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Motivation

+

O Disjunctive Programming has proved to be a successful modeling
framework for problems involving discrete decisions

U LogMIP=>» develop a system for solving disjunctive problems in GDP
formulation

» Generate a language for the expressions of disjunctions, logic
constraints and logic propositions

* Implement and develop techniques and algorithms for solving
linear/nonlinear disjunctive problems.




General Hybrid/Disjunctive Problem(GHDP)
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x and ¢; are continuous variables

y are binary variables (0-1)

Y, are Boolean variables to establish
whether a given term in a disjunction is
true [/, (x)<0],

0(Y) are logical relations between
Boolean variables

g(x) are linear/nonlinear inequalities that
hold independent of the discrete choices
f(x) represents a linear/nonlinear
objective function,

r(x)+Dy<0 corresponds to a general
mixed integer algebraic equations
Ay>ais a set of integer inequalities

d’y are linear cost terms.

Y e {True, False}™, c. 20 This is a general formulation that can

used for LogMIP




Disjunction Relaxations
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DISJUNCTION CHARACTERIZATION

improper

proper




Improper Disjunction

minZ = (X, - 3.5)° + (X, - 4.5)°
sujetoa : The x space
Y, Y,
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2<X,<4 3<X,<4

» The disjunction could be replaced by the disjunction term with the
largest feasible region.




Proper disjunction - Non-empty Intersection

‘ For this case is not clear which relaxation is tighter
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Both relaxations are equivalent The convex hull relaxation has
a tighter feasible region

The objective function plays an important rol:
* when located inside the region of one term both relaxations are competitive
 in general the convex hull relaxation is tighter




Proper disjunction - Empty Intersection
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The convex hull relaxation has

Both relaxations are equivalent a tighter feasible region

For this case can be asserted that for the general case the convex hull
renders a tighter feasible region




Improper disjunction
Special Interest in Process Engineering
(Synthesis Problems)

+

minZ =(x; —1.1)% +(x, -1.1)* +¢, The x space
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Both relaxations have the same feasible region




Improper disjunction
Special Interest in Process Engineering
(Synthesis Problems)

Including the y-space

4

Convex hull

minZ = (x; - 1.1)* +(x, -11)* +y, minZ =(x,—1.1)" +(x, -1.1)*+y,
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LogMIP

Logical Mixed Integer

Programming

Features

System linked to GAMS

Problems can be formulated in GHDP

Problems can be linear or nonlinear discrete

Provides:

. Language to write disjunctions

. Operators and sentences for logic propositions

o Linear and nonlinear solvers




LogMIP: Modeling two terms disjunction

‘ { condition } { — condition
V

constraint s set t constraint s set f

Conditions in this LogMIP version are Boolean (binary) variables

Declaration sentence:

constraints set (names) to satisfy when condition is TRUE;

constraints set (names) to satisfy when condition is FALSE;




LogMIP: Modeling a multi-term disjunction

‘ { condition 1 } { condition 2 } { condition N }
V WV

constraint s set 1 constraint s set 2 constraint s set N

Declaration sentence:

Definition sentence:




LogMIP: Posing logic propositions

+

Operands : Boolean (binary) variables (must correspond to disjunctions
conditions)
Operators: and, or, not , -> (implication), <-> equivalence

More declarative special sentence:

atmost, atleast, exactly
Syntax: | ] Parameter n indicates

how many variables must
[ ] comply the sentence
[ ] (default = 1)




EXAMPLE 1

mnZ =T
s.t. T2>x,+8
T=2X,+5
T=>X3+6

Y, —Y,
V
X;—X3+5<0 X3—=X;+2<0
Y, =Y,
Vv
Xy —X3+1<0 X3 =X, +6 <0

Ys —Y3
\4
X;—X,+5<0 Xy =X <0

T,X1,X9,%X3 20
Y, €{true, false } ,k =1,2,3.




EXAMPLE 1: LogMIP File

$ONTEXT BEGIN LOGMIP

SET J /1*3/;

BINARY VARIABLES Y(J);
POSITIVE VARIABLES X(J),T
VARIABLE Z;

EQUATIONS EQUATL1, EQUAT2, EQUAT3, EQUAT4,
EQUAT5, EQUAT6, EQUAT7, EQUATS, EQUATO,
FICT, OBJECTIVE;

EQUAT1.. T =G= X("1") + 8;

EQUAT2.. T =G= X("2") + 5;

EQUAT3.. T =G= X("3") + 6;

EQUAT4. . X("1")-X("3")+

EQUAT5.. X("3")-X("1")+

EQUAT6.. X("2")-X("3")+

EQUAT7.. X("3")-X("2")+

EQUATS. . X("1")-X("2")+

EQUAT9.. X("27)-X("1") =L= $OFFTEXT END LOGMIP
FICT.. SUMQJ, Y(J)) =G= O; OPTION MIP=LOGMIPC;
X.UP(I)=12.; MODEL examplel /ALL/;
OBJECTIVE.. Z ; SOLVE examplel USING MIP MINIMIZING Z;




EXAMPLE 2

min ¢ + 2X; +X,
Y, Y,

— X+ X, +2<0|v|2-X%X,<0
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0<x,<5,0<%,<5,c20
Y; e{true, false}, j=1,2,3.




EXAMPLE 2: LogMIP File

SET 1 /71*3/; $ONTEXT BEGIN LOGMIP
SET J /71*2/;

BINARY VARIABLES Y(l);
POSITIVE VARIABLES X(J), C;
VARIABLE Z;

EQUATIONS EQUATL1, EQUAT2, EQUAT3, EQUAT4,
EQUAT5, EQUAT6,INT1, INT2, INT3, FICT,
OBJECTIVE;

EQUATL.. X("2")- X("1") + 2 =L= O;

EQUAT2.. C =E= 5;

EQUAT3.. 2 - X("2") =L= 0;

EQUAT4.. C =E= 7;

EQUAT5.. X("1")-X("2") =L=

EQUAT6.. X("1") =E= O;

INTZ.. Y(1%)+ Y("3") =L=

INT2.. Y("2")+ (1-Y("3"))

INT3.. Y("2")+ Y("3") =L=

FICT.. SUM(I, Y(1)) =G= 0;

OBJECTIVE.. Z =E= C + 2*X("1%) + X("2"): $OFFTEXT END LOGMIP

X.UP(J)=20; OPTION MIP=LOGMIPC;

C.UP=7; MODEL PEQUE2 /ALL/;
SOLVE PEQUE2 USING MIP MINIMIZING Z;




Declaring and defining disjunctions over a domain

+

disjunction _identifier[ domain _identifier, ..., domain_identifier],
..., disjunction_identifier [ domain_identifier, ..., domain _identifier];

Example: D(1,J): One disjl_mction Is defined for
every pair I,J
D(1,J) IS D(1,J) IS
Y(1,9) Y(1,J) THEN
CONSTRAINTL1(1,J); CONSTRAINT(1,3,’1);
EQUATIONZL(1,J); CONSTRAINT(1,3,’2%);

CONSTRAINT2(1,J); CONSTRAINT(1,J,’3"):
EQUATION2(I,J); CONSTRAINT(I,J,’4"):

You cannot define a domain inside the LOGMIP section. The reason
Is that the disjunction’s domains must be in concordance to the
constraint’s domains, which are defined in the GAMS section.




Controlling disjunction’s domain

In previous examples Constraint’s domains are expanded together the

disjunction’s domains.
If constraint’s domain are different in LogMIP than in GAMS section,
LogMIP reports an error.

Disjunction’s domain are controlled by the sentence with

plus other operators:

Relational operators:
. less than
. less than or equal to
equal
greater than
greater than or equal to

Logical operators: :

Sets operators:
: order of an item In the set

- hnumber of items in the set
- Inclusion of a set item




Controlling disjunction’s domain

EXAMPLE 1

It controls not only disjunction’s domains

Disjunction D(i,j); /‘ but also constraint’s domains

D(.j) IS
Y(i,j)) THEN
CONSTR1()); Since k is not controlled by
CONSTR2(i,j); disjunction’s domains, so this
sentence is needed for k

CONSTR3(j):
CONSTR4(j,k)

Suppose we have in GAMS Section: SET | /1*3/ ,J /1*4/, K/1*2/;

With this definition, the following disjunctions are generated:




Controlling disjunction’s domain

EXAMPLE 2: Controlling a domain already controlled

+

For this case an alias is needed in GAMS section:

GAMS Section
SET 1 /71*3/ ,J /1*4/;
ALIAS (J3,3);

LogMIP Section
Disjunction D(i,j);
D(1.))
Y(i,J) THEN
CONSTR1(j);
CONSTR2(i,jj)

CONSTR3(j);
CONSTRA4(j,k)




Controlling disjunction’s domain

EXAMPLE 3: Controlling a domain via a SUBSET

+

GAMS Section:

SET 1 /1*3/ ,J /1*4/;

* Define the subset k
SETK(,J)/1.2,2.3,3.4/;

LogMIP Section
Disjunction D(1,J);
D(1, J) IS
Y(1,J) THEN
CONSTRAINT(1,J);
CONSTRAINT(1,);

CONSTRAINT(1,J);
CONSTRAINT(1,J);

Disjunctions generated:




Hierarchical Discrete Decisions
(Nested Disjunctions)

‘ Nested disjunctions can not be used in the actual version of LogMIP
Hierarchical decisions are common in PSE: synthesis and design problems
e.g: discontinuous cost functions, simultaneous planning and scheduling,
synthesis and design of batch plants.

Yi
h(x)=0

Zl,J

VvV o |Gi= (aijdﬂij + Bij )ri(P)oi(T)

jeb;
di, <d; <dj —Y;

Zik
' Vv
\V/ yi(P)=7i di =

kEEi Cl =O

Pic_1 < P, < Py

Zi,m
v | 6(T)=6bin

mekF; B B
Tim—1 <dj <Tjy




Transforming Hierarchical Discrete
Decisions into GHDP form
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Transforming Hierarchical Discrete Decisions into
GHDP form

+

Algorithm steps:

1- take out the inner disjunctions, leaving nested disjunctions
Into a set of individual ones,

2- define an extra term for the disjunction corresponding to the
inner to represent the fact that none of the other terms is true

3- define the equivalence propositions between the outer

and the inner disjunctions (logic propositions or algebraic
constraints)
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Interaction GAMS/LogMIP Compilers

GAMS
section

LogMIP
section

Problem
Input File

GAMS
Compiler
Symbol Table

LogMIP
Compiler

Mathematical
Problem Info

Logic
Info

LOGMIP
Solver




LogMIP Algorithms

HYBRID / DISJUNCTIVE PROGRAM

/\

LINEAR

|

MIP Reformulation
by “Big-M” or Convex hull
Relaxation

LogMIPC l LogMIPM
MILP PROGRAM

|

B&B
(OSL, CPLEX, etc

NONLINEAR

\ NOT DONE
YET!

Special two terms MINLP Reformulation
disjunction by “Big-M” or Convex hull
Relaxation

LogMIPV3
MINLP PROGRAM

/\

Logic Based B&B OA
OA (SBB) (DICOPT++)




Nonlinear Disjunctive problems
Logic-Based OA algorithm

Nonlinear models solved by Logic-Based Outer Approximation needs
Initialization, these are needed to run the first NLP problems to provide
Initial values for the first MASTER MIP subproblem.

More details can be found in Turkay and Grossmann (1996).

The clause IS used.
Y(L), Y(3), Y(4), Y(7). Y(8);
Y('1Y), Y(3"), Y(5Y), Y(8");
Y(I2l)’ Y(IBI)’ Y(I4I)’ Y(l6l)’ Y(I8I);

Initialization entries must be written after the disjunction definitions

Other options:




Conclusions

+

O Hybrid and Disjunctive Programming provide advantages in modeling

and solution techniques that complements Mixed Integer Non Linear
Programming (MINLP)

O LogMIP extends the capabilities of the mathematical modeling systems

by means of a language for the expression of disjunctions and logic
propositions

O Starting with a linear hybrid/disjunctive model it is reformulated into a MIP
(by Convex Hull or BigM relaxation). For nonlinear problems with special
two terms disjunctions Logic-Based Outer Approximation is used.

O LogMIP becomes an alternative modeling and solving continuous/discrete
linear/nonlinear program problem




