
Computers and Chemical Engineering 23 (1999) 555–565

LOGMIP: a disjunctive 0–1 non-linear optimizer for process system
models

Aldo Vecchietti, Ignacio E. Grossmann *
Department of Chemical Engineering, Carnegie Mellon Uni6ersity, Pittsburgh, PA 15213, USA

Received 11 February 1998; received in revised form 3 July 1998

Abstract

Discrete-continuous non-linear optimization models are frequently used to formulate problems in process system engineering.
Major modeling alternatives and solution algorithms include generalized disjunctive programming and mixed integer non-linear
programming (MINLP). Both have advantages and drawbacks depending on the problem they are dealing with. In this work, we
describe the theory behind LOGMIP, a new computer code for disjunctive programming and MINLP. We discuss a hybrid
modeling framework that combines both approaches, allowing binary variables and disjunctions for expressing discrete choices.
An extension of the logic-based outer approximation (OA) algorithm has been implemented to solve the proposed hybrid model.
Computational experience is reported on several examples, which are solved using disjunctive, MINLP and hybrid formulations.
© 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Mathematical programming models for addressing
problems in process systems engineering have been
extensively used over the last decade. Many applica-
tions in the synthesis and design of process networks
have been formulated as mixed integer non-linear pro-
gram (MINLP) models. These models assume an alge-
braic representation of the equations, and discrete
variables are mainly restricted to 0–1 values. The cur-
rent methods to solve this type of optimization prob-
lems are: branch and bound, generalized benders
decomposition (GBD) and outer approximation (OA).
An overview of these methods, the relationships be-
tween them, and references in process engineering ap-
plications can be found in Grossmann and Kravanja
(1995). Recently Turkay and Grossmann (1996) have
presented logic-based algorithms in which the discrete-
continuous problem is modeled as a generalized dis-
junctive program. This model involves logic
disjunctions with non-linear equations and pure logic
relations. The main advantages of generalized disjunc-
tive programs in structural flow-sheet optimization are
its robustness and computational efficiency when com-

pared to algebraic MINLP models and algorithms. This
approach for modeling discrete-continuous non-linear
problems is based on the work by Raman and Gross-
mann (1994) who investigated linear disjunctive prob-
lems. Starting with the disjunctive programming
representation, a subset of the disjunctions is converted
into algebraic mixed integer equations using the ‘‘w-
MIP’’ representability criterion. This is a theoretical
characterization that establishes conditions of equiva-
lence between the disjunctions and mixed integer alge-
braic form. A solution algorithm restricted to the linear
case was also presented. The above modeling schemes
provide several alternatives and solution methods for
the same problem. Depending on the representation
that is selected, the computational efficiency and ro-
bustness to achieve the solution can be greatly affected.

In this work a hybrid modeling formulation for
discrete-continuous non-linear problems for process
system engineering is proposed. The model can involve
disjunctions, binary variables and integer or mixed-in-
teger constraints. It will be shown that from this formu-
lation, the algebraic and the disjunctive formulation
can be derived as particular cases. For the case of the
hybrid formulation, we also introduce a new solution
algorithm. Through the solution of several examples,
we show that using disjunctions in the problem formu-* Corresponding author. Fax: +1-412-268-7139.
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lation is often a better alternative for problems where
avoiding zero flows is an important issue, or where
big-M constraints yield poor relaxations. The hybrid
representation is convenient when the w-MIP criteria
applies to some disjunctions but not to all, or when it is
not natural to express the entire model in terms of
disjunctions and logic relations.

The above ideas we have implemented in LOGMIP, a
new computer code for solving discrete-continuous
non-linear optimization problems in which the prob-
lems can be modeled with either the algebraic, disjunc-
tive or hybrid formulation. The program has a model
recognition routine to check the model type, such that:
if it is in the MINLP algebraic form, the OA/ER/AP
algorithm by Viswanathan and Grossmann (1990) is
applied; for the disjunctive case the logic-based OA by
Turkay and Grossmann (1996); and the proposed al-
gorithm for the hybrid problems. LOGMIP has been
developed to provide a rather general modeling frame-
work and solution tool for solving disjunctive, algebraic
MINLP or hybrid non-linear optimization problems. It
represents a new tool that is currently not available.

2. Motivation

In mixed integer linear program (MILP) optimization
virtually all existing codes assume that the problem will
be specified through 0–1 and continuous variables, and
linear algebraic equations and inequalities. However,
modeling of a MILP problem in this form has been
recognized as a major bottleneck for the successful
application of these techniques (see Nemhauser &
Wolsey, 1998). The major reason is that alternate mod-
els can often be specified, leading usually to very differ-
ent computational requirements for the LP-based
branch and bound methods, that are largely due to the
different tightness of the various formulations. In the
case of MINLP this problem becomes even more acute
given that these models require the convergence of
non-linear equations even if the discrete choices render
these equations to be redundant. The best example of
this is perhaps when one tries to apply existing MINLP
codes that require an algebraic description with 0–1
variables (e.g. DICOPT+ + by Viswanathan & Gross-
mann, 1990) in the structural optimization of process
flow-sheets. In this case units that are not selected
require nevertheless that their corresponding mass and
energy equations be satisfied, which often leads to
singularities.

The significance of logic-based disjunctive optimiza-
tion techniques that were reviewed in the introduction
section, is that they offer the potential of overcoming
the above cited difficulties, particularly for MINLP
problems, as has been demonstrated by Turkay and
Grossmann (1996). On the other hand it is not clear

that it is always advantageous to solve a non-linear
discrete optimization problem through disjunctions and
Boolean variables. Therefore, ideally one would like to
develop a modeling system that has the flexibility of
accommodating a pure algebraic description as in con-
ventional MINLP, a logic-based representation with
disjunctions and Boolean variables, or a hybrid repre-
sentation that combines both representations. Since
there is no system to our knowledge that can accom-
plish these objectives, it is the main purpose of this
paper to describe the development of the code LOGMIP

that offers the capability of modeling and solving dis-
crete/continuous optimization problems in the three
forms. While LOGMIP at this point still does not cover
all possible modeling cases (e.g. disjunctions with multi-
ple terms, logic expressed in symbolic form), it is a
useful tool in its own right that can also shed insights
on the performance of the algebraic, disjunctive and
hybrid models.

2.1. Hybrid model formulation

The purpose of this section is to provide a general
representation for the hybrid model. In the hybrid
formulation the discrete decisions are modeled by dis-
junctions and binary variables. Boolean variables are
introduced in the model to establish if a term in a
disjunction is true or false. The binary variables appear
in linear form and where no equations are involved.
The hybrid model has the following form:
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x�Rn, y�{0, 1}q, Y�{True, False}m, ci]0 (PH)

Where x and ci are continuous variables, y represents
the 0–1 variable, Yi the Boolean variable to indicate if
a disjunction is true or false, V(Y) is the logical rela-
tionship between Boolean variables, g(x) represents the
linear/nonlinear inequality that holds independent of
the discrete choices, f(x) is the linear/nonlinear objec-
tive function, r(x)−Dy50 corresponds to the general
mixed integer algebraic equation or to original disjunc-
tions that were transformed into algebraic equations
through the ‘‘w-MIP’’ criterion, Ay]a is a set of
integer inequalities and dTy are linear cost terms.
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Problem PH is different to the one presented by
Raman and Grossmann (1994) in the disjunctive terms.
In our case they are restricted to two terms: if the
Boolean variable used to handle the disjunction is true,
then all the equations in the disjunction and a fixed
charge apply; otherwise, if it is false, a subset of the
continuous variables and the fixed charge is set to zero.
The form of this disjunction is the one proposed by
Turkay and Grossmann for modeling the optimal syn-
thesis of process networks. It will be shown through the
solution of some other examples that the form of that
disjunction is applied to problems other than the syn-
thesis of process networks.

From model (PH) it is possible to obtain the alge-
braic representation for a MINLP problem:

min Z= f(x)+dTy

s.t. g(x)50

r(x)+Dy50

Ay]a

x�Rn, y�{0, 1}q (PA)

The algebraic model (PA) has only binary variables to
express the discrete choices. The Boolean variables, the
disjunctions and the fixed charges in the objective func-
tion corresponding to the disjunctions are eliminated
from the model (PH).

On the other hand, if the model is expressed only
through disjunctions, the representation is equivalent to
the one presented by Turkay and Grossmann (1996),
who proposed the logic-based outer approximation
(OA) and the generalized benders decomposition
(GBD) methods to solve a problem represented in this
way. The disjunctive model has the following form:
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In the disjunctive representation, all the discrete choices
are expressed with disjunctions and Boolean variables.
The terms involving binary variables and mixed-integer
constraints have been eliminated from model (PH). In
structural flow-sheet optimization the disjunctive repre-
sentation (PD) offers a more natural way to represent
the problem.

3. Solution algorithm

To solve the problem in the hybrid representation as
in (PH) an extension of the logic-based OA algorithm is
proposed, to handle both disjunctions and mixed-in-
teger algebraic equations. The algorithm, like its prede-
cessors, decomposes the original problem into two
sub-problems, the non-linear program (NLP) and the
master MILP sub-problems. First, fixing the binary (yk)
and Boolean variables (Yi) we obtain the following
NLP problem:

3.1. Non-linear program sub-problem

min Z=%ci+ f(x)+dTy

s.t. g(x)50

r(x)5−Dyk

hi(x)50
c i=gi

"
if Yi=True

Bix=0
c i=0

"
if Yi=False (NLP)

It should be noted that in the solution of the NLP
sub-problem, the dimensionality is reduced because
only the equations whose Boolean variables are true
apply. Therefore, non-linear equations with zero value
variables are avoided reducing difficulties with numeri-
cal singularities. On the other hand, depending on the
problem, more than one initial NLP sub-problem
should be solved, in order to set up the first MILP
master problem. This MILP must contain linearizations
of all non-linear equations in the disjunctions, to pre-
dict new binary and Boolean variable values for the
next NLP. An interesting issue arises at the initializa-
tion step. While the Boolean variables should be fixed
for each initial NLP sub-problem to be solved, the
binary variables can be fixed or relaxed for each set of
fixed Booleans, and remain constant or variable
through the different initial NLPs. For some problems,
e.g. synthesis of process networks, the minimum num-
ber of initial NLP sub-problems and the Boolean val-
ues, can be determined solving a modified set-covering
algorithm for CNF propositional logic (Turkay &
Grossmann, 1996). In other cases these values should
be provided by the user.

The hybrid linear master sub-problem is obtained by
the linearizations of the disjunctions and non-linear
constraints at the solution point of the NLP sub-prob-
lem. Instead of working with a master problem involv-
ing linear disjunctions, it is transformed into algebraic
form by using the convex-hull representation for the
linear disjunctions proposed by Balas (1985). The origi-
nal set of binary variables is increased by m, the
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number necessary to replace the Boolean variables by
0–1 variables. In this way the master MILP problem
can be solved with the conventional branch and bound
method. This algebraic master MILP sub-problem has
the following form.

3.2. Mixed integer linear program master sub-problem

min ZL=a+% ciy+dTy

s.t. f(xl)+9f(xl)T(x−xl)5a

g(xl)+9g(xl)T(x−xl)50

r(xl)+9r(xl)T(x−xl)+Dy50

9h(xl)Tx5 (−h(xl)+9h(xl)Txl)y, l=1, . . . ,L

Ay]a

Ey]e

a�R1, x�Rn, y�{0, 1}q+m (MILP)

where for simplicity we assume that all variables for a
given disjunction are set to zero if it is false (see Turkay
& Grossmann, 1996). The constraint Ey]e are integer
inequalities corresponding to the logic relationship be-
tween the Boolean variables (V(Y)). After solving the

master MILP new values for the binary and Boolean
variables are obtained for the next iteration.

As can be seen in the algorithm flowchart, Fig. 1, the
number of initial NLP problems to be solved (nlps) has
to be determined first. This is needed in order to
provide linearizations for all non-linear equations in-
volved in the problem. This is an important issue to set
up the first master MILP sub-problem. Depending on
the problem, the number of initial NLP sub-problems
can be determined in a systematic way or simply spe-
cified by the user. For the synthesis of a process net-
work the modified set-covering algorithm for CNF
propositional logic proposed by Turkay and Gross-
mann (1996) is used. Having identified the initial NLP
sub-problems, the Boolean variables have to be fixed
for each problem, and the binary variables can be fixed
or relaxed, according to which strategy is specified.
After solving the initial NLP sub-problems, we can
obtain a valid upper bound from this set. Then we
set-up the MILP master problem to predict the Boolean
and binary variables values for the next NLP, and a
lower bound. If the upper and the lower bound lie
within a tolerance we stop; otherwise the iterations
continue until convergence is achieved.

4. Overview of LOGMIP

LOGMIP is a computer code written in C allowing the
specifications of disjunctions in the problem formula-
tion. LOGMIP can be seen as a layer over the GAMS

modeling language. The GAMS input/output library has
been used for linking LOGMIP to GAMS. The GAMS

modeling language is used to write the model in terms
of disjunctions and algebraic equations. For specifying
the disjunctions, the capability of the GAMS language
that controls the domain of definition of the equation is
used. The domain of definition is controlled by a condi-
tion for which the dollar sign is used. The following
example shows the expressions for the first disjunction
in the example 1 (see Appendix A: process superstruc-
ture) in the GAMS input file for LOGMIP:

UNIT–1BAL$(BOOLE(‘1’) EQ 1). . exp (X(‘3’)−1

−X(‘2’)=E=0;

UNIT–1COS$(BOOLE(‘1’) EQ 1). . C(‘1’)=E=5;

UNIT–1NX2$(BOOLE(‘1’) EQ 0). . X(‘2’)=E=0;

UNIT–1NX3$(BOOLE(‘1’) EQ 0). . X(‘3’)=E=0;

UNIT–1NCO$(BOOLE(‘1’) EQ 0). . C(‘1’)=E=0;

As can be seen the expression for the disjunction is
strongly typed due to using a language created to defineFig. 1. Algorithm flow chart.
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Fig. 2. LOGMIP flow chart.

(PH). Fig. 2 shows the major steps involved in LOGMIP.
Since the solution algorithms require the solution of
NLP and MILP master problems, the I/O GAMS library
is used to set up and solve the sub-problems. One
aspect that needs attention in the implementation of the
algorithms involving disjunctions is that the size of the
matrix for the NLP sub-problem may change every
major iteration. A flexible and efficient approach to
handle the changes in the matrix size has to be
implemented.

The program has been written in C to assure
portability to other platforms. After supplying a GAMS

input file with the discrete-continuous model, the input
file syntax is checked through the GAMS language com-
piler. If it is correct, the control is transferred to
LOGMIP.

5. Examples

A set of synthesis and design problems of different
size have been solved with LOGMIP to illustrate the
impact of formulating problems in the three different
forms discussed in this paper. The detailed models and
data can be found in Appendix A.

5.1. Example 1: process superstructure

The first example corresponds to a superstructure of
eight chemical processes (Turkay & Grossmann, 1996).
The model is described by non-linear equations that
relax as convex constraints. The objective of this exam-
ple is to find the configuration with the minimum cost.
Fig. 3 shows the superstructure for this example.

We have modeled this example in three different
ways: algebraic, disjunctive and hybrid. The disjunctive
model is given in Appendix A. The transformation
from the disjunctive model into the hybrid model has
taken place for the linear models representing the pro-
cess 3, 4 and 5. These linear models are ‘‘w-MIP’’
representable, and therefore these models have been
written in algebraic equation form. The rest of process
models that are non-linear remain as disjunctions. The

a model in algebraic form. A language to express
disjunctions in a natural way for the representation of
optimization models is a subject of our current
research.

The logic relations between the Boolean variables are
presently handled in LOGMIP as inequalities. A PROLOG

program developed to transform the logical expression
into inequalities is used (Tourn, 1995). The program
input consists of a file with propositions as shown
below:

(P1�P2)�P3[P4�P5

the output is a file with equations and inequalities
expressed as equations in the form of GAMS language.
With the PROLOG program each proposition clause is
translated to the equivalent mathematical linear form.
The output file is included in the GAMS input file of
LOGMIP. For example, for the proposition shown above
the equivalent output looks like:

PUREINT–1 . .

Y(’1’)+Y(’2’)−Y(’4’)−Y(’5’)=L=1;

PUREINT–2 . . Y(’3’)−Y(’4’)−Y(’5’)=L=0;

where Y(‘1’) to Y(‘5’) are 0–1 variables. Future imple-
mentations of LOGMIP will have an automatic link with
this PROLOG program.

In LOGMIP the model can be specified in the form of
models (PA), (PD) and (PH). LOGMIP has a model
recognition routine that works as follows: if no disjunc-
tions are detected in the model, that means we are in
the presence of a MINLP model and the OA/ER/AP
algorithm is applied. If disjunctions are detected, LOG-

MIP finds if the model contains binary variables or not.
In that way it can decide which algorithm has to be
applied, the logic-based OA for the disjunctive model
(PD) or the proposed algorithm for the hybrid model Fig. 3. Process superstructure
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Table 1
Results process superstructure

PA PHPD

FixedFixedInitialization Relaxed
5252Constraints 32

33 42Variables 42
8 8Discrete variables 8

68 6868Objective value
0.742Execution time (s) 2.7

4 major 3 nlp, 1 majoraIterations 2 nlp, 1 nlpa

a One major iteration[1 nlp+1 master milp.

PD models the non-linear objective function has been
transformed into a constraint. For the PD model the
linear constraints have been transformed into disjunc-
tions. The results obtained are shown in Table 2.

For the FTIR-spectroscopic example the results show
an impressive performance of the disjunctive model
compared to the algebraic MINLP models. The dis-
junctive model is superior not only in the number of
iterations, but also in the execution time, which has
been reduced by a factor of eight compared to the
algebraic model with relaxed initialization. The expla-
nation for this behavior is that the convex-hull repre-
sentation for the linear disjunctions in the master MILP
gives a tighter relaxation, improving the prediction of
lower bounds.

5.3. Example 3: synthesis HDA process

The third example is a structural flow-sheet optimiza-
tion problem (Kocis & Grossmann, 1989). For this
example, the HDA process was modeled in the alge-
braic and the disjunctive forms. There is a significant
number of non-convex non-linear equations in this
problem. The augmented penalty strategy
(Viswanathan & Grossmann, 1990) was applied to solve
it. No w-MIP representable disjunctions were found in
this model, therefore, the hybrid model does not apply
for this example. The objective for this optimization
problem is to obtain the HDA flow-sheet with maxi-
mum profit. The superstructure for the process can be
seen in Fig. 4. The results obtained with this problem
are shown in the Table 3.

Two initial configurations were given to solve this
example in the disjunctive representation. Therefore,
two initial NLPs have been solved to obtain the lin-
earizations for all non-linear constraints, in order to set
up the first MILP master problem. For this case the
disjunctive model (PD) obtained a solution with higher
profit than the algebraic models (PA), presumably be-
cause zero flows are avoided in (PD). The profit was
increased with the disjunctive model by approximately
9.5% compared to the algebraic model with relaxed
MINLP as an initial point, and 2.4% compared to the
algebraic with a fixed initial point.

5.4. Example 4: design of a multi-product batch plant

The last example is a batch plant design with multi-
ple units in parallel and intermediate storage tanks
(Ravemark, 1995). The problem consists of determining
the volume of the equipment, the number of units in
parallel, and the volume and location of the intermedi-
ate storage tanks. The objective is to minimize the plant
investment cost. To ensure rigorous lower bounds the
equations and constraints were convexified. The prob-
lem was modeled in both algebraic and hybrid repre-

algebraic MINLP model can be found in Turkay and
Grossmann (1996). The results obtained with this ex-
ample are shown in Table 1.

In this example the constraints were increased in the
disjunctive and the hybrid models because the proposi-
tional logic equations (relationships between the
Boolean variables) were added to those models. The
variables added correspond to the fixed charge costs.
Even with this increase in constraints and variables the
results obtained with these models are encouraging.
The number of iterations have been reduced in the
disjunctive and hybrid models compared to the alge-
braic MINLP. Therefore, the execution time is also
reduced. Due to the small execution times the perfor-
mance is better analyzed through the number of major
iterations. In the disjunctive case the difference with
respect to the algebraic model lies in the master MILP
number of problems executed. Only one master prob-
lem is required in the disjunctive model. The hybrid
model has allowed to reduce by one the initial number
of NLPs to be executed to set up the first master
problem.

5.2. Example 2: FTIR-spectroscopy example

The next example corresponds to a simultaneous
model structure determination and parameter estima-
tion for a FTIR-spectroscopic example by Brink and
Westerlund (1995). It has a non-linear objective func-
tion subject to linear constraints. For the PA and the

Table 2
Results FTIR-spectroscopy

PAPA PD

FixedRelaxedInitialization Fixed
39Constraints 39 102

99Variables 69 69
30Discrete variables 30 30
13.9813.98Objective value 13.98

10055 7Execution time (s)
6 majora 4 major*11 majoraIterations

a One major iteration[1 nlp+1 master milp.
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Fig. 4. HDA superstructure

sentation. In the hybrid representation, the disjunctions
correspond to the storage tank volume equations and
the batch size equations. The example corresponds to a
batch plant with five products and six stages. The
results are shown in Table 4.

For this example, which is difficult to solve in the
algebraic mode, the results obtained for the hybrid
model are very encouraging. The reduction in time and
number of iterations for this example are very signifi-
cant. The number of sub-problems solved with respect
to the better algebraic model (with relaxed MINLP
initialization) has been reduced by more than one half.
The execution time has been reduced more than 3 times
compared to the same model.

6. Remarks

The results obtained from the solution of the four
examples show that for some cases, the use of disjunc-
tions is a better modeling alternative compared to the
algebraic MINLP. The model and algorithm to be
applied for a particular problem depends on the type of
equations and constraints the problem has. For convex
problems, the disjunctive and hybrid models have
shown a very significant improvement compared to the
algebraic case. For non-convex problems the main ad-
vantage seems to lie in the fact that the disjunctive and

hybrid models are less likely to get trapped into poor
suboptimal solutions. In contrast, the algebraic model
may be trapped more easily due to the difficulties with
non-convex models where flows are set to zero. The
reason for this behavior has largely to do with the fact
that the quality of the linearizations of vanishing units
is often poor, thereby decreasing the quality of the
global approximation of the master problem.

7. Conclusions

In this work, the solution of hybrid models, with
disjunctions and binary variables, for discrete-continu-

Table 3
Results HDA plant

PA PDPA

FixedInitialization FixedRelaxed
719719 737Constraints

717722 722Variables
1413 13Discrete variables

5810.85671.4Objective value 5304.8
293 280348Execution time (s)

1 nlp, 3 majora 2 nlp, 1 majora1 nlp, 2 majoraIterations

a One major iteration[1 nlp+1 master milp.
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Table 4
Results batch plant

PA PHPA

FixedFixedInitialization Relaxed
187186Constraints 186

112 112Variables 113
53 53Discrete variables 53

261883 261883261883Objective value
287 616 80Execution time (s)

1 nlp,1 nlp,Iterations 1 nlp,
4 majora20 majora10 majora

a One major iteration[1 nlp+1 master milp.
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x15−2x16=0

c5=6y5

ous non-linear optimization problem has been investi-
gated. From this model the pure disjunctive or algebraic
model can be derived. The computer code LOGMIP

(acronym of logic mixed integer program) has been
developed to deal with this representation. The problem
input for LOGMIP can be written in three different forms:
hybrid, disjunctive or algebraic form. For the hybrid
model an extension of the logic based OA algorithm has
been presented. LOGMIP has been written in C and linked
to GAMS. The possibility to define different starting points
has been added. All these capabilities make LOGMIP an
important tool for the solution of non-linear discrete-con-
tinuous optimization problems. The novelty of this
program is the capability to handle disjunctions. No other
non-linear computer code has been reported in
the open literature that can solve problems of
this type. The results obtained in the solution of several
examples have shown that the disjunctive and hybrid
representation outperform the algebraic MINLP in terms
of computational time and quality of solutions.
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Appendix A

Example 1: process superstructure
Objecti6e function

minZ=% ci+x2−10x3+x4−10x5−40x9+15x10

+15x14+80x17+65x18+25x19−60x20

+35x21−80x22−35x26+122

Material balances :

x3+x5−x6−x11=0
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[ Integer equationsPropositional logic

y1[y3�y4�y5 −y1+y3+y4+y5]0
y2[y3�y4�y5 −y2+y3+y4+y5]0

y1+y2−y3]0y3[y1�y2

y1+y2−y4]0y4[y1�y2

y1+y2−y5]0y5[y1�y2

y4[y8 −y4+y8]0
y5[y8 −y5+y8]0

−y3+y6+y7]0y3[y6�y7

y3−y6]0y6[y3

y3−y7]0y7[y3

Specifications
y1+y2=1y1�y2

y3+y4=1y3�y4

y6+y7=1y6�y7

Appendix B

Example 2: FTIR-spectroscopy example

n=wave number, m=spectra number
Matrix A (n,m)

6 871 52 3 4
0.0007 0.05340.0003 0.03200.0764 0.05360.0318 0.0773

0.00050.0004 0.00030.00090.0007 0.00050.0003 0.0009

0.03090.08420.0066 0.06830.0789 0.0043 0.07040.0275

0.0179 0.01080.03510.0044 0.0186 0.00240.0180 0.0052

0.02210.09810.06010.0208 0.00250.06010.0605 0.0394

0.1122 0.06330.02480.0518 0.1491 0.23890.1656 0.1385

0.0015 0.00240.00940.0036 0.00510.0035 0.00150.0032

0.0433 0.08910.0635 0.00480.0507 0.03100.0361 0.0213

0.05740.14430.00380.0905 0.04200.10910.0600 0.0754

0.0139 0.00570.02030.0016 0.0063 0.01320.0209 0.0010

c=component
Matrix C(c, m)

1041016 204502 0204 353 702
201 9797 351 351 351 351 700

22 140 22 8 0 814

MINLP formulation
Objecti6e function

min
!

wj+2% yi,j
"

s.t.

wj=% ek
TR−1ek

Pi,j−Pi,j,maxyij50

Pi,j,minyi,j−Pi,j50yi,j�{0, 1}

where:

ek=ck−Pak

R=covariance matrix= identity matrix.
R is assumed to be known, it is equal to the identity
matrix at first problem iteration.

Disjuncti7e model
Objecti6e function

min
!

wj+2 % ci,j
"

s.t.

wj=% ek
TR−1ek

Ã
Á

Ä

Yi,j

P i,j,min5Pi,j5Pi,j,max

c i,j

Ã
Â

Å
�Ã
Á

Ä

¬Yi,j

P i,j=0
c i,j=0

Ã
Â

Å

Yi,j�{True, False}

where:

ek=ck−Pak

Appendix C

Example 3: synthesis HDA process

Due to the size of the HDA optimization problem it
is not possible to include here the equations and con-
straints corresponding to the model. In the figure below
about the HDA process we are showing the way the
pieces of equipment have been grouped.
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Each group is handled by a particular Boolean variable. The pieces of equipment belonging to a particular set have
to be in sequence such that if one is selected the others are also selected. Not all sets represent an alternative for the
process. Some of them, for example set 4 and 13 have their Boolean variables fixed to True. The set of units has the
advantage that the amount of Boolean variables necessary for the problem diminishes. In this way a generic
disjunction for a particular set i has the following representation:

Ã
Á

Ä

Yi

Apply equations and constraint belonging to every unit in set i
Apply a fixed charge every unit in set i

Ã
Â

Å

�Ã
Á

Ä

¬Yi

Some variables of the units in group i are set to zero
Fixed charges are set to zero

Ã
Â

Å

Appendix D

Example 4: design of a multi-product batch plant

In this model parallel units operating in-phase and
out-of-phase and the sizing of intermediate storage
tanks are considered where:

i=5=products: A, B, C, D, E;
j=6 stages;
H=horizon time=6000 h
Qi=production rate of product i: A=250000;B=
150000;C=180000;D=160000;E=120000

Si, j=size factor for product i at stage j

3 5 641 2

5.2 4.9 6.1A 4.27.9 2.
3.4 2.1B 0.7 0.8 0.9 2.5

3.23.6 2.9C 1.60.7 2.6
1.6 2.7 1.2 2.5D 4.7 2.3

4.5 1.6E 1.2 3.6 2.4 2.1
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Ti,j=processing time of product i at stage j

4 51 2 3 6

3.9 2.1A 6.4 4.7 1.28.3
2.34.4 3.2B 6.56.8 6.4

11.9 5.7C 1.0 6.3 6.25.4
3.42.83.3D 3.53.2 3.0

3.7 2.2E 2.1 2.5 4.2 3.6

To convexify the equations the following transforma-
tions have been made:

, nj= log Njbi,j= log Bi,j

, Ei=exp eimj= log Mj

6Tj= log VTj,6j= log Vj

Objecti6e function

min C=250 % exp(nj+mj+0.66j)+150 % exp(0.56Tj)

s.t.

Ã
Ã

Ã

Á

Ä

Yj

6Tj] log Sj*+Bi,j+1

6Tj] log Sj*+Bi,j

b i,j−bi,j+15 log Si,j*
b i,j−bi,j+15− log Si,j*

Ã
Ã

Ã

Â

Å

�Ã
Á

Ä

¬Yj

6Tj=0
bi.j−bi,j+1=0

Ã
Â

Å

6j= log Sij+bi,j−n Öi, Öj

ei] log (Ti,j)−bi,j−mj Öi, Öj

H]% Qiexp(ei)

nj=% coefkynk,j Öj

% ynk,j=1

mj=% coefkymk,j Öj

% ymk, j=1

yn, ym�{0, 1}, Y�{True, False}

number of units in parallel in phase atNj :
stage j

Mj : number of units in parallel out-of-phase
at stage j
unit size of stage jVj :

VTj : size of intermediate storage tank be-
tween stage j and j+1
size factor for intermediate storage tankSj*:
(constant=5)

Si, j* : size factor for stages (constant=3)
constant coefficients for parallel unitscoefk :
batch size product i at stage jBij :

Ei : inverse production rate for product i
Qi : production requirement of product i

Boolean variables equal True if the in-Yj :
termediate storage tank is allocated at
position j for product i ; 0 otherwise
ynk, ymk binary variables for selecting
number of units operating in and out of
phase
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