kim, TY., and Lee, SY. PNAS, 104(19):7797-7802 (2007).

Model calculations led to an improved strain design for valine production ( ~2
fold increase in valine yields)



OptKnock:

Finds reactions, that if removed, couple of biomass production
and metabolite production (ie. higher growth requires higher
metabolite production levels)

REFERENCES:

— Burgard, Pharkya, Maranas. Biotechnology & Bioengineering. 84(6):
647-657 (2003)

— Pharkya, Burgard, Maranas. Biotechnology & Bioengineering. 84(7):
887-899 (2003)

— Pharkya, Burgard, Maranas. Genome Research. 14(11): 2367-76(2004)
— Fong, et al. Biotechnology & Bioengineering. 91(5): 643-648



OptKnock: Identifies Mutants with Coupled Biomass &
Metabolite Production

Knockout Production Capabilities

C 4 Un-Coupled Growth & Coupled Growth & .

g Ethanol Production Ethanol Production Wildtype
S Knockout
S

& ® FBA

S 9 MOMA
O

=

(0 > >

Growth Rate Growth Rate

Finds reactions, that if removed, couple biomass production to metabolite production (ie.
higher growth =higher production)

So even if mutants initially have low production, by adaptively evolving strains using growth
rate as selection pressure, the mutants should improve their productivity

Burgard & Maranas. Biotechnol & Bioeng.
84(6):647-657 (2003)



OptKnock Variations

OptStrain': Two step process, where (1) non-native
pathways are identified that lead to product formation,
and then (2) OptKnock is carried out to identified coupled
phenotypes.

OptReg?: Rather than consider reaction deletions, this also
considers significant changes in fluxes.

OptGene3: Uses genetic algorithms instead of
optimization procedures to find the solutions.

OptORF%: evaluates metabolic and regulatory gene
deletions by gene and not reaction

1. Pharkya, Burgard, & Maranas, Genome Research, 14:2367-76 (2004)
2. Pharkya & Maranas, Metabolic Eng, 8:1-13 (2006)

3. Patil, Rocha, Forster & Nielsen, BMC Bioinformatics, 6:308 (2005)

4. Kim & Reed, BMC Systems Biology, 4:53 (2010)



Methods — adaptive evolution

TN N I,

Cultures grown in 250ml
minimal medium
supplemented with 2g/L
carbon source

Serial passage during Wild type Day 1 Day 2 Day ...

exponential growth

Stable growth rate o
achieved at end of o

evolution

evolution for phenotype

Cells frozen throughout
testing l

Phenotype testing Phenotype testing



OptKnock Problem Statement

maximize Vehemical (OptKnock)
Yj
subject to maximize Vbiomass (Primal)

v

M
subjectto Y v =0, Cells have to grow
j=1

If a reaction (j) is removed,
set y,=0 so that v; has to
equal O.

Vs + Veik = Vgle_uptake
Vatp > Vatp _main

~ farget

Ta
Vbiomass  biomass

phmn Vi < pp < phmax, Vi

J J J
'\,'jz{()‘]}. VJ 6'”
Z(l —y) <K <
j(:l‘[

To solve this problem, you transform it by using the dual
constraints for the primal problem, in addition to the

primal constraints
Burgard & Maranas. Biotechnol & Bioeng.

84(6):647-657 (2003)



Succinate OptKnock MOMA
Biomass  Succinate Succinate
ID Knockouts Enzyme (1/hn) (mmol/hr) (mmol/hr)
Wild “*Complete network™” 0.38 0.12 0
A 1 COA+ PYR — ACCOA + FOR Pyruvate formate lyase 0.31 10,70 165
2 NADH + PYR+< LAC + NAD Lactate dehydrogenase
B 1 COA+ PYR — ACCOA + FOR Pyruvate formate lyase 0.31 10.70 479
2 NADH + PYR< LAC + NAD Lactate dechydrogenase
3 ACCOA + 2 NADH+<» COA + ETH + 2 NAD  Acemaldchyde dehydrogenase
C 1 ADP+PEP— ATP + PYR Pyruvate kinase 0.16 15.15 621
2  ACTP + ADP— AC + ATP or Acetate kinase
ACCOA + Pi+— ACTP + COA Phosphotransacetylase
3 GLC + PEP — G6P + PYR Phosphotransferase system
Lactate OptKnock MOMA
Biomass Lactate Lactate
ID Knockouts Enzyme (l/hn) (mmol/hr) (mmol/hr)
Wild “*Complete network”’ 0.38 0 0
A 1 ACTP + ADP+< AC+ ATPor Acetate kinase 0.28 1046 558
ACCOA + Pi <« ACTP + COA Phosphotransacetylase
2  ACCOA +2 NADH <> COA + ETH + 2 NAD  Acetaldchyde dchydrogenase
B 1 ACIP + ADP— AC + ATP or Acetate kinase 0.13 18.00 0.19
ACCOA + Pi— ACTP + COA Phosphotransacetylase
2 ATP + F6P— ADP + FI6P or Phosphofructokinase
F16P+ GAP + DHAP Fructose- 1 6-biphos phatate aldolase
C 1 ACIP + ADP— AC + ATP or Acetate kinase 0.12 18.13 10.53
ACCOA + Pi— ACTP + COA Phosphotransacetylase
2 ATP + F6P — ADP + FI6P or Phosphofructokinase
F16P« GAP + DHAP Fructose- 1 6-biphosphatate aldolase
3 ACCOA + 2 NADH+<» COA + ETH + 2 NAD  Acemaldchyde dehydrogenase
4 GLC + ATP — G6P + PEP Glucokinase




Succinate Production Strains

(C) Succinate Mutant C
PEP GLC ATP 1.59
10.00 20
PYR ADP é M ]
3.59 | =+ Mutant A
06'—. —_— —_— b |
2KD6PG © L OW.IO .| - == Mutant C|
P RSP — 4 |
16.26 P om § & E coli |
g S - = ,
AN > 3
E4P F6P 8
pHAP 22 ap 050 % E
4
e 1601 ATP Qﬁ"dom - 5 4 N
13P2DG 1271 4 1270 -
' w
16.01 Nm“ﬂo. ADH FADH 4
FUM v 0
kG ; 1276
157 12.65 sSUCC 0 0.1 0.2 0.3 0.4
PG MAL AN Biomass Production (1/hr)
15.76 1265 GLX 232
pEp 126204 SUCCOA
* >’i. aIT
e PYR — 257 2.
7 Y
LAC  ETH ACTP y""c
Lo

AC
Burgard & Maranas. Biotechnol & Bioeng.

84(6):647-657 (2003)



Lactate

(D) Lactate Mutant C
PEP GLC 4 1p 289
10.00
PYR DP 9.89
GGP—~ D6PGL— D6PGC — RLSP
2KD6PG 00 0 V\O-OS
F6P
RSP
X P
089  FI6P 0.07
E4P F6P
pHAP 2 Gap 50
2
13P2DG 0\
9.82 NADPH < NADH  FADH
FUM
PG
0.05 004 Suec
964 MaAL
PG N
9.64 005  GLX 0.6
pEP23S, OA SUCCOA
0.13
10.00 IO 84 >— CIT
PYR — AccO .
0.59
i8.13 y AKG
LAC ETH ACTP /
ICIT
AC

Lactate Production Limits

(mmol/gDW/hr)

[N

[
=

p—
*

—_—
(]

o

Production Strains

—--Mutant A
wes Mutant B
—=Mutant C
— E. coli

0.2

0.3 04

B}omass Production (1/hr)

Burgard & Maranas. Biotechnol & Bioeng.

84(6):647-657 (2003)



Lactate Production Rate

(mmol-gDW-1*hr1)

=
0

Titer (g/L)

Experimental Testing of a Lactate Strain
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e actate secretion rate
increased with
increasing growth rate

eLactate yield
increased ~35% over 60
day evolution

¢2° by-product
secretion decreased

Days Evolved



Metabolic Engineering

Ethanol Production



Exhaustive Search:
All Possible Double Gene Deletions

904 Metabolic Genes

MOMA
100 . .
— 408,000 Possible
Double Knockouts = 80t
()
904 Metabolic Genes < 607
-174 Essential Genes S s © o o
-287 Unusable Genes E; 4ope *TT 5" omPomo om0 comm 1
-81 Equivalent Genes L%
362 Genes of Interest 2
= 57,000 Double ’ . Grg\;\?th Rate?'13/hr) o4

Knockouts



Ethanol Yield (% theor.)

Exhaustive Search:
All Possible Double Gene Deletions

FBA
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OptKnock: Identifies Mutants with Coupled Biomass &
Metabolite Production

Knockout Production Capabilities

C 4 Un-Coupled Growth & Coupled Growth & .

g Ethanol Production Ethanol Production Wildtype
S Knockout
S

& ® FBA

S 9 MOMA
O

=

(0 > >

Growth Rate Growth Rate

Finds reactions, that if removed, couple biomass production to metabolite production (ie.
higher growth =higher production)

So even if mutants initially have low production, by adaptively evolving strains using growth
rate as selection pressure, the mutants should improve their productivity

Burgard & Maranas. Biotechnol & Bioeng.
84(6):647-657 (2003)



Lactate Production Rate

(mmol-gDW-1*hr1)
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Experimental Testing of a Lactate Strain
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OptKnock Problem Statement

maximize Vehemical (OptKnock)
Yj
subject to maximize Vbiomass (Primal)

v

M
subjectto Y v =0, Cells have to grow
j=1

If a reaction (j) is removed,
set y,=0 so that v; has to
equal O.

Vs + Veik = Vgle_uptake
Vatp > Vatp _main

~ farget

Ta
Vbiomass  biomass

phmn Vi < pp < phmax, Vi

J J J
'\,'jz{()‘]}. VJ 6'”
Z(l —y) <K <
j(:l‘[

To solve this problem, you transform it by using the dual
constraints for the primal problem, in addition to the

primal constraints
Burgard & Maranas. Biotechnol & Bioeng.

84(6):647-657 (2003)



Some Other Examples Where Bi-Level
Optimization is Used

1. Met. Eng. Strain Design: Delete reactions/genes,
add reactions/genes, change fluxes, alter

regulation.

2. Calculate Obj. Functions: Given known fluxes
find c so that max cv gives you known fluxes.

3. Synthetic Lethals: Find pairs of deletions where
the resulting max. growth rate is O.

4. Model Identification: Find which reactions need
to be removed to match experimental
observations.



Calculating the Flux Envelop

This is a combination of flux variability analysis (for just the production
flux) and robustness analysis (varying growth rate)!

UPPErL1MITS( ] )=¥Mmax ;
*CARBON SOURCE: select upper and lower limits for exchange flux
LowerLimits{ 'EX_glc_e')=-18.5;

UpperLimits{'EX_glc_e')=0;

*allow co2,pi,oZ2,h,h2o to be taken up by the cell

LowerLimits({ 'EX_coZ_e ' )=-Ymax;

LowerLimits{ 'EX_h2o_e ' )=-Ymax;

LowerLimits{ 'EX_h_e')=-Ymax;

LowerLimits{ 'EX_oZ_e')=0;

LowerLimits{ 'EX_pi_e')=-Ymax;

How many steps

LowerLimits({ 'ATPM ' )=7.6; .
along the x-axis

5{i, 'Bionass ')=1.3*5(i, 'Biomass ');

*Define the number of step at vou want to take eqg. /stepl*step2b/ will have 25 steps
Sets

steps /stepl¥*stepls/ .
xaxis(i) /Biomassy  Flux along the x-axis
yaxis(j) /Ex_lac_b_e/ Flux along the y-axis

maxmin Zmaxprod,minprod/;

Parameter

c{j) used to define the objective function for optimization

n_steps number of steps that will be taken and is defined by the elements in steps
range_max maximum flux value through the flux to be varied

range_min minimum flux value through the flux to be varied

flux_value(steps) stores the values for the varied flux

store_obj(steps,maxmin) stores the value of the objective function for each iteration;



Calculating the Flux Envelop

* This is a combination of flux variability analysis (for just the production
flux) and robustness analysis (varying growth rate)!

*calculate the allowable range for the chosen flux

c{xaxis)=1;

solve FBA using lp maximizing Obj; ) . )
range_max=0bj. | ; '’ Find the range for the x-axis (min

solve FBA using lp minimizing Obj; and max flux value)
range_min=0bj.l;

*reset. the objective function to maximize objective of interest
c(j)=0; Change the objective from x-axis

c(vaxis)=li g, to y-axis flux.
loop(steps,

f lux_value(steps)=range_min+{ord{steps)-1 *(range_max-range_min)/{n_steps-1);
v.fx(xaxis)=f lux_value(steps);

solve FBA using lp maximizing Obj; Fix flux on x-axis and calculate the
store_obj(steps, 'maxprod’)=0bj.15  min and max flux on the y-axis

solve FBA using Llp minimizing Obj;

store_obj{steps, 'minprod')=0bj.l;

)3



Lactate Production Strains
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Calculations

e (Calculate and graph the flux envelops for lactate
roduction under glucose ANAEROBIC conditions
or:
— Wildtype solution
— Acetate Kinase mutant (ACKr reaction)

— Acetate Kinase & Aldehdehyde Dehydrogenase double
mutant (ACKr and ADHEr reactions)

**We will use physiological measurements for glucose
anaerobic uptake and ATP maintenance

**Remember to delete a reaction we can either change
upper and lower limits or use v.fx(‘NAME’)=0;
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 Why might your graphs look different from those in the publication?

— Different metabolic networks are used (their network overpredicts anaerobic
growth rates)!

— Different glucose uptake rates are used (they used a value of 10 rather than
18.5)!



OptKnock Code

* Target growth rate  O€t Minimum growth rate
LowerLimits( 'Biomass ')=0.01;

UpperLimits{ 'EX_glc_e ' )=LowerLimits{ 'EX_glc_e'); No. of Solutions

Sets 1

store how many optknock solutions you want to find /solutionl*solution3/

exclude(j) subset of reactions that you do not want OptKnock to consider {usually transporters and

/Biomass,EX_ac_e,EX_akg_e,EX_coZ_e,EX_etoh_e ,EX_for_e,EX_fum_e,EX_glc_e,EX_hZo_e,EX_h_e,EX_lac_D_e,

ACtZr,AKGtZr,COZQ,D_LACtZ,ETOHtZr,ﬁpRt,FUNtZ_Z,GLCpts,HQOt,DZt,PIt,PYRtZr,SUCCtz_Z,SUCCth/;
Reactions you don’t want to consider deleting

Parameter . .
outer_obj{j) used to define the objective function for Optknock /EX_ac_e 1/ Objectlve

inner_obj{j) used to define the objective function for inner problem /Biomass 1/ Fl]f\Ctj()r]S
Umax used to limit dual variables /16608/
maxknockouts maximum number of knockouts /1/
storeA(j,store) stores the a values from previqus iterations

storeRxns(store) stores the number of reactionshat were removed from previous iterations
storeV(j,store) stores the fluxes at the maximum dxowth rate from previous iterations
alpha /le-4/;

Max No. Knockouts



Questions:

Calculate what the maximum theoretical yield is for
ethanol from glucose using FBA.

Use FBA, to determine what the ethanol
production for the wildtype strain would be under

anaerobic conditions (glucose uptake =18.5).
Include LowerLimits(‘ATPM’)=7.6;
Include S(i,'Biomass')=1.3*S(i,'Biomass’);

|dentify six single gene deletion strains that would
couple biomass to ethanol production.

Which strain would result in the highest ethanol
production?

Calculate the production envelop for ethanol for
both the wildtype and best OptKnock strain



1.

2.

3.

4,

Questions:

Calculate what the maximum theoretical yield is for ethanol from
glucose using FBA.

ANS: 2 mol ethanol per mol glucose
Use FBA, to determine what the ethanol production rate for the
wildtype strain would be under anaerobic conditions (glucose
uptake =18.5).

ANS: at maximum growth rate (u=0.48 hr), ethanol production is 13.4
mmol/gDW/hr

|dentify six single gene deletion strains that would couple
biomass to ethanol production.
ANS: PFL,PTAr, ACKr, ATPS4r, THD2,TKT2

Note: APYK is only slightly higher than wildtype in terms of ethanol
production

Which strain would result in the highest ethanol production?
ANS: PFL, then ACKr and PTA
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OptKnock Variations

OptStrain': Two step process, where (1) non-native
pathways are identified that lead to product formation,
and then (2) OptKnock is carried out to identified coupled
phenotypes.

OptReg?: Rather than consider reaction deletions, this also
considers significant changes in fluxes.

OptGene3: Uses genetic algorithms instead of
optimization procedures to find the solutions.

OptORF*: evaluates metabolic and regulatory gene
deletions by gene and not reaction

1. Pharkya, Burgard, & Maranas, Genome Research, 14:2367-76 (2004)
2. Pharkya & Maranas, Metabolic Eng, 8:1-13 (2006)

3. Patil, Rocha, Forster & Nielsen, BMC Bioinformatics, 6:308 (2005)

4. Kim & Reed, BMC Systems Biology, 4:53 (2010)



Benefit of Considering Genes and Regulation

|. Reactions without Genes

> Spontaneous Reactions
A B (~1%, eq. glycerol diffusion)
Unknown Enzymes

?
A—>»B (~7 %, eg. transporters)

ll. Reactions with Isozymes

PIKA OTPIKB o action with Multiple

A—>B Isozymes (~30%)
gapA i '

c > D Reactions without

Isozymes (~70%)

lll. Different Phenotypic Behavior

tktA or
tktB ) Unwanted Reaction
A HiA B (eq. Other Byproducts)
or
c KBy p  Additional Reaction

(eq. Essential Reaction)

IV. Transcription Factor Prediction

aceEF
A—> B

mdh
C—>D
Deletion of Single Transcription Factor
Affects Multiple Genes & Reactions

Fnr




Integrated Models of Metabolism and

Regulation
—Envirqnmental Conditions < Metabolite
(media, temperature, etc.) Uptake &
Secretion

Transcription Factor Status:
TF = 0 (TF low DNA affinity)

b : . Int I
TF Boo]iegIF hlglh DNA affinity) Metabolic

Regulatory Rules Fluxes

Gene Expression Status:
GE = 0 (not expressed)
GE = 1 (expressed)

GPR Rules l Constraints on

Reaction Activity: Metabosh\cl: le(;xes v)

Y = 0 (inactive)
Y = 1 (active)

L ] ‘ 4 L ]
Y Vmin_ vy vmax

Transcriptional Regulation Metabolism



OptORF: Strain designh with gene deletions
and transcriptional regulatory effects

maximize biochemical production
subject to maximize cellular growth
subject to steady-state mass balance

enzyme capacity
thermodynamics
reaction deletions
associations
transcriptional regulations
gene deletions and overexpressions
limited number of gene deletions

limited number of gene overexpressions

Kim and Reed. BMC Systems Biol 4:53 (2010)



Deleting by Gene versus Reaction

1. 200 Total Optknock Strategies
« 50 Double Reaction Deletions
« 50 Triple Reaction Deletions
50 Quadruple Reaction Deletions
50 Quintuple Reaction Deletions

2. Mapped reaction deletions to gene
deletions

«  OptKnock Strategies had between
2 and 10 genes

3. Found OptORF strategies with the
same humber of gene deletions

Kim and Reed. BMC Systems Biol 4:53 (2010)

Frequency (%)

SU 1 I I I

70

Number of Reaction Deletions

Double Tnple Quadnple Quintuple Owerall
I 1 I I I I I I I 1 I

2 6102 6102 6102 6102 610

Number of Gene Deletions



Deleting by Gene versus Reaction
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Adaptive Evolutionary Outcomes are
Consistent with Regulatory Predictions

Apta AadhE

I Mt only

N Met.+Reg.
Day 60 | —x— Exp.

Y

o
N

B Mt only I Met.+Reg.

b

Yps (mol lactate/mol glucose)
- n

<
N
Relative Growth Rate (Exp./Model)
N
3

0 0.05 0.1 0.15 Aack Apck Appe Azwf
Yys (g DCW/g glucose) Strains

Data from S.S. Fong et al. Biotech & Data from S.S. Fong et al. Nature

Bioeng (2005) Genetics. (2004)

Kim and Reed. BMC Systems Biol 4:53 (2010)




Example Network: Designing Around
Transcriptional Regulation

. Engineering @) Genes

. objective @D Transcription Factors
| Enzymes
Substrate; Cellular @ to
uptake : Objective O Metabolites
<> Reactions
. Undesired - — = Activation

. by-product - - 4 Inhibition

—— GPR Associations

— Fluxes

Kim and Reed. BMC Systems Biol 4:53 (2010)



Transcriptional Regulation Restricts Growth
and Ethanol Production
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Kim and Reed.
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Strains for Ethanol and Isobutanol (via
BCAA pathways) Production

ETHANOL: Gene Over- | Growth Ethanol
Gene Deletions Expression Rate Production
(% max yield)

Afnr ApfIB AtdcE Atpi 0.235 90.5%
AarcA Apta AeutD Atpi AptsH edd 0.192 91.6%
ISOBUTANOL: Gene Over- | Growth Isobutanol
Gene Deletions Expression Rate Production
(% max yield)
AadhE AgdhA 0.223 89.5%
AgntR AadhE Apgi 0.128 93.8%
AadhE Atpi edd+fbp 0.128 94.3%
AadhE ApntA Anuo edd+rfbp 0.110 95.1%

AadhE ApntA AgdhA edd+fbp 0.102 95.5%
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