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Applications of Process ModelingApplications of Process Modeling

tools

applications
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Equipments or modules 
are sequentially 
evaluated:

Output result of a block 
is the input for the next 
block, with iterative 
calculation for solving 
recycle streams.

Black-box 
ModelingModeling

Code developed for solving specific equipment 
(chemistry and physics of the model are mixed 

with the mathematics)

Sequential Modular SimulatorsSequential Modular Simulators

ex: AspenPlus, Hysys, 
PRO/II, Chemcad, Petrox
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All equipments or modules are 
simultaneously evaluated
(Block decomposition can be 
used to explore sequential 
solution)

Open-source 
ModelingModeling Equipments contain only chemistry 

and physics of the model

Equation-Oriented SimulatorsEquation-Oriented Simulators

ex: EMSO, Ascend, Jacobian, gPROMS, 
AspenDynamics, EcosimPro

5
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CAPE ToolsCAPE Tools

 A movement from Sequential Modular to Equation-Oriented (EO) tools is clear

 Key advantages of EO:

• Models can be inspected, refined, or reused

• Computationally more efficient and easier to diagnose ill-posed problems

• Same model as the source for several tasks: simulation, optimization, 

design, parameter estimation, data reconciliation, etc.  integrated 

environment

 Some disadvantages:

• More difficult to establish good initial guesses

• More demand on computer resources
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Modeling ToolsModeling Tools

The available tools for process modeling may be classified into:

• Block-Oriented

focus on the flowsheet topology using standardized unit models and 
streams to link these unit models

• Equation-Oriented

rely purely on mathematical rather than phenomena-based 
descriptions, making difficult to customize and reuse existing models

• Object-Oriented

Models are recursively decomposed into a hierarchy of sub-models and 
inheritance concepts are used to refine previously defined models into 
new models

(Bogusch and Marquardt, 1997)
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2. Object-Oriented Modeling2. Object-Oriented Modeling
A process flowsheet model can be hierarchically decomposed:

Plant

S
ep

ar
at

io
n 

S
ys

te
m

Pretreat. 
System

Reaction 
System

Separation 
System

C
ol

um
n 

1

C
ol

um
n 

2

C
ol

um
n 

3

Column

Feed Tray

Linked 
Trays

Linked 
Trays

Condenser

Splitter

Pump

Rebolier

Linked Trays

Tray

Tray

Tray

Tray



9

9

Object-Oriented ModelingObject-Oriented Modeling
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Object-Oriented ModelingObject-Oriented Modeling

Abstract models: are models that embody coherent and 
cohesive, but incomplete concepts, and in turn, make these 
characteristics available to their specializations via 
inheritance. While we would never create instances (devices) 
of abstract models, we most certainly would make their 
individual characteristics available to more specialized models 
via inheritance.

Concrete models: are complete models, usually derived from 
abstract models, ready to be instantiated, i.e., we can create 
devices (e.g., equipments) of concrete models. 

Model types
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Object-Oriented ModelingObject-Oriented Modeling

Inheritance: the process whereby one object acquires (gets, 
receives) characteristics from one or more other objects.

Aggregation: the process of creating a new object from two or 
more other objects, or an object that is composed of two or 
more other objects. 

OOM main concepts

Feed Tray

Linked 
Trays

Linked 
Trays

Condenser

Splitter

Pump

Rebolier

Column model = 
Condenser + Splitter + 
Pump + Linked Trays + 
Feed Tray + Reboiler
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Object-Oriented ModelingObject-Oriented Modeling

• ABACUSS II (Barton, 1999)

• ASCEND (Piela, 1989)

• Dymola (Elmqvist, 1978)

• EcosimPro (EA Int. & ESA, 1999)

• EMSO (Soares and Secchi, 2003)

• gPROMS/Speedup (Barton and Pantelides, 1994)

• Modelica (Modelica Association, 1996)

• ModKit (Bogusch et al., 2001)

• MPROSIM (Rao et al., 2004)

• Omola (Andersson, 1994)

• ProMoT (Tränkle et al., 1997)

Examples of general-purpose object-oriented modeling languages:
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Streams
Inlet Material stream feeding the tank

Outlet Material stream leaving the tank

Parameters
k Valve constant

D Hydraulic diameter of the tank

Variables
A Tank cross section area

V Tank volume

h Tank level

Devices: source, tank, sink
Available model of the tank

>>> Model with circular cross section
>>> Model with square cross section

Object-Oriented ModelingObject-Oriented Modeling

A simpler example

Level Tank

source

sink

Hydraulic diameter = 4 A / perimeter

13



14

14

Object-Oriented ModelingObject-Oriented Modeling

Model equations

Fin

Fin

Fin

Fout

Fout

Fout

in out

dV
F F

dt
 mass balance:

outF k hvalve equation:

V A hliquid volume:

Inheritance
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Object-Oriented ModelingObject-Oriented Modeling

using "types";

Model Tank_Basic

PARAMETERS

k as Real (Brief=“Valve constant", Unit=’m^2.5/h’, Default = 12);

D as length (Brief=“Tank hydraulic diameter", Default = 4);

VARIABLES

in   Fin as flow_vol (Brief=“Feed flow rate");

out Fout as flow_vol (Brief =“Output flow rate");

A as area (Brief=“Cross section area");

V as volume (Brief=“Liquid volume");

h as length (Brief=“Tank level");

EQUATIONS

“Mass balance“ Fin - Fout = diff(V);

“Valve equation“ Fout = k * sqrt(h);

“Liquid volume“ V = A * h;

end

EMSO:

Fin

Fout

Abstract model

in out

dV
F F

dt
 mass balance:

outF k hvalve equation:

V A hliquid volume:
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Object-Oriented ModelingObject-Oriented Modeling

Model Tank_Square as Tank_Basic

EQUATIONS

“Cross section area“ A = D^2;

end

EMSO

Concrete models

Model Tank_Circular as Tank_Basic

PARAMETERS

Pi as Real  (Default = 3.1416);

EQUATIONS

“Cross section area" A = (Pi * D^2) / 4;

end

Inheritance

Fin
Fin

Fout
Fout
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Object-Oriented ModelingObject-Oriented Modeling

using "tank_oom";
FlowSheet Tanks
DEVICES

source as Feed;
T_c as Tank_Circular;
T_sq as Tank_Square;
sink as Sink;

CONNECTIONS
source.F to T_c.Fin;
T_c.Fout to T_sq.Fin;
T_sq.Fout to sink.F;

SET
T_c.D = 3 * ’m’;
T_sq.D = 3 * ’m’;

SPECIFY
source.F = 20 * ’m^3/h’;

INITIAL
T_c.h = 1 * ’m’;
T_sq.h = 2 * ’m’;

OPTIONS
TimeStart = 0;
TimeEnd = 20;
TimeStep = 0.5;
TimeUnit = ’h’;

end

Fout

Fin

Fout

source

sink

Flowsheet EMSO:
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Object-Oriented ModelingObject-Oriented Modeling

Model switching

Model Tank_Section as Tank_Basic

PARAMETERS

Pi as Real  (Default = 3.1416);

Section as Switcher (Valid = ["Circular", "Square"], 

Default = "Circular");

EQUATIONS

switch Section

case "Circular":

“Cross section area" A = (Pi * D^2)/4;

case "Square":

“Cross section area" A = D^2;

end

end

using "tank_oom";
FlowSheet Tanks2
DEVICES

source as Feed;
T_c as Tank_Section;
T_sq as Tank_Section;
sink as Sink;

CONNECTIONS
source.F to T_c.Fin;
T_c.Fout to T_sq.Fin;
T_sq.Fout to sink.F;

SET
T_c.D = 3 * ’m’;
T_sq.D = 3 * ’m’;
T_c.Section = ”Circular”; 
T_sq.Section = ”Square”;

SPECIFY
source.F = 20 * ’m^3/h’;

INITIAL
T_c.h = 1 * ’m’;
T_sq.h = 2 * ’m’;

OPTIONS
TimeStart = 0;
TimeEnd = 20;
TimeStep = 0.5;
TimeUnit = ’h’;

end
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Object-Oriented ModelingObject-Oriented Modeling

Aggregation

Level Tank

source

sink

P0

P0

P

Tank model

in out

dV
F F

dt
 mass balance:

V A hliquid volume:

0P P g h outlet pressure:

out

P
F k

g


valve equation:

Valve model

in outP P P  

in outF Fmass balance:

pressure drop:

19
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Object-Oriented ModelingObject-Oriented Modeling

using "types";

Model Tank_Basic

PARAMETERS

D as length (Brief=“Tank hydraulic diameter", Default = 4);

rg as Real (Brief=“rho * g", Unit =’kg/(m*s)^2’, Default = 1e4);

VARIABLES

in   Sin as stream (Brief=“Inlet stream");

out Sout as stream (Brief =“Outlet stream");

A as area (Brief=“Cross section area");

V as volume (Brief=“Liquid volume");

h as length (Brief=“Tank level");

valve as Valve (Brief=“Valve model");

CONNECTIONS

Sout to valve.Sin;

EQUATIONS

“Mass balance“ Sin.F – Sout.F = diff(V);

“Liquid volume“ V = A * h;

“Outlet pressure“ Sout.P = Sin.P + rg * h;

end

Tank model with valve
using "types";

Model Valve

PARAMETERS

k as Real (Brief=“Valve constant",

Unit=’m^2.5/h’, Default = 12);

rg as Real (Brief=“rho * g",

Unit =’kg/(m*s)^2’, Default = 1e4);

VARIABLES

in   Sin as stream (Brief=“Inlet stream");

out Sout as stream (Brief =“Outlet stream");

DP as press_delta (Brief=“Pressure drop");

EQUATIONS

“Mass balance“ Sin.F = Sout.F;

“Valve equation“ Sout.F = k * sqrt(DP/rg);

“Pressure drop“ DP = Sin.P – Sout.P;

end

Valve model
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Object-Oriented ModelingObject-Oriented Modeling

using "tank_valve_oom";
FlowSheet Tanks
DEVICES

source as Feed;
T_c as Tank_Circular;
T_sq as Tank_Square;
sink as Sink;

CONNECTIONS
source.Sout to T_c.Sin;
T_c.valve.Sout to T_sq.Sin;
T_sq.valve.Sout to sink.Sin;

SET
T_c.D = 3 * ’m’;     T_sq.D = 3 * ’m’;

SPECIFY
source.Sout.F = 20 * ’m^3/h’;
source.Sout.P = 1 * ’atm’;
T_c.Sout.P = 1 * ’atm’;
sink.Sin.P = 1 * ’atm’;

INITIAL
T_c.h = 1 * ’m’;     T_sq.h = 2 * ’m’;

OPTIONS
TimeStart = 0;
TimeEnd = 20;
TimeStep = 0.5;
TimeUnit = ’h’;

end

Flowsheet



22

22

Object-Oriented ModelingObject-Oriented Modeling

Creating specialized models by reusing the available library of models 

via inheritance and incorporating necessaries characteristics for the new 

application.

How to apply for Energy and Sustainability?

Categories

HTPI (Human toxicity potential by ingestion)

HTPE (Human toxicity potential by exposure)

ATP (Aquatic toxicity potential)

TTP (Terrestrial toxicity potential)

GWP (Global warming potential)

ODP (Ozone depletion potential)

PCOP (Photo chemical oxidation potential)

ARP (Acid rain potential)

EP (Eutrophication potential)

Ex: Using the environmental impact factors of the different materials
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Object-Oriented ModelingObject-Oriented Modeling

,j k j

k

  
, ,k j k k jF  

j j

j

  

(Heijungs et al., 1992; Eliceche et al., 2007)

Fk flow rate of component k

k,j impact score of component k in category j

j weighting factor for each category j

environment impact of component k in category j

environment impact of category j

total potential environmental impact

% 100 j j
j

 
 


percentage contribution of category j
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Object-Oriented ModelingObject-Oriented Modeling

Model stream

PARAMETERS

outer NComp as Integer (Brief=“Number of chemical components", Lower = 1);

VARIABLES

F as flow_mol (Brief=“Stream Molar Flow Rate");

T as temperature (Brief =“Stream Temperature");

P as pressure (Brief=“Stream Pressure");

h as enth_mol (Brief=“Stream Enthalpy");

v as fraction (Brief=“Vaporization fraction");

z(NComp) as fraction (Brief=“Stream Molar Fraction");

end

Creating a new stream with environment impact characterization

Model simple_sink

VARIABLES

in   Inlet as stream (Brief=“Inlet Stream”);

end

Existing models
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Object-Oriented ModelingObject-Oriented Modeling
Model sink_impact as simple_sink

PARAMETERS

outer PP as Plugin (Brief="External Physical Properties", Type="PP");

outer NComp as Integer (Brief=“Number of chemical components", Lower = 1);

Nfactor as Integer (Brief=“Number of categories", Lower=1, Default=9);

w(Nfactor) as fraction (Brief=“Weighting factor");

VARIABLES

psiX(NComp,Nfactor) as frequency (Brief=“Component environment impact");

psiC(Nfactor) as frequency (Brief=“Category environment impact");

psiCp(Nfactor) as percent (Brief=“Category percentage contribution");

psi as frequency (Brief=“Total environment impact");

Fw(NComp) as flow_mass (Brief=“Component Mass Flow Rate");

EQUATIONS

Fw = Inlet.F * Inlet.z * PP.MolecularWeight();

for i in [1:NComp]

psiX(i,:) = Fw(i) * PP.ImpactFactor(i,Nfactor);

end

psiC = sum(psiX);

psi = sum(psiC * w);

psiCp = 100*w*psiC/psi;

end

New stream 
model
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Object-Oriented ModelingObject-Oriented Modeling
using "streams_impact";
using "stage_separators/flash";
FlowSheet flash_impact
PARAMETERS

PP as Plugin (Brief="Physical Properties", Type="PP",
Components = ["hydrogen", "methane", "benzene", "toluene", "biphenyl", "water"],
LiquidModel = "PR", VapourModel = "PR");

NComp as Integer;
VARIABLES

Q as energy_source (Brief="Heat supplied");
SET

NComp = PP.NumberOfComponents;
DEVICES

fl as flash;
s1 as source;
top as sink_impact;
bot as sink_impact;

CONNECTIONS
s1.Outlet to fl.Inlet;
Q.OutletQ to fl.InletQ;
fl.OutletV to top.Inlet;
fl.OutletL to bot.Inlet;

...

A simple 
example
file ex_impact.mso
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Object-Oriented ModelingObject-Oriented Modeling
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Response of the potential environment impact for a 
+20% step change in the feed flow rate at time = 4h.

Impact category % Contribution 
(top) 

% Contribution 
(bottom) 

Human toxicity by ingestion 7.58 6.57 
Human toxicity by exposure 0.58 5.23 
Aquatic toxicity  7.58 6.57 
Terrestrial toxicity  2.71 7.91 
Global warming  0.34 0.110-3 
Ozone depletion  0.00 0.00 
Photo chemical oxidation  81.21 73.72 
Acid rain  0.00 0.00 
Eutrophication  0.00 0.00 

Category contribution for the potential 
environment impact at the final time
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Object-Oriented ModelingObject-Oriented Modeling
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Disturbances:

Pressure set-point at time = 2h

5 atm 8 atm

Temperature and feed flow rate at time = 4h

340 K  360 K

500 kmol/h 450 kmol/h
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3. Modeling Workshop3. Modeling Workshop

 EMSOEMSO stands for “Environment for MModeling, SSimulation, and OOptimization”

 Development started in 2001 (by Rafael P. Soares), written in C++ language

 Available in Windows and Linux

 Models are written in an object-oriented modeling language

 Equation-oriented simulator and optimizer

 Computationally efficient for dynamic and steady-state simulations

 Continuous improvements through ALSOC project:

http://www.enq.ufrgs.br/alsoc

Introducing EMSO
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EMSO Key FeaturesEMSO Key Features

 Open source library of models

 Object-oriented modeling

 Built-in automatic and symbolic differentiation

 Automatic checking and conversion of units of measurement

 Solve high-index problem

 Perform consistency analysis (DoF, DDoF, initial condition)

 Integrated Graphical User Interface (GUI)

 Building blocks to create flowsheets

 Discrete (state and time) event handling

 Multitask for concurrent and real-time simulations

 Modular architecture and support to sparse algebra

 Multiplatform: win32 and posix

 Interface with user code written in C/C++ or Fortran

 Automatic documentation of models using hypertexts and LaTeX
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 Steady-state simulations

 Dynamic simulations

 Steady-state optimizations  (NLP, MINLP)

 Steady-state parameter estimations

 Dynamic parameter estimations

 Steady-state data reconciliations

 Process follow-up and inferences with OPC communication

 Build bifurcation diagrams (interface with AUTO for DAEs)

 Dynamic simulations with SIMULINK (interface with MATLAB)

 Add new solvers (DAE, NLA, NLP)

 Add external routines using the Plugins resource

What can I do with EMSO?What can I do with EMSO?
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Thermodynamic and
Physical Properties – Plugin

Thermodynamic and
Physical Properties – Plugin

Data bank with about 
2000 pure compounds

Mixture properties 
calculation
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How can I install EMSO?How can I install EMSO?

 Download EMSO and 

VRTherm packages from 

http://www.enq.ufrgs.br/alsoc

 Run the setup programs

 Run EMSO

 Add the physical properties 

package using the Config

Plugins option in the menu

 Select an example and run it
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To use a plugplug--in thein the user needs
to register it through the menu

ConfigConfig PluginsPlugins

WindowsWindows plugplug--in is ain is a DLL file, 
and LinuxLinux plug-in is a SO file

Configuring Plugin
– VRTherm package: vrpp –

Configuring Plugin
– VRTherm package: vrpp –
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Integrated GUI
– Running an example –

Integrated GUI
– Running an example –
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Modeling workshopModeling workshop

Model equations

in out

dV
F F

dt
 mass balance:

outF k hvalve equation:

Fin

Fout

h

A =  h (D  h)

2

2 3

D h
V h    

 

liquid volume:

V A h

Fin

Fin

Fin

Fout

Fout

Fout
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Flowsheet

Modeling workshopModeling workshop

Fi
n

Fout

source

Fout

Fout

h

Fo
ut

sink

= 20 m3/h

D = 3 m

h(0) = 1 m

D = 3 m

h(0) = 2 m

D = 3 m

h(0) = 2.5 m
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Basic Elements in Modeling

1. Process description and problem definition

2. Fundamental laws: theory and application

3. Simplifying assumptions

4. Mathematical model

5. Consistency analysis

6. Desired solution

7. Computation

8. Solution and validation

Model definition

Model building

Model validation

Remarks about ModelingRemarks about Modeling
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1. Process Description and Problem Definition1. Process Description and Problem Definition

• Process Description
– Process objectives
– Process flowsheet
– Process operation

• unit operations and control

• Problem Definition
– Simulation objectives
– Simulation applications
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Process DescriptionProcess Description

Example: level tank

 

h

Fout 

Fin 

V

A liquid flows in and out of a tank due to gravitational forces.

We wish to analyze the volume, height and flowrate variations in 

the tank (system response) as function of feed disturbances.
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2. Fundamental Laws: Theory and Applications2. Fundamental Laws: Theory and Applications





t

v  ( . )

advection pressure forces viscous forces gravitational forces

( )
[ . ] [ . ]

v
v v P g

t

 
        



 2 2

advection conduction gravit. forces work pressure forces work viscous forces work

1 1ˆ ˆ. ( . ) . ( . ) ( .[ . ])
2 2

U v v U v q g v P v v
t

                                 

- mass conservation

- momentum conservation

- energy conservation

• Bases to be used in the modeling
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3. Simplifying Assumptions3. Simplifying Assumptions

- constant specific mass

- isothermal

- perfect mixture

- outF k h

• Establish the assumptions and simplifications

• Define the model limitations
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4. Mathematical Model4. Mathematical Model

• Data mining for simulation
– Collect data and information of the studied system
– Identify the engineering unit of measurements
– Specify operating procedures
– Specify the operating regions of the variables

• Memory of Calculation
– Mathematical model
– Define unit of measurements of variables and parameters
– Define and specify free variables
– Define and determine values of parameters
– Define and establish initial conditions
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4. Mathematical Model4. Mathematical Model

First Principles

Models

Conservation laws

X
V

F
μ

dt

dX






 

F
dt

dV


)T(T
ρVC

UA
T)(T

V

F

dt

dT
c

p
e 

Empirical Models

Neural Nets

Fuzzy Logic

Parametric

e(t)
D(q)

C(q)
u(t)

F(q)

B(q)
y(t)A(q) 

Hybrid Models
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• Build process equipment models
– Identify and create abstract and concrete models
– Declare variables and parameters
– Write model equations
– Compose the equipment model via inheritance and aggregation

• Build process flowsheet
– Declare flowsheet devices
– Define process connections
– Set process parameters values
– Specify process free variables
– Establish initial conditions
– Establish simulation options

Mathematical ModelMathematical Model

In the simulator
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Fin

Fin

Fin

Fout

Fout

Fout

in out

dV
F F

dt
 mass balance:

outF k hvalve equation:

V A hliquid volume:

Mathematical ModelMathematical Model

(1)

(2)

(3)

(4)
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5. Consistency Analysis5. Consistency Analysis

• Model consistency analysis for unit of measurements (UOM)

• Degree of freedom analysis

• Dynamic degree of freedom analysis

variable UOM

Fin, Fout m3 h-1

V m3

A m2

h, D m

k m2.5 h-1

t h

equations

(1): [m3 h-1] – [m3 h-1] = [m3] / [h]

(2): [m3 h-1] = [m2.5 h-1] ([h])0.5

(3): [m3] = [m2] [m]

(4): [m2] = ([m])2
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variables: Fin, Fout, V, A, h, D, k, t  8

constants: k, D  2

specifications: t  1

driving forces: Fin  1

unknown variables: V, h, A, Fout  4

equations: 4

Degree of Freedom = variables – constants – specification – driving forces –

equations = unknown variables – equations = 8 – 2 – 1 – 1 – 4 = 0

Dynamic Degree of freedom (index < 2) = differential equations = 1

Needs 1 initial condition: h(0)  1

Consistency AnalysisConsistency Analysis
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For the given example and initial condition (h0 or V0), we 
wish to analyze h(Fin), V(Fin) and Fout(Fin).

6. Desired Solution6. Desired Solution

• Plan case studies
• Define:

– Objectives of the study
– Problems to be solved
– Evaluation criteria
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7. Computation7. Computation

• Define the desired accuracy

• Specify the simulation time and reporting interval

• Verify the necessity of specialized solvers (high-index problems)
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• Analyze simulation results

• Analyze state variables dynamics

• Test model fitting with plant data

– Compare simulation x plant

hexp

hcalc

8. Solution and Validation8. Solution and Validation



5353

53

• Check output sensitivity to input disturbances

• Carry out parametric sensitivity analysis

• Analyze output data with statistical techniques

• Verify results coherence

• Document obtained results

Solution and ValidationSolution and Validation
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• Start with a simple model and gradually increase complexity when 
necessary;

• The model should have sufficient details to capture the essence of 
the studied system;

• It is not necessary to reproduce each element of the system;

• Models with excessive details are expensive, difficult to implement 
and to solve;

• Interact with people that operate the equipment;

• Deeply understand the process behavior.

CommentsComments
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 In Equation-Oriented (EO) simulators a model has:

• A set of model parameters (reaction order, valve constant, etc.)

• A set of variables (temperatures, pressures, flow rates, etc.)

• A set of equations (algebraic and differential) relating the variables

 Problems in model building:

• Number of equations and variables do not match

• Equations of the model are inconsistent (linear dependence, etc.)

• The number of initial conditions and DDoF do not match

4. Dynamic Degree of Freedom4. Dynamic Degree of Freedom
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Check      Units of measurement

 Structural non-singularity

 Consistent initial conditions

Degree of Freedom (DoF)

= 0 (for simulation) > 0 (for optimization)

Dynamic Degree of Freedom (DDoF)

= number of given initial conditions

Dynamic Degree of Freedom
– Consistency Analysis –

Dynamic Degree of Freedom
– Consistency Analysis –
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Dynamic Degree of Freedom
– General Concept –

Dynamic Degree of Freedom
– General Concept –

Given a system of DAE:   F(t, y, y’) = 0

The Dynamic Degree of Freedom (DDoF) is the number of variables in 

y(t0) that can be assigned arbitrarily to compute a set of consistent initial 

conditions {y(t0), y’(t0)} of the DAE system. Is the true number of states of 

the system (or the system order of the DAE). Is the number of initial 

conditions that must be given.

For low-index DAE system (index 0 and 1) the DDoF is equal to the 

number of differential equations.

For high-index DAE system (index > 1) the DDoF is equal to the number 

of differential variables minus the number of hidden constraints.
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1 2 0x x  

1 ( )x u t
Example: differentiating

twice in t 2 ( )x u t 
1 2x x 

 = 2

Differential index (): Is the minimum number of times the DAE system 

F(t,x,x’,u) = 0 needs to be differentiated with respect to t to be transformed in an 

explicit ODE system in terms of x’.

If the resolution of a DAE system presents difficulties for initializing and/or  

presents error propagation in the numerical integration, then this system has an 

index problem, this problem may occur in DAE systems with  > 1.

Dynamic Degree of Freedom
– DAE System Characterization –
Dynamic Degree of Freedom
– DAE System Characterization –
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Substituting the first differentiation: 1 ( )x u t 

2 ( )x u tin the first equation, results in:

In the initial time: 1(0) (0)x u

2 (0) (0)x u

1(0) (0)x u 

2 (0) (0)x u 

Therefore, there is no dynamic degree of freedom, i.e., the system did not 
accept any arbitrary initial conditions.

Dynamic Degree of Freedom
– Consistent Initial Conditions –
Dynamic Degree of Freedom
– Consistent Initial Conditions –
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Consistent initial conditions: The vectors x(t0) and x’(t0) form a consistent 
initial condition of the DAE system F(t,x,x’,u) = 0 at t0 if they satisfy the 
extended system at t0.

The most difficult step for solving DAE systems is the determination of 
consistent initial conditions. 

During the differentiation process to reduce the index of a DAE system to 
zero, hidden constraints may arise. The original system augmented by the set 
of the hidden equations is called extended system.

1 2 0x x  

1 ( )x u t 2 ( )x u t 
2 ( )x u tExtended system of 

the example:

Dynamic Degree of Freedom
– Consistent Initial Conditions –
Dynamic Degree of Freedom
– Consistent Initial Conditions –
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Example: classical pendulum problem
Inconsistent initial condition:

L

( , , ) 0F t y y  (0, (0), (0)) 0F y y 

(1)

(2)

(3)

(4)

(5)

Differentiating (5) and using (1) and (2): 0x w y z    (0) (0) (0) (0) 0x w y z   

Differentiating (6) and using (1)–(5): 

(6)

(7)

Differentiating (7) and using (2), (3), (4), (6): 

2 2 2w z T L g y     2 2 2(0) (0) (0) (0)w z T L g y    

2' 3 /T g z L   (8) 2'(0) 3 (0) /T g z L  

OK!

N
O

T O
K

!

Hidden constraints:

Dynamic Degree of Freedom
– High-Index DAE System –

Dynamic Degree of Freedom
– High-Index DAE System –
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Example: classical pendulum problem
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

10 variables (y, y´)

8 equations

2 DDoF

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

(4)

(6)

(1)

(2)

(3)

(4)

(7)

(1)

(2)

(3)

(4)

(8)

Index 3 Index 2

Index 1 Index 0

Satisfies the inconsistent I.C.

But
 n

ot
 a

ny
 p

ai
r!

Dynamic Degree of Freedom
– High-Index DAE System –

Dynamic Degree of Freedom
– High-Index DAE System –
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Three general approaches:

1) Manually modify the model to obtain a lower index equivalent model

2) Integration by specifically designed high-index solvers (e.g., PSIDE, MEBDF, DASSLC)

EMSO: Integration = “original”

3) Apply automatic index reduction algorithms

EMSO: Integration = “index0”

or  EMSO: Integration = “index1”

Dynamic Degree of Freedom
– High-Index DAE: solution –

Dynamic Degree of Freedom
– High-Index DAE: solution –
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Dynamic Degree of Freedom
– High-Index DAE: modeling –

Dynamic Degree of Freedom
– High-Index DAE: modeling –
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Dynamic Degree of Freedom
– High-Index DAE: consistency analysis –

Dynamic Degree of Freedom
– High-Index DAE: consistency analysis –
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x

index-0 solver   vs index-3 solver Drift-off effect

L = 0.9 m , g = 9.8 m/s2  I.C.: x(0) = 0.9 m  and  w(0) = 0

Dynamic Degree of Freedom
– High-Index DAE: simulation –

Dynamic Degree of Freedom
– High-Index DAE: simulation –

Error propagation
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Batch distillation column with optimal composition control 
(index 3) (Logsdson and Biegler, 1993)

1

1
3
5
7
9

10

R

Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –

Batch Distillation
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• negligible vapor holdup (no dynamics in vapor phase);

• thermodynamic equilibrium (ideal stage);

• no droplet drag in vapor stream;

• ideal gas and liquid;

• constant liquid holdup in each tray;

• perfect mixture in both phases;

• constant pressure;

• optimal control of distillate composition;

• vapor pressure described by Antoine equation.

Model assumptions 

Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –
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Mass balance in the reboiler
Overall:

Component:

(2)

(1)

(3)

0

1

dH V

dt R
 



 0
0 0 1 0

0

           1,..., 1
1

j
j j j jdx V R

x y x x j nc
dt H R

        

Mass balance in each tray 
component:

 1 1

1,...,
            

1,..., 11

j
j j j ji

i i i i
i

i npdx V R
y y x x

j ncdt H R 

        

Batch distillation modeling

Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –
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Mass balance in the condenser 
Component:

(5)

(4)

(7)

Molar fractions

 1
1

1

           1,..., 1
j

np j j
np np

np

dx V
y x j nc

dt H





   

1

1                                            0,..., 1
nc

j
i

j

y i np


  

1

1                                            0,..., 1
nc

j
i

j

x i np


   (6)

0,..., 1
exp        

1,...,
jj j

i ref j i
i j

B i np
y P P A x

j ncT C

   
     

Thermodynamic equilibrium

Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –

Batch distillation modeling
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variable units of measurement

Hi kmol

V kmol/s

t s

R –

xi
j, yi

j kmol/kmol

P, Pref kPa

Ti K

Aj –

Bj K

Cj K

Consistency analysis 

Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –
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variables: Hi, V, t, R, xi
j, yi

j, P, Pref, Ti, Aj, Bj, Cj  5 + 2 (np+2)(nc+1) + 3 nc
constants: Pref, Aj, Bj, Cj  3 nc + 1
specifications: t,V, P, Hi, x1

np+1  5 + np (i = 1,...,np+1)
driving forces: 0
unknown variables: H0, R, xi

j, yi
j, Ti 3 + 2 (np+2) nc + np

equations: 3 + 2 (np+2) nc + np

Degree of Freedom = variables – constants – specifications – driving forces –
equations = unknown variables – equations = 0

Dynamic Degree of Freedom (index = 3) = np (nc – 1) + 2 (nc – 2)

Needs np (nc – 1) + 2 (nc – 2) initial conditions.

Para nc = 2: H0(0), R(0), x0
1(0), Ti(0)     (i = 2,...,np–2)

Consistency analysis 

Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –
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Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –

EMSO 
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Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –

EMSO 
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time

Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –

EMSO 

75
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• Reports system singularity:

Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –

AspenDynamics
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• Detects a high-index problem and gives the 
following error message:

Dynamic Degree of Freedom
– Workshop –

Dynamic Degree of Freedom
– Workshop –

gPROMS
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- Multiplicity of steady states

- Linearization

- System stability

- Complex dynamic behaviors (limit cycles, strange attractors)

- Parametric sensitivity and input sensitivity

5. System Analysis5. System Analysis
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Non-isothermal CSTR

Fe , CAf , CBf , Tf

Fwe , Twe

Fws , Tw

Fs , CA , CB , T

V , T

A k
B

Multiplicity of Steady StatesMultiplicity of Steady States
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In a non-isothermal continuous stirred tank reactor, with diameter of 3.2 m 

and level control, pure reactant is fed at 300 K and 3.5 m3/h with concentration 

of 300 kmol/m3. A first order reaction occur in the reactor, with frequency factor 

of 89 s-1 and activation energy of  6 x 104 kJ/kmol, releasing 7000 kJ/kmol of 

reaction heat. The reactor has a jacket to control the reactor temperature, with 

constant overall heat transfer coefficient of 300 kJ/(h.m2.K). Assume constant 

density of 1000 kg/m3 and constant specific heat of 4 kJ/(kg.K) in the reaction 

medium. The fully-open output linear valve has a constant of 2.7 m2.5/h.

Process description

Multiplicity of Steady StatesMultiplicity of Steady States



81

81

• perfect mixture in the reactor and jacket;

• negligible shaft work;

• (-rA) = k CA;

• constant density;

• constant overall heat transfer coefficient;

• constant specific heat;

• incompressible fluids;

• negligible heat loss to surroundings;

• (internal energy)  (enthalpy);

• negligible variation of potential and kinetic energies;

• constant volume in the jacket;

• thin metallic wall with negligible heat capacity. 

Model assumptions

Multiplicity of Steady StatesMultiplicity of Steady States
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dt

dV
FF

dt

Vd
sef 

 )(

se FF
dt

dV


 
)( AAsfAeA

AA rVCFCF
dt

dV
C

dt

dC
V

dt

VCd


Mass balance in the reactor
Overall:

Component:

(2)VrCCF
dt

dC
V AAfAe

A )()( 

(1)

eF

V
 (3)

CSTR modeling

Multiplicity of Steady StatesMultiplicity of Steady States
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(4)

 
2 2

ˆˆ ˆ ˆ ˆ ˆ ˆ
2 2
f s

e f f f f s s r s

v vd
V U K F U P V gz F U PV gz q q w

dt

                             

ˆ ˆ ˆH U PV 

ˆ ˆ( ) ˆ ˆ ˆ
e f s r

d VH dH dV
V H F H F H q q

dt dt dt
         

Energy balance in the reactor:

where 

ˆ
ˆ ˆ( )e f r

dH
V F H H q q

dt
    

qqTTCpF
dt

dT
VCp rfe  )(

CSTR modeling

Multiplicity of Steady StatesMultiplicity of Steady States
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(5)where

qr = (-Hr) V (-rA)

k = k0 exp(–E/RT)

(-rA) = k CA

V = A h

Fs = x Cv  h 

Tw = f(T) 

(7)

(6)

(8)

(10)

(12)

Temperature control (14)

At = A +  D h (11)

q = U At (T – Tw)

A =  D2/4 (9)

x = f(h) Level control (13)

CSTR modeling

Multiplicity of Steady StatesMultiplicity of Steady States
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variable units of measurement

Fe, Fs m3 s-1

V m3

t,  s

CA, CAf kmol m-3

rA kmol m-3 s-1

 kg m-3

Cp kJ kg-1 K-1

T, Tf, Tw K

qr, q kJ s-1

U kJ m-2 K-1 s-1

At, A m2

h, D m

Cv m2.5 h-1

x –

Hr, E kJ kmol-1

R kJ kmol-1 K-1

k, k0 s-1

Consistency analysis 

Multiplicity of Steady StatesMultiplicity of Steady States
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variables: Fe, Fs, V, t, CA, CAf, rA, , Cp, T, Tf, Tw, qr, q, U, At, A, h, D, Cv, x, Hr, E, R, k, k0,  27
constants: , Cp, U, D, Cv, Hr, E, R, k0  9
specifications: t  1
driving forces: Fe, Tf, CAf  3
unknown variables: Fs, V, CA, rA, T, Tw, qr, q, A, At, h, x, k,   14
equations: 14

Degree of Freedom = variables – constants – specifications – driving forces –
equations = unknown variables – equations = 27 – 9 – 1 – 3 – 14 = 0

Dynamic Degree of Freedom (index < 2) = differential equations = 3 

Needs 3 initial condition: h(0), CA(0), T(0)  3

Consistency analysis 

Multiplicity of Steady StatesMultiplicity of Steady States



87

87

Running EMSO

Open MSO file

Multiplicity of Steady StatesMultiplicity of Steady States
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Consistency Analysis

Results
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The CSTR example at the steady state satisfy:

0

0

( )1
( ) ( )

1

E

RT
r Aft

f w E
P RT

P

H k e CU A
T T T T

V C
C k e






   

   
    

 

e

V

F
 

01

Af
A E

RT

C
C

k e



 
   

 

Multiplicity of Steady StatesMultiplicity of Steady States
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Rewriting the energy balance:

( ) ( )R GQ T Q T
0

0

( )
( )

1

E

RT
r Af

G E

RT
P

H k e C
Q T

C k e








 
    

 

Q T a T bR ( )  

a
U A

V C
t

P

 
1

 

f t w

P

T U A T
b

V C
 

 

T

Q

QG

QR3QR2QR1

1 2

3

4

5

 






GR dQdQ

dT dT


stable:

GR dQdQ

dT dT


unstable:

Multiplicity of Steady StatesMultiplicity of Steady States
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( , )
dx

F t x
dt

 ( ) 0F x 

1( 1) ( ) ( ) ( )( ) ( ) , 0,1, 2,k k m kx x J x F x k
      Newton-Raphson:

( )
( ) ( )

( )
k

k i
ij

j

F x
J x

x






and 0 1m k   

Path FollowingPath Following

Homotopic Continuation: ( ; ) (1 ) ( ) ( ) 0 , 0 1H x p p F x p G x p     

(0) (0)( ) ( ) ( )G x J x x x 
(0)( ) ( ) ( )G x F x F x 

affine homotopy

Newton homotopy

Multiples solutions can be obtained by continuously varying the 
parameter p

Multiplicity of Steady StatesMultiplicity of Steady States
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Parametric Continuation: [ ( ); ( )] 0F x s p s 
where s is some parameterization, e.g., path arc length 

( ) ( ) 0 , e
F F dx dp

x s p s x p
x p ds ds

 
   

 
   

F F
DF

x p

  
    

Frechet derivative

a point (xo, po) is: 

( , )o oF x p

x




- Regular if                         is non-singular 

( , )o oF x p

x




- Turning point if                       is singular and DF has rank = n

( , )o oF x p

x




- Bifurcation if                           is singular and DF has rank < n

reparameterization

Path FollowingPath Following
Multiplicity of Steady StatesMultiplicity of Steady States
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Solutions: 1) CA =   13,13 kmol/m3 and T = 659,46 K
2) CA = 132,87 kmol/m3 and T = 523,01 K
3) CA = 299,86 kmol/m3 and T = 332,72 K

Example: a) execute flowsheet in file 
CSTR_noniso.mso with initial condition of 
578 K and compare with result changing the 
initial condition to 579 K; b) find the three 
steady states using file CSTR_sea.mso by 
changing the initial guess for T and CA (use 
the section GUESS).

Multiplicity of Steady StatesMultiplicity of Steady States
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LinearizationLinearization

Generate linearized model at given operating point.

Implicit DAE:

Considering the specification as input, u(t), (SPECIFY section 
in EMSO):

And identifying the algebraic variables as y(t):

( ,́ , , , ) 0F x x y u t 

( ,́ , ) 0F x x t  

ˆ ˆ( ,́ , , ) 0F x x u t 
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Differentiating F:

and extracting:

The partition:

Define the linearized system:

Linearization

´ 0x x y uF dx F dx F dy F du    

 1

x y x u

dx dx
F F F F

dy du





   
      

   

 1

x y x u

A B
F F F F

C D




 

     
 

'x A x B u

y C x Du

 
 

(index < 2)
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Test example for a linear model: exact solution!

Linearization
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Verifying the results for the linear model:

Linearization
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Example: execute the flowsheet in file 
CSTR_linearize.mso with the option 
Linearize = true and evaluate the 
characteristic values of the Jacobian
matrix (matrix A). Repeat the example with 
the value of Cp 10 times smaller, i.e., 0.4 
kJ / (kg K). Compare the ratio between the 
greater and the smaller characteristic 
values in module.

Non-isothermal CSTR: linearizationNon-isothermal CSTR: linearization
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Stability AnalysisStability Analysis

)(tx

( )
dx

F x
dt

 0 0( ) ( )x t y t   ( ) ( )x t y t  

Liapunov Stability: is stable (or Liapunov stable) if, given  > 0, there 
exists a  = () > 0, such that, for any other solution, y(t), of

satisfying , then for t > t0.
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Stability AnalysisStability Analysis

)(tx

0 0( ) ( )x t y t b 
Asymptotic Stability: is asymptotic stable if Liapunov stable and there 
exists a constant b > 0 such that, if then 0)()(lim 


tytx

t

( ) ( ) ( )y t x t x t Defining deviation variables:

 2[ ( )]
( ) ( ( ))

dx F x t
F x F x t y O y

dt x


    



( ( ) )
dx dx dy

F x t y
dt dt dt

   

Expanding in Taylor series:

Linearization: [ ( )] ( )
dy

J x t y A t y
dt

   
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( )x tFor an equilibrium point        = x*, the stability is characterized by the 
characteristics values of the Jacobian matrix J(x*) = A:

 x* is a hyperbolic point if none characteristics values of J(x*) has zero real 
part.

 x* is a center if the characteristics values are pure imaginary. Fixed point 
non-hyperbolic.

 x* is a saddle point, unstable, if some characteristics values have real part 
> 0 and the remaining have real part < 0.

 x* is stable or attractor or sink point if all characteristics values have real 
part < 0.

 x* is unstable or repulsive or source point if at least one characteristic 
value have real part > 0.

Stability AnalysisStability Analysis
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For a second-order linear system:
2det( ) ( ) det( ) 0A I tr A A      

2( ) ( ) 4det( )

2

tr A tr A A 
 

Stability AnalysisStability Analysis
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0 0( ) , (0)
E

RTeA
A A A A Af

FdC
C C k e C C C

dt V



   

0
0

( ) ( )
( ) , (0)

E

R T
e r A t w

f
p p

F H k e C UA T TdT
T T T T

dt V C V C



 
    

 

Considering the CSTR example with constant volume:

0 02

0 0
2

( , )
( ) ( )

E E

R T RTe
A

E EA
R T R T

r e r A t

p p p

F E
k e k e C

V R T
J C T

H k e F H k e C UAE

C V R T C V C

 

 

 
   

 
  
  

   
    

Stability AnalysisStability Analysis
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3 4

3 4

1.6458 10 3.4282 10
(13.13, 659.46)

2.7542 10 4.8934 10
J

 

 

    
    

4 4

4 4

1.6260 10 3.1753 10
(132.87, 523.01)

1.5852 10 4.4509 10
J

 

 

    
    

5 7

8 4

7.2050 10 6.6220 10
(299.86, 332.72)

5.9285 10 1.0944 10
J

 

 

    
     

5

4

7.2051 10

1.0944 10





  
    



5

4

6.3659 10

3.4614 10





  
   



3

4

1.0205 10

1.3604 10





  
    



2) Saddle Point, unstable

1) Stable node

3) Stable Node

Stability AnalysisStability Analysis
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file: CSTR_nla/traj_cstr.m

Stability AnalysisStability Analysis



107107

107

Complex Dynamic BehaviorComplex Dynamic Behavior

Tw

Tw

C
A

T
Hopf point

Tw = 200,37 K

unstable solutions

stable solutions

CSTR example:



108108

108

t (h)

t (h)

unstable limit cycle

A limit cycle is stable if all characteristics 
values of exp(J p) (Floquet multipliers) 
are inside the unitary cycle, where J is 
the Jacobian matrix in the cycle, p = 2  / 
 is the oscillation period and  = |Hopf|.

file: CSTR_auto/cstr_bif.mso

Complex Dynamic BehaviorComplex Dynamic Behavior
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Interface EMSO-AUTOInterface EMSO-AUTO

parameters

Equation system

Jacobian matrix

First steady-state solution
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Interface EMSO-AUTOInterface EMSO-AUTO

      21 ( )
1 11 x tdx t

x t p x t e
dt

      

       22
2 13 14 1 x tdx t

x t p x t e
dt

      

2 2

2 2

1

1

1 (1 )
( )

14 3 14 (1 )

x x

x x

p e p x e
J x

p e p x e

      
         

p = 0:      x* = (0, 0)      (J) = (-1,  -3)
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Interface EMSO-AUTOInterface EMSO-AUTO

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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7

8

9

10

x1

x 2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

0.134 0.136 0.138 0.14 0.142 0.144 0.146 0.148

0.63

0.64

0.65

0.66

0.67

0.68

0.69

x1

x 2

Complex eigenvalues with 
negative real part - stable 
focus
p = 0.085
 = -1.095  0.565 i

0.06361 < p < 0.0889

Repeated real negatives 
eigenvalues – stable node 
(star)
 = [-1.4372, -1.4372]

p = 0.06361

Real negatives eigenvalues –
stable node
p = 0.05   = [-1.13, -2.06]

p < 0.06361

Phase planeEigenvaluesParameter p
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Interface EMSO-AUTOInterface EMSO-AUTO

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10

x
1

x 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

x
1

x 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

x1

x 2

One stable solution (focus) 
and two unstable (saddle and 
focus)
p = 0.10
 = -0.652  0.651 i
 = [-0.439, 1.953]
 = 1.431  1.851 i

0.0933 < p < 0.10574
at p = 0.105738931 the first 
point goes from stable focus 
to stable node:
 = [-0.055, -0.046]

One stable solution (focus) 
and two unstable (saddle and 
node)
p = 0.09
 = -0.982  0.614 i
 = [-0.213, 3.332]
 = [0.364, 3.151]

0.0889 < p < 0.0933

Turning point (fold): One 
stable solution (focus) and 
other unstable (node). (point 
3 in figure below)
 = -1.009  0.605 i
 = [0, 3.432]

p = 0,0889
unstable node gives rise to 
two points: unstable node and 
saddle point p > 0.0889



113113

113

Interface EMSO-AUTOInterface EMSO-AUTO
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x 2
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0
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0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
3

3.5

4

4.5

5

5.5

6

x

2

Hopf bifurcation: pure 
imaginary eigenvalues. (point 
4 in figure below)
 =  4.008 i

p = 0.1309

One unstable solution (focus) 
and one stable limit cycle
p = 0.12
 = 0.528  3.487 i

0.10574 < p < 0.1309

Turning point (fold): One 
stable solution (node), other 
unstable (focus), and one 
sable limit cycle. (point 2 in 
figure below)
 = [-0.097, 0]
 = 1.186  2.478 i

p = 0.10574
the stable node gives rise to 
two points: stable node and 
saddle for
p < 0.10574
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Interface EMSO-AUTOInterface EMSO-AUTO

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
3

3.5

4

4.5

5

5.5

6

x1

x 2

Complex eigenvalues with 
negative real part - stable 
focus
p = 0.15
 = -0.952  4.627 i

p > 0.1309

p

x 2
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Interface EMSO-AUTOInterface EMSO-AUTO
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Re()

Im
( 

)

Hopf

Hopf

1st turning point

2nd turning point

Trajectories:
stable point
saddle point
unstable point
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Interface EMSO-AUTOInterface EMSO-AUTO

Example: copy files auto_emso.exe and r-
emso.bat (Windows) or @r-emso (linux) in  
“bin” folder of EMSO to the folder 
CSTR_auto and execute the command 
below in a prompt of commands (shell):

Windows: r-emso cstr_bif

Linux: ./@r-emso cstr_bif

The results are stored in file fort.7. In Linux 
the graphic tool PLAUT can be used to plot 
the results using the command @p.
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Sensitivity AnalysisSensitivity Analysis

Objective: determine the effect of variation of parameters (p) or input variables (u) on 
the output variables.

Steady-state simulation: 
);,(

0);,(

puxHy

puxF




Sensitivity analysis 

local:

global: bifurcation diagram, surface response

,

i
y

j x p

y
W

p





,

i
x

j x p

x
W

p





(case study)

1

x

F F
W

x p

       y x

H H
W W

x p

 
 
 

,

j i
y

i j x p

p y
W

y p





Normalized form: 
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Sensitivity AnalysisSensitivity Analysis

Dynamic simulation: 0 0( , , , ; ) 0 , ( ; ) ( )

( , ; )

F t x x u p x t p x p

y H x u p

 




0
0( ) ( ) 0 , ( )x x x

xF F F
W t W t W t

x x p p

  
   

   




p

H
tW

x

H
W xy 







 )(

where ( ) x
x

dW
W t

dt
( )x

x
W t

p




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Sensitivity AnalysisSensitivity Analysis
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Sensitivity AnalysisSensitivity Analysis
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• Integrate a model written in EMSO
– Receiving input data from Matlab

– Sending output data to Matlab (discrete mode)

– Sending time derivatives to Matlab (continuous mode)

Interface EMSO-MATLABInterface EMSO-MATLAB

(Similar procedure exists with SCILAB)
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Integration Procedure
• Build a process model in EMSO
• Define input variables to be read from Matlab

– must be specified variables in EMSO
• Define output variables to be send to Matlab
• Configure the Interface EMSO-Matlab
• Build the system model in simulink

– Using S-function (discrete or continuous)
• Write additional calculation in Matlab
• Run the simulation from Matlab

Interface EMSO-MATLAB
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• Example: FlashDinamicoSemPID_PFD.mso

Interface EMSO-MATLAB
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• Build the Model – cont.

Interface EMSO-MATLAB
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• Input variables: specifications in EMSO

Interface EMSO-MATLAB
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• Output variables: calculated by EMSO

Interface EMSO-MATLAB
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• Interface configuration – EMSO-Matlab

Interface EMSO-MATLAB
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• Build System in Simulink – without PID

Interface EMSO-MATLAB
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• Configuring size of i/o ports

Interface EMSO-MATLAB
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Interface EMSO-MATLAB
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• Executing script in Matlab

Interface EMSO-MATLAB
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• Visualizing Results

Input variables

Output variables

Interface EMSO-MATLAB
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• Build System in Simulink – with PID

Interface EMSO-MATLAB
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• Configuring size of i/o ports

Interface EMSO-MATLAB
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Interface EMSO-MATLAB
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Interface EMSO-MATLAB

• Visualizing Results

Input variables

Output variables
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5. Debugging Techniques5. Debugging Techniques

 Questions to be answered to assist the user of a CAPE tool - debugging:

• For an under-constrained model which variables can be fixed or specified?

• For an over-constrained model which equations should be removed?

• For dynamic simulations, which variables can be supplied as initial conditions?

• How to report the inconsistencies making it easy to fix?

 In other words, debugging methods need to go beyond degrees of freedom and 

the currently available index analysis methods
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Debugging Techniques
– Current Status –

Debugging Techniques
– Current Status –

 Static models - Nonlinear Algebraic (NLA) systems:

• Several structural analysis methods available on the literature

• Most EO tools implement a degrees of freedom (DoF) and structural solvability 

analysis but user assistance is very limited when ill-posed models are found

 Dynamic models - Differential Algebraic Equation (DAE) systems:

• Currently available methods are limited to index and dynamic degrees of 
freedom (DDoF) analysis

• The well-known EO commercial tools have a high-index check which can fail 
even for some simple low-index problems
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Debugging Techniques
– Bipartite Graphs –

Debugging Techniques
– Bipartite Graphs –

 Bipartite graphs can be used to solve combinatorial problems:

• Tasks to machines

• Classes to rooms

• Equations to variables

• Bipartite graph G(V = Ve  Vv , E) have two 
independent sets of vertices

• Vertices in the same partition must not be 
adjacent

• We can have alternating and augmenting paths

1 2 3 4

5 6 7 8

Matching {{1,5}, {3,7}} w/ alternating path

Matching {{1,5}, {3,6}, {4,7}} w/ augmenting path
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Debugging Techniques
– Bipartite Graphs: variable-equations –

Debugging Techniques
– Bipartite Graphs: variable-equations –

Graph for variable-equation relationship

f1(x1) = 0

f2(x1, x2) = 0

f3(x1, x2) = 0

f4(x2, x3, x4) = 0

f5(x4, x5) = 0

f6(x3, x4, x5) = 0

f7(x5, x6, x7) = 0

variables values 
or equations forms 
are irrelevant

Maximum Matching
Multiple Solutions
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Debugging Techniques
– Nonlinear Algebraic Equations –

Debugging Techniques
– Nonlinear Algebraic Equations –

Debugging Nonlinear Problems

 Discover if there are over or under-constrained partitions

 Start from unconnected vertices and walk in alternating paths

Dulmage and Mendelsohn (DM) decomposition
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Debugging Techniques
– Differential-Algebraic Equations –

Debugging Techniques
– Differential-Algebraic Equations –

A Simple Example

Solution:

1 2

2

( )

( )

x x a t

x b t

  


1 1 0

2

( ) (0) ( ) ( )

( ) ( )

t
x t x a d b t

x t b t

   




 Only two differential variables

 Index-1 system

 Requires only one initial condition

 Initial condition must be x1

 x1 is the only state of the model
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Debugging Techniques
– Bipartite Graphs: DAE system –

Debugging Techniques
– Bipartite Graphs: DAE system –

1 2

2

( )

( )

x x a t

x b t

  


1x 2x1x 2x

Classic Algorithm

1f 2f 2f 

• Who are the states?

• Which variables should be specified as initial conditions?
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Debugging Techniques
– gPROMS output –

Debugging Techniques
– gPROMS output –

1 2

2

( )

( )

x x a t

x b t

  


 If only one initial condition is given (which is correct):
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Debugging Techniques
– gPROMS output –

Debugging Techniques
– gPROMS output –

1 2

2

( )

( )

x x a t

x b t

  


 If two initial condition are given (which is wrong):



146

146

Debugging Techniques
– AspenDynamics output –
Debugging Techniques
– AspenDynamics output –

1 2

2

( )

( )

x x a t

x b t

  




147

147

Debugging Techniques
– New Algorithm: debugging DAE system –

Debugging Techniques
– New Algorithm: debugging DAE system –
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Debugging Techniques
– New Algorithm: debugging DAE system –

Debugging Techniques
– New Algorithm: debugging DAE system –
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Debugging Techniques
– Applying the New Algorithm –

Debugging Techniques
– Applying the New Algorithm –

1 2

2

( )

( )

x x a t

x b t

  


1x 2x1x 2x

1f 2f 2f 

 All equations and all x´ are connected when it finishes

 Free variable nodes are the real states

 DM decomposition can be applied to the final matching

 Singularities are detected (classic algorithm runs indefinitely)

1x 2x

1f 2f 2f 

Classic Algorithm
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Debugging Techniques
– EMSO output –

Debugging Techniques
– EMSO output –

1 2

2

( )

( )

x x a t

x b t

  


 If only one initial condition is given (which is correct):
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Debugging Techniques
– Applying the New Algorithm: high-index –

Debugging Techniques
– Applying the New Algorithm: high-index –

L

(1)

(2)

(3)

(4)

(5)

only two states!
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Debugging Techniques
– Applying the New Algorithm: performance –

Debugging Techniques
– Applying the New Algorithm: performance –

 Dynamic model of a distillation column for the 

separation of isobutane from a mixture of 13 compounds

* Pentium M 1.7 GHz PC with 2 MB of cache memory, Ubuntu Linux 6.06
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Other CAPE toolsOther CAPE tools
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Optimization (NLP)
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Optimization (MINLP)
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Parameter Estimation
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Data Reconciliation
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Interface EMSO-OPCInterface EMSO-OPC

Support to the following possible applications:

• Virtual analyzer (inferences with models)

• Process monitoring

• Testing control systems

• Operator training

• State estimators

• Model updating

• Any application that needs integrating models with 
plant data in real time!
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Interface EMSO-OPCInterface EMSO-OPC
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Interface EMSO-OPCInterface EMSO-OPC

Simulator

Plant
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Operator Training and Process MonitoringOperator Training and Process Monitoring

OPC Server
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Virtual Analyzer – EMSO-CEKFVirtual Analyzer – EMSO-CEKF
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EMSO-CEKF
Model parameters and variables selection
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EMSO-CEKF
Parameters and variables configuration



165

165

Model Generation for MPCModel Generation for MPC

Process + 
Regulatory Control

MPC

Data treatment and 
data reconciliation

Model updating for 
MPC

Local optimization

Inferences

u(t)
y(t)

Y(t)

goals

Model Server
(rigorous, empiric, hybrid, reduced)

d(t)
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Model Generation for MPC
Variables selection
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Variables configuration

Model Generation for MPC
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Standard InterfacesStandard Interfaces

CAPE-OPEN
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CAPE OPENCAPE OPEN

Example of CAPE-OPEN: DyOS (Dynamic Optimization Software) -
Marquardt’s group (2000)

gPROMS
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CAPE OPENCAPE OPEN

Another example of CAPE-OPEN: EMSO (Environment for Modeling, Simulation and
Optimization) - Soares and Secchi (2004)

methanol plant

CORBA Object Bus

EMSO BEMSO A

ESO ESO

EMSO ESO
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Momentum

Balance

Overall heat 
transfer 

coefficient 
evaluation

Energy Balance

Mass Balance

Interface EMSO-CFDInterface EMSO-CFD

Case study using PHOENICS and FLUENT
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Final RemarksFinal Remarks

• The concepts of inheritance and aggregation of the object-
oriented modeling paradigm make possible to refine, reuse, and 
extend available models to more specialized applications, 
reducing considerably the modeling stage of a project

• A complete consistency analysis of process models described 
by differential-algebraic equation systems is a very important 
mechanism to aid the development of new models, specially for 
large-scale systems

• The integration of a process simulator with model-based tools, 
such as AUTO and Simulink/Scicos, allows us to carry out more 
complex analysis of rigorous models and complete flowsheet
simulations
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Final RemarksFinal Remarks

• Process simulators and optimizers

• System identification packages

• System analysis

• Standard communication interfaces 

• Numerical solvers (NLA, NLP, MINLP, DAE, ...)

• User-friendly graphical interfaces

Available CAPE tools ...

... that need high-tech people to use and improve them!
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Extra slidesExtra slides
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EMSO Tutorial
– Modeling Structure –

EMSO Tutorial
– Modeling Structure –

EMSO has 3 main entities in the modeling structure

FlowSheetFlowSheet – process model, is composed by a set of DEVICESDEVICES

DEVICESDEVICES – components of a FlowSheet, an unit operation or an equipment

ModelModel – mathematical description of a DEVICE
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ModelModel FlowSheetFlowSheet

ModelModel: equation: equation--basedbased FlowSheetFlowSheet: component: component--basedbased

EMSO Tutorial
– Modeling Structure –

EMSO Tutorial
– Modeling Structure –

streamPH
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Parameters and variables are declared within their 
valid domains and units using types created based on 
the built-in types: Real, Integer, Switcher, Real, Integer, Switcher, PluginPlugin

EMSO Tutorial
– Object-Oriented Variable Types –

EMSO Tutorial
– Object-Oriented Variable Types –
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EMSO Tutorial
– Model Components –

EMSO Tutorial
– Model Components –

Including sub-
models and types

Automatic model 
documentation

Symbol of variable in 
LaTeX command for 

documentation

Basic sections 
to create a 

math. model
Port location to draw a 
flowsheet connection

Input and output 
connections
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EMSO Tutorial
– FlowSheet Components –

EMSO Tutorial
– FlowSheet Components –

Degree of Freedom

Dynamic Degree of 
Freedom 

Simulation 
options

Parameters of  
DEVICES
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EMSO Tutorial
– Checking Units of Measurement –

EMSO Tutorial
– Checking Units of Measurement –

incompatible 
units
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Flash multi-component 

m

V, y

L, x

F, z, Pf, Tf

T, P

EMSO Tutorial
– A simple example –

EMSO Tutorial
– A simple example –
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A liquid-phase mixture of C hydrocarbons, at given temperature and 

pressure, is heated and continuously fed into a vessel drum at lower 

pressure, occurring partial vaporization. The liquid and vapor phases are 

continuously removed from the vessel through level and pressure 

control valves, respectively. Determine the time evolution of liquid and 

vapor stream composition and the vessel temperature and pressure, 

due to variations in the feed stream, keeping the heating rate constant.

EMSO Tutorial
– FLASH: process description –

EMSO Tutorial
– FLASH: process description –
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• negligible vapor holdup (no dynamics in vapor phase);

• thermodynamic equilibrium (ideal stage);

• no droplet drag in vapor stream;

• negligible heat loss to surroundings;

• (internal energy)  (liquid-phase enthalpy);

• perfect mixture in both phases.

EMSO Tutorial
– FLASH: model assumptions –

EMSO Tutorial
– FLASH: model assumptions –
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dm
F V L

dt
  

 i i i i

d
m x F z V y L x

dt
  

iii xKy 

Overall mass balance (molar base):

(1)

(2) i = 1, 2, ..., C

Component mass balance:

Equilibrium:

Ki = f(T, P, x, y)

(3) i = 1, 2, ..., C

(4) i = 1, 2, ..., C

Molar fraction:





C

i
ix

1

1 (5)

EMSO Tutorial
– FLASH: modeling –

EMSO Tutorial
– FLASH: modeling –
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Energy balance:

(6)( ) f

d
m h F h q V H L h

dt
   

Enthalpies:

h = f(T, P, x)

H = f(T, P, y)

hf = f(Tf, Pf, z)

(7)

(8)

(9)

Controllers:

L = f(m)

V = f(P)

(10)

(11)

EMSO Tutorial
– FLASH: modeling –

EMSO Tutorial
– FLASH: modeling –
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variable units of measurement

m kmol

F, L, V kmol s-1

t s

xi, yi, zi kmol kmol-1

Ki –

T, Tf K

P, Pf kPa

q kJ s-1

h, H, hf kJ kmol-1

EMSO Tutorial
– FLASH: consistency analysis –

EMSO Tutorial
– FLASH: consistency analysis –
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variables: m, F,  L, V, t, xi, yi, zi, Ki, T, Tf, P, Pf, q, h, H, hf  13+4C
constants:  0
specifications: q, t  2
driving forces: F, zi, Tf, Pf  3+C
unknown variables: m, L, V, xi, yi, Ki, T, P, h, H, hf  8+3C
equations: 8+3C

Degree of Freedom = variables – constants – specifications – driving forces –
equations = unknown variables – equations = (13+4C) – 0 – 2 – (3+C) – (8+3C) = 0

Initial condition: m(0), xi(0), T(0)  2+C

Dynamic Degree of Freedom (index < 2) = differential equations – initial conditions 
= (2+C) – (2+C) = 0 

EMSO Tutorial
– FLASH: consistency analysis –

EMSO Tutorial
– FLASH: consistency analysis –



192

192

EMSO Tutorial
– FLASH: EMSO version –

EMSO Tutorial
– FLASH: EMSO version –

Running EMSO

Note: file 
Sample_flash_pid.mso has 
level and pressure controllers.
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Horizontal axis is always the 
independent variable (usually time)

EMSO Tutorial
– Simulation Results: graphics –

EMSO Tutorial
– Simulation Results: graphics –

double-click
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Choose the file format

Right-click the mouse button and 
select  ““Export ImageExport Image””

EMSO Tutorial
– Simulation Results: exporting graphics –

EMSO Tutorial
– Simulation Results: exporting graphics –
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EMSO Tutorial
– Simulation Results: exporting data –

EMSO Tutorial
– Simulation Results: exporting data –

Choose the file format
RLT: MATLAB/SCILAB

XML: EXCEL/OpenOffice

click
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Using EXCEL to  
analyze the results

Results separated 
by devices

EMSO Tutorial
– Simulation Results: in spreadsheets –

EMSO Tutorial
– Simulation Results: in spreadsheets –
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EMSO Tutorial
– Simulation Results: in MATLAB/SCILAB –

EMSO Tutorial
– Simulation Results: in MATLAB/SCILAB –

Using MATLAB to  
analyze the results
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EMSO Tutorial
– Building Block Diagrams: create file –

EMSO Tutorial
– Building Block Diagrams: create file –

Selected 
components 

from physical 
properties 
package

Devices found 
in the model 

library
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EMSO Tutorial
– Building Block Diagrams: select devices –

EMSO Tutorial
– Building Block Diagrams: select devices –

click to create 
a device

drag & drop 
ports to create 
a connection

When making a 
connection, only 

compatible 
ports become 

available to 
connect
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EMSO Tutorial
– Building Block Diagrams: set case study –

EMSO Tutorial
– Building Block Diagrams: set case study –

double-click

Variable status: unknown (Evaluate)
known (Specify)
initial condition (Initial)
estimate (Guess)
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EMSO Tutorial
– Building Block Diagrams: thermodynamic –

EMSO Tutorial
– Building Block Diagrams: thermodynamic –

right-click Available models

PC-SAFT
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EMSO Tutorial
– Building Block Diagrams: simulating –

EMSO Tutorial
– Building Block Diagrams: simulating –
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EMSO Tutorial
– Automatic Documentation –

EMSO Tutorial
– Automatic Documentation –

Note: LaTeX must be installed.
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Some Industrial ApplicationsSome Industrial Applications

Dynamic Simulation of a Propane Refrigeration Cycle of a 
Natural Gas Processing Unit
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Dynamic Simulation of a Depropanizer (165 trays, 2 comp.)

Some Industrial ApplicationsSome Industrial Applications
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Dynamic Simulation 
of a Deisobutanizer
(80 trays, 13 comp.)

Some Industrial ApplicationsSome Industrial Applications
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Steady-State Simulation of a Power Plant with Pulverized Coal

Some Industrial ApplicationsSome Industrial Applications
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Compounds: OD, TOC, Phenol, NH3, NO2, NO3 and 6 
groups of bacteria

Dynamic Simulation of a Industrial Waste Water Treatment Unit 
(Müller et al., 2009) 

Some Industrial ApplicationsSome Industrial Applications
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Dynamic Simulation of a General Purpose Polystyrene Process

Some Industrial ApplicationsSome Industrial Applications
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Method of Orthogonal Collocation with EMSO

EMSO
Simulator 

Roots
A and B Matrices

• Boundaries
• Internal Points
• Alfa and Beta

• Jacobi roots
• A and B matrices

Plugin

DD as Plugin (Type=“OCFEM”, Boundary="BOTH”, InternalPoints=5   
alfa=1, beta=1)

Plugin: ocfem_emso.dll
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Fixed-bed Reactor with Axial Dispersion
(reaction of order m)

2

2

1 my y y
Da y

x Pe x

  
  

  

Boundary conditions:

0

1
1 ( ,0)

x

y
y

Pe x 


   



1

0
x

y

x 






( ,0) 1y  or

Initial conditions:

(0, ) 0y x 
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Example: add Plugin ocfem_emso.dll and 
execute flowsheets of files FDM_ss.mso, 
OCM_ss.mso and OCFEM_ss.mso, and 
compare results of discretizations. Repeat 
for the dynamic simulation in files 
FDM_din.mso e OCM_din.mso. 

PDE
Method of Lines: D.F. and Orthogonal Collocation

PDE
Method of Lines: D.F. and Orthogonal Collocation



215

215

Comparing Results

OCM by EMSO
Number of internal points: 5

y(x=1) = 0.151475 (error of 0.038%)

1 1 Method of Finite Differences
Number of internal points: 6000

y(x=1) = 0.15155 (error of 0.087%)

y(x=1) = 0.151418 (exact)
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Case Study

• Production of acetic anhydride in adiabatic PFR
– Acetic anhydride is often produced by reacting acetic acid with ketene, 

obtained by heating acetone at 700-770oC.

– A important step is the vapor phase cracking of acetone to ketene and 
methane:

– The second step is the reaction of ketene with acetic acid.

Ref: G. V. Jeffreys, A Problem in Chemical Engineering Design: The Manufacture of 
Acetic Anhydride, 2nd ed. (London: Institution of Chemical Engineers, 1964)

3 3 2 4C H C O C H C H C O C H 

 2 3 3CH CO CH COOH CH CO O 
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34222
exp 34.34k

T
   
 

Problem Definition 
– The first production step is carried out in a vapor phase reaction 

of acetone in an adiabatic PFR.

where A = acetone; B = ketene and C = methane

– The reaction is of 1a order in relation to acetone in the cracking 
reaction, with Arrhenius constant given by:

• k – seconds-1

• T – Kelvin

CBA 

Case Study
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Process Description 

– Reactor geometry
• adiabatic continuous tubular reactor;
• bank of 1000 tubes of 1 in sch. 40 with cross section of 0.557 m2;
• total length of 2.28 m;

– Operating conditions
• feed temperature 762oC (1035 K);
• operating pressure: 1.6 atm
• feed flow rate of 8000 kg/h (137.9 kmol/h);

– Composition
• acetone, ketene and methane
• feed of pure acetone 

– Kinetics
• first order reaction, 
• pre-exponential factor (k0): 8.2 x 1014 s-1

• activation energy (E/R): 34222 K
• heat of reaction: -80.77 kJ/mol

Case Study
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Example: run FlowSheet in file 
PFR_Adiabatico.mso and plot steady-state 
temperature and composition profiles. 
Show also the evolution of the 
temperature profile. Discuss the type and 
quality of discretization. 

Case study
– Production of acetic anhydride –

Case study
– Production of acetic anhydride –


