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Abstract: In the field of process simulation, a movement from modular oriented,
which is currently the most widely used technique, to Equation-Oriented (EO) is
clear. One of the key advantages of the EO approach is that the effort spent in
model development is minimized by reusing the models in several different tasks,
for instance: model linearization, simulation, optimization, and data reconciliation.
EO tools support the implementation of models to a large extent, however there is
almost no assistance in the model development process. In this work the currently
available methods for detecting inconsistencies in systems of equations coming
from both static and dynamic models are briefly reviewed. For the dynamic case
a new algorithm is proposed. This algorithm is scalable for large problems and
is a promising diagnosis tool to spread the usage of EO dynamic simulators.
Finally, applications in test cases are used to illustrate the debugging techniques.
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1. INTRODUCTION

The current process simulators may roughly be
classified into two groups: modular and equation-
oriented (Boston et al., 1993).

In modular tools the models of process units are
precoded in a programming language by a mod-
elling expert and incorporated in a model library.
The end user selects the models from the library
and connects them to form the plant model. The
incorporated chemical engineering knowledge as
well as the model structure are largely fixed and
not accessible (Marquardt, 1996).

In equation-oriented (EO) or equation-based im-
plementations the equipment models are written
in some descriptive or modelling language and
usually are opened for inspection and extension.
These models share with the plant model their

equations and not only their numerical solution.
As a consequence, the implementation of unit
models is independent of any particular appli-
cation or algorithm that may be used for their
solution. Due these reasons, the EO technology
has been demonstrated as effective in application
to a wide range of problems as model linearization,
simulation, parameter estimation, and data recon-
ciliation all using a single set of models (Allan,
1997). Recognition of potential benefits of EO
technology has led to the development of sev-
eral tools (Rico-Ramirez, 1998). Examples of im-
plementations are SpeedUp (Pantelides, 1988b),
gPROMS (Oh and Pantelides, 1996), ASCEND
(Allan, 1997), ABACUS II (Tolsma et al., 1999),
and EMSO (Soares and Secchi, 2003).

On the other hand, EO unit models do not carry
any information about the valid set of specifi-
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cations or initial conditions. The user needs to
have at least a minimal knowledge of the model
internals in order to estimate which variables can
be fixed to close the degrees of freedom. Further,
the user needs to know not only which variables
can or cannot be fixed but if a given set of vari-
ables is valid because some variables cannot be
fixed at the same time. For dynamic models the
situation can be even worst because the same
problems appear for the initial conditions. From
the end user perspective, these aspects makes EO
simulators harder to use. Actually, modelling has
been the bottleneck to the widespread use of EO
tools in the industrial practice and not numerical
algorithms. Another problem is that the unit op-
eration library developer has almost no assistance
in fixing problematic models.

In this work, methods for diagnosing ill-posed
models coming from EO tools are reviewed and
extended. Making an analogy with software de-
velopment, the methods which aid to detect and
remove problems of the models are called debug-
ging. Basically, the objective is to remove some of
the deficiencies of the EO technology by answering
the following questions:
• For an under-constrained model which

variables can be fixed or specified?
• For an over-constrained model which

equations should be removed?
• For dynamic simulations, which vari-

ables can be supplied as initial condi-
tions?

• How to report the inconsistencies mak-
ing it easy to fix?

In other words, debugging methods need to go
beyond degrees of freedom and index analysis.

2. NONLINEAR SYSTEMS

A general system of nonlinear nonlinear algebraic
(NLA) equations can be represented by:

F (y) = 0 (1)

where F is the function vector and y are the
variables. System (1) has m equations in terms of
n variables and appears in the solution of steady-
state simulations of EO simulators. If all equations
are linear, the system (1) can be reduced to:

Ay = b (2)

The solution of (1) can be obtained using a
Newton-like method. Such methods iteratively
solve problems like (2), where A is some approx-
imation of the Jacobian Fy. This means that Fy

needs to be invertible along the solution path.

Most codes for matrix inversion are able to de-
tect numerical singularities before failing. Some
more robust codes can check if the matrix is
structurally singular before actually try to solve
the problem, e.g. Amestoy et al. (2004). However,
these codes cannot be used to diagnose the source
of the problem because they stop the analysis
when the singularity is detected. In the following
sections, currently available methods, based on
graph theory, capable to detect and report the
source of structural singularities for NLA systems
are briefly reviewed.

2.1 Graph Theory Basics

A graph consists in a pair G = (V,E) of sets
satisfying E ⊆ [V ]2. Thus the elements of E are
pairs of the elements of V . The elements of V are
the vertices (or nodes, or points) of the graph G,
and the elements of E are its edges (or lines).

In Fig. 1 a typical graph is drawn. How the nodes
and edges are drawn is considered irrelevant: all
that matters is the information about which pairs
of vertices form an edge and which do not. A good
source for graph theory concepts is the book due
to Diestel (2000).

1 2 3 4

5 6 7 8

Fig. 1. The graph on V = {1 . . . 8} with edge set
E = {{1, 5}, {3, 6}, {3, 7}, {4, 7}}.

2.2 NLA Systems as Graphs

When analyzing a system of equations the equation-
variable relationship is very important. For this
combinatorial problem the concept of bipartite
graphs can be used. A graph G = (V = Ve ∪
Vv, E) is called bipartite if V admits a partition
in two classes such that every edge has its ends in
different classes. In this work, the partition classes
are called Ve (equation nodes) and Vv (variable
nodes).

Using this notation the NLA system of equa-
tions (3) can be drawn as the bipartite graph
shown in Fig. 2 (Bunus, 2002).
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f1(x1) = 0
f2(x1, x2) = 0
f3(x1, x2) = 0
f4(x2, x3, x4) = 0
f5(x4, x5) = 0
f6(x3, x4, x5) = 0
f7(x5, x6, x7) = 0

(3)

f1 f2 f3 f4 f5 f6 f7

x1 x2 x3 x4 x5 x6 x7

Fig. 2. Graph for the NLA system (3).

As can be seen in Fig. 2 the values or form of the
equations in (3) are irrelevant, only the equation-
variable relationship is considered. This is the
essence of the structural analysis.

2.3 Debugging NLA Systems

When checking for problems in NLA systems the
first check should be a degrees of freedom analysis.
But systems with zero degrees of freedom still can
be inconsistent, as in the case of system (3).

The structural singularity of a NLA system can be
easily checked using a maximum matching algo-
rithm (Saip and Lucchesi, 1993). One maximum
matching association for system (3) can be seen
in Fig. 3. In this figure, the edges which are part
of the matching are shown in bold and nodes not
covered by the association are marked.

f1 f2 f3 f4 f5 f6 f7

x1 x2 x3 x4 x5 x6 x7

Fig. 3. Maximum matching for system (3).

If a maximum matching association includes all
variables and all equations (a perfect matching)
then the system is structurally non-singular. Oth-
erwise the system is structurally singular and any
trial to numerically solve the system will fail.

On the other hand, the maximum matching check-
ing cannot be used as a tool for fixing the problem
because the source of the problem is still obscured.
One step further can be achieved using the DM
decomposition (Dulmage and Mendelsohn, 1958).

This method canonically decomposes any maxi-
mum matching of a bipartite graph into three dis-
tinct parts: over-constrained, under-constrained,
and well-constrained. The application of the DM
decomposition to the graph shown in Fig. 3 pro-
duces Fig. 4.

f1 f2 f3 f4 f5 f6 f7

x1 x2 x3 x4 x5 x6 x7

over-constr. under-constr.well-constr.

Fig. 4. DM decomposition for system (3).

From Fig. 4 a debugging tool can conclude that
one of the equations {f1, f2, f3} needs to be re-
moved and one additional equation involving x6

or x7 needs to be added. From the end user per-
spective of an EO tool, one conclusion could be:
x7 should be specified and f1 should be removed
or used to evaluate a wrongly specified variable.

3. DIFFERENTIAL-ALGEBRAIC SYSTEMS

Differential-Algebraic Equation (DAE) systems
arise naturally when dealing with dynamic sim-
ulation in EO tools. A general DAE system can
be represented by:

F (t, y, y′) = 0 (4)

where t is the time and y′ are the derivatives of y
with respect to t.

The index of DAE systems is of great importance
in the numerical classification of a DAE system
(Brenan et al., 1989). Historically the analysis of
this kind of problem was limited to degrees of
freedom and index analysis (see Duff and Gear,
1986; Pantelides, 1988a; Bachmann et al., 1990;
Unger et al., 1995).

Today, the algorithm developed by Pantelides
(1988a) is the most widely used structural tech-
nique for analysis of DAE problems. The main
objective of that work was to determine the num-
ber of initial conditions required for consistent
initialization, in other words, to check the number
of dynamic degrees of freedom. Unfortunately,
the DM decomposition cannot be applied to the
Pantelides’ algorithm resulting graph.

In this work a new algorithm for the analysis of
DAE systems is introduced. This algorithm is very
similar to the algorithm proposed by Pantelides
(1988a) but its resulting graph is suitable for a
DM decomposition.
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3.1 New DAE Analysis Algorithm

DAE systems also can be represented as bipartite
graphs. But in the dynamic case there are two new
concepts: the derivatives of the variables are also
considered and the equations can be differentiated
inserting new elements into the graph. In order
to illustrate these concepts, consider the following
system of equations:

f1(x′
1, x

′
2) = 0

f2(x2) = 0 (5)

where x′
1 and x′

2 are the time derivatives of the
variables x1 and x2.

Fig. 5 shows the graph representation for the
system (5), but with the second equation differ-
entiated with respect to time. As can be seen in
this figure, the variables are classified as algebraic
(in gray) and differential (in black). It should be
noted that, although x1 does not appear in sys-
tem (5), it is considered on the graph. Further, it
is considered that the time derivative of f2 involve
only x′

2 and not x2 (structural differentiation).

f1 f2 f ′
2

x1 x′
1

x2 x′
2

x1 x2

Fig. 5. Graph for system (5) with the second
equation differentiated.

In this work the Algorithm 1 is proposed for the
analysis of DAE systems. This algorithm expects
as input a graph G representing the system of
equations and returns a new graph (with possibly
more equations and variables) and its maximum
matching M .

Algorithm 1 Pseudocode for the new DAE anal-
ysis algorithm for a given graph G(Ve, Vv, E).
input G(Ve, Vv, E) output: G, M

1: M ← ∅
2: for ve ∈ Ve do
3: if not Match(G, M, ve, false) then
4: mark all colored vk ∈ Ve

5: uncolour all ve

6: if not Match(G, M, ve, true) then
7: return false
8: end if
9: diff all marked vk ∈ Ve

10: end if
11: end for
12: return true

Basically, the algorithm will loop for all equations
(line 2) trying to find a match for it (line 3), but

ignoring the algebraic variables. If such match is
not possible it tries to find a match considering
all variables (line 6). If the match including all
variables is not possible then the system is struc-
turally singular.

The Match algorithm (upon which the Algo-
rithm 1 is based) tries to augment the current
match M by including a new matching for the
given equation node ve.

If the last argument of Match is false, then it ig-
nores the algebraic variables, otherwise all vari-
ables are considered (lines 3 and 6 of Algorithm 1,
respectively). If the matching was augmented by
Match it returns true, otherwise it fails returning
false. Unfortunately, there is no room for a formal
presentation of the Match algorithm.

When Match fails, the subset of the equations
Ve reached by alternating paths starting at ve

is colored. When this happens in line 3 of Algo-
rithm 1, all colored equations are marked. Equa-
tions marked at that step are structurally differ-
entiated with respect to time in line 9. When
equations are differentiated, new equations are
added to the system and possibly new variables.

In order to clarify the application of the Algo-
rithm 1, consider again the system of equations (5)
and its graph in Fig. 5. For the first equation f1,
the line 3 will find the match {f1−x′

1}. For f2, the
line 3 will fail (there is no possible match when the
algebraic variables are ignored). As a consequence,
f2 will be marked at line 4. In line 6 (when all
variables are considered), the match {f2 − x2} is
found. Fig. 6 shows the graph and matching at
this point.

f1 f2

x1 x′
1

x2 x′
2

x1 x2

Fig. 6. Graph for system (5) after the first three
steps of the algorithm.

At line 9 the new equation f ′
2 will be added.

Finally the match {f ′
2−x′

2} if found at line 3 and
the algorithm finishes. The final matching can be
seen in Fig. 7

The main advantage of the new algorithm is that
its final association is suitable for a DM decompo-
sition. For instance, the under-constrained parti-
tion will reveal all variables which can be supplied
as initial conditions. Taking the system (5), the
under-constrained partition will include only x1.
Using this information, an EO tool can tell to
the end user that the only option for this model
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f1 f2 f ′
2

x1 x′
1

x2 x′
2

x1 x2

under-constr.

well-constr.

Fig. 7. Graph for system (5) after the analysis.

is to supply an initial value for x1. All other
variables {x′

1, x2, x
′
2} are discarded from the initial

conditions candidates.

It should be noted that the differentiations exe-
cuted by the algorithm are only structural. This
kind of differentiation can be implemented very
efficiently and do not depend on the actual form
of the equations.

The proposed algorithm can be applied without
modifications to analyze high-index DAE systems.
The equations differentiated by the algorithm can
also be used to generate an index-reduced system,
but index reduction is out of the scope of this
paper.

4. REAL APPLICATIONS

In the previous sections very simple examples were
used to illustrate the presented algorithms. In
this section it is presented how the debugging
techniques scale for larger and more complex
problems.

4.1 Computation Time

In order to check how the new algorithm for
DAE analysis performs for large scale problems
a dynamic model for distillation processes was
analyzed. This model has mass and energy bal-
ances for each tray besides thermodynamics and
hydrodynamics equations.

For the case of the separation of isobutane from
a mixture of 13 compounds in a 40-tray column
the number of variables is almost 4,000. The com-
putational time required to analyze the dynamic
model of this system with different numbers of
trays can be seen in Table 1.

Table 1. Time to analyze the dynamic
model of a distillation column varying

the number of trays.

Trays Variables Time (s) Time /N2 (s ·109)

20 2157 0.04 9.46
40 3877 0.14 9.58
80 7317 0.52 9.79

The results shown in Table 1 were obtained in
a Pentium M 1.70 GHz PC with 2 Mb of cache

memory running Ubuntu Linux version 6.06. All
analyzed cases are well-posed models - this test
was not used to test the debugging power of
the algorithm. As can be seen in the table, the
performance is approximately quadratic bounded
as are the majority of the solution methods.

Another good result is that the time required by
the analysis is very acceptable for user interaction.
With the current available hardware, this time
is of the order of one second for systems with
10,000 variables. Moreover, the algorithm can be
applied incrementally adding new equations and
variables as the user interacts with the modelling
environment. This fact can brake-up the analysis
time, making the software more responsive to the
end user.

4.2 Debugging Power

The algorithms presented in the previous sections
can be used to discover problems in systems of
equations. In order to show how unstable these
algorithms can be regarding the system being
analyzed, consider the ammonia synthesis process
as shown in Fig. 8 (Biegler et al., 1997).

Fig. 8. Ammonia synthesis process.

A static model with 134 variables for the process
in Fig. 8 was constructed. If all specifications
are supplied correctly the maximum matching
algorithm finishes with a perfect matching. But
if one specification is missing, for instance the
process feed flow rate, then the under-constrained
partition will involve 96 variables. This means
that the well-constrained partition covers only
about 30% of the variables.

Unfortunately the majority of the models have a
similar behavior: in the case of a singularity the
number of fixing options is quite large. No doubt
this is a weak point of the presented debugging
techniques. In order to reduce this deficiency the
fixing options could be ranked by heuristic rules
that present the more meaningfull options first.
These rules are currently being developed.
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5. CONCLUSIONS

In this work, techniques which aid in the loca-
tion and removal of inconsistencies of the mod-
els coming from Equation-Oriented simulators
were called debugging methods. For static models
(NLA systems) mature methods were found in the
literature and briefly reviewed.

For the dynamic case (DAE systems) a very
less mature situation is found. Historically, the
analysis of such systems was limited to degrees of
freedom and index analysis. A new algorithm for
structural analysis of DAE systems was proposed.
The key advantage of this algorithm is that it can
be used for debugging purposes. This brings the
analysis of DAE systems to the same level as NLA
systems.

All methods presented in this work were imple-
mented in C++ and are freely available from the
author. The major deficiency of the presented
methods is the large number of fixing options
when a singular model is found. In order to reduce
this deficiency, heuristic rules for ranking the fix-
ing options are being studied. Furthermore, these
codes are being incorporated in the EMSO (Soares
and Secchi, 2003) process simulator.
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