
 
  

 

DATA RECONCILIATION AND INSTRUMENTATION 
UPGRADE.  OVERVIEW AND CHALLENGES. 

Miguel J. Bagajewicz 
University of Oklahoma, 100 E. Boyd T-335, Norman, OK 73072 

Abstract 

This paper discusses the state of the art in data reconciliation and instrumentation upgrade. In the field 
of data reconciliation, several new directions of research and recommendations for software vendors as 
well as practitioners are made. In the case of the emerging field of instrumentation upgrade, aside from 
also pinpointing research and development directions, practical economical aspects are discussed.   
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Introduction 

This article focuses on the relationship between data 
reconciliation, a statistically-based technique to obtain 
estimators of process variables and the problem of 
determining how to place instrumentation throughout the 
process so that data reconciliation performs following 
certain pre-specified performance goals. The article is 
organized as follows: data reconciliation is reviewed first 
and the problem of instrumentation design/ upgrade is 
discussed afterwards. In both cases, the state of the art in 
academia and industry some of the existing challenges are 
discussed.  

Data Reconciliation 

Data filtering and reconciliation has been used for several 
years as means of obtaining accurate and consistent data in 
process plants.  Early work in dynamic data reconciliation 
is rooted in the problem of process state estimation using 
the concept of filtering. Lately, the problem is addressed 
using model based data smoothing.  

 
Depending on the data used, there are three types of 
estimation problems for the state of the system at time t 
(figure 1). Kalman filtering (1960) deals with the problem 
of filtering, that is producing estimates at time t. Data 
Reconciliation deals with the problem of smoothing, using 
the condition that variables are connected through a 
model.  

 
 

                                                              Filtering 
         Data used for estimation                  t 

 

Prediction 
     Data used for estimation                      t 
                          

 

Smoothing 
         Data used for estimation                t 

 
Figure 1. Types of state estimation (Gelb, 1974) 

 
In other words, in data reconciliation plant measurements 
(flowrates, temperatures, pressures, concentrations, etc) 
are used to obtain estimators that conform to a certain 
chosen model, typically a set of differential algebraic 
equations (DAE) (equations (1-2) 

 

)x,x(g
dt
dx

211
1 =              (1) 

                      0212 =)x,x(g                (2) 
 



   
 
where the variables are divided in two sets, x1 being the set 
corresponding to variables participating in accumulation 
terms and x2  the rest.  Thus, the general data reconciliation 
problem is stated as follows:  

 
Given a set of measurement values of a subset of state 
variables ),( 2,1, MMM zzz =  it is desired to obtain the best 

estimators of these measured state variables Mx~  and as 
many of the unmeasured variables Ux~  as possible.  

 
When estimates Mx~  at N instances of time at which the 
measurements were made are sought, and the variance of 
the measurements (Q) is known, the following 
optimization problem is used:  
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This least square problem can be derived from Bayesian 
theory using the assumption that the distribution of errors 
is normal (Johnston and Kramer, 1995). In addition, 
Crowe (1996) showed that the same result can be derived 
using information theory. For the case where steady state 
is assumed, only one measurement is used, usually an 
average of several measurements, and using special 
procedures to include accumulation term.  Three excellent 
books describe the subject (Madron, 1992; Romagnoli J. 
and M. Sánchez, 1999; Narasimhan S. and C. Jordache, 
2000), which cover in detail some material here included.  

 
Steady State Linear Data Reconciliation  
Consider the case where no hold-up change takes place or 
negligible hold up is assumed.  In such case only flowrates 
are estimated. Therefore, we write the problem as follows 
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where f~  is the vector of reconciled flows, which contains 

measured and unmeasured flows. T
UM fff ]~~[~
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Various techniques were developed to convert the above 
problem into one containing measured variables only:  
Matrix Projection (Crowe et al., 1983),Q-R decomposition 
(Swartz, 1989; Sánchez and Romagnoli, 1996) and Gauss 
Jordan rearrangement of D (Madron, 1992).  

Non-linear versions of the steady state data reconciliation 
problem including the reconciliation of temperatures and 
even pressure measurements exist and are very successful 
and robust in practice. Dynamic reconciliation is still 
eluding engineering practice.  Several commercial 
packages exist (Datacon form Simsci, Sigmafine from 
OSI, Adviser from Aspentech, etc) all of them using 
steady state data reconciliation.  
 
Because processes are never truly at “steady-state”, one of 
the criticisms that this model, linear and nonlinear, has 
endured is that not only random errors, but also process 
variations are included in the averaging of data, smearing 
the results in an unpredictable manner. However, 
Bagajewicz and Jiang (2000) and Bagajewicz and 
Gonzales (2001) proved that this is not true for linear 
systems without hold-ups, and with proper data handling, 
the results are the same. Moreover, they showed that when 
holdups exist, the deviations can be small. For non-linear 
cases, some deviations of this are, however, possible. 
Finally, another unresolved problem is the assessment of 
the variance-covariance matrix Q. Only a few articles deal 
with it (Almasy and Mah, 1984; Darouach et al., 1989; 
Keller et al., 1992; Chen et al., 1997) 
 
Dynamic data reconciliation was not developed by the 
software industry based on the claim that it is too 
computationally intensive, and on doubts that non-linear 
models would be robust and user friendly. The reason may 
be that the commercial cycle for steady state data 
reconciliation is not over, and that there are more burning 
problems to overcome, gross error handling being one.  

 
Gross Error Detection 
Two central issues are of concern: proper location of gross 
errors (instrument biases and leaks) and estimation of their 
sizes.  Thus, the challenging task is to  

• Identify the existence of gross errors  
• Identify the gross errors location 
• Identify the gross error type 
• Determine the size of the gross error.  

 
After the gross errors are identified, two responses are 
possible and/or desired: 

• Eliminate the measurement with the bias, or 
• Correct the model (case of a leak) and run the 

reconciliation again. 
 
The first alternative is the one implemented in commercial 
software, which only considers biases.  
 
Test for Gross Error Presence/Location 
 Hypothesis testing is used for this task. We here present the 
three most popular tests.  
 
Global Test: The null hypothesis 0H  is that there is no gross 
error. Let r be the vector or residuals of the material balances, 
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that is r=CR z, where z are the flowrate measurements. Then, 
the expected value of r is E(r)=0, and the covariance matrix 
of r is Cov( r)= CRQR

T
RC , where QR is the covariance matrix 

of random measurement errors. In the absence of gross 
errors, the following variable  
 

 rCQCrN T
RRR

T
Mm

12 )( −=χ      (5) 
 

follows a Chi-squared distribution with m degrees of freedom 
(χ αm,

2 ), where m is the number of rows of CR. This number 

can be obtained before even performing data reconciliation. 
If it falls within the interval of confidence, that is, if it is 
lower than a certain critical value, then the null hypothesis 
cannot be ruled out. On the other hand, if it is larger than the 
critical value, it is said that a gross error has been detected, 
that is the null hypothesis cannot be accepted. Note that the 
global test cannot determine where are the gross errors, or 
how many are there.  

 
Nodal Test (Mah and Tamhane, 1982): In the absence of 
gross errors the constraint residuals r follow a m-variate 
normal distribution (m is the rank of CR).  Therefore 
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follows a standard normal distribution, N(0,1), under H 0 . If 

iφ  is larger than the critical value based on a confidence 
level α, then one concludes that there is at least one gross 
error in the set of measurement that participates in the 
corresponding node balance. Rollins et al. (1996) proposed a 
strategy using this test on linear combination of nodes. 
 
Measurement Test: It is based on the vector of measurement 
adjustments (or corrections) RR FFa ~

−= + , where a is the 
vector of measurement adjustments. The test is based on the 
assumption that the random errors for measurements are 
independently and normally distributed with zero mean. 
Under the null hypothesis, 0H , the expected value of a 

is ( )E a = 0  and the covariance matrix of a is Cov (a) = 

RQ̂ . Thus, the following variable is expected to follow a 
normal distribution N(0,1).  

  ( )iiR

i
i

Q

a
ˆ

=η         (7) 

 
 Thus, if no gross error is present the above value should be 
lower than a critical value. If α is the confidence level, then 
this critical value xα/2. is obtained directly from the normal 
distribution tables xα/2. Several studies, modifications and 
improvements have been proposed for this test (Mah and 
Tamhane, 1982; Crowe et al., 1983). In a recent 
development, Bagajewicz and Rollins (2002) discuss the 

consistency of this test, warning that, even under 
deterministic conditions it may point to the wrong variable.  
 
 Other tests used specifically for gross error identification 
exist. Among the most popular, are the generalized likelihood 
ratio (Narasimhan and Mah, 1986, 1987, 1988), principal 
component tests (Tong and Crowe, 1995) and the Bonferroni 
tests on unbiased estimators (Rollins and Davis, 1992). 

Multiple Gross Error Identification 
The tests described above are suitable for the detection of 
one gross error. However, when more gross errors exist, 
strategies are needed to identify them. One of the first 
strategies proposed is serial elimination (Ripps, 1965), 
which consists of coupling a certain test with an 
elimination strategy. If the test failed, then a strategy is 
proposed to identify one or more variables, which are the 
"most suspected ones". The measurements of these 
variables are eliminated and the test is run again. 
Commercial versions of this procedure (Datacon, 
Sigmafine) eliminate one measurement at a time and use 
the measurement test or similar. Several variations of this 
scheme were proposed (Romagnoli and Stephanopoulos, 
1980, Rosenberg et al., 1987; Iordache et al., 1985). 
 
Gross Error Size Estimation 
Once the gross errors have been identified, it is desired to 
determine their size. There are several methods that have 
been developed in recent years to perform this.  When one 
gross error is present, Madron (1982) proposed an expression 
based on the statistical properties of  rCQCr T

RRR
1)( − . 

However, in the presence of multiple gross errors these 
formulas do not apply.   

 
Serial Compensation (Narasimhan and Mah, 1987) 
identifies one gross error at a time and estimates its size, 
compensates the measurement and continues until no error 
is found. This technique has proven to be relatively 
efficient when one gross error is present, but not in the 
presence of multiple gross errors. Serial elimination does 
not address leaks (Mah, 1990). Serial Compensation is 
applicable to all types of gross errors and can maintain 
redundancy during the procedure but its results are 
completely dependant on the accuracy of estimation for 
the size of gross errors (Rollins and Davis, 1992). To 
improve these methods, simultaneous or collective 
compensation proposes the estimation of all gross errors 
simultaneously. Rollins and Davis (1992) proposed an 
unbiased estimation technique (UBET), which relies 
heavily on the identification of candidate gross errors 
performed by other methods.  Keller et al. (1994) 
proposed the successive application of the generalized 
likelihood ratio with collective compensation of all 
candidates at each step; Kim et al. (1997) proposed a 
modified Iterative Measurement Test (MIMT) using 
nonlinear programming (NLP) techniques; Sánchez and 
Romagnoli (1994) proposed a combinatorial approach to 



   
 
pick candidates and use them in a compensation model 
based on the use of the global test; Bagajewicz and Jiang 
(1998) proposed the successive use of a statistical test to 
identify one gross error at a time and independently 
developed a compensation model which is identical to the 
one presented by Sánchez and Romagnoli (1994).  
 
Some alternative objective functions that are capable of 
handling the gross errors in the data simultaneously with 
data reconciliation have been proposed. We cite only those 
that have reached publicly offered software. Tjoa and 
Biegler (1991 proposed a mixture distribution as the 
objective (likelihood) function. A test follows the 
reconciliation to determine the gross error presence. 
Albuquerque and Biegler (1996) proposed the use the Fair 
function and Johnston and Kramer (1995) proposed to use 
the Lorentzian distribution.  
Of most of the methods that have been developed, three 
have been identified as efficient (Bagajewicz et al., 1999).  

• UBET (Rollins and Davis, 1992), as modified by 
Bagajewicz et al. (1999). 

• SICC (Jiang and Bagajewicz, 1999) 
• MSEGE (Sánchez et al., 1999) 

 
These techniques cannot however overcome a limitation 
that is inherent to the problem, which is the uncertainty of 
gross error location. This is explained next.  

 
Equivalency Theory 

This theory states that two sets of gross errors are 
equivalent when they have the same effect in data 
reconciliation, that is, when simulating either one in a 
compensation model, leads to the same value of objective 
(Bagajewicz and Jiang, 1998). Therefore, the equivalent 
sets of gross errors are theoretically undistinguishable. In 
other words, when a set of gross errors is identified, there 
exists an equal possibility that the true locations of gross 
errors are in one of its equivalent sets. From the view of 
graph theory, equivalent sets exist when candidate 
stream/leaks form a loop in an augmented graph consisting 
of the original graph representing the flowsheet with the 
addition of environmental node. 

For example, consider the process of Figure 2 and assume 
that all streams are measured (the oval represents the 
environment node).  As shown in Table 1, a bias of (-2) in 
S4 and a bias of (+1) in S5 (Case 1) can be represented by 
two alternative sets of two gross errors (Cases 2 and 3). By 
applying this theory, one can see that any proposed set of 
gross error candidates cannot form a loop. Otherwise the 
size of these gross errors is indeterminate, a condition that 
leads to singularities.  This explains why combinations of 
introduced gross errors like S1-S6, S2-S4, S1-S3 leads so 
easily to singularities: The addition of just one stream to 
these sets can lead to a loop. Take for example the 
combination of simulated gross errors S1-S6: just the 
addition of stream S2 will form a set with a loop through 

the environmental node.  The addition of stream S5 to the 
set {S2, S4} also forms a loop.  

Degenerate Cases: The equivalencies above are built in 
the assumption that the number of gross errors identified is 
equal to the real number of gross errors. However, there 
are examples where the actual number of gross errors can 
be larger than the number of gross errors identified.  

 

 

 

 

 

Figure 2: Illustration of Gross Error Equivalency 

Table 1: Illustration of Equivalent Sets in {S2, S4, S5 } 
 S1 S2 S3 S4 S5 S6

Case / Measurements 12 18 10 4 7 2 

Reconciled 12 18 10 6 6 2 (1) Bias in 

S4, S5 Biases    -2 1  

Reconciled 12 19 10 7 7 2 (2) Bias in 

S2,S4 Biases  -1  -3   

Reconciled 12 16 10 4 4 2 (3) Bias in 

S2,S5 Biases  2   3  

 
 
Singularities 
Almost all gross error detection techniques rely on the 
building of a gross error candidate list, and the solution of 
a set of equations to estimate their sizes. If a subset of 
these gross error candidates participates in a loop in the 
process graph, these equations will contain matrices that 
will become singular. Several gross error methods that are 
prone to fail because of this problem can be easily 
modified to overcome it (Bagajewicz et al., 1999).  
Essentially, the modification consists of eliminating one 
element of such loop. 

 
Uncertainties 
According to the equivalency theory, one can avoid the 
singularities. However, when picking the candidate set one 
is picking a subset of some equivalent set. Thus, there is 
always the possibility that the gross errors are not located 
in the set identified, but in some other.  When one is 
assessing the power of a method, this is easy to pinpoint 
and will be discussed below. However, when one is using 
a certain gross error detection scheme, one is left with a 
set of identified gross errors for which several alternatives 
exist. Indeed, the gross errors identified could be part of 
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equivalent sets of increasing number of streams, that is, 
sets containing one, two, three or more streams in addition 
to the ones that have been identified. All these sets form 
loops in the process graph, which can be easily identified. 
For example of Figure 2, if one finds two gross errors, say 
S2 and S4 one equivalent set that can be constructed adding 
only one more stream is {S2, S4 S5}. However, if the gross 
error identified is S2 no equivalent set (loop) can be 
formed adding one stream. One needs two streams to form 
either {S2, S4 S5} or  {S2, S3 S1} or {S2, S6  S1}. As one can 
see, the possibilities are endless.  

 
One should realize that in the case where one forms an 
equivalent set adding one stream, one can pick out of this 
set any subset with the same number of gross errors as 
those found. Formulas to recalculate the sizes of these new 
gross errors have been derived, but presented elsewhere 
(Jiang and Bagajewicz, 1999). For example, if one finds 
two gross errors in S4 and S5 of size -2 and +1, one can 
consider that this is a basic set of a general equivalent set 
{S2, S4, S5}. Thus, the three possibilities depicted in Table 
1 are equivalent. In this case, one would say: "Gross errors 
have been identified in S4 and S5 of size -2 and +1. To 
obtain equivalent lists, pick any two gross errors of the 
following list S2, S4, S5". Degenerate cases imply gross 
errors of the same size (unless there is an overlap of 
loops). Thus, they are less likely to occur.  

 
Leaks 
If one considers a leak just as another stream, a leak forms 
at least one loop with some streams or other leaks in the 
augmented graph. Therefore it will be represented with at 
least one equivalent set of biases identified with the 
model. Let us illustrate this issue with two examples. 
Consider the process in Figure 3. Assume that there is a 
leak with the size of +5 and the measurements for 
flowrates of S1 and S2 are 100 and 95 respectively. The 
SICC strategy identifies S1 with a bias of 5.  The 
equivalent sets are a leak with the size of 5 and 2S  with a 
bias of  –5. 

 
 
 
 
 
 
 
 

 Figure 3: A Simple Process with a Leak 
 
Thus, equivalent sets can be formed with streams and leaks 
of any loop. Thus, any leak is equivalent to a set of equal size 
biases in a set of streams connecting to the unit where the 
leak occurs and the environment. This is an important result 
and leads to the following conclusion:  
 

Since a leak is equivalent to a set of biased streams, any 
steady state method that contains a test to detect biased 
instruments can be used in conjunction with the equivalency 
theory to assess the existence of leaks. 
 

Finally, Bagajewicz and Jiang (2000) showed that: 
1) Any spanning tree of the graph of the process can 

be used in an estimation scheme to capture all gross errors. 
In fact, the UBET method (Rollins and Davis, 1992) 
modified by Bagajewicz et al. (1999) is successful 
because it utilizes one such spanning tree.  

 
2) One can propose a MILP procedure to exploit 

equivalencies and obtain a set of minimum cardinality.  
 

Industrial Practice and Software 
Several issues emerge from the status of industrial practice 
and the software available. We briefly discuss some of 
them hoping a more lively discussion will take place at the 
conference 

1) Should the current steady state paradigm be replaced 
by more sophisticated dynamic data reconciliation 
software? My answer to this is that this is not needed 
for the time being, since more pressing problems 
abound (see below) 

2) The current power for gross error handling (detection, 
elimination, estimation) by the software in the market 
is insufficient. Although some attempts have been 
made to improve over serial elimination, this 
continues to dominate. My suggestion to practitioners 
is to increase the pressure on vendors to improve in 
this regard. My apologies to the vendors for not 
making your life easier.  

3) In a very much related issue to the need of improve 
gross error handling, I propose to implement 
equivalency theory, or any other methodology to 
handle uncertainty.  

4) Research should extend equivalency theory to non-
linear cases.   

5) Variance estimation has deserved the attention of a 
handful of researchers. No significant implementation 
in practice is known to me.  

6) Many times I was challenged by enthusiasts of the use 
of PCA monitoring methods that PCA can perform 
better gross error detection. This matter is worth 
exploring.    

INSTRUMENTATION UPGRADE  
The field of instrumentation design/upgrade oriented towards 
the use of data reconciliation and some fault detection 
techniques is reviewed here. The field of sensor location for 
control and on-line optimization is purposely not covered. 
Sensor networks should be able to handle gross errors 
effectively, that is, detect them when they are too large and 
avoid large corruption of data when they are not detected. A 
robust sensor network should: 

          1S                                       2S  
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a) Be accurate: Accuracy of key variables obtained 

through data reconciliation should satisfy the needs of 
monitoring, control and production accounting. 

b) Detect gross errors efficiently: This is connected to the 
redundancy of the system. The more measurements one 
adds the larger is the ability to detect gross errors.  

c) Retain certain accuracy when gross errors are 
eliminated: Once serial elimination is used the 
remaining sensors should guarantee certain accuracy 
for key important variables.  

d) Have Resilience or Control Smearing: When gross 
errors are not detected, the smearing should be low.  

e) Be reliable: Instruments that break often are a frequent 
source of gross errors.   
 

The instrumentation upgrade problem consists of 
achieving certain desired network robustness at a 
minimum cost. Madron (1992) reviews some of the earlier 
methods, which focus on accuracy only. Bagajewicz 
(1997) presents the first method that minimizes cost and 
focuses on robustness. Bagajewicz and Sanchez, 
(1999a,b,c; 2000a,b,c) discussed grassroots design and 
retrofit. The form of the grassroots problem is  

 
Minimize  {Total Cost} 

          s.t.  
       Desired level of Precision of key variables 

Desired level of Reliability of key variables 
Desired level of Gross-Error Robustness  

 
where the total cost includes the maintenance cost, which 
regulates the availability of variables, a concept that 
substitutes reliability when the system is repairable.  Precision 
is defined as the variance of the estimators. Availability is 
defined as the probability of a sensor not being in a failed 
state at a given time, whereas reliability is the same 
probability, but for the period from zero to the time in 
question. In the case of retrofit, the total cost represents the 
cost of relocating instruments, as well as adding new ones. In 
addition, some constraints regarding the total number of 
instruments per variable as well as restriction on which 
instruments can be relocated are added.  Bagajewicz (2000) 
included all this material in his recent book. This procedure 
does take into account the ability of a sensor network to detect 
process faults and a logic for alarm systems. Even though 
important attempts were made (Tsai and Chang, 1997) a 
model-based on cost-efficient alarm design is yet to be 
produced. Likewise, the direct incorporation of control 
performance measures as additional constraints to this cost-
optimal model has not been fully investigated yet.   In turn, 
from the exclusive point of view of fault detection, the 
problem of the design of instrumentation is:  
 

Minimize  {Total Cost} 
    subject to 
 Desired Observability of Faults  
 Desired Level of Resolution of Faults 

     Desired level of Reliability of Fault 
Observation 

     Desired level of Gross-Error Robustness in the 
Sensor Network 

  
The combination of both goals, that is, the design of a 
sensor network capable of performing estimation of key 
variables for monitoring, production accounting, and 
parameter estimation for on-line optimization as well as 
for fault detection, diagnosis and alarm is emerging.  

 
A cost-benefit analysis needs to be performed to determine 
the thresholds of all the properties that are required from 
the upgraded network. For example, in the case of 
production accounting, precision and gross error 
robustness, can be easily related to revenue, whereas in the 
case of quality control, precision, reliability and gross 
error robustness can also be related to quality standards 
and ultimately to lost revenue. A connection of this sort 
can be established for just about all scenarios of design 
and upgrade.  This is discussed in more detail below. 

Cost Optimal and Precise Sensor Networks 
Consider just the constraints of precision, that is,  

 
Minimize  {Total Cost} 

 subject to 
    Desired Precision of Key Variables 

 
Consider the process flow diagram of figure 4. Assume 
that flow meters of precision 3%, 2% and 1% are available 
at costs 800, 1500 and 2500 respectively. When precision 
is only required for variables F1 and F4, with %5.11 =∗σ  

and %0.24 =
∗σ , two solutions are obtained. Although 

precision is achieved using, in this case, a non-redundant 
network, biases are impossible to detect. Therefore, if at 
least one degree of redundancy is requested, that is, at 
least two ways of estimating each key variable, then there 
are two solutions with a cost of C=3100. These solutions 
are: (F1=3%, F2=3%, F3=3%) and (F1=3%, F2=3%, 
F4=3%).  Bagajewicz and Sánchez, (1999c) showed how 
this can be formally requested.  

 
                  F2=52.3 

 
                   
 
 
 F1=150.1        
 

 
               

                     F3=97.8                 F4=97.8 

                        
  Figure 4.  

 
To solve this problem, integer variables are used to denote 
whether a variable is measured  (qi =1) or not (qi =0).  

1
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Thus, the investment cost can be represented by a 

summation of the type 
ii

i
qc∑

∀

, where ci is the cost of the 

instrument in variable i. The precision constraint is 
mathematically represented by requiring the standard 
deviation of the estimates iσ , obtained using data 
reconciliation is smaller than a threshold value *

jσ .  This 

problem was studied by the author (Bagajewicz, 1997) and 
it is assumed that there is only one potential measuring 
device with associated cost ci for each variable (that is, no 
hardware redundancy), but this condition can be relaxed 
(Bagajewicz, 1997, 2000).  
 
Bagajewicz (1997) proposed a tree enumeration procedure 
and recently, Chmielewski et al. (1999) proposed an 
alternative formulation and Bagajewicz and Cabrera (2001) 
presented a mixed integer linear programming formulation. 
Finally, a series of techniques to introduce constraints that 
can force redundancy were introduced by Bagajewicz and 
Sánchez (1999c) for this case and were extended to bilinear 
systems by Bagajewicz (2000).  

 
Design for Maximum Precision  
Madron and Veverka (1992) proposed to design sensor 
networks minimizing the mean square error of the required 
quantities. This problem was efficiently solved using 
graph theory (Madron, 1992). A problem maximizing the 
precision of only one variable was proposed by a team of 
the BP and University College, London (Alhéritière et al., 
1998), who unfortunately did not use integer variables. 
The generalized maximum precision problem 
(Bagajewicz, 2000) considers the minimization of a 
weighted sum of the precision of the parameters.   

 

T

jj
Mj

cCost
tosubject

qaMin
P

≤

∑
∈

)(2σ

          
 
where cT is the total resource allocated to all sensors.  The 
result of this generalized problem is a design for multiple 
parameter estimation; it is more realistic due to the discrete 
variables, and takes into account redundancy as well as all 
possible forms of obtaining the parameters. A 
mathematical connection between the maximum precision 
and the minimum cost representations of the problem 
exists (Bagajewicz and Sánchez, 1999a). More precisely, 
the solution of one problem is one solution of the other 
and vice versa.  Bhushan and Rengaswami (2002) refined 
this statement and proposed an improvement to this.  

 
Parameter Estimation and Precision Upgrade 
Considerable attention is being put nowadays to the issue 
of parameter estimation, especially in the context of the 
increasing popularity of on-line optimization. The 
practice, however, has been around long before this 

concept became popular. For example, flow rate and 
temperature measurements are used to determine the level 
of fouling in heat exchangers, by simply calculating the 
heat transfer coefficients. These heat transfer coefficients 
are used in a simulation model to schedule cleaning.  The 
issue is elusive if the data contains too many gross errors. 
Therefore, data reconciliation and bias detection is almost 
a must if this task is to be done efficiently. However, in 
many cases an upgrade of the instrumentation is needed to 
make this possible or to improve the precision of these 
estimates.  Other examples of parameter estimation to feed 
simulation and optimization models are the determination 
of the column efficiencies, or reactor parameters.  
 

There are three possible ways of performing the upgrade 
of a sensor network: 1) by the addition of new 
instruments, 2) by the substitution of existing instruments 
by new ones, and 3) by relocation of existing instruments.  

 

Typically, addition of new instruments has been the 
response first considered. Kretsovalis and Mah (1987) 
proposed a combinatorial strategy to incorporate 
measurements one at a time, to an observable system, but 
no constraints were considered. Alhéritière et al., (1998) 
plotted the increased precision as a function of investment. 
Although this approach is intuitive, its importance relies 
on the possibility of visualizing the effect of 
instrumentation cost.  

Krishnan et al. (1992a,b) relies on a screening procedure 
to position instrumentation that involves three steps. 1) A 
first step performs a structural analysis (singular value 
decomposition), which disregards measurements with little 
or no effect on the parameters, 2) A second step disregards 
measurements that have insignificant effect on the axis 
length of the confidence region of the parameter estimates, 
3) The last step determines the interaction between the 
parameter estimates.  Unfortunately, this method does not 
take into account cost and does not offer a systematic 
procedure to make a final selection of the "best" set. In 
contrast, Bagajewicz (2000) discusses linearization 
techniques in the context of cost-based minimization 
design procedures.   
 
Aside from the addition of instrumentation, there are two 
other ways of upgrading a sensor network: by the 
substitution of existing instruments by new ones, and by 
relocation of existing instruments. One example is the 
substitution of thermocouples by thermoresistances or 
their relocation. Another is the case of laboratory analysis. 

Bagajewicz and Sánchez (2000b) proposed a minimum 
cost model as follows:  

 
     Minimize  {Total Cost of New Instrumentation} 

 subject to 
    Desired Precision of Key Variables  
    Limitations on the number of new instruments.     



   
 
The mathematical model makes use of binary variables 
and is linear. The second constraint establishes an upper 
bound on the number of sensors used to measure each 
variable. This number is usually one for the case of flow 
rates, but it can be larger in the case of laboratory 
measurements of concentrations.  

 
Addition of Instrumentation for Precision Upgrade in 
Parameter Estimation  
Figure 5 depicts a set of heat exchangers where crude is 
heated up using hot gas-oil coming from a column.  The 
heat transfer coefficients for the heat exchangers are 
estimated using of temperature and flow rate 
measurements. The existing instrumentation is indicated in 
the figure; their corresponding precision is 3% for flow 
meters and 2 oF for the thermocouples. The standard 
deviations of heat transfer coefficients calculated using the 
installed set of instruments are [12.27  2.96  3.06] (BTU/h 
ft2 oF). In order to enhance the precision of the parameter, 
new instruments should be added. In this example, 
hardware redundancy is considered. Furthermore, different 
types of new instruments are available to measure some 
temperatures.  
 
New flow meters have a 3% precision and a cost of 2250. 
Two thermocouples are available for streams S1, S4 and S9.  
These thermocouples have a standard deviation of 2 oF   
and   0.2 oF and a cost of 500 and 1500, respectively. In 
the rest of the variables only one thermocouple of 2 oF of 
standard deviation and a cost of 500 can be installed. Only 
one flow meter is allowed to be added in all streams 
except S6 and S8. No thermocouple can be installed in 
stream S8, a maximum of two additional thermocouples 
can be installed in streams S8, S4 and S9, and a maximum of 
one in the rest.   

 
 

                      F6         F8  

 

                           U1         F2          U2       F3                  U3       F4
            
 
                                    F9              F8 

 
 
 

 

Heat 
Exchanger 

  Area       
(ft2) 

FT       Cph 

(BTU/lb oF) 
Cpc 

(BTU/lb oF) 

U1 500 0.997 0.6656 0.5689 

U2 1100 0.991 0.6380 0.5415 

U3 700 0.995 0.6095 0.52 

Figure 5: Industrial Heat Exchanger Network 
(Adapted from Bagajewicz, 2000) 

 

The following table presents three different solutions of 
three different costs (one with three alternative solutions).  

Table 2 

1Uσ 2Uσ 3Uσ Cost Optimal Set 

3.62 1.97 2.71 500 T6 (1) 
2.78 1.69 2.38 1500 T2 (1) T4 (1) T6 (1) 
2.72 1.50 2.28 6500 F2  F3  T2 (1) T4(1) 

T6(1) T9(1) 
    F2  F4 T2 (1) T4(1) 

T6(1) T9(1) 
    F3  F4 T2 (1) T4(1) 

T6(1) T9(1) 
 

When there are two possible instruments to measure a 
variable, the type of instrument is indicated between 
parentheses in the optimal solution set. Thus for example, 
T4 (1) indicates that the first instrument available to 
measure the temperature in stream S4 is selected, in this 
case a thermocouple with a precision of 2 oF is selected.  
As the requirements of precision increase more 
instruments are added and in some cases (Case 3) 
alternative solutions exist.  

 

Resource and Instrumentation Reallocation  
In many cases, measurements can be easily transferred at 
small or negligible cost from one stream to another 
(concentration measurements performed in the laboratory, 
pressure gauges, thermocouples, etc.).  However, flow 
meters are probably an exception. Even in the case where 
cost is not considered, one would like to minimize the 
number of changes.  In addition, these reallocation costs 
may overcome the simple addition of new instrumentation. 
Therefore, any reallocation and upgrade program should 
consider the trade off between all these decisions. A 
mathematical programming representation has been 
developed (Bagajewicz and Sánchez, 2000b), which 
determines the appropriate trade-off between these 
decisions. A simple example to illustrate the technique is 
described next. 
 
For the flash tank of figure 6, it is desired to reallocate 
instrumentation to improve the estimation of its 
vaporization efficiency. The flash is well instrumented and 
hardware redundancy on the feed flow rate is available. 
The precision of these flow meters is 2.5 both instruments 
on F1, 1.515 for the one in F2 and 1.418 for the one in F3. 
In turn, the precision of the concentration measurements 
are 0.015 and 0.01 for y1, respectively, and 0.01 for y2 and 
y3. Finally the pressure gage has a precision of 14. New 
flow meters are available. Their cost and precision are 
350, 350, 400 and 2, 1.48 and 1.38, for F1, F2 and F3, 
respectively. In turn, new composition measurements of 
cost 2700 and 0.01 precision are available. Finally, a new 
pressure gage of the same precision and cost of 100 can be 
installed. 

Flow meters can be exchanged from F1 and F2   with a 
cost of 80 and vice versa but not transferred to F3 and only 

Flow meters 

F1=224,677 lb/hr 

F5=217,019 lb/hr 

T3=448.3 oF 

T6=339.8 oF T7=191.2 oF 

T8=221.6 oF 

Thermocouples 

T4=402.2 oF T2=516.3 oF T1=542.8 oF 

T9=266.9 oF 

F7=398,008 lb/hr 
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the concentration measurement of y1 can be transferred to 
y2 at no cost and to y3 at a cost of 50. The first row of the 
table of results represents the case for the existing 
instrumentation. A reduction of the standard deviation 
from 0.00438 to 0.00347 results if the laboratory analysis 
for the feed stream is relocated to the liquid stream and a 
pressure sensor is added. The cost of this case is 100. 
Higher precision (case 3) is obtained by means of the 
reallocation and addition of another measurement. When 
more precision is required (σ* = 0.0031), no reallocation 
and instrument addition can achieve this goal.   
 

 
           F3, y3 
                                                      
 
                                                             T, P, η 
    F1, y1 
 

                                                                

                     
F2, y2 

 
Figure 6. (Following Bagajewicz, 1997) 

 
Table 3 

σ* σ Cost Reallocations 
 

New 
Instrument

s 
∞ 0.00438 - - - 

0.0038 0.00352 100 - P 
 0.00347 100 y1 to y2  

 P 
0.0033 0.00329 2800 y1 to y2  y3  P 

 
Reliable and Repairable Sensor Networks  
 Bagajewicz (2000) discusses the concepts of availability 
and reliability for the estimates of key variables and 
distinguishes them from the same concepts applied to 
instruments. The former are called estimation 
reliability/availability whereas the latter are called service 
reliability/availability. Ali and Narasimhan (1993) 
proposed to use an objective function defined as the 
minimum estimation reliability throughout the whole 
network. In other words, the reliability of the system is 
maximized by maximizing its weakest element.  To 
address the fact that their representation does not control 
cost they proposed to limit the number of sensors to the 
minimum possible that will still guarantee observability.  
Although their procedure does not guarantee global 
optimality, it produces good results. Bilinear networks are 
also discussed by Ali and Narasimhan (1996) in detail. 
While this work used methods based on graph theory, 
genetic algorithms were successfully used by Sen et al. 
(1998) not only for reliable networks, but also a variety of 
other objective functions.   

The cost based representation for the design of the sensor 
network subject to reliability constraints is (Bagajewicz 
and Sánchez, 2000a):  

 
Minimize  {Total Cost of New Instrumentation} 

     subject to 
  Desired reliability of Key variables 

 
The reliability of each variable is calculated using the 
failure probabilities of all the sensors participating in the 
corresponding material balances.  If all sensors have the 
same cost one obtains a problem where the number of 
sensors is minimized. Finally, the representation due to Ali 
and Narasimhan (1993) can be put in the form of a 
minimum cost problem. The details of such equivalency 
can be found in the article by Bagajewicz and Sánchez, 
(2000a), where examples are shown.   Finally, a single 
model containing precision and reliability constraints can 
be constructed.  
 
When repairs are not performed, the service availability of 
a sensor is equal to its service reliability. In addition, the 
failure rate has been considered in a simplified way as a 
constant. However, in the presence of repairs, failure is no 
longer an event that depends on how many hours the 
sensor survived from the time it has been put in service. It 
is also conditioned by the fact that due to preventive or 
corrective maintenance, the sensor has been repaired at a 
certain time after being put in service. These events 
condition the failure rate. We thus distinguish 
unconditional from conditional events in failure and 
repair. These concepts are important because sensor 
maintenance cost accounts for nearly 20% of all 
maintenance cost (Masterson, 1999). Its reduction or 
containment is therefore essential.  The connection 
between failure rate, repair rate and the expected number 
of repairs as well as illustrations of the impact of 
maintenance on sensor network design are described by 
Sánchez and Bagajewicz (2000).  
 
Consider the simplified ammonia network (figure 7), for 
which flow meters for each stream may be selected from a 
set of three instruments with different precision, purchase 
cost and failure rate.  Three flow meters are available at a 
cost of 350, 250 and 200, respectively. Their precision and 
failure rate are 1.5%, 2.5%, 3% and 0.3, 0.6, 0.7 
failures/yr, respectively.  

 
 
 
 
 
 
 
 
 

Figure 7: Simplified Ammonia Plant Network 
 

Flow meters 

Composition 

Pressure 

F7 

F4 F6 

F2 

F5 

F3 F1 

F8 



   
 
Maintenance corrective costs include spare part and 
manpower cost of 10 and 40, respectively, and a life cycle 
of 5 years as well as an annual interest of 6% is used. The 
limits on the requirements of precision, residual precision 
and availability (probability of being running properly) are 
included for two selected flow rates in the next table:  

 
Table 4. Design Requirements 

Flow Precision 
Requirements  

Availability 
Requirements  

F1 - 0.9 
F2 1.5%  
F5 2.5%  
F7 - 0.9 

 
The repair rate of instruments, a parameter that is a 
characteristic of the plant in consideration, has been varied 
between 1 and 20. The results of the optimization problem 
are presented for each case in the next table (Sánchez and 
Bagajewicz, 2000). (Prec. stands for precision and Avail. 
stands for Availability).    

Table 5. Results  
Repair 
Rate 

Measured 
Variables 

Instrument 
Precision  

Cost Prec.  
(%) 

(F2  F5) 

Avail. 
 

(F1 F7) 
1 F1 F4  

F5 F6  
F7 F8 

3 % 1 % 
1%  1%   
3%  2% 

2040 0.8067 
1.2893 

0.9021 
0.9021 

2 F4 F5  
F6 F7  F8 

3 % 3 %  
 1% 3% 1% 

1670 0.9283 
1.9928 

0.9222 
0.9062 

4 F4 F5  
F6 F7  F8  

3 % 3 %     
1% 3% 3% 

1684 1.2313 
1.9963 

0.9636 
0.9511 

20 F4 F5  
F6 F7  F8  

3 % 3 % 
1% 3% 3% 

1775 1.2313 
1.9963 

0.9983 
0.9969 

 
In the first case, the repair rate is comparatively low. 
Consequently the availability of instruments in the life 
cycle is also relatively low. To satisfy the availability of 
key variables, the optimal solution includes a set of six 
instruments. Three of these instruments are of type 1, 
which is a flow meter of low failure rate, high precision 
and the highest cost.  For this reason precision and 
residual precision are better than the required values. 
When the repair rate is 2, an optimal solution exists that 
consists of five instruments. Two of these instruments are 
of type 1 and the rest are of type 3.  Consequently, the 
total instrumentation cost decreases. A lower 
instrumentation cost is obtained for a repair rate equal to 
4. In this case, although sensors are located on the same 
streams as in the previous case, one sensor of higher 
failure rate is installed to measure F8. The results of the 
last case show that the influence of availability constraints 
decreases for high repair rates. The cost increases because 
of the effect of increasing the repair rate µ  (from 4 to 20).  
 
As a conclusion, the repair rate has a direct influence on 
the availability of a variable. If the repair rate is high, the 
design follows the requirements of precision and residual 

precision constraints. Thus, the availability of a variable is 
likely to force the design to have lower repair rates while 
cost may increase because to incorporate more instruments 
to calculate the variable by alternative ways.  
 
Robust Sensor Networks 
As it was described above, a robust sensor network 
provides meaningful values of precision, residual 
precision, variable availability, error detectability and 
resilience (Bagajewicz, 2000)  These five properties 
encompass all the most desired features of a network. It is 
expected that more properties will be added to define 
robustness in the future. For example, when neural 
networks, wavelet analysis, principal component analysis 
(PCA), partial least squares (PLS) and other techniques for 
process monitoring are used, different definitions of 
robustness are warranted. A conceptual example showing 
the effect of robustness constraints are illustrated next 

 
We now add residual precision capabilities to the example 
of figure 2. Consider now that residual precision of order 
one (precision left after one measurement is deleted from 
the set) is added to flows F1 and F4 as follows. The 
requirements are that precision should not drop below 
1.5% and 3% respectively, when one measurement is lost.  
The solution is to put sensors of precision 2%, 3%, 3%, 
3% in F1 through F4, respectively at a cost of 3,900. 
Assume now that residual precision is requested to the 
same level as precision (1.5% and 2% respectively). Then 
two alternative solutions with a cost of 5,500 are obtained 
as indicated in table 6. Not only the cost is higher but also 
there is one more degree of redundancy. For larger 
problems, the number of alternatives will increase, 
requiring new criteria to further screen alternatives.  

 
Table 6.  Effect of Residual Precision 

S1 S2 S3 S4 
1% 2% 2% -- 
1% 2% -- 2% 

 
We now turn to adding error detectability. As the 
capability of detecting smaller gross errors in the data 
increases, so does the precision of the sensor network. 
However, if the requirement is too stringent, no network 
may be able to satisfy it.  If an error detectability level of 
3.9 is required, the resulting network will be able to detect 
gross errors of 3.9 times the precision of the sensors. 
Using a statistical power of 50% is assumed for the 
detection algorithm, two solutions from a set of only 4 
feasible solutions are found with a cost of 4,800.  

Table 7.  Effect of error detectability 
S1 S2 S3 S4 
1% 3% -- 2% 
1% 3% 2% -- 

 
If an error detectability level of 3.4 is requested, the 
problem has only one solution, namely flow meters with 
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precision of 1%, 3%, 1%, 1% for F1 through F4, 
respectively, with a of cost of 8,300.  Finally, we illustrate 
a resilience requirement, which limits the smearing effect 
of gross errors of a certain size when they are undetected. 
If a level of 3 times the standard deviation for all 
measurements is required, then the solution is to put 
sensors with precision 1%, 3%, 1%, 1% in F1 through F4, 
respectively, with a cost of 8,300.  Relaxing (increasing) 
the resilience levels and maintaining the error detectability 
at the same level may actually lead to solutions of higher 
cost, even to infeasibility. Thus, robustness has a cost.  
 
Multiobjective and Unconstrained Methods 
 One of the difficulties of the present approach 
(Bagajewicz, 1997; Chmielewski et al, 1999; Bagajewicz 
and Cabrera, 2001) is that the model is based on 
thresholds of different instrumentation network properties 
(such as residual precision, gross error detectability, 
resilience, etc). However, the process engineer has no 
feeling for what are the values of many of these properties 
that should be requested. To address the aforementioned 
limitations, a multicriteria approach to the problem in 
which all the network features are alternative objectives 
together with the cost has been proposed by various 
researchers: (Viswanath and Narasimhan, 2001; Carnero 
et al, 2001a,b, Bagajewicz and Cabrera, 2001). An 
alternative is to express every property of the 
instrumentation network in terms of its monetary value. 
Such an approach was done for precision related to quality 
(Bagajewicz, 2002) and for precision in flowrates for 
balances (Bagajewicz and Markowski, 2002). Since the 
last reference is part of this conference, we refer the reader 
to this article. We believe this is the future of this field.   

Design of Sensor Networks for Process Fault Diagnosis  
Process faults, which typically are rooted in some unit, 
propagate throughout the process, altering the readings of 
instruments (pressures, temperatures, flow rates, etc.).  The 
task of detecting and identifying faults is different from that 
of gross error detection, which concentrates on instrument 
malfunction. As a consequence, the discrimination between 
instrument malfunction and process fault is an additional task 
of the alarm system. Therefore, the problem of designing an 
alarm system consists of determining the cost-optimal 
position of sensors, such that all process faults, single or 
multiple and simultaneous, can be detected and distinguished 
from instrument malfunction (biases).  In addition, alarm 
settings need to be determined. We will concentrate now on 
the qualitative task of identifying the faults exclusively. 
 
The first attempt to present a technique to locate sensors 
was done by Lambert (1977), where fault trees are used 
based on failure probabilities. Since fault trees cannot 
handle cycles the technique has not been developed 
further. Raghuraj et al. (1999) proposed an algorithm for 
one and multiple fault observability and resolution. They 
used directed graphs (DG), that is, graphs without signs. 
The arcs of the DG represent a “will cause” relationship, 

that is, an arc from node A to node B implies that A is a 
sufficient condition for B, which in general is not true for 
a Signed DG, where an arc represents a “can cause” 
relationship. The strategy used to solve the problem is 
based on identifying directed paths from root nodes where 
faults can occur to nodes where effects can be measured, 
called the observability set. Of all these paths, the 
objective is to choose the minimal subset of sensors from 
the observability set that would have at least one directed 
path from every root node.  
 
Maximum fault resolution is a property that guarantees 
that the location and number of faults can be always 
achieved. Therefore, a sensor network for maximum fault 
resolution is such that each fault has one and only one set 
of nodes from which it is observable.   
 
Bagajewicz and Fuxman (2001) presented a cost optimal 
model for fault resolution, which is illustrated next using a 
CSTR example introduced by Bhushan and Rengaswami 
(2000) (Figure 6). We reproduce here recent results 
obtained by Bagajewicz and Fuxman (2001).  
 
The results of running a mathematical programming model 
for four cases are shown in the table below. These cases 
correspond to single and double fault detection capabilities. 
The table is organized as follows: the costs used in each case 
are first given followed by one or two columns depicting the 
solutions obtained using a cross to indicate that the 
corresponding node should be measured. Case 1 uses the 
same cost for all sensors, which is equivalent to minimize the 
number of sensors used. This set is an alternative set to the 
one obtained by Bhushan and Rengaswami (2000)  (column 
4). All cases have 5 sensors, except Case 4, which has 6.  

 

Figure 6.  CSTR (From Bhushan and Rengaswami, 2000).  

If one assumes that the cost of measuring CA is too high 
and, in addition, one does not want to use the controlled 
variables sensors as valid sensors for the problem of fault 
sensors searching, then one can alter the costs accordingly 
(Case 2) obtaining the result of column 6. This solution 
suggests that N, the number of moles in the gaseous phase, 
should be measured.  If one wants to avoid this 
measurement one can assign N a high cost (case 3). 



   
 
Furthermore, for this case we assigned a high cost to 
controllers and valves to avoid them as well. The result is 
shown in column 8. Case 4 is the case where controlled 
variable sensors can be used together with process 
variables (Case 4). 

More recently, Bhushan and Rengaswami (2001, 2002) 
presented a minimum cost model based on process and 
sensor failure probabilities. An extension of these 
problems to include normal monitoring goals 
simultaneously with fault detection and resolution goals is 
warranted because of the expected synergistic effects.  

 
                 Table 8.  Effect of error detectability   

 
Industrial Practice and Challenges 
Instrumentation design, and even more importantly, 
instrumentation upgrade is less mature than data 
reconciliation and consequently it has not reached 
application in industry. It follows naturally, that as 
industry uses more and more data reconciliation, 
instrumentation upgrade will prevail as means of 
improving quality of monitoring.  Several theoretical 
challenges are still unexplored.  

 
Even though important attempts are being made to address 
the issue of alarms (Tsai and Chang, 1997) a model-based 
on cost-efficient alarm design is yet to be produced. 
Likewise, the direct incorporation of control performance 
measures as additional constraints of a cost-optimal 
representation has not been fully investigated yet. Finally, 
methods for cost-optimal instrumentation design 
corresponding to the implementation of other monitoring 
procedures, like principal component analysis (PCA), 
projection to latent structures (PLS), wavelet analysis, and 
neural networks, among others, have not been yet 

proposed. Robustness for example will need to be 
redefined when these other techniques are used.  
 
The combination of all goals, that is, the design of a sensor 
network capable of performing estimation of key variables 
for control production accounting, parameter estimation 
for on-line optimization as well as fault detection, 
diagnosis and alarm (all of this in the context of detecting 
and assessing instrument biases and process leaks) is 
perhaps the long term goal of this field.   

 
No software is available commercially, although the 
author has one prototype. We expect this to change 
rapidly, because the technology is now mature enough on 
the conceptual side and it is ready to face the challenges of 
computational efficiency. Practitioners will then provide 
new feedback for additional research directions.  

Conclusions 

Steady State data reconciliation and gross error detection is 
a mature field with certain challenges remaining. One of 
these challenges is the elimination of the uncertainties on 
the location of the gross errors, uncertainties that 
independent of the method of detection and compensation. 
Sensor Location is another emerging field, for which 
efficient techniques are being developed. This field is ready 
to be embraced by practitioners.  
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