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Abstract 

In this paper a global optimization algorithm is presented to rigorously solve the MINLP model by Yee and 
Grossmann (1990) for the synthesis of heat exchanger networks under the simplifying assumptions of linear area 
cost, arithmetic mean temperature difference driving forces and no stream splitting. The proposed approach relies on 
the use of two new different sets of convex underestimators for the heat transfer area. A thermodynamic analysis is 
used to derive the first set of analytical linear and nonlinear convex underestimators as well as variable bounds and 
bounds contraction relationships. The second set of convex underestimators is generated by a relaxation of the heat 
transport equation through the introduction of a new variable, and an inequality that contains a nonconvex term that 
is subsequently replaced by its concave envelope. Based on these new underestimator functions, the original 
nonconvex MINLP is replaced by a convex MINLP that predicts tight lower bounds to the global optimum, and 
which is used in a hybrid branch and bound/outer-approximation search method. Application of the proposed ideas, 
and the algorithm are illustrated with several numerical examples. © 1998 Elsevier Science Ltd. All rights reserved 

Keywords: Synthesis of heat exchanger networks; Mixed integer programming; Global optimization; Branch and 
bound; Outer approximation 

1. Introduction 

In the synthesis of heat exchanger networks (see 
Gundersen and Naess, 1988, for a review) the mathemat- 
ical programming approach, which involves the simulta- 
neous optimization of energy consumption, area and 
matches, requires the solution of nonconvex mixed 
integer nonlinear programming (MINLP) models (Yee 
and Grossmann, 1990; Ciric and Floudas, 1991). A 
MINLP model is nonconvex if the relaxation of the 
integrality condition yields a nonconvex nonlinear 
programming (NLP) problem. Current techniques for the 
solution of MINLP models include generalized Benders 
decomposition (Geoffrion, 1972), the branch and bound 
method (Gupta and Ravindran, 1985), outer approxima- 
tion (Duran and Grossmann, 1986), the LP/NLP based 
branch and bound technique (Quesada and Grossmann, 
1992), and the extended cutting plane method (West- 
erlund and Pettersson, 1992). A brief description of these 
techniques, and extensive references on the subject, can 
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be found in Grossmann and Kravanja (1995). It is well 
known that, when applied to nonconvex MINLP models, 
these techniques might get trapped at suboptimal 
solutions, or even worse they may fail to obtain a 
feasible point. Although heuristic strategies have been 
used to try to reduce the effect of nonconvexities (see 
e.g. Viswanathan and Grossmann, 1990), none of the 
above techniques can guarantee global optimum solu- 
tions when solving nonconvex MINLP problems. 

Assuming linear area cost functions, arithmetic mean 
driving force temperature differences, and no stream 
splitting on the MINLP model by Yee and Grossmann 
(1990), the only nonconvex terms in the model for the 
synthesis of heat exchanger networks (HEN) arise in the 
area equations. In this paper we propose a global 
optimization algorithm for the solution of this MINLP 
model, which in fact provides a lower bound to networks 
with no stream splits but which obey the logarithmic 
mean temperature difference (LMTD). Aside from the 
fact that solving to globality nonconvex MINLP prob- 
lems remains an open question, a major complication is 
that straightforward extension of global methods for 
nonconvex NLP (Horst and Tuy, 1993; Horst and 
Pardalos, 1995; Grossmann, 1996) to MINLP problems 
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yield poor bounds. Hence there is a need to develop 
effective methods that can exploit the structure of these 
problems. 

The paper is organized as follows. We first present the 
detailed MINLP model. In section 3 we briefly review 
the work of Quesada and Grossmann (1993) on the 
global optimization of heat exchanger networks with 
fixed topology. Their linear and nonlinear estimators for 
bilinear and linear fractional terms are incorporated in 
the convex MINLP to obtain lower bounds on the global 
minimum cost of heat exchanger networks. In section 4 
we analyze a single unit heat exchanger system, and 
develop new thermodynamics based underestimators for 
the approximation of heat exchangers. In section 5 we 
transform the heat transfer equation to generate a second 
set of underestimators for the area of heat exchangers. 
The two sets of estimators are proved to be convex, and 
conditions under which the approximation they provide 
is exact are established. The two sets of estimators are 
also shown to be nonredundant with respect to each 
other. Section 6 describes a strategy to bound the global 
minimum of the total annual cost of heat exchanger 
networks. A convex MINLP program that integrates the 
proposed estimators, as well as the previous ones from 
literature, are used to obtain tight lower bounds for the 
global minimum. In section 7 we present a hybrid branch 
and bound/outer-approximation global optimization 
algorithm for the synthesis of heat exchanger networks. 
The application of this algorithm to the synthesis of two 
heat exchanger networks demonstrates the tightness of 
the convex relaxation that we use, as well as the 
effectiveness of the proposed technique. Finally, in 
section 8 we draw the conclusions. 

2. Problem statement 

Yee and Grossmann superstructure for the synthesis of 
HEN 

Yee and Grossmann (1990) proposed a stagewise 
superstructure representation for the simultaneous HEN 
synthesis problem. Figure 1 shows a three stage 
superstructure for a two hot-two cold stream synthesis 
problem. At each stage, hot and cold streams are split to 

allow the potential existence of a heat exchanger to 
match any hot-cold pair of streams. This concept 
enables the implicit inclusion of a large number of 
system topologies. Before a stream enters a new stage its 
streams of the preceding stage are remixed isothermally. 
Extreme utilities are assumed to be placed at the outlets 
of the superstructure. It should be noted that it is in 
principle possible to handle utility streams as process 
streams with which multiple utilities and their arbitrary 
placement in the superstructure can be handled. Gen- 
erally, the number of stages in the superstructure is set 
equal to the maximum cardinality of the hot and cold 
sets of streams, although sometimes it is necessary to 
increase the number of stages to allow designs with 
minimum energy consumption (see Daichendt and 
Grossmann, 1994). These authors also proposed a 
preliminary screening procedure for selecting the num- 
ber of stages, and eliminating units in the superstructure 
so as to guarantee that maximum recovery networks are 
embedded. 

The MINLP model of Yee and Grossmann super- 
structure, allows nonvertical heat transfer, and stream 
rematches, assumes no heat recovery approach tem- 
perature (HRAT), and also simultaneously optimizes 
capital and operating costs. The isothermal mixing 
assumption, reduces the mathematical representation of 
the feasible region to be linearly constrained. Besides the 
isothermal mixing assumption, Yee and Grossmann 
model considers: constant heat capacity flowrates, 
constant film heat transfer coefficients, and counter- 
current heat exchangers. Nonconvexities in the con- 
tinuous space of variables are introduced to the MINLP 
objective function by the concave area cost function and 
the heat transfer equation, which fixes the area required 
for a specific heat load to take place. Due to the 
nonconvexities present in the model, current MINLP 
solvers (e.g. Viswanathan and Grossmann, 1990) often 
get trapped in poor solutions or cut off the global optimal 
solution converging to suboptimal network structures. 

Simplifying assumptions and problem statement 

In order to induce special structure in the MINLP 
model by Yee and Grossmann (1990) with which a 

LOC/O'ION 1 LOCATION 2 LOCATION 3 LOCATION 4 
I I I I 

I 

I STAGE 1 I I~I'AGE 2 I STAGE 3 I 

Fig. 1. Heat exchanger network superstructure 
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globally optimum solution for the synthesis of HEN can 
be determined rigorously, we impose three simplifying 
assumptions: i) Linear area cost functions; ii) Arithmetic 
mean driving force temperature differences; and iii) No 
stream splitting. Under these conditions, the problem 
addressed in this paper can be formally stated as 
follows: 

Given 

• A set of hot process streams to be cooled, and a set of 
cold process streams to be heated, with their corre- 
sponding heat capacity flowrates, film heat transfer 
coefficients, and stream supply and target tem- 
peratures. 

• A set of hot and cold utilities, with film heat transfer 
coefficients, and input and output temperatures. 

• Information on utilities and capital costs for heat 
exchangers. 

Determine 

• A globally optimal HEN structure with no stream 
splitting, and with its associated specifications and 
operating conditions such that the network exhibits the 
least total annual cost. 

Nonconvex MINLP model (P) 

Using the above assumptions, the model by Yee and 
Grossmann (1990) for the synthesis of heat exchanger 
networks can be modified to yield the MINLP model (P). 
This paper addresses the global optimization of model 
(P), which is nonconvex in the space of continuous 
variables due to the presence of linear fractional terms in 
the objective function. 

Model (P) 

Indices: 
i= hot process stream 
j=co ld  process stream 
k=index for stage, and temperature location 
cu = cold utility 
hu = hot utility 
in=inlet 
out= outlet 

Sets 
I= {i: i is a hot process stream} 
J = {j: j is a cold process stream} 
K =  {k: k is a stage in the superstructure, IKI=NOK} 

Parameters 
Ti.~, Ti.o~ ,, Tj.i,, Tj.o,,= inlet and outlet temperatures 
ATmpp=minimum approach temperature difference 
(EMAT) 
F~, Fj=heat capacity flowrates 
h~, h~, h~, h~=film heat transfer coefficients 
U~j, U,.,,, Uy.~=overail heat transfer coefficients 
CCU =per unit cost of cold utility 
CHU=per  unit cost of hot utility 
CF~, CF~.,~, CFy.h~=fixed charges for exchangers 
Ciy, C~.~, Cy.~ = area cost coefficient 

NOK= total number of stages 
f l=an  upper bound for heat exchange 
F=an  upper bound for temperature difference 
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Positive, continuous variables 
t~.k=temperature of hot stream i at hot end of stage k 
ti.k =temperature of cold stream j at hot end of stage k 
dt~i k = temperature approach for match (i,j) at temperature 
location k 
dtcu~=temperature approach for the match of hot stream 
i and cold utility 
dthu~=temperature approach for the match of cold 
stream j and hot utility 
q,jk=heat exchanged between hot process stream i and 
cold process stream j in stage k 
qcui=heat exchanged between hot stream i and cold 
utility 
qhuj=heat exchanged between cold stream j and hot 
utility 
AMTD~j.k, AMTD~.~, AMTDj, h~=heat transfer driving 
forces 

Binary variables 
zok=existence of unit for match (i,j) in stage k 
zcui=existence of unit for match (i, cu) 
zhuj=existence of unit for match (j, hu) 

Objective function 

minimize 

~ 5'. CF,yZly,+ i~i CFi~zcui+ j~J CFj.h~zhuj 
i ~ l  j E J  k ~ K  " " " 

+ ,~, Y" t~¢ C~[qq*/(UijAMTDij')] 
• .je.I 

+ i~1 Ci.~,[qcui/(Ui.¢, AMTDi.¢.)] 

+ Y~ Cyh,[qhujl(Ujh . A M T D i J ]  
j ~ J  • , , 

+ ~5~ CCUqcu~+ j~j. CHUqhu~ 

where 

and 

U~j=[1/h/+ 1/hfl - '  

Ui.c,=[l/hi+ 1 / h j  - i  

Uy,h, = [ l/hi+ 1 / h j  - '  

(2-1) 

(2-2) 

AMTD,j, = (dtij k + dtuk + ,)/2 (2-3) 

AMTDI.¢u = (dtcui + Ti.o~, - Tcu.in)12 

AMTDj.hu = ( dthuj + T ~u.i ~ - Tj.ou,)/2 

Overall heat balance for each stream 

~ qijk+qcui=Fi(Ti.i,-Tio~,) iEI  j~J k~K ' (2-4) 
k~K qqk +qhuj=Fj(TJ°u'- TJi~) j E J  

i E 1  ' ' 

Heat balance at each stage 

~, quk=Fi(ti, -t~,+O iEI, k ~ K  
j ~ J  (2-5) 
i~l qi#=Fj(tj*- tJ.k+') J~J' k ~ K  

Assignment of  superstructure inlet temperatures 

t i ,  i - - T i , i n  i e I  
(2-6) 

tj~vor+l=Tj,i, jE J  
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Monotonic decrease in temperatures 

6~>_6~+~ iEI,  k E K  

tuvox+, >-Ti .... i E I 
t~.,>--tj~+~ j E J ,  k E K  

T)~.,>--tj., j E J 

Hot and cold utilities load 

qcui= Fi(ti~vox+ I - Ti.o,,,) i E I 
qhuj=F,(Tj.o, , - tj.,) j e J  

Minimum approach temperature constraints 

dtijk>__ATma~ iEI,  j E J ,  k ~ K U { N O K + I }  
(2-9) 

dtcui>-AT~pp iE I, 

dthuj>-ATm,pp j E J  

Logical constraints 

q~jk<_OZ~jk iEI, jEJ,  kEK 

qcu~<-.l~zcu~ i E I 

qhuj<-~zhuj j E J 

dtiyk<_ti.~ - tj.k+ F(1 - zok ) iEI jEJ ,kEK 

dtqk+l<~ti,k+l- tj.t+l +F(I -zqk) iEI,]E J,kE K 

dtcui <- 6~vox+, - T,,.o,,,+ F( 1 - zcui) i E I 

dthuj<--Th ..... - tj.i +F(1 - zhuj) jEJ  (2-10) 

No stream splitting constraints 

E zqk-<l iEI, kEK (2-11) 
J~J z/jkn 1 j E J ,  k E K  
iEl  

lntegrality conditions 

zuk, zcu~, zhui=O,1 iEI ,  j E J ,  k E K  (2-12) 

Bounds 

T~.ou,<--ti.t<--Ti.~ / e l  
Tp,-----t~a--<T~ .... jEJ  

qo,,qcui,qhui>--O i ~ I, j E J, k E K 
AMTDu.~, AMTD~ .... AMTDy.n~->ATmwp iEI, jEJ,  
kEK 

(2-13) 

REMARK 
Note that (2-11) replaces the isothermal mixing 

assumption of Yee and Grossmann (1990) by the more 
stringent no stream splitting assumption of this paper. If 
(2-11) is deleted from model (P), the original isothermal 
mixing model structure by Yee and Grossmann is 
recovered. 
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obtained. With the introduction of the area variable, A0,, 
into the model, a nonlinear reformulation that includes 
bilinear terms in the heat transfer equations is generated. 

(2-7) Using McCormick's (1976, 1983) results for the devel- 
opment of convex and concave approximations of 
factorable functions, Quesada and Grossmann developed 
relationships that define the following non redundant 
inequalities, 

(2-8) < • L v Auk AMTDq,-Mm[A 0k AMTD0~ + AMTD 0k A0k 
L U - A0.k AMTD0k , (3-1) 

U L U L A qk AMTD0k + AMTD 0k A~# - Auk AMTD uk] 

3. Previous work in global optimization 

Quesada and Grossmann (1993) proposed a branch 
and bound algorithm for the global optimization of heat 
exchanger networks with fixed topology. Under the 
assumptions of fixed topology, linear area cost, arithme- 
tic mean driving force temperature differences and 
isothermal mixing, a nonconvex nonlinear model that 
exhibits linear fractional terms in the objective function, 
and a feasible region defined by linear constraints is 

-- U ' [_ . . . . . .  ok \ A  . . . . .  ok AMTDok 

quk u 1 1 

AMTD/~k + q Uk ( AMq'Dq, AM'I'D~, ) ] 

(3-2) 

Note that (3-1), and (3-2) hold as equalities in the case 
in which L v L v A0k=Auk,Auk or AMTD~#=AMTD0k,AMTDuk, 

_ L U L U and A0k-Auk,A0k or qok=quk,quk, respectively. It is not 
difficult to prove that the function on the right hand side 
of (3-1) is the concave envelope of the bilinear product 
on the left (see e.g. A1-Khayyal, 1990). Quesada and 
Grossmann also used the notion of Benders cuts 
(Geoffrion, 1972) to propose a procedure based on LP 
subproblems to generate a projected bounding function 
between the heat load and the arithmetic mean tem- 
perature difference of a heat exchanger. Although the 
proposed procedure does not always lead to a non-trivial 
relation, when it does, it provides a linear functional 
upper (or lower) bound for the driving force as a 
function of the heat load. Quesada and Grossmann used 
the projected relationships in conjunction with (3-2) to 
obtain a tighter approximation of the linear fractional 
terms of the original nonconvex model. In their branch 
and bound algorithm, a convex NLP relaxation is used 
which includes (3-1), (3-2), and the nonlinear projected 
convex underestimators. These authors applied their 
method to seven HEN problems obtaining very encour- 
aging results in terms of times and quality of lower 
bounds. 

It is important to mention that although the estimators 
used by Quesada and Grossmann have proved to be 
successful for fixed topology global optimization prob- 
lems, the situation in the simultaneous synthesis 
(MINLP) problem is quite different. Firstly, the tight 
bounds that are obtained in problems with fixed 
structure, and that allow having good approximations of 
the nonconvex terms, are no longer obtained in the 
synthesis problems. The reason is that the variable 
bounds become very loose since the presence or non 
existence of each heat exchanger must be determined. 
Secondly, the procedure to generate the projected 
underestimators of Quesada and Grossmann cannot be 
effectively extended to the MINLP case. Finally, we 
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must also consider the combinatorial nature introduced 
by the binary variables in the MINLP synthesis model. 

4. Thermodynamics based approximation of heat 
exchangers 

Analysis for a general heat exchanger 

Consider streams i and j,  which have (Ti.~., T~.o~t), and 
(Tzi ~, Tz..,) as supply and target temperatures, respec- 
tively. Also. assume that this hot--cold pair of streams is 
to be matched at stage k. with a heat load equal to q~k. 
The area required to perform the specified heat transfer 
operation at stage k can he minimized by taking the 
highest possible driving force in the system. In other 
words, if streams i and j have no interactions in other 
stages of the superstructure, they should enter the k-th 
stage with temperatures ti, k=Ti, i~ and t/,k+t=Tj, i~. In this 
way, stream i will undergo a change in temperature from 
ti, k=Ti, i~ at temperature level k to ti, k+t=Ti, i~--qiAFi at 
temperature level k+l.  Similarly, cold stream j will go 
from t~,k+l =Tj.~. at temperature level k+l  to tj, k =T/,~. + q J  
Fj at temperature level k. As a consequence of this 
reasoning, we obtain the following bounding expression 
for the driving force: 

AMTD~j~ -< AMTD ~.~ = T,.,~ - T~.~ - q~(1/F~ + 1/Fy2(4-1 ) 

Furthermore, in the case in which tighter upper and 
lower bounds are available, that is, t~,~---t~-<T~.~., and 
t~.~+~>t~+~-->T~,~, (4-1) can be refined to obtain a tighter 
representation for the driving force of each heat 
exchanger in the superstructure: 

~: U U L AMTD~j~ - A M T D  i~,~ = t i,~ - t~.~ + ~ - qo~(1/F i + 1/F/)/2 (4-2) 

This representation of the upper bound for the driving 
force is especially useful in the reduction step performed 
after the branching operation of the global optimization 
algorithm, in which new temperature bounds are gen- 
erated at some points in the network. The analytical 
relationship in (4-2), which has the same functional form 
as the projections obtained numerically in the work by 
Quesada and Grossmann (1993), can be used, along with 
the heat transfer equation, to generate the following new 
class of thermodynamics based linear fractional under- 
estimators for the area of heat exchangers: 

q0'~ (4-3) 
A ~ >  Uij[t/~ - t~+, - q~#(l/F~ + 1/Fy)/2] 

The significance of Eq. (4-3) is that it provides an 
analytical relationship that explains the physical nature 
of the projections that are obtained numerically by 
Quesada and Grossmann through the solution of a set of 
linear programming subproblems. As shown below, the 
approximation given in (4-3) is convex. This approxima- 
tion is also exact when the inlet temperatures, the heat 
capacities flowrates, and the global heat transfer coeffi- 
cient are known. 

Theorem 1 

The thermodynamics based estimator (4-3) is convex, 
underestimates the area of heat exchangers, and provides 
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an exact representation when the hot and cold stream 
input temperatures are ti.k=t~, and _ L t j .k+t--t j~+l,  r e s p e c -  

t i v e l y .  

Proof: see Appendix 1. 

Analysis for coolers and heaters 

In the context of the previous section, a cooler is a 
heat exchanger with known temperatures for the outlet 
of the hot stream, and the inlet and outlet of the cooling 
utility. The specification of three temperatures in a cooler 
reduces the number of degrees of freedom of the heat 
exchanger representation. For this type of heat exchang- 
ers, the inlet temperature of the hot stream is the only 
unknown temperature in the system, and can be 
represented exactly as a linear function of qcu~: 
t~,No~+~ =T~,o~,+qcuJF~. Using this expression, AMTDi.c~ 
can be written as a function of qcu~, and the following 
underestimator for the area of a cooler can be obtained 
directly from the heat transfer equation: 

qcui (4-4) 
Ai'cu-> Ui,cu[(2Tj,o.,- Tcu,in - T ..... + qcu/Fi)12] 

Following a similar argument as in Theorem 1, it can 
be easily proved that (4-4) is convex if T~.o.,--<(Tc.,;n+Tcu. 
,o.,)/2, and concave otherwise. Surprisingly, in the 
convex case, (4-4) exhibits a monotonic decrease in the 
area as the inlet temperature of the hot stream to the 
cooler increases. This effect is produced by a dominant 
increase of the driving force over the increase of the heat 
duty. A similar, but non monotonic effect, can also be 
observed in coolers calculated with the LMTD. Also 
interesting is the fact that, due to the AMTD assumption, 
if T~,o~,=(Tc~.i.+T~,ou,)/2 the area requirement remains 
constant, A~,~.=2FflU~.c., regardless of the heat load in 
the heat exchanger. It should be noted, however, that the 
more common case is when T~.o~,-->(T~,~.+T~.,o.,)/2. To 
approximate coolers for which T~,o.,->(Tc~.i~+Tc.,o~,)/2, we 
use the convex envelope of (4-4), which in this case is a 
straight line that exactly approximates the area at the 
lower and upper bounds of qcu~. 

A similar analysis can be performed for heaters, for 
which the following inequality can be obtained: 

qhul 
AJ'h"> Ui,hu[(Thu, in+ Th ..... -- 2T/,o~t+qhu/Fj)/2] (4-5) 

In this case the estimator is convex if T/.o~t-->(Th.,~,,. 
+Th..o.,)/2, otherwise it is concave. The heat transfer area 
is constant, A/.h.=2Fj/Ui.h~, when Tj, o.,=(Th.,i~ + Th~.o.,)12. 
Again, the common case is the nonconvex case in which 
T/.o.,<(Thu,~. +Th.,o~,)/2, especially if Th.,i~=Th~,o~,. 

Example 1 
To illustrate the advantages of the estimators proposed 

in this section, consider the task of underestimating the 
minimum cost of the heat exchanger network shown in 
Fig. 2 by solving one single convex underestimating 
problem. The stream heat capacity flowrates, tem- 
peratures, overall heat transfer coefficients and cost 
information for this problem are given in Table 1. Note 
that the outlet temperatures of the hot streams are not 
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H1 H2 H3 

C I ~ I  400~ 

t l  V t2 V t3 

Fig. 2. Heat exchanger network for example 1 

specified. A nonlinear programming model that can be 
formulated for the minimization of the cost of this 
network includes a linear objective function, linear 
energy balances and nonconvex heat transfer equations: 

Minimize IO00(A~+A2+A3) (EXI-a) 

ql = 10(t4 - 300) 

ql = 10(490 - tl) 

qz = l 0(t5 - t4) 

q2= 10(500 - t2) 

q3= 10(400 - ts) 

q3 = 10(550 - t3) 

2qj 
A)--- 

(t~ - t4 + 190) 

2q2 
A2_ > 

(t2 - t4 - t.~+ 500) 

2q3 
A 3 ~  

( t  3 - i s+  150) 

qt,q2,qa,At,A2,A3>-O; 300<-& <--ts <--400 

To generate a convex relaxation for this model, we 
must first develop convex underestimators for the area of 
each one of the three heat exchangers. The stream inlet 
temperatures for heat exchanger 1 are known. Therefore, 
the inequality in (4-3) provides an exact representation 
of its heat transfer area: 

Al_> ql (EXI-b) 
190-0.1q) 

Although the inlet temperature of the cold stream in 
the second heat exchanger is unknown, it is possible to 

Table 1. Data for example 1 

F Tin Tout 
Stream (kW K-')  (K) (K) 
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design a reasonably good lower bounding approximation 
for this unit by using the lowest value for temperature t4, 
that is 300 K, in (4-3). This yields, 

q2 A2 > -- (EXI-c) 
2 0 0 -  0.1q,. 

For the third heat exchanger, we need to take into 
account that, besides having a fixed input temperature 
for the hot stream, the outlet of the cold stream is also 
specified. This requires a particular analysis, similar to 
the ones performed for coolers and heaters. The convex 
underestimator obtained in this case is also exact and it 
is given by 

A3_> q3 (EXI-d) 
150 

By solving the convex nonlinear programming prob- 
lem defined by the objective function, the energy 
balances, and the three underestimators in (EXl-b), 
(EXI-c), and (EXl-d), a lower bound of $6,269.93 is 
obtained for the global minimum cost of the heat 
exchanger network. The areas of the exchangers are 
A~=1.26 m 2, A2=1.55 m 2, and A3=3.47 m 2. Quesada 
and Grossmann (1993) obtained the same result by 
solving a nonlinear program that, besides the objective 
function and the energy balances, includes their pro- 
posed linear, nonlinear, and projected underestimators. 
In addition, to obtain the bounds for the variables, and 
the information required by the estimators and to 
generate projections, these authors had to solve 18 linear 
programming problems. 

CI 10 300 
HI 10 490 
H2 10 500 
H3 10 550 

U= 1 kW K- ~ m-2 for all mataches. 
Area cost coefficient C=$1000/m 2. 
No fixed charge. 

400 

5. A Second Convex Relaxation of the Heat 
Transfer Equation 

Since the MINLP model can lead to loose lower 
bounds with the estimators in (3-1), (3-2), (4-3), (4-4), 
and (4-5), it is desirable to consider additional under- 
estimators which preferably rely less on the variable 
bounds. To develop a second set of convex under- 
estimators for the approximation of the area of heat 
exchangers, consider again that a hot stream i is matched 
with a cold stream j at stage k. In this case, let us also 
assume that the amount of heat, quk, to be transferred 
belongs to the interval L o [quk,qu*]. Due to our interest in 
generating a HEN that exhibits minimum overall total 
annual cost, we can focus our attention on the following 
relaxed version of the heat transfer equation: 

q~i~ (5-1) 
A~J~-> U~j AMTD~j~ 

Introducing the new variable O - - - ~  into (5-1) 
yields the following inequality: 

0 2 
AiJ'k--> U~j AMTD~j.k (5-2) 

The defining relationship for O is given by means of 
two inequalities: 

0 2~qu k (5-3a) 
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O:->q~# (5-3b) 

The second inequality, a nonconvex expression, can 
be convexified by substituting the quadratic term by its 
concave envelope, 

q~k + ( ~  + ~ ) ( O  - ~ ) > - q o k  (5-4) 

Solving for O we obtain, 

£ U 

0>-- qiJk + ~ (5-5) 

Finally, by using (5-5) in (5-2) we generate a second 
set of quadratic/linear underestimators for the heat 
transfer area of heat exchangers, which will be shown 
later to be convex: 

i /2 
Aij'k--> Uij AMTDij,k ~ + ~  (5-6) 

Note that only bounds for the heat load are required in 
the application of (5-6). For obvious reasons, q~k is set to 
zero in synthesis problems. From the second law of 
thermodynamics, and the maximum heat load allowed 
by supply and target temperatures in each stage we 
obtain an upper bound for the heat load qijk, 

U ~  • U L U L qi#_Min[Fi(ti.k - ti,t+l) , Fl(tj,k - tj,k+l) , Min(Fi, Fj)(t~ 

- t~,k+ I - ATmapp)] (5-7) 

For coolers and heaters, 

Fi(ti~oK+l --  Ti,out)--qeu.i--Fi(ti.NOK+l Ti,ou¢) ( 5 - 8 )  

F,(T,.o,,- ty.,)<qh~j<-F,(T,.o,,- 6 ')  

Theorem 2. The quadratic/linear fractional inequality in 
(5-6) is convex, underestimates the area of heat exchang- 
ers in the interval L u q~# ~ [quk,quk], and provides an exact 
representation when qijk = q ~k or qijk = q ovk • 

Proof: see Appendix 1. 

Example 2 
Consider example 1, but now, instead of using (EXI- 

c), we use (5-6) to underestimate the area of the second 
heat exchanger (recall that EXI-b and EXI-d provide an 
exact representation of exchangers 1 and 3). To use the 
inequality in (5-6), we require to have valid lower and 
upper bounds on the heat load for exchanger 2. A simple 
analysis of the heat exchanger system, yields q~=0 and 
q~= 1000, which substituted in (5-6) produces 

( q 2 )  2 
A~-- > (EX2-a) 

5 0 0 ( 5 0 0 +  t 2 - -  t 4 - -  t 5) 

When (EX2-a) is used, along with the objective 
function, energy balances, and (EXI-b) and (EXI-d), a 
lower bound of $4,946.53 is obtained for the minimum 
cost of the heat exchanger network. The areas of the 
exchangers are A w =0.52 m 2, A2= 1-25 m 2, and 
A3=3.18 m 2. The lower bound obtained here lies below 
the $6,269.93 obtained in Example 1, when (EXI-c) is 
used. We conclude that, in this case, the thermodynamics 
based estimator is better than the new quadratic/linear 
estimator. 
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Example 3 
Again, consider the same case as in Examples 1 and 2, 

but now, assume that the outlet temperature of the cold 
stream is 500 K, instead of 400 K. Also, assume that a 
minimum approach temperature of 10K is to be 
enforced. Underestimation with the first set of estimators 
used in example 1 gives in this case a lower bound of 
$20,993.59. To generate the quadratic/linear estimator 
for the second heat exchanger, bounds of q~=0 and 
qU=1900 are used. Solution of the lower bounding 
problem with the second estimator in (5-6) produces a 
lower bound of $22,119.60, indicating that, in this case, 
the quadratic/linear estimator outperforms the thermody- 
namics based. Furthermore, when the two types of 
underestimators are used in conjunction, an even better 
lower bound, $22,484.44, is obtained. This result proves 
that neither of the two underestimators is dominant, and 
therefore, it is desirable to use both of them. 

6. Strategy for Bounding the Global Minimum of 
the Total Annual Cost 

Lower bounding operation 

The hybrid algorithm for the global optimization of 
model (P), which will be described in section 7, belongs 
to the family of branch and bound algorithms (see e.g. 
Horst and Tuy, 1993). A spatial search is performed in 
the space of the continuous variables, and at each node 
s, lower and upper bounds, 13~ and a~, for the global 
minimum of the total annual cost of the heat exchanger 
network are obtained. When the difference between 
these bounds is greater than a specified tolerance, e, in 
order to obtain an improved approximation of the heat 
transfer areas, a partition of the feasible region is 
performed through a branching operation that imposes 
new bounds on a given temperature at a certain point in 
the superstructure. When the global lower bound, 13, is 
within an e-value of the global upper bound, a, the 
search process is stopped. The solution corresponding to 
the best upper bound is guaranteed to be an e-global 
minimizer. To perform the lower bounding operation at 
each node we propose the following convex MINLP 
underestimating model: 

Model (C) 

Objective function 

minimize 

~, 5~ t~t¢ CFi jz i#+ i~l CFicuZCUi+ j~J C F j h " z h u j  (6-1) i~l jeJ  ' ' " ' 

+ i~lE CCUqcu~+ j~j CHUqhuj 

Basic definitions, constraints, and specifications 

Equations (2 - 2) - (2 - 13) (6-2) 
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Thermodynamics based estimators 

qi~k 
Aqk>--Tl r~.s,U . . . .  t. _ qijk(llFi+ IlFj)I2] L'Jijt~i.k cj~+l 

- A(1 - zqk) i • l ,  jEJ ,  k • K  

qcui 
A .  > 

.... -- U,.cu[(2T~.o,,,- T,.,,.,, - T~,,,ou,+ qcu/F,)12] 
- A(1 - zcui) i •  I 

qhuj 
AJ'h"-- Uj.h,,[(Th,.,, + Th ..... - 2Tj.o,,,+ qhu/Fj)12] 

- A ( 1 - z h u j )  j • J  (6-3) 

if r.h.s, of estimator is concave its convex envelope is 
used instead (coolers and heaters) 

Quadratic/linear estimators 

s,L s,U 2 
qok + ~ - A ( 1  -zo,) 

1 
A > -  

s,L ':-U.AMTD,: / 
i • l , j • J ,  k E K  (6-4) 

Nonlinear Estimators ( Quesada and Grossmann, 1993) 

q"/' I'q~t AMTDff U~r4Ok>-- AMTD~jk v AMTD~jk 

- A ( I  - z;#) ( 6 - 5 )  

U A > q~j, + q ~ (  1 1 ) 
ijr~ i j k m A  lt.4Tr~ s,L . . . . . .  ok AMTD~# AMTD,~ 

- A(1 -z0k ) iEl,  j e J ,  k • K  

Linear Estimators (AI-KhayyaL 1990; Quesada and 
Grossmann, 1993) 

s,L s,U - -  s,L $ U qijk<-Uo(Aok AMTDok+ AMTDokAok Aok AMTD'iji ) 

+ A(1 - zijk) (6-6) 
s,U s,L s,U s,L qok-- Uu(A ok AMTD0k + AMTD/jkA~# - Auk AMTD 0k) 

+A(I - z0k) i E L j • J ,  k E K  

Bounds on variables 

(T,q,AMTD,A) ~ 13~ (6-7) 

where 

f'l, = { (T,q,AMTD,A ): T "L<- T <- T"U,q ,,L<_ q<_.q,.V, 

AMTD~.L<_AMTD<_AMTD,.U, A ~2"<--A <-A ,.u}, 

T= (t~a,tj~), q = (qo~,qcui,qhu~), AMTD = (AMTD~y~, 

AMTDi.~,,AMTD~.h,), and 

A =(Aifl~,Ai.c,,,Aj.hu). 

The dimension of each of the vectors q, AMTD, and A 
is equal to ILl, which is the total number of exchangers, 
coolers and heaters in the superstructure. Note that in 
order to incorporate the underestimators developed in 
sections 4 and 5, as well as the ones from previous work, 
we express them in the form of disjunctions in 
(6-3)-(6-6) by including an extra logical term with a 
large parameter A. This extra term in the estimators 
renders the constraints inactive when a heat exchanger is 
not selected (z0,=0), and enforces the corresponding 
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constraints when the heat exchanger is selected (z0,= 1 ). 
All binary variables are also incorporated into a single 
vector z = (zok, zcui, zhu~). Mo denotes the feasible region 
defined by (6-2)-(6-7) at the branch and bound root 
node. 

To obtain lower bounds for the global minimum of the 
total annual cost of HENs, the convex MINLP model (C) 
is solved at node s with the Outer Approximation 
Algorithm (Duran and Grossmann, 1986) by using the 
convex option in the code DICOPT++ (Viswanathan 
and Grossmann, 1990). Within this technique, lower 
bounds, h s'v p= { 1,2,...ps}, for the solution of model (C) 
are obtained by solving a Mixed Integer Linear Program- 
ming (MILP) master problem. This master problem is 
constructed by accumulating linearizations of the non- 
linear terms in the model constraints, and the objective 
function. A binary vector, z ~'°, obtained from the solution 
of the master problem, is used to reduce the MINLP 
model to a convex NLP subproblem that is solved to 
obtain upper bounds, 13'~'P, for the optimum solution of 
the underestimating model (C). The successive solution 
of the MILP master and NLP problems generates a 

So~={So~}, p EOA~= { 1,2,...ps}, composite sequence, s ~'P 
that contains a sequence of binary vectors, z ''p, a 
sequence of upper bounds with associated feasible 
solutions, 13~'v, and a nondecreasing sequence of lower 
bounds, h"P, for the solution of the convex MINLP 
model. The iterative process stops when the value of the 
best available upper bound for (P) is exceeded by the 
value of a lower bound. Since model (C) is a convex 
relaxation of the nonconvex model (P) considered over 
13, its solution (best upper bound found by the outer 
approximation algorithm) provides a valid lower bound 
for the global minimum of the total annual cost of the 
heat exchanger network at node s. 

Nonconvex upper bounding operation 

To obtain upper bounds, ct s'P, for the global minimum 
of the total annual cost of the heat exchanger network, 
the structures associated with the binary vectors gen- 
erated by the outer approximation algorithm for problem 
(C) are analyzed. Firstly, by considering the fixed values 
of each of the binary vectors in the model (P), a set of 
nonconvex NLP problems, Pl(z ~'p) p • OA s, is generated. 
Starting from the corresponding upper bounding solution 
in the OA algorithm, these NLP problems are solved 
over 13 s with the local optimizer MINOS 5.4 (Murtagh 
and Saunders, 1983). The best upper bound from the 
solution of these problems might improve the incumbent 
solution, {z*, ct, T*, q*, AMTD, A}, of the nonconvex 
MINLP model. It is important to mention that the local 
solution of the nonconvex NLP problems is intended to 
provide a fast mechanism for obtaining good upper 
bounds, and therefore, has no consequence on the 
convergence properties of the proposed global optimiza- 
tion algorithm. 

Global upper bounding operation 

In a second upper bounding operation, an attempt is 
made to find better solutions of the nonconvex NLP 
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problems described above. These problems can be 
solved to global optimality by a specialized global NLP 
algorithm (see for example Quesada and Grossmann, 
1993; Fioudas and Visweswaran, 1990; Swaney, 1990; 
Ryoo and Sahinidis, 1995). In this paper a branch and 
bound algorithm is applied. Lower bounds for the 
solution of the nonconvex NLP problems are obtained 
from the solution of the convex NLP model (NLPC) 
generated when the integer part of model (C) is fixed. In 
the preprocessing stage of this algorithm, the input 
temperatures to the heat exchangers of the configuration 
that is analyzed, except the stream supply temperatures, 
are included in a set of key temperature variables. An LP 
model whose feasible region is defined by all the linear 
constraints in the model (NLPC) is used to compute 
lower and upper bounds for the key temperature 
variables. These new bounds are then used to compute 
tighter bounds on heat loads, driving forces, and areas 
through the bounding expressions in (4-2) to (4-5), (5-7), 
(5-8), and the ones given in Appendix 2. The node 
selection, the refining, and the pruning operations of the 
global NLP algorithm are similar to the ones described 
in the next section for the hybrid global MINLP 
optimization algorithm. Results from the first (local) 
upper bounding operation can reduce computing times 
considerably. The possibility of using the best upper 
bound available through all the global NLP searches 
often allows termination of these optimization sub- 
problems at a very early stage. On the other hand, once 
the HEN designs associated with the corresponding 
binary vectors are globally optimized, integer cuts are 
added to the MINLP models to prevent the repetition of 
solutions previously analyzed. 

7. A hybrid global optimization algorithm 

A brief description of the algorithm 

The proposed global optimization algorithm starts 
with an initialization stage, in which the bounding 
relationships presented in sections 4 and 5, and appendix 
2, are used to compute the bounds required to initialize 
the convex estimators, and the hyperrectangle ~0. In this 
stage, the overall bounds, branch and bound list of open 
nodes, and the convergence tolerance parameter are also 
initialized. In the main stage of the algorithm, besides 
the bounding operations described in section 6, node 
selection, refining, and pruning operations are included. 
The selection operation is bound improving (see e.g. 
Horst and Tuy, 1993). In the beginning of the main stage 
of the algorithm, a node with a lower bound equal to the 
overall lower bound is removed from the branch and 
bound list to be analyzed. After the bounding operations 
are performed, and if convergence is not yet been 
achieved, the refining operation proceeds to create a 
partition of the hyperrectangle 1) s by bisecting over the 
domain of a temperature level in the superstructure. To 
select the branching variable, the solution obtained in the 
lower bounding operation is considered. Firstly, the heat 
exchanger unit which gives rise to the largest approx- 
imation error in the heat transfer areas is identified. 
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Secondly, for this heat exchanger, the relative distances 
between the upper bound and the actual value of the 
input temperature of the hot stream, and the actual value 
and the lower bound of the input temperature of the cold 
stream are computed. The temperature of the input 
stream which is further away from its corresponding 
bound is selected as branching variable. The two new 
hyperrectangles f/s~, and Os2, are first reduced by 
propagating the temperature bounds imposed by the 
bisection operation to the other temperature levels in the 
superstructure. A further reduction is achieved by using 
the bounding relationships given in sections 4 and 5, and 
in Appendix 2. Once reduced, Os~, and I'~2 are used in 
conjunction with ~s, a subset of the ILl dimensional 
binary vector space that excludes the vectors associated 
with the network structures already analyzed, to define 
the new branch and bound nodes. Finally, after the 
pruning operation is performed, the main stage is 
restarted. 

The hybrid global MINLP optimization algorithm 

The elements of the branch and bound algorithm for 
solving problem (P) are described in this section. 
Specific notation that will be used is as follows: the set 

contains a list of elements (s,13s) specifying the active 
subsets (s) pending to be analyzed as well as the 
corresponding lower bounds (13s). C~ contains the set of 
integer vectors for which integer cuts are added; B u is 
the ILl dimensional binary vector space, and e is a vector 
with all unit entries. 

Algorithm 

Initialization 
1.0 Compute initial bounds Tf'L-<T-<T TM, qf.L<q<qf.U, 
AMTDe'L-<AMTD--AMTD TM, and Ae'L--<A-<A TM (see 
sections 4 and 5 and Appendix 2). 
2.0 Set 130: = - ~,  and fI0: = { (T,q,AMTD,A): 
TO,L_T_TO,U, qO,L<q<qO, U, AMTDO,L_AMTD< 
AMTD °'u , A°'L~A~A°'U}, where TO'L: =T f'L, T°'u: =T TM , 
q0,L:=qf, L, qO.U:=qf, U, AMTDO,L:=AMTDr, L, AMT- 
DO,U: =AMTDf, u, AOX:=A r.L, AO,U:=Af, U. 

3.0 Set .~:= {(0, 13o)}. 
4.0 Set oc=oo, 13:=- oo, and ~-->0. 

Main stage 
1.0 Select from ~ an active node s with 13:=13, set 
~ : =~\(s,13s) and C:  = {O}. 
2.0 Convex MINLP lower bounding operation. 
2.1 Use OA to solve (C) over M~. Generate the finite 

s _ s,p s , p _  1"7s.P ~ s , p  A s.p Zs ,p ,R sequence S,,~-{Soo}, where s ~ -  . . . . . . . . . .  
q~'P'~,AMTD~'p'R,A~'P'R}, pEOA~={1,2,...p~}. At any 
point, if ks'P-->et-e set 13~'P:=h s'p and stop OA itera- 
tions. 
2.2 Order the elements of S~ by increasing value in 13 ~'P, 
then renumber the sequence elements starting from 1. 
2.3 Set 13:=13~:, and 13:=min{13, I3~}'V-E .~ (r,l~r)E ~ .  
2.4 If e~ -- 13--<e, stop. Current best solution is a solution 
to (P), 
2.5 If a - 13~e, restart main stage. 
3.0 Nonconvex NLP upper bounding operation 
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3.1 Set tx =oo. 
3.2 For p= 1,2,...ps 

- If 13s'P<a-e, solve Pl(z S'p) over fl~ starting from 
{ Ts,p,R, qS.p.R, AMTD s,p.R, A s,p,R }. 

- If cx~'P<as, set as=Min(a~, as'P), and update {z, ,  eq, 
"Is, q,, AMTDs, As}:= {z ~'p, a s'p, T s'p, qS.p, AMTD s.p, AS.p} 
3.3 - If cq<a update current best solution {z*, a, T*, q*, 
AMTD*, A*}:= {z,, ors, "Is, qs, AMTD~, As}. 
4.0 Global NLP upper bounding operation. 
4.1 For p= 1,2,...ps 

- Set Cs:=CsU {zs'P}. 
- If 13s'P<ot - 8, try to improve current best solution by 

solving Pl(z ~p) to global optimality over fls. 
Ifo~ - 13-<e, stop. Current best solution is a solution to 

(P). 
5.0 Refining Operation. 
5.1 Consider the solution {z ~'', k ~'', 13~", T sJ'g, qS.I.R, 
AMTD s.,.R, A s.,.R }. Determine ~/ such that 

q~l.R q~.t.R 

Uv AMTD~ 't'R --A~P'R--> UrAMTD~ d'R A~ 'p'R, VreL. 

Also, through indices i jk ,  identify input streams asso- 
ciated with the heat exchanger, cooler or heater "y. 
5.2 If ~/is associated with a heat exchanger i jk ,  compute 
8. = ( T ~ : f  - T~J'")/(T{U, - T~f), and 82=(T::,~'f, - T;:l'+,)/ 

..t; v ,c. L (T~.,+flT~.k+,). If 8,-->82 Define l)~,=f~fq {Ti.k<--0.5 
s,L s.U ( T i . , + T i . k ) }  andf/s2=f/sn{Tu,-->0.5 ,.t ,.u (Ti.k +T~.k )}- Oth- 

erwise, define H~, =ft~ n < ~.L ~.u { rj.k+ 1--0.5(T;.,~+, + T~.t+ i) } and 
-- ~ S, L S, U fh~-f~sn {Ti.k+,--0.5 (T~.k+, +T~.k+,)\}. 

5.3 If ~/ is associated with a cooler i, define 
f~s,=asn {Ti NOK+I <0 .  5 s,L ,,U • . (Ti, Nox+l+Ti ,  Nor+O},  and 
~-~s2 = ~--~s (., I { Ti.NOK+ i __~0.5 s,L s.V (Ti.Nox+l + T imor+t ) } .  

5.4 If ~ is associated with a heater j ,  define 
~,=IIJq {Tj.,--<0.5 ,.L ,.u (T~., +T)., )} and 
fk:fhn {Tj,,-->0.5 (T;:f+T;:D\}. 

5.5 Use bounding relations m reduce E/s, and ~2.  
5.6 Define Ms~ =Ms n ~ n 1"~,~ and 

Ma = Ms n ~ 1"3 l'~ a, where ~s  = { z ~ B ,u: 
(2z s'p- e)Tz~IlzS'Pll 2 -  1, VzS'peC~}. 

5.7 Set 13~:=13~,  13a:=13~, and 
.~: =.~/~ U (sl,13st) U (S2,13s2). 
6.0 Delete from ~ all (r,13~) such that 13,>-et - e. Restart 
main stage. 

R e m a r k s  

It should be noted that in the above algorithm 
convergence can be guaranteed with e tolerance. The 

major bottleneck is the solution of the convex MINLP at 
each node. However, the number of nodes that need to 
be enumerated can be expected to be modest in most 
cases. 

E x a m p l e  4 

To illustrate the application of the proposed algorithm, 
consider a problem involving two cold, and two hot 
streams, steam and cooling water. Table 2 presents the 
problem data, along with the heat exchanger area, and 
utilities cost information. The superstructure used for 
this problem consists of three stages (see Fig. 1), with 12 
heat exchangers, two coolers, and two heaters. For this 
problem an absolute tolerance 8= 1 is used. The convex 
MINLP model (C) includes 245 equations with 121 
continuous, and 16 binary variables. Table 3 shows the 
results obtained for the analysis of the first branch and 
bound node. OA performs three iterations to solve model 
(C), and a lower bound 130 equal to $70,483.7 y r - '  is 
obtained for the global minimum of the total annual cost 
of the heat exchanger network. To obtain this bound, the 
first OA master problem predicts a network structure 
with five heat exchangers, and provides a lower bound 
k °'~ equal to $47,138.3 y r - '  for the solution of the 
convex MINLP problem. The first NLP subproblem then 
provides the corresponding upper bound, 
130:=$70,483.7 yr - t. OA stops iterating after only three 

Table 2. Problem data for example 4 
(Stream data from Linnhoff et al. 1982, Yea and Grossmann, 

1990) 

Tin Tout F Cost 
Stream (K) (K) (kWK-') ($ kW-' yr-') 

H1 443 333 30 
H2 423 303 15 
C1 293 408 20 
C2 353 413 40 
SI 450 450 
W! 293 313 

80 
20 

U=0.8 (kW m - 2  K-')  for all matches except ones involving 
stream. 
U= 1.2 (kW m -2 K- L) for matches involving steam. 
Cost of Heat Exchangers and Coolers ($ yr-t)=6250+83.26 
[Area (m2)]. 
Cost of Heaters ($ yr-')=6250+99.91 [Area (m2)]. 

Table 3. 

Iteration p 

MINLP (C) 
Lt~al and 

global NLP 

Exchangers in network A °' p ~ P  a °' P 

(1, 1, 1), (l, 1, 3), (1, 2,2), (2, 1,2), 47,138.3 70,483.7 
(CU-2) 

(1, 1, 2), (1, 2, 1), (2, I, 1), (2, !, 3), (2, 2, 2), 68,288.9 73,637.1 
(CU-2) 

(I, I, 2), (I, 2, I), (2, I, I), (2, I, 3), (2, 2, 2), 71,348.6 78,347.0 
(CU-2), (HU- I) 

74.708.8 

83.093.4 
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major iterations, when k°'3=$71,348.6 yr - ~ exceeds the become valid lower bounds for the global minimum cost 
value of the best upper bound 130a. of the three network structures that are provided by the 

In the upper bounding operations 13oa, 13o.2, and 130.3 lower bounding operation. The local optimization of the 

2 NonconvexNLP's / rTn =-ta'mR~ ~, 
2 Global NLP's ~ 3 MILP's 

3 Convex NLP's 

4 MILP's 1 MILP 
3 Convex NLP's 

Fig. 3. Branch and bound tree for Example 4 
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41408 0 398.454 
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(D I '% 
! I 3,5oo 

220.009 

Exchanger 

I-I-I 

I-I-3 

I-2-2 

2-I-2 

CU-2 

Heat load ~kW) 

190.93 

709.07 

2400.00 

1400.00 

400.OO 

AM'I'D A ~  (m 2) 

6.52 

26.00 

220.01 

135.87 

37.50 

LMTDArea(m 2) 

6.53 

26.26 

280.79 

225.56 

38.31 

Fig. 4. Global optimum solution of Example 4 
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Exchanger HeatLoad (kW) AMTDArea (m 2) LMTDArea (m 2) 

3-1-2 

3-2-1 
CU-I 
CU-2 

HU-2 

94.23 

41.88 
187.37 
38.15 

246.39 

95.09 

0.96 
36.03 

8.57 

55.41 

99.74 

0.96 
36.94 

9.64 

65.47 

Fig. 5. Global optimum solution of Example 5 

nonconvex NLP problems Pl(z°'l), and P2(z °'2) produce 
upper bounds with values a°'t=$74,708.8 yr -~, and 
a°'2=$83,093.4 y r -  ~ for the first two networks, respec- 
tively. Pl(z °'3) need not be solved since 13°'3=$78,347.2 
yr-~-->~=a °'~. The global optimization of Pl(z °'') 
required a total of ten linear, and five nonlinear 
programming problems yielding also the value of 
$74,708.8 yr - ~ as the local search. The global optimiza- 
tion of problem P2(z °'2) is terminated when 13 o.2 takes a 
value of $82,391.1 y r -  i, exceeding the value of the best 
available upper bound ($74,708.8 y r -  i). This required 
the solution of 14 linear and one nonlinear programming 
problems. 

In the refining step, the heat exchanger involving hot 
stream 2 and cold stream 1 in stage 2, exchanger (2-1-2), 
exhibits the largest error in the approximation of the heat 
transfer area, and t~.~ is selected as branching variable. 
After bisecting f l  o over t~t. 3, two hyperrectangles, ['lo. ~ 
and rio. 2, are created (see Fig. 3). These new sets are 
reduced, and used, along with D, 0 and ~o, to create the 

branch and bound nodes 1 and 2. The first iteration of the 
global optimization algorithm is then ended with overall 
lower, and upper bounds 13=$70,483.7 yr -~ and 
c~=$74,708.8 yr -I, respectively. This accounts for a 
5.65% approximation gap. 

When OA is applied to the MINLP in node 1, a lower 
bound k t.4 equal to $75,283.0 yr - ~ is obtained after four 
major iterations. Since this value lies above the current 
overall upper bound, OA iterations are interrupted, and 
node 1 is eliminated. A similar situation arises when 
node 2 is analyzed. In this case h 2'~ =$88,247.6 yr-~ is 
obtained after one master problem is solved. Note that in 
both cases integer cuts are used, which explains why 
lower bounds with higher values than the best available 
upper bound are obtained for nodes 1 and 2. In this way, 
the global optimization algorithm stops after only three 
nodes are analyzed, and the solution shown in Fig. 4, 
which corresponds to a=$74,708.8 y r -  ~, is found to be 
the global minimizer. The computations performed to 
solve Example 4 required approximately 156 CPU 
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Exchanger Heat Load (kW) AMTDArea (m 2) LMTDArea (m 2) 

1-1-2 

2-1-3 

3-2-1 

CU-I 

CU-3 

HU-2 

56.08 

38.15 

120.51 

131.29 

15.60 

167.76 

123.92 
37.53 

5.86 

29.96 

!.69 

47.45 

129.64 

42.75 

15.12 

30.14 

1.70 

53.35 

Fig. 6. Suboptimal 

seconds of an IBM RISC/6000 workstation. The sum- 
mary of computations is shown in Table 4. In Fig. 4 we 
also show the corresponding areas calculated with the 
LMTD. The LMTD network has a total annual cost of 
$87,326.2. When this last network is locally optimized a 
total annual cost of $85,967.9 is obtained. 

In order to provide some insight on the performance 
of the various bounding approximations, the effect of 
using 15 different versions of the MINLP model (C) for 
the calculation of the lower bound for the total annual 
cost of this example at node 0 is reported in Table 5. The 

solution of Example 5 

models in this Table are ordered according to increasing 
value of their computed lower bounds. The first column 
in Table 5 shows that the lower bounds obtained from 
the NLP/LP relaxations of the corresponding version of 
model (C) are very weak for all 15 models. The second 
and third columns indicate that the lower bounds 
improve considerably for the solution of the first MILP 
master problem and the solution of the MINLP. Also, 
note that the model that includes only the quadratic/ 
linear estimators (model 8) outperforms all models built 
up with the linear, the nonlinear, and the thermody- 

Table 4. Summary of computations for example 4 

Branch and bound nodes: 
Convex MINLP's: 
Nonconvex (local) NLP's: 
Total CPU time: 

3 
3 (8 MILP's +6 Convex NLP's) 
2 (24 LP's+6 Convex NLP's) 
156 CPU seconds, IBM RISC/6000 workstation 
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Table 5. Lower bounds computed for node 0 of 
example 4 

Estimators Relaxed First 
Model included NLP/LP MILP MINLP 

1 A 22,752 47,138 
2 B 22,752 44,464 51,017 
3 AB 22,752 47,138 55,552 
4 C 23,038 42,372 58,607 
5 AC 23,038 47.138 58,859 
6 BC 23,038 46,892 61,550 
7 ABC 23,038 47,138 62,709 
8 D 22,752 39,250 64,839 
9 BD 22,752 44,464 67,958 

10 CD 23,038 42,372 68,116 
11 BCD 23,038 46,892 70,386 
12 ABCD 23,038 47,138 70,484 
13 ABD 22,752 47,138 70,484 
14 ACD 23,038 47,138 70,484 
15 AD 22,752 47,138 70,484 

A--AI-Khayyal's linear estimators in (6-6) 
B--Quesada-Grossmann's nonlinear estimators in 
(6-5) 
C--Thermodynamics based estimators in (6-3) 
D--Quadratic/linear estimators in (6-4) 

namics based estimators (models 1-7). Results also 
indicate that the quadratic/linear estimators in (6-4), and 
A1-Khayyal's linear estimators in (6-6) are the binding 
constraints for the best computed bound in this case. 
Although a general conclusion can not be drawn from 
the results for this particular example, it is worth 
stressing the remarkable improvement in the values of 
the lower bounds obtained when the estimators devel- 
oped in this work are included. 

Example 5 

As a second example of the application of the 
proposed algorithm, consider the synthesis of a heat 
exchanger network for a problem with 3 hot, and 2 cold 
streams, steam, and cooling water. Problem data and cost 
information are provided in Table 6. A HEN super- 
structure consisting of 3 stages, with 18 heat exchangers, 
3 coolers and 2 heaters is used this time. 

Table 7 shows the results obtained for the solution of 
this problem. The first column shows the order in which 
the branch and bound nodes are analyzed, and the 
second column gives the corresponding immediate 
parent node. In the third column we show the variable 
selected for branching after the corresponding node is 
analyzed. The fourth and fifth columns present the 
bounds obtained when OA is applied to the lower 
bounding model (C), and the sixth gives the bound 
provided by the upper bounding operations (i.e. non- 
convex and global NLP's). Note that only one, either k s'p 
or 13 s, is shown at a time. h ~'p is shown when its value 
goes above the current best solution, and OA iterations 
are interrupted. The last two columns of Table 7 show 
the overall lower and upper bounds obtained for this 
problem as the branch and bound algorithm proceeds 
analyzing nodes. From Table 7, we see that the 
computed lower bounds are very tight. The solution of 
this problem required the analysis of 17 nodes, and the 

Table 6. Problem Data for example 5 
(Stream data taken from Ahmad 1985, Rev and Fonyo 1991, Zhu et al. 

1995) 

T+, To,, F h Cost 
Stream (*C) (°C) (kWC -I ) (kW m-Z C -I ) ($kW -I yr -I ) 

H1 159 77 2.285 0.10 - -  
H2 267 80 0.204 0.04 - -  
H3 343 90 0.538 0.50 - -  
CI 26 127 0.933 0.01 - -  
C2 118 265 1.961 0.50 - -  
SI 300 300 - -  0.05 ! 10 
W1 20 60 - -  0.20 10 

Cost of heat exchangers ($ yr- ~)=7400+80 [Area(m2)] 
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variable 
node parent to 
s node branch 

MINLP (C) NLP's OA global 
0major NLP 

A" p /3~ a~ iter p probs p 

0 /h3.2 
1 0 to).3 
2 0 t,.i.3 
3 2 tcl.~ 
4 2 t~,..i 
5 I tcl,.~ 
6 I 
7 5 t,,2.~ 
8 5 tn~2 
9 3 

10 3 
11 8 
t2 8 
13 7 
14 7 
15 4 
16 4 

82,300.2 

82,113.2 

82,347.1 
82,976.9 
82,195.0 
82,661.1 
82,401.4 
83,030.3 

77,268.3 82,151.5 
78,511.6 84,035.6 
78,484.0 84,035.6 
80,559.4 82,042.9 
81,606.6 82,042.9 
79,529.0 84,035.6 

81,208.2 83,596.3 
81,095.6 84,035.6 

82,212.7 

10 3 77,268.3 82,151.5 
4 2 78,484.0 82,151.5 
5 2 78,484.0 82,151.5 

12 3 78,484.0 82,042.9 
6 0 78,511.6 82,042.9 
8 2 78,511.6 82,042.9 
3 0 79,529.0 82,042.9 
7 1 79,529.0 82,042.9 
5 1 80,559.4 82,042.9 
4 0 80,559.4 82,042.9 

11 0 81,095.6 82,042.9 
5 0 81,095.6 82,042.9 
6 0 81,208.2 82,042.9 
2 0 81,208.2 82,042.9 
2 0 81,606.6 82,042.9 
2 0 81,606.6 82,042.9 
2 0 83,030.3 82,042.9 

branching operation was performed eight times. Also, it 
can be seen that the process of solving eight MINLP 
convex underestimating problems was stopped before 
convergence, and the second upper bounding operation 
carried out the global optimization of 14 NLP prob- 
lems. 

The global optimum solution of this problem, which 
has a total annual cost equal to $82,042.9 yr - ~, is found 
when the analysis of the fourth branch and bound node 
is performed. Figure 5 shows the corresponding heat 
exchanger network, and operating conditions. This 
problem required approximately 6 hours of CPU time. 
The summary of the computations, which were carried 
out on an IBM RISC/6000 workstation, is shown in 
Table 8. The LMTD network in Fig. 5 has a total annual 
cost of $83,400.0. The same annual cost is obtained 
when the LMTD network is locally optimized. 

The nonconvex problem (P) associated with this 
example was also solved with DICOPT++. This 
software was started from several different points, 
among which we have the GAMS default starting point 
(Brooke e t  al . ,  1992), and the middle point of the 
hyperrectangle f~0. In all cases, a suboptimal network 
structure containing heat exchangers (1-1-2), (2-1-3), 
(3-2-1), (CU-I), (CU-3), and (HU-2), or an equivalent 
configuration, was obtained. This is a good example of 
how the global optimum might be cut off by the master 
problem when a nonconvex MINLP problem is solved 
by a local optimizer. Figure 6 shows the suboptimal 
network. Note that although the suboptimal network 

consumes less energy than the global optimal solution in 
Fig. 5 (167.8kW vs  246.4kW heating utilities; 
146.9 kW vs 225.5 kW cooling utilities), the former 
requires an extra unit (6 vs  5), and a higher total heat 
transfer area (246.4 m 2 vs 196.1 m2). The cost of the 
extra unit, and the increment in the total area required to 
perform the heat transfer operations renders the system 
in Fig. 6 more expensive than the global optimal solution 
($84,035.0 yr -~ vs  $82,042.9 yr-~). The LMTD net- 
work associated with the suboptimal solution shown in 
Fig. 6 has a total annual cost of $86,137.4. After being 
locally optimized this network yields a total annual cost 
equal to $86,029.2. 

8. Conclusions 

A hybrid branch and bound/outer-approximation 
global optimization algorithm for the synthesis of heat 
exchanger networks has been presented in this paper. As 
shown, the solution of the proposed convex MINLP 
model, that incorporates the two new sets of convex 
underestimators for the area of heat exchangers, pro- 
vides very good bounds for the global minimum of the 
total annual cost of HENs. It is important to note that 
although arithmetic mean temperature difference driving 
forces have been used in this paper, results obtained with 
the proposed algorithm will provide a valid lower bound 
to the total annual cost for the case with logarithmic 
mean temperature difference driving force (assuming no 
stream splits). The significance of this work is that it 

Table 8. Summary of computations for example 5 

Branch and bound nodes: 
Convex MINLP's: 
Nonconvex (local) NLP's 
Global NLP's: 
Total CPU time: 

17 
17 (94 MlLPs+86 Convex NLP's) 
23 
14 (I 14 LP's+ 14 Convex NLP's) 
6 CPU hours, IBM RISC/6000 workstation 
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provides an effective solution method to the global 
optimization of the simultaneous synthesis model for 
heat exchanger networks. Extensions for the case with 
logarithmic mean temperature difference, and concave 
cost functions are currently under investigation. Finally, 
we believe that the proposed bounding strategy can be 
also useful in the solution of other types of nonconvex 
MINLP models. 
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Appendix I 

Proofs of Theorems 1 and 2 

Theorem 1. The thermodynamics based estimator 

qok (AI-I) 
Ai.J.k > u L _ q0k(i/Fi + I/Fj)/2 ] U i . j [ t i .  t~ - tj. k. i 

is convex, underestimates the area of heat exchangers, and 
provides an exact representation when t~.,=t~, and t~.,÷t-tj.k+~.- L 
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Proof. 
The r.h.s, of (AI-I). which is a function of q~, only, has a 

second derivative given by 

(t u~ -- tzt+.)(l/Fi+ 1/Fj) _ (tu~ -- t~.~+ 0(l/Fi + I]Fj) 
U~4[t~.v--tjL~+,- q~#(l/Fi+ I/Fj)/2] 3 - U~4[AMTD .v/.~] 3 

in which the upper bound for the driving force in (4-2) has been 
substituted in the denominator. For any match allowed by the 
second law of thermodynamics this quantity is greater than or 
equal to zero. Therefore, the r.h.s, of (A-l-I) is convex• 
Convexity of the inequality in (A l-1) follows from the fact that 
the sum of convex functions is convex. On the other hand, the 
approximation error of (AI-I) is given by A~, where 

i _ qi# q~t 
A~jt- U~4AMTDI4. ~ U, . J t v t_ t~ .  ' _ q0t(l/Fi+ 1/F~)/2] 

u L qq,[ti. ~ - t~.t+t~.~÷ ~ - tj.i÷ ~] 
u _ L Ui4 AMTDi4.t[t~.* tj.,÷ ~ - qqt(l/Fi+ l/F~)/2] 

(AI-2) 

L Since t~,--<tv~ and ti.~+~_t~.~÷~, the approximation error is 
always nonnegative, which implies that (AI-I) underestimates 
the area of heat exchangers. Also from (AI-2), it is obvious that 

• _ u _ L  A~ is equal to zero ff t~.~-t~, and tj.~÷t-tj.,÷ p 

Theorem 2. The quadratic/linear fractional inequality 

l ( qo~+ ~ y (A1-3) 

is convex, underestimates the area of heat exchangers in the 
domain ~ u qo~[qq~,qi~], and provides an exact representation 

L ~ U when qq~=qq~ or q q ~ - q q ~ .  

Proof. 
The Hessian matrix of the r.h.s, of (A1-3) is given by, 

2 

U,j A M T D i . j . t ( ~ +  ~ ) 2  

- 2(q0t + ~ )  
U,j(AMTD,o ,,) 2 ( ~  + g ~ # ) 2  

H= 
- 2 ( q q ~  + ~ )  

U,.,(AMTD/4.,) 2 ( ~ +  ~ o * )  2 
2(q~ + ~ )  2 

U/.~(AMTD,4. t ) ' ( ~  + ~ )  2 

The two eigenvalues of H are 

k~=0 

X2 = 2(AMTDI.~.~) 2 + 2(qo ~ + ~ )  2 
U,./(AMTD,.i. ~) 3 ( ~  + ~ )  x 

Since both eigenvalues of H are nonnegative, H is positive 
semidefinite (Bazaraa and Sbeety, 1979). Therefore. the r.h.s, of 
(A i-3) is convex. Convexity of the inequality in (A I-3) follows 
from the fact that the sum of convex functions is convex. On the 
other hand, the approximation error of (A1-3) is given by 

2 _  qot ! ( qe,+ ~ ~ ~ 

L u 
(q~ - q q*)(q ot - qq~) 

v,.j AMa'D,.~.~(~ + ~)~  

(A1-4) 
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Since L < < v 2 quk--qo~--qok, Aqk is greater than or equal to zero. 
Hence. (AI-3) underestimates the heat transfer area. Fur- 
thermore, and also from (AI-4), it is clear that the approxima- 
tion error is zero when _ L _ u q~,-qqk or q~k--qok" 

A p p e n d i x  2 

O t h e r  B o u n d i n g  R e l a t i o n s h i p s  

In order to use (3-1) and (3-2), bounds for the driving forces 
and areas are required. In this appendix we present bounding 
relationships that are used to initialize these estimators. 
Furthermore, all these expressions are also incorporated in the 
reduction step that follows the branching operation of the 
proposed global optimization algorithm. 

Computat ion o f  bounds f o r  the A M T D  
For developing a lower bounding expression for the AMTD, 

consider again the case in which streams i, andj  are matched in 
stage k with a heat load equal to q~jk. In order to determine the 
minimum driving force that can allow this heat transfer 
operation, we propose the following minimization problem: 

L 1 AMTDij~>Min ~ [tl.k+ti,~÷t - tj.k - tj.k÷j] (A2-1) 

s.l. 

qok=Fi(t~,k-- ti.t+O 

qok=Fj(tj.k-- tj.t+,) 

t,., -- tj.t->Max[AT, nal,, t ~ , -  tjuk, tt,+, - ty.t+qqJFi] 

t,.t+ , - tj.,.,>-MaxtAT=a,p, tri.t+, - ty.,+,, t~.t., - ty., +qo.tlFj] 

tj.~>-tj.k÷, 

Ti.~,,<=t~(<ti.k<--t~.~<--T~,i,, 

Ti.ou,--ti.k+l--ti.k.l--ti.k+l--Ti.i. 

Tj.i.<--tL~<--tj.~<--t jLfk<-- T: .... 

Tj.,,,<--t~k+,<-tj.,÷,<-ty.,÷,<-Tj.o~, 

The energy balances axe used to solve for (ttk--tj.k). yielding 

ti~-tj~=ti~+l- tj~+l +qok(l/Fi- I/Fj) 

Introducing this equality in the original problem reduces (A2- 
1)to 

AMTD~k->Min(t,.~÷, - tj.,+,)+ ~ qi.~k(1/Fi- 1/Fi) (A2-2) 

s.t. 

t~.k+ I - t~.k+ i>'Max[AT,~pp, AT,,,~ - q~#(l/F i - I/Fj), 

t ~ i.t, - tj.e,-qq,(1/Fi- I/F~), 

t~,+, - ty., + qoelF i, 

t t , + l -  t~.v~÷,l 

T~'.c,,t~ttt+l<--ti.t÷l<t~+l<--ri .... 

T~.i,<--t~.t.,<--tj.k÷,<--tjot+l<--Tj.,~, 

From here we obtain 

AMTD ~>@(q0D _~Max [ A Tm~ + 1 qu~(l/F~- 1/Fi) ,  (A2-3) 
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1 
AT,.,~,- 7~ q0k(l/Fi-  1/Fj), 

tL _ t t  ~ _ 1 i.k j,~ ~quk(1/F i - I/Fj), 

o 1 
t[k.,  - t~,k+ ~ qqk(l/Fi+ I/Fj), 

1 
t~ , ,  - t~k+l + ~ qijk(l/Fi- I/Fj)] 

Finally. exploiting monotonicity properties of (A2-3). a lower 
bound for the case in which Fi->Fj is derived 

t. 1 v 
A M T D 0 ~ = M a x [ A T ~ +  ~ qq,( l /F i - I/Fj). (A2-4) 

1 

tL _ t u  _ 1 t ~.~ j.~ ~ qq,(i/E- I/F~), 

L u 1 q~( l /F i+  1/F~) ' t i . ~ . l  - -  t j A : +  

tt~+ ' _ t.~v., + I q ~ ( l / F  i _ 1/Pj)] 

Similarly, for the case in which F~<Fj, the following 
bounding expression is obtained 

AMTD~.->Max[AT~+ ~ q ~ ( l / F ~ -  I/F~), (A2-5) 

1 

, _ u _  1 v 1 tu~ t j~ ~ q~,(  IF  i - 1/Fi), 

u 1 
t~a÷~ - t/.~+ ~ qo~(l/Fi+ l/Fi), 
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t L _ . L I/Fj)] i.k+l t j ~ * l + q i # ( l l P i  - 

Upper bounds for the AMTD are calculated with the 
following expressions 

U.¢~ " O U L L  AMTDuk_Mln[(ti.k+ti.~÷ I tj.~ tj.**0/2. (A2-6) 

( t~k+t~ ,+  __ t. L 2tj.k. I -- q0flFj)/2, 
U L L L (2tLk - tj. ~ - tj.k, I - q :i)12. 

v L _ q~k(i/Fi+ I/Fj)I2 ] tl.k--tj.k+l 

u <  • u u u L _  u t~2)Fi/Fj)/2 ] A M T D ~ I - M m [ A M T D , ~ t ,  (t i .= + t i . 2 -  2t j .2  ( t L j  - 

u • u ( 2 t i . N o r _ t j . N o r _ t j . ~ O X ,  l A M T D  q~oK < M I n [  A M T D  ot~or ' u L L 

- ( t~,~o ~ - t ~ s o r  + J F / F i ) 1 2 ]  

A simpler analysis for coolers and heaters produces 

L l L AMTDi.c"-> ~ (Max[ATma~ ' t~.Nor+l - Tc ,~ , ]  + Ti.o. , - To.. , ,)  

(A2-7) 

v 1 u AMTD~ ~.-< ~ (Max[ATm~ t imox , i - Tc.. o~,] + Ti. ~ ,  - T~.. i,) 

AMTD~.., _ > 21 (Max[AT~=~. Ta,,~.,-~I+T~j,,~Tj. . =,,) 

I 
T ,  . . . .  t j . , l+T , . . , , ,  Tj.~,,) A M T D V h <  -2 (Max[ATm,m _ L _ 

B o u n d s  f o r  t h e  h e a t  t r a n s f e r  a r e a  

Initial lower bounds for the areas of  heat exchangers are set 
equal to zero. Upper bounds for the areas are calculated with the 
following relationship 

[ q ~  M a x r  q~* qo% ] 
Ag* < M i n  U~IAMTD~ k ' L u,~,I,(q~)' UijdP(q~, )  ] 

(A2-8) 


