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Abstract

This paper describes a number of key modeling issues for the development of tools for solving nonlinear discrete/continuous
problems where logic/disjunctive constraints are included in the formulation. A generalized hybrid representation of these
problems is presented. A comparison between Constraint logic programming (CLP) and generalized disjunctive programming
(GDP) is established together with several constraint transformations from CLP to GDP. The components and expressions of a
modeling language for setting up disjunctions and logic constraints are proposed. The language allows the specification of
problems with complex logic formulations. A parser is developed for the analysis and translation of the logic sentences into files
ready to be used by the solvers. An overview of the solution algorithms is also given together with several aspects about the
implementation as a superset of GAMS mathematical programming language. Examples illustrating the capabilities of the proposed
system are described. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years there have been several efforts for
incorporating logic in mathematical and optimization
programming. The logic is introduced at the level of
problem formulation, and at the level of solution tech-
niques. Disjunctive programming (Raman & Gross-
mann, 1994; Turkay & Grossmann 1996; Bjorkqvist &
Westerlund, 1999) and constraint logic programming
(CLP) (Hajian, El-Sakkout, Wallace, Lever &
Richards, 1995; Darby-Dowman, Little, Mitra & Zaf-
falon, 1997) are examples of these efforts. A disjunctive
program can be regarded as a mixed-integer program
involving disjunctive constraints. CLP combines a pow-
erful language to express combinatorial problems with
constraint propagation techniques within an implicit
enumeration search. Compared to mixed-integer non-
linear program (MINLP), both approaches offer signifi-
cantly improved techniques for modeling, and in many

cases more effective solutions in the areas of design,
synthesis, planning and scheduling of process engineer-
ing problems. The introduction of disjunctions and
logic into the formulation is, in many cases, a more
direct way of stating the problem. Although new mod-
els, algorithms and solvers have been proposed, chal-
lenges remain at the level of modeling, language
expressiveness, solution techniques and general tools
for solving logic-based problems. In particular, when
adaptations of languages conceived for mathematical
programming or complex declarations are used for
expressing a model with disjunctions or logic con-
straints, this can lead to ambiguous problem statements
or models that are difficult to read or understand.

It is the purpose of this paper to propose a number
of ideas and concepts for disjunctive programming
regarding the modeling, language syntax and its imple-
mentation in a computer code. The motivation is to
develop general tools that can address nonlinear/dis-
crete optimization problems with logic in the formula-
tion. For the problem representation we start from a
general hybrid formulation including disjunctions,
Boolean and 0–1 variables for the discrete choices.
Logic propositions are included in the problem formu-
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lation for stating relations between the Boolean vari-
ables. These propositions involve the logic operators
‘and’, ‘or’, ‘not’ and ‘implication’. The relationship
between the disjunctive representation and models from
CLP is then presented with the transformation of logic
constraints and embedded disjunctions in the form of
general disjunctions. Next, the basic elements of a
language to express a general hybrid disjunctive model
are proposed, as well as the connection between the
models and the algorithms available to solve them.
Finally, results obtained in the solution of several ex-
amples are presented.

2. Generalized hybrid representation

The model presented below corresponds to a general-
ized hybrid formulation for a continuous discrete non-
linear program problem where the discrete choices are
represented by disjunctions, Boolean variables and bi-
nary variables (Vecchietti & Grossmann, 1999):

min Z=%k ck+ f(x)+dTy

st g(x)50

r(x)+Dy50

Ay]a (PH)
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In problem (PH) x and ck are continuous variables, y
are binary variables (0–1), Yik are Boolean variables to
establish whether a given term in a disjunction is true
[hik(x)50], V(Y) are logical relations between Boolean
variables, f(x) represents a linear/nonlinear objective
function, g(x) are linear/nonlinear inequalities that
hold independent of the discrete choices, r(x)+Dy50
corresponds to general mixed-integer algebraic equa-
tions, Ay]a is a set of integer inequalities, dTy are
fixed cost terms.

When constraints involving binary variables are not
present in (PH), this problem reduces to the generalized
disjunctive program formulation by Raman and Gross-
mann (1994):
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From (PH) it is also possible to obtain a MINLP
problem if disjunctions and Boolean variables are not
included in the problem formulation:

min Z= f(x)+dTy

st g(x)50

r(x)+Dy50 (PA)

Ay]a

In this way problem (PH) provides the flexibility of
modeling a problem as a GDP, MINLP or a hybrid
model.

The propositional logic in (PH) is expressed through
the conjunction of q different propositions:

L={L1�L2�…�Lq}

where Li is a logical proposition expressed in terms of
� (and), � (or), ¬ (negation, not), [ (implication)
and U (equivalence) operators.

The set of clauses L can be transformed into the
conjunctive normal form (CNF) (Clockson & Mellish,
1981) which is expressed as follows:
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where Pi and P( i are subsets of the Boolean variables
that correspond to a subset of 0–1 variables and s is the
number of disjunctive clauses. The CNF form implies
that every clause in V must be satisfied. Although in
previous work the propositional logic was mostly im-
plemented in problems of process synthesis to reflect
the structural relationship between the units (Raman &
Grossmann, 1993), it can be applied to any type of
problem where it is needed. The CNF set V can be
transformed automatically into an equivalent set of
integer inequalities (Tourn, 1995). It should be noted
that for the special case where we have the following
multiple choice constraint (at most one item):

%
i

Yi51 (1)

it is cumbersome to use propositional logic to represent
it. However, using a slack Boolean variable z with an
‘exclusive or’ for all the Boolean variables Yi, yields a
simple transformation:
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Y1�Y2�…�Ys�z [%
i

Yi+z=1 (2)

In this way if z is true (z=1) all Yi are false
(Yi=0), and if z is false (z=0) only one Yi can be true
(Yi=1).

3. CLP and generalized disjunctive programming

In this section we explore the relationship between
CLP and generalized disjunctive programming (GDP).
In the past 10 years, CLP (Henteryck, 1989; Tsang,
1993; Darby-Dowman et al., 1997) has become an
important tool for solving scheduling, resource alloca-
tion and planning problems, which are difficult combi-
natorial optimization problems. In CLP the problem is
modeled in more expressive logic syntax. For instance,
conditional constraints, constraints on all-different and
meta-constraints are employed in the problem formula-
tion. CLP solves the model by creating a search tree
based on enumeration, and during the search it reduces
the domain of the variables by propagating the con-
straints. On the other hand, GDP has been applied to
design, scheduling and synthesis problems, which can
lead to improved models compared with MINLP (Ra-
man & Grossmann, 1994; Lee & Grossmann, 2000).
Several algorithms have been proposed for linear and
nonlinear GDP problems. A brief review of these meth-
ods is presented later in the paper.

Below, the transformations of some logic constraints
into the GDP form are proposed. The objective is to
show that some common constraints of CLP can be
reformulated as a GDP. Finally, in this section we
present an example of the transformations.

Consider the three following cases of conditional
constraints that arise in CLP (Henteryck, 1989):

Case a

g(x)50[ f(x)50 (3)

where g(x), f(x) are scalar functions. This implication
can be transformed to:

¬ g(x)50�f(x)50 (4)

where � is the ‘or’ operator and ¬ is the negation of
the constraint. The latter implies the non-satisfaction of
the constraint, with which Eq. (4) can be written as:

g(x)]o�f(x)50 (5)

For implementation, typical values of o can be chosen
between 0.0001 and 0.001.

Assigning Boolean variables to Eq. (5) we obtain a
two-term disjunction covered by the model GDP:

� Y1

g(x)]o

n
�
� Y2

f(x)50
n

(6)

It should be noted that for the case when g(x) and f(x)
are vector functions, the implication in Eq. (3) can be
written as:
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Eliminating the implication:
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moving the negation inward yields:
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it can be transformed to:

/
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�
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which in turn can be written in GDP form as:
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Case b

Yi [gi(x)50 (12)

where Yi is a Boolean variable and gi(x) a vector
function. To cover the negation of this implication we
need to expand it to:

Yi [gi(x)50�¬Yi [x�D (13)

allowing x to lie in the relaxed domain D when Yi is not
true. The expression in (13) can be readily be written as
a two term disjunction of the model (GDP):

� Yi

g(x)50
n
�
� ¬Yi

x�D
n

(14)

Similarly, when we have the opposite implication:

gi(x)50[Yi (15)

it can be transformed to:

¬gi(x)50�Yi (16)

which yields the GDP form:

� ¬Yi

g(x)]o

n
�
� Yi

x�D
n

(17)

Case c

Vi(Y)[hi(x)50�¬Vi(Y)[gi(x)50 (18)

where Vi(Y) is a set of logic propositions which has a
value of true if all are satisfied. Introducing a Boolean
variable Zi for Vi(Y), Eq. (18) can be expressed as:
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Zi [hi(x)50�¬Zi [gi(x)50 (19)

The final representation of Eq. (19) as a disjunction in
GDP form is given by:

� Zi

hi(x)50
n
�
� ¬Zi

gi(x)50
n

(20)

Vi(Y)UZi

Case d
An additional case that is of interest is embedded

disjunctions that do not directly fit the GDP form.
These arise for instance in multiperiod design problems
(Van der Heever & Grossmann, 1999). An example is
the following disjunction:
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which implies that if Y1=True, this is an additional
disjunction for Z1 and Z2.

Although disjunctions like in Eq. (21) are not cov-
ered in model GDP, they can be transformed to non-
embedded disjunctions as follows:
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Simplifying the first disjunction in Eq. (22) yields:

Y1�Y2

Z1�Z2UY1 (24)

Y2[g(x)50

transforming the implication as in Case b produces:
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From Eqs. (22)–(25) the final GDP form of an embed-
ded disjunction is given by:
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Y1�Y2

Z1�Z2UY1 (28)

Thus, what the transformations for CLP constraints
and the embedded disjunctions have shown is that a
rather broad set of logic constraints can be converted
into the disjunctions as in (GDP), or for that matter as
in (PH).

3.1. Example of a CLP model con6erted to GDP form

We show next how a complex CLP model can be
converted into a GDP. The following example corre-
sponds to a CLP model formulated in the ILOG solver:

Continuous variables: x]−5, y]0
Integer variables: k=0,1,2,3,4
Constraints:

x3+10x=yx+2k

kx+7.7y=2.4

(k−1)y+1510 (29)

{[log(y+2x+12)5k+5]�[y]k2]}

[{x50�y51}

x50[k\3

With the transformations described above, the model
can be formulated in GDP form as follows:

Continuous variables: x]−5, y]0
Integer variables: k=0,1,2,3,4
Constraints:

x3+10x=yx+2k

kx+7.7y=2.4

(k−1)y+1510
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4. Language

LOGMIP is the first code that was implemented for
solving nonlinear/discrete problems formulated in the
form of the hybrid model (PH). In that solver we
adopted some constructions of the mathematical pro-
gramming language of GAMS for expressing disjunc-
tions (Vecchietti & Grossmann, 1999). Writing a
disjunction in GAMS language is not natural and not
concise since we are using a language created to define
a model in algebraic form. Also, logic propositions
have to be provided to the model as integer constraints
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to pose a problem in the form of problem PH. A
PROLOG (Tourn, 1995) program developed to transform
the logical expression into inequalities is executed sepa-
rately of LOGMIP. The program output is included in
the LOGMIP input file. In this work we describe a new
language in LOGMIP for expressing models formulated
in the form of PH or GDP. The idea is to provide
capabilities for describing in a natural form disjunc-
tions, logic expressions and constraints within a mathe-
matical programming language.

In the past, several constructions have been proposed
for expressing conditional models like the one proposed
in the PH and GDP formulations. Pantelides (1988)
proposed an input language for dynamic simulation in
SpeedUp based on IF statements and the logical opera-
tors AND, OR, NOT. The language is used for express-
ing discontinuities in the model and logical conditions
of any complexity. Recently, Rico-Ramirez (1998) pro-
posed several constructions based on WHEN…CASE,
SELECT…CASE, SWITCH CASE, CONDITIONAL
statements for the description of conditional models in
the equation oriented software ASCEND. There are also
some other solvers for CLP such as ECLIPSE and ILOG

where conditional constraints, logic constraints and
special constructs like the all-different can be expressed
in high-level languages (Bockmayr and Kasper, 1998).

The symbols, reserved words, components and lan-
guage syntax to express models in the form of general-
ized hybrid/disjunctive programming problem PH are
described below.

The language consists of: Boolean variables, continu-
ous and binary variables, mathematical, relational and
logical operators, selection statements of the type
‘IF…THEN…ELSE…ENDIF’. The descriptions of
these components are as follows:

4.1. Operands, operators and statements

Binary and continuous variables.
Boolean variables, which can take values true or
false.
Mathematical operators: + , − , *, /.
Relational operators: = (equal), B= (less than or
equal to), \= (greater than or equal to).
Logical operators: � (and), � (or), � (not, !), -\
(implication), B -\ (equivalence).
Selection statements of the form
IF…THEN…ELSE…ENDIF.

The expressions that can be formulated with this ap-
proach are the following:

4.2. Expressions

� Selection statements of the form
IF…THEN…ELSE…ENDIF are used to formulate

a disjunction. It selects the set of constraints to be
applied after evaluating a logical expression (or a
single Boolean variable) to true or false. Example:

IF (Yi) THEN hi(x)50
ELSE gi(x)50
ENDIF

� Logic propositions: used to express (by the logical
operators previously described) relationships be-
tween the Boolean variables. Example:

y1�¬y2[y3�y4
� Logic expressions: expressions relating variables

(continuous, binary or Boolean) and operators
(mathematical and/or logic). Examples: [(x+3)[
(y+4)]. Although these statements are not con-
tained in problem PH, from the previous section
these expressions can be converted into disjunctions
(by the user or by LOGMIP) such that can be pro-
cessed by the algorithms.
Hence, a rather large class of logic expressions is

allowed in our language. Allowing the formulation of
complex logical sentences allows the problem to be set
up in a more flexible way for the user. For the solution,
however, we transform these logic expressions into
propositional logic and disjunctions as were discussed
in the previous section.

We have chosen the selection statement
IF…THEN…ELSE…ENDIF because it states natu-
rally and directly all types of disjunctions. Two term
disjunctions are formulated with a single IF sentence.
Through nesting sentences we can define disjunction
with several terms and/or embedded disjunctions. Be-
low we show how to write the disjunctions in the
proposed language.

4.3. Two terms disjunctions

[True]�[False]

IF (logic expression) THEN
Constraints to be applied when logic expression is
TRUE

ELSE
Constraints to be applied when logic expression is
FALSE

ENDIF

4.4. Se6eral terms disjunction

[1]�[2]�[3]

IF (logic expression1) THEN
Constraints to be applied when logic expression1 is
TRUE

ELSE IF (logic expression2) THEN
Constraints to be applied when logic expression2 is
TRUE
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ELSE IF (logic expression3) THEN
Constraints to be applied when logic expression3 is
TRUE

ENDIF
Note that the above also applies to disjunctions with

two terms if each of them is activated by a different
logic expression.

4.5. Embedded disjunction

4.5.1. Case a
The first case involves disjunctions terms that can be

true or false:

Æ
Ã
Ã
Ã
È

Æ
Ã
Ã
Ã
È

True 1� True 2
[True 3]�[False 3]

n
�
�False 2nÇÃÃÃ

É

�

Æ
Ã
Ã
Ã
È

False 1ÇÃ
Ã
Ã
É

Ç
Ã
Ã
Ã
É

IF (logic expression1) THEN
Constraints to be applied when logic expression1 is
TRUE
IF (logic expression2) THEN

Constraints to be applied when logic expression2 is
TRUE
IF (logic expression3) THEN

Constraints to be applied when logic
expression3 is TRUE

ELSE
Constraints to be applied when logic
expression3 is FALSE

ENDIF
ELSE

Constraints to be applied when logic expression2 is
FALSE

ENDIF
ELSE

Constraints to be applied when logic expression1 is
FALSE

ENDIF

4.5.2. Case b
For this case the disjunction terms are handled by

different Boolean variables:

� True 1
[True 3]�[True 4]�[True 5]

n
�
�True 2n

IF (logic expression1) THEN
Constraints to be applied when logic expression1 is
TRUE
IF (logic expression3) THEN

Constraints to be applied when logic expression3 is
TRUE

ELSE IF (logic expression4) THEN
Constraints to be applied when logic expression4 is
TRUE

ELSE IF (logic expression5) THEN
Constraints to be applied when logic expression5 is
TRUE

ENDIF
ELSE IF (logic expression2) THEN

Constraints to be applied when logic expression2 is
TRUE

ENDIF
In Fig. 1 we present the input file of the problem (30)

written with the new language.

5. Overview of the solution algorithms

The tree diagram of Fig. 2 shows the different meth-
ods that can be used to solve the hybrid PH, disjunctive
GDP and MINLP PA models. The diagram also shows
the conditions and transformations needed for these
problems to be solved by the algorithms, which are in
the lowest level of the tree.

The logic based OA (Outer Approximation and the
logic-based GBD (generalized Benders Decomposition)
methods can be applied for disjunctive problems (GDP)
involving two terms disjunctions like the one proposed
by Turkay and Grossmann (1996). Extensions of these
algorithms can be applied for the case of the hybrid
form (Vecchietti & Grossmann, 1999). In the same way
the GDP form through the generation of the Convex
Hull of the nonlinear disjunctions can be solved by the
branch and bound (B&B/CRP) algorithm proposed by
Lee and Grossmann (2000). This method can be ex-
tended to the hybrid formulation in order to handle
both the disjunctions and the binary variables. The
hybrid and GDP representations can be reformulated
as MINLP problems replacing the disjunctions by Big-
M constraints or generating the Convex Hull (Lee &
Grossmann, 2000). Once the transformation has been
made, any method for MINLP can be applied. The best
known algorithms for solving a MINLP problem are
B&B (Gupta & Ravindran, 1985; Ryoo & Sahinidis,
1995; Stubbs & Mehrotra, 1996), OA (Duran & Gross-
mann, 1986) and its extensions outer-approximation/
equality-relaxation/augmented-penalty (OA/ER/AP)
(Viswanathan & Grossmann, 1990), GBD (Geoffrion,
1972) and extended cutting plane (ECP) (Westerlund &
Pettersson, 1995).

6. Implementation

In the new version of LOGMIP, nonlinear discrete/
continuous programs can be formulated in any of the
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Fig. 1. Input file of problem presented in Eq. (30) with the new language.

three representations presented before: PH, GDP and
MINLP. Aside from the language, unique capabilities
in LOGMIP are the selection between several formula-
tion and solution methods.

For the problem formulation, the language previ-
ously presented is extended in GAMS for stating logic
constraints, logic propositions and disjunctions. The
new language is a superset of the GAMS language. In
this way we can get the capabilities and advantages of
both the mathematical and the logic expressions for
setting up a problem. A parser has been developed for
the recognition of logic constructions of the language.
In that way, the input file for the new version of
LOGMIP includes the mathematical programming lan-
guage of GAMS and all the logic sentences. A precom-
piler step is first executed, and the input file is

transformed into a file ready to be compiled by GAMS

plus another file containing all the information of the
logic needed for the solution algorithms. This file is
read when the algorithm is executed. Fig. 3 shows the
flowchart of the new version of LOGMIP.

Fig. 2. Overview of the solutions algorithms.
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Fig. 3. Flowchart of LOGMIP.

then the same transformations as in (2) are used.
It should be noted that in above cases the advantage

is that the user no need to supply initial guesses since
the default initialization in GAMS is invoked.

For the case when the user wants to apply the
logic-based OA, which would be for process networks
expressed in the form of GDP or PH, the user must
supply an initialization through set covering with addi-
tional initial values for the variables.

7. Examples

Three examples have been solved for illustration
purposes. The first problem corresponds to the trans-
formed CLP example in Eq. (30). That PH formulation
was converted to an MINLP by the Convex Hull
transformation. The OA method was used and the
solution was obtained at the first step of the algorithm
when the relaxed problem was solved. The solution of
this problem is x= −1.285, y=0.979 and k=4.

The other problems have been solved with LOGMIP

with several configurations and algorithms. The data
for these examples can be found in Vecchietti and
Grossmann (1999).

The second example corresponds to a process net-
work superstructure (see Fig. 4) where the optimal
configuration has to be found. The input file of the
GDP formulation for this problem with the new lan-
guage can be found in Appendix A. The results ob-
tained in the solution of this problem are presented in
Table 1.

The third example is a multiproduct batch plant
design where the objective is to determine the unit
design, number of units in parallel and the storage tank
location and design in order to minimize the investment
cost. This example has been also solved considering
different algorithms and formulations. The results ob-
tained are shown in Table 2.

From the results presented in the previous tables it
can be seen that no formulation outperforms the other.
Different number of iterations, and hence computa-
tional time, are needed to reach the solution and also
the optimal values of the starting points differ. There-
fore, it is important to have a general and flexible tool
where not only the formulation but also the algorithm
can be selected for solving a discrete/continuous nonlin-
ear problem.

8. Concluding remarks

This paper has described a generalized modeling
framework and solution techniques for nonlinear dis-
crete/continuous problems. The proposed approach al-
lows the representation of the same problem with

Fig. 4. Processes superstructure of second example.

At the level of the solution methods, the code of
DICOPT+ + has been used as a base for the implemen-
tation of the ECP and GBD MINLP algorithms. For
the case of the algorithms that consider directly the
disjunctions in the formulation, we have implemented
the logic-based OA algorithm and the Convex Hull
transformation. We intend to add the disjunctive
branch and bound method in the future. As for the
solutions methods the defaults are as follows:
1. If the problem is posed as an MINLP the OA

method is implemented and DICOPT+ + is applied.
2. If the problem is posed as a GDP, the Convex Hull

transformation is used for the disjunctions, and the
logic propositions are transformed in equation
form. The resulting GDP is solved as an MINLP.

3. If the problem is posed as the hybrid model PH,
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Table 1
Results of the processes superstructure example

Model MINLP (Big-M) MINLP (Convex Hull) PH GDP

ECP GBDAlgorithm OA OA Logic-based OA Logic-based OA
3333Variables 41333333

8 8 8Discrete variables 8 8 8
32 32 32Constraints 51 52 52
−25.1b 15.08 15.08Objective value at relaxation 62.6 73.1a 73.1a

1 NLP6 MIPIterations 2 NLP1 NLP 3 NLP1 NLP
2 major4 major17 major 1 major 1 major

68 6868686868Optimum value

a Initial NLP.
b Initial MIP.

Table 2
Results of the multiproduct batch plant example

MINLP (Convex Hull)MINLP (Big-M) PHModel

ECP OA OA Logic-based OAAlgorithm
114 113Variables 225 113

Discrete variables 53535353
277187187 187Constraints

219 335−134 230bObjective value at relaxation 305 061a224 165
28 MIP 7 majorIterations 16 major 3 major

Objective value 261 883 261 883 261 883 261 883

a Initial NLP.
b Initial MIP.

different formulations. These can be expressed in terms
of equations only, and/or disjunctions and logic con-
straints. We have presented the transformations be-
tween several logic constraints, which are frequent in
CLP, into the GDP form. The significance of these
transformations is that problems with logic constraints
can be translated into the disjunctive form of problems
PH or GDP. We have also proposed a language for the
expression of logic constraints and disjunctions. The
selection sentences IF…THEN…ELSE…ENDIF have
been chosen for expressing disjunctions. The choice was
based on the simplicity and expressiveness for posing
disjunctions of different levels of complexity. The pro-
posed language also includes the operators, statements
and symbols for posing logic expressions and proposi-
tions. The language is a superset of the GAMS mathe-
matical programming language. This combination

allows the specification of complex mathematical/logic
program optimization problems. A parser for checking
the syntax, analysis and transformation of the logic
sentences into readable files for the solvers has been
developed. A brief overview of the algorithms for the
solution of these problems was given, and several exam-
ples were presented. We intend to report in the future
more extensive results once the development of the new
version of LOGMIP has been completed.
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Appendix A. Input file of processes superstructure example with new language

$TITLE APPLICATION OF THE LOGIC-BASED MINLP ALGORITHM IN EXAMPLEc3
* FOR THIS PROBLEM THE FORMULATION IS DISJUNCTIVE
$OFFSYMXREF
$OFFSYMLIST
* SELECT OPTIMAL PROCESS FROM WITHIN GIVEN SUPERSTRUCTURE.
*
REFERENCE: MARCO DURAN, PH.D. THESIS, 1984.
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CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PA.

SETS / 1*25 /I PROCESS STREAMS
J PROCESS UNITS / 1*8 /

PARAMETERS VARIABLE COSTCV(I) COEFF FOR PROCESS UNITS STREAMS/
3=−10, 5=−15, 9=−40
19=25, 21=35, 25=−35
17=80, 14=15, 10=15
2=1, 4=1, 18=−65
20=−60, 22=−80 /;

PROFIT ;VARIABLES PROF
;Y(J)BINARY VARIABLES
CF(J)POSITIVE VARIABLES ;X(I),

EQUATIONS
* BALANCES, DESIGN SPECIFICATIONS
* HOLDS INDEPENDENT OF DISCRETE CHOICES
* -----------------------------------------------------------------

MASSBAL1, MASSBAL2, MASSBAL3, MASSBAL4, MASSBAL5, MASSBAL6,
MASSBAL7, MASSBAL8
SPECS1, SPECS2, SPECS3, SPECS4

* LOGIC PROPOSITIONS DECLARATIONS
* -----------------------------------------------------------------

LOGIC1, LOGIC2, LOGIC3, LOGIC4, LOGIC5, LOGIC6, LOGIC7, LOGIC8,
LOGIC9, LOGIC10, LOGIC11, LOGIC12, LOGIC13

* DISJUNCTIVE CONSTRAINTS:
* -----------------------------------------------------------------
Process 1

INOUT11, INOUT12, INOUT13, INOUT14
Process 2

INOUT21, INOUT22, INOUT23, INOUT24
Process 3

INOUT31, INOUT32, INOUT34
Process 4

INOUT41, INOUT42, INOUT43, INOUT44, INOUT45
Process 5

INOUT51, INOUT52, INOUT53, INOUT54
Process 6

INOUT61, INOUT62, INOUT63, INOUT64
Process 7

INOUT71, INOUT72, INOUT73, INOUT74
Process 8

INOUT81, INOUT82, INOUT83, INOUT84, INOUT85, INOUT86
*

OBJETIVO OBJECTIVE FUNCTION DEFINITION;
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* BOUNDS SECTION:
* -----------------------------------------------------------------

2.0= ;X.UP(‘3‘)
=X.UP(‘5‘) 2.0 ;

2.0 ;X.UP(‘9‘) =
1.0= ;X.UP(‘10‘)

=X.UP(‘14‘) 1.0 ;
2.0X.UP(‘17‘) ;=
2.0= ;X.UP(‘19‘)

=X.UP(‘21‘) 2.0 ;
3.0X.UP(‘25‘) ;=

*
* SET COVERING INITIALIZATION
*
INITIAL BU 3;

TRUE Y(’1’) Y(’3’) Y(’4’) Y(’7’) Y(’8’);
TRUE Y(’2’) Y(’3’) Y(’4’) Y(’6’) Y(’8’);
TRUE Y(’1’) Y(’3’) Y(’5’) Y(’8’);

* EQUATIONS DEFINITIONS
* -----------------------------------------------------------------

X(‘13’)MASSBAL1 =E=. . X(‘19’)+X(‘21’) ;
X(‘17’)MASSBAL2 =E=. . X(‘9’)+X(‘16’)+X(’25’) ;
X(‘11’) =E=. . X(‘12’)+X(‘15’)MASSBAL3 ;
X(‘3’)+X(‘5’) =E=MASSBAL4 X(‘6’)+X(‘11’). . ;
X(‘6’) =E=. . X(‘7’)+X(‘8’)MASSBAL5 ;

MASSBAL6 X(‘23’). . =E= X(‘20’)+X(‘22’) ;
X(‘23’) =E=. . X(‘14’)+X(‘24’)MASSBAL7 ;
X(‘1’) =E=MASSBAL8 X(‘2’)+X(‘4’). . ;
X(‘10’) =L=. . 0.8 * X(‘17’)SPECS1 ;
X(‘10’) =G= 0.4 * X(‘17’) ;SPECS2 . .
X(‘12’) =L=. . 5.0 * X(‘14’)SPECS3 ;
X(‘12’) =G= 2.0 * X(‘14’) ;SPECS4 . .

* LOGIC PROPOSITIONS
* -----------------------------------------------------------------

LOGIC1. . (y(‘1’) and �y(‘2’)) or ( �y(‘1’) and y(‘2’)) ;
y(‘1’) \(y(‘3’) or y(‘4’) or y(‘5’))LOGIC2.. ;

;y(‘2’) - \ (y(‘3’) or y(‘4’) or y(‘5’))LOGIC3..
;LOGIC4.. y(‘3’) - \ (y(‘1’) or y(‘2’))
;y(‘3’) - \ y(‘8’)LOGIC5..

(y(‘4’) and �y(‘5’)) or ( �y(‘4’) & y(‘5’))LOGIC6.. ;
;y(‘4’) - \ (y(‘6’) or y(‘7’))LOGIC7..

y(‘5’) - \ (y(‘1’) or y(‘2’))LOGIC8.. ;
y(‘5’) - \ y(‘8’)LOGIC9.. ;

;y(‘6’) - \ y(‘4’)LOGIC10..
�y(‘6’) B-\ y(‘7’)LOGIC11.. ;

;LOGIC12.. y(‘7’) - \ y(‘4’)
;LOGIC13.. y(‘8’) - \ (y(‘3’) or y(‘5’) or �y(‘3’) or y(‘5’))
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* DISJUNCTION SPECIFICATIONS
* -----------------------------------------------------------------

IF (Y(‘1’))THEN
INOUT11. . EXP(X(‘3’)) −1. =E= X(‘2’) ;

;INOUT14. . CF(‘1’) =E= 5
ELSE

;INOUT12. . X(‘2’) =E= 0
;INOUT13. . X(‘3’) =E= 0

ENDIF

IF (Y(‘2’)) THEN
;INOUT21. . EXP(X(‘5’)/1.2) −1. =E= X(‘4’)

INOUT24. . CF(‘2’) =E= 8 ;
ELSE

INOUT22. . X(‘4’) =E= 0 ;
;INOUT23. . X(‘5’) =E= 0

ENDIF

IF(Y(‘3’)) THEN
INOUT31. . 1.5 * X(‘9’)+X(‘10’) =E= X(‘8’) ;

;INOUT34. . CF(‘3’) =E= 6
ELSE

;INOUT32. . X(‘9’) =E= 0
ENDIF

IF(Y(‘4’)) THEN
;INOUT41. . 1.25 * (X(‘12’)+X(‘14’)) =E=

X(‘13’)
INOUT45. . CF(‘4’) =E= 10 ;

ELSE
;INOUT42. . X(‘12’) =E= 0

INOUT43. . X(‘13’) =E= 0 ;
;INOUT44. . X(‘14’) =E= 0

ENDIF

IF(Y(‘5’))THEN
;INOUT51. . X(‘15’) =E= 2. * X(‘16’)

INOUT54. . CF(‘5’) =E= 6 ;
ELSE

;INOUT52. . X(‘15’) =E= 0
;INOUT53. . X(‘16’) =E= 0

ENDIF

IF(Y(‘6’)) THEN
INOUT61. . EXP(X(‘20’)/1.5) −1. =E= X(‘19’) ;

;INOUT64. . CF(‘6’) =E= 7
ELSE

;INOUT62. . X(‘19’) =E= 0
INOUT63. . X(‘20’) =E= 0 ;

ENDIF

IF(Y(‘7’))THEN
INOUT71. . EXP(X(‘22’)) −1. =E= X(‘21’) ;
INOUT74. . CF(‘7’) =E= 4 ;

ELSE
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;INOUT72. . X(‘21’) =E= 0
;INOUT73. . X(‘22’) =E= 0

ENDIF

IF(Y(‘8’))THEN
INOUT81. . EXP(X(‘18’)) −1. =E= ;

X(‘10’)+X(‘17’)
;INOUT86. . CF(‘8’) =E= 5

ELSE
;INOUT82. . X(‘10’) =E= 0
;INOUT83. . X(‘17’) =E= 0
;INOUT84. . X(‘18’) =E= 0

INOUT85. . X(‘25’) =E= 0 ;
ENDIF

OBJETIVO. . PROF =E= SUM(J, CF(J))+SUM(I, ;
X(I)*CV(I))+122

OPTION LIMCOL=0 ;
;OPTION LIMROW=0

;MODEL LOGIC /ALL/
LOGIC.optfile=1 ;

;SOLVE LOGIC USING LOGMIP MINIMIZING PROF
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