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Introduction

Unconstrained Optimization
• Algorithms
• Newton Methods
• Quasi-Newton Methods

Constrained Optimization
• Karush Kuhn-Tucker Conditions
• Special Classes of Optimization Problems
• Reduced Gradient Methods (GRG2, CONOPT, MINOS)
• Successive Quadratic Programming (SQP)
• Interior Point Methods

Process Optimization
• Black Box Optimization
• Modular Flowsheet Optimization – Infeasible Path
• The Role of Exact Derivatives

Large-Scale Nonlinear Programming
• Data Reconciliation
• Real-time Process Optimization

Further Applications
• Sensitivity Analysis for NLP Solutions
• Multiperiod Optimization Problems

Summary and Conclusions

Nonlinear Programming and Process Optimization
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Introduction

Optimization:  given a system or process, find the best solution to 
this process within constraints.

Objective Function:  indicator of "goodness" of solution, e.g., cost, 
yield, profit, etc.

Decision Variables:  variables that influence process behavior and 
can be adjusted for optimization.

In many cases, this task is done by trial and error (through case 
study).  Here, we are interested in a systematic approach to this 
task - and to make this task as efficient as possible.

Some related areas:

- Math programming

- Operations Research

Currently - Over 30 journals devoted to optimization with roughly 
200 papers/month - a fast moving field!
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Optimization Viewpoints

Mathematician - characterization of theoretical properties 
of optimization, convergence, existence, local 
convergence rates.

Numerical Analyst - implementation of optimization 
method for efficient and "practical" use. Concerned with 
ease of computations, numerical stability, performance.

Engineer - applies optimization method to real problems.  
Concerned with reliability, robustness, efficiency, 
diagnosis, and recovery from failure.
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Scope of optimization
Provide systematic framework for searching among a specified 
space of alternatives to identify an “optimal” design, i.e., as a  
decision-making tool

Premise
Conceptual formulation of optimal product and process design 
corresponds to a mathematical programming problem
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xxHybrid

xxNonlinear 
MPC

xLinear MPC

xxReal-time 
optimization

xxxSupply Chain

xxxxScheduling

xxFlowsheeting

xxx Equipment 
Design

x xxxReactors

xxSeparations

xxxxxxMENS

xxxxxxHENS

SA/GANLPLP,QPGlobalMINLPMILP

Optimization in Design, Operations and Control
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Unconstrained Multivariable Optimization

Problem: Min    f(x) (n variables)

Equivalent to: Max  -f(x), x ∈ Rn

Nonsmooth Functions
- Direct Search Methods
- Statistical/Random Methods

Smooth Functions
- 1st Order Methods
- Newton Type Methods
- Conjugate Gradients
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Example :  Optimal Vessel Dimensions
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What is the optimal L/D ratio for a cylindrical vessel?
Constrained Problem

(1)

Convert to Unconstrained (Eliminate L)

(2)

==> L/D  =  CT/CS
Note:
- What if L cannot be eliminated in (1) explicitly? (strange shape)
- What if D cannot be extracted from (2)?  

(cost correlation implicit)
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Two Dimensional Contours of F(x)

Convex Function Nonconvex Function Multimodal, Nonconvex

Discontinuous Nondifferentiable (convex)
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Local vs. Global Solutions

•Find a local minimum point x* for f(x) for feasible region defined by   
constraint functions: f(x*) � f(x) for all x satisfying the constraints in 
some neighborhood around x* (not for all x ∈ X)

•Finding and verifying global solutions will not be considered here. 

•Requires a more expensive search (e.g. spatial branch and bound). 

•A local solution to the NLP is also a global solution under the 
following sufficient conditions based on convexity. 

• f(x) is convex in domain X, if and only if it satisfies:

f(α y + (1-α) z) � α f(y)  + (1-α)f(z)

for any α, 0 � α � 1, at all points y and z in X. 
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Linear Algebra - Background

Some Definitions
• Scalars - Greek letters, α, β, γ
• Vectors - Roman Letters, lower case
• Matrices - Roman Letters, upper case
• Matrix Multiplication:

C = A B if A ∈ ℜ n x m, B ∈ ℜ m x p and C ∈ ℜ n x p, Cij = Σk A ik Bkj

• Transpose - if A ∈ ℜ n x m, 
interchange rows and columns --> AT∈ ℜ m x n

• Symmetric Matrix - A ∈ ℜ n x n (square matrix) and A = AT

• Identity Matrix - I, square matrix with ones on diagonal 
and zeroes elsewhere.

• Determinant: "Inverse Volume" measure of a square matrix

det(A) = Σi (-1)i+j A ij A ij for any j, or  

det(A) = Σj (-1)i+j A ij A ij for any i, where A ij is the determinant
of an order n-1matrix with row i and column j removed. 
det(I) = 1

• Singular Matrix: det (A) = 0
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Linear Algebra - Background
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• Some Identities for Determinant
det(A B) = det(A) det(B); det (A) = det(AT)

det(αA) = αn det(A); det(A) = Π i λ i(A)

• Eigenvalues:det(A- λ I) = 0, Eigenvector: Av = λ v
Characteristic values and directions of a matrix.
For nonsymmetric matrices eigenvalues can be complex, 
so we often use singular values,σ = λ(ATΑ)1/2 ≥ 0

• Vector Norms

|| x ||p = { Σi |xi|p} 1/p

(most common are p = 1, p = 2 (Euclidean) and p = ∞ (max norm = maxi|xi|))
• Matrix Norms

||A|| = max ||A x||/||x|| over x (for p-norms)

||A||1 - max column sum of A, maxj (Σi |Aij|)
||A||∞ - maximum row sum of A, maxi (Σj |Aij|)
||A||2 = [σmax(Α)] (spectral radius)

||A||F = [Σi Σj (A ij)2]1/2 (Frobenius norm)
κ(Α) = ||A|| ||A-1|| (condition number) = σmax/σmin(using 2-norm)

Linear Algebra - Background
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Find v and λ where Avi =  λ i vi, i = i,n
Note:  Av - λv = (A - λI) v = 0  or det (A -λI) = 0
For this relation λ is an eigenvalueand v is an eigenvectorof A.

If A is symmetric, all λ i are real
λ i > 0, i = 1, n;  A is positivedefinite
λ i < 0, i = 1, n;  A is negativedefinite
λ i = 0, some i:  A is singular

QuadraticFormcan be expressed in CanonicalForm(Eigenvalue/Eigenvector)
xTAx      ⇒ A V  =  V  Λ
V - eigenvector matrix  (n x n)
Λ - eigenvalue (diagonal) matrix  =  diag(λ i)

If A is symmetric, all λ i are realand V can be chosen orthonormal(V-1 = VT).  
Thus,  A = V Λ V-1 = V Λ VT

For QuadraticFunction: Q(x) = aTx + ½ xTAx

Define: z = VTx and   Q(Vz) = (aTV) z + ½ zT (VTAV)z
= (aTV) z + ½ zT Λ z

Minimum occurs at (if λ i > 0) x = -A-1a    or x = Vz = -V(Λ-1VTa)

Linear Algebra - Eigenvalues
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Positive (or Negative) Curvature
Positive (or Negative) Definite Hessian

Both eigenvalues are strictly positive or negative
• A is positive definiteor negative definite
• Stationary points are minima or maxima
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Zero Curvature 
Singular Hessian

One eigenvalue is zero, the other is strictly positive or negative
• A is positive semidefiniteor negative semidefinite
• There is a ridge of stationary points (minima or maxima)



18

One eigenvalue is positive, the other is negative
• Stationary point is a saddle point
• A is indefinite

Note: these can also be viewed as two dimensional projections for higher dimensional problems

Indefinite Curvature 
Indefinite Hessian
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Eigenvalue Example
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1. Convergence Theory
• Global Convergence - will it converge to a local optimum 
(or stationary point) from a poor starting point?
• Local Convergence Rate - how fast will it converge close to 
the solution? 

2. Benchmarks on Large Class of Test Problems

Representative Problem (Hughes, 1981)

Min  f(x1, x2) = α exp(-β)
u = x1 - 0.8
v = x2 - (a1 + a2 u2 (1- u)1/2 - a3 u)
α = -b1 + b2 u2 (1+u)1/2 + b3 u
β = c1 v2 (1 - c2 v)/(1+ c3 u2)

a = [ 0.3, 0.6, 0.2]
b = [5, 26, 3]
c = [40, 1, 10]
x* = [0.7395, 0.3144] f(x*) = 5.0893

Comparison of Optimization Methods
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Three Dimensional Surface and Curvature for Representative Test Problem

Regions where minimum 
eigenvalue is less than:

[0, -10, -50, -100, -150, -200]
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What conditions characterize an optimal solution?

x1

x2

x*

Contours of f(x)

Unconstrained Local Minimum
Necessary Conditions

∇ f (x*) = 0
pT∇ 2f (x*) p � 0   for p∈ℜ n

(positive semi-definite)

Unconstrained Local Minimum
Sufficient Conditions

∇ f (x*) = 0
pT∇ 2f (x*) p > 0   for p∈ℜ n

(positive definite)

Since ∇ f(x*) = 0, f(x) is purelyquadraticfor x close to x*

*)*)((*)(
2

1
*)(*)(*)()( 2 xxxfxxxxxfxfxf TT −∇−+−∇+=

For smooth functions, why are contours around optimum elliptical?
Taylor Seriesin n dimensions about x*:
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Taylor Series for f(x) about xk

Take derivative wrt x, set LHS § 0

0 §∇ f(x) = ∇ f(xk) + ∇ 2f(xk) (x - xk)
⇒ (x - xk) ≡ d =  - (∇ 2f(xk))-1 ∇ f(xk)

• f(x) is convex (concave) if for all x ∈ℜ n, ∇ 2f(x) is positive (negative) semidefinite
i.e.  minj λ j ≥ 0 (maxj λ j � 0)

• Method can fail if:
- x0 far from optimum
- ∇ 2f is singular at any point
- f(x) is not smooth

• Search direction, d, requires solution of linear equations.
• Near solution:  

k+1x  -  x * =  K kx  -  x *  
2

Newton’s Method
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0. Guess x0, Evaluate  f(x0).

1. At xk, evaluate ∇ f(xk).

2. Evaluate Bk = ∇ 2f(xk) or an approximation.

3. Solve:    Bk d = -�f(xk)
If convergence error is less than tolerance:
e.g., ||∇ f(xk) || ≤ ε and ||d|| ≤ ε STOP, else go to 4. 

4. Find α so that 0 < α ≤ 1 and f(xk + α d) < f(xk)
sufficiently (Each trial requires evaluation of f(x))

5. xk+1 = xk + α d.  Set k = k + 1 Go to 1.

Basic Newton Algorithm - Line Search
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Newton’s Method - Convergence Path

Starting Points
[0.8, 0.2]     needs steepest descent steps w/ line search up to ’O’, takes 7 iterations to ||∇ f(x*)|| � 10-6

[0.35, 0.65] converges in four iterations with full steps to ||∇ f(x*)|| � 10-6
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• Choice of Bk determines method.
- Steepest Descent: Bk =  γ I
- Newton: Bk =  ∇ 2f(x)

• With suitable Bk, performance may be good enough if f(xk + αd)
is sufficiently decreased (instead of minimized along line search 
direction).

• Trust region extensionsto Newton's method provide very strong 
global convergence properties and very reliable algorithms.

• Local rate of convergence depends on choice of Bk.

Newton’s Method - Notes

Newton−Quadratic Rate :            limk→∞

xk+1 − x *

xk − x *
2 = K

Steepest descent−  Linear Rate :   limk→∞

xk+1 − x *

xk − x *
<1

Desired?−  Superlinear Rate :       limk→∞

xk+1 − x *

xk − x *
= 0
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k+1B  = kB  + 
y -  kB s( ) Ty  + y y -  kB s( )T

Ty s
 -  

y -  kB s( )Ts y Ty
Ty s( ) Ty s( )

k+1

Bk+1( )-1
 =  H  =  kH  + 

Tss
Ts y

 -  
kH y Ty kH

ky H y

Motivation: 
• Need Bk to be positive definite.  
• Avoid calculation of ∇ 2f.  
• Avoid solution of linear system for d = - (Bk)-1 ∇ f(xk)

Strategy: Define matrix updating formulas that give (Bk) symmetric, positive 
definite andsatisfy:

(Bk+1)(xk+1 - xk) = (∇ fk+1 - ∇ fk) (Secant relation)

DFP Formula:(Davidon, Fletcher, Powell, 1958, 1964)

where: s = xk+1- xk

y = ∇ f (xk+1) - ∇ f (xk)

Quasi-Newton Methods
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k+1B  =  kB  + 
Tyy

Ts y
 -  

kB s Ts kB
ks B s

k+1B( )−1
= k+1H  = kH  + 

s -  kH y( ) Ts  + s s -  kH y( )T
Ty s

 -  
y -  kH s( )T y s Ts

Ty s( ) Ty s( )

BFGS Formula(Broyden, Fletcher, Goldfarb, Shanno, 1970-71)

Notes:
1) Both formulas are derived under similarassumptionsand have 

symmetry
2) Both have superlinearconvergenceand terminate in n steps on 

quadratic functions. They are identical if α is minimized. 
3) BFGS is more stable and performs better than DFP, in general.
4) For n ≤ 100, these are the bestmethods for general purpose 

problems if second derivatives are not available. 

Quasi-Newton Methods
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Quasi-Newton Method - BFGS
Convergence Path

Starting Point
[0.8, 0.2] starting from B0 = I , converges in 9 iterations to ||∇ f(x*)|| � 10-6
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Harwell (HSL)

IMSL

NAg - Unconstrained Optimization Codes

Netlib (www.netlib.org)

•MINPACK

•TOMS Algorithms, etc.

These sources contain various methods

•Quasi-Newton

•Gauss-Newton

•Sparse Newton

•Conjugate Gradient

Sources For Unconstrained Software
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Problem: Minx f(x)
s.t. g(x) ≤ 0

h(x) = 0
where:

f(x) - scalar objective function
x - n vector of variables

g(x) - inequality constraints, m vector
h(x) - meqequality constraints.

Sufficient Condition for Unique Optimum
- f(x) must be convex, and
- feasible region must be convex,

i.e.  g(x) are all convex
h(x)are all linear

Except in special cases, ther is noguaranteethat a localoptimumis globalif 
sufficient conditions are violated.

Constrained Optimization
(Nonlinear Programming)
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2
3

1

A

B

y

x

1x , 1y  ≥  1R                1x  ≤  B- 1R , 1y  ≤  A - 1R  

2, x 2 y ≥  2R                2x  ≤ B- 2R , 2 y ≤  A - 2R                

3,x  3 y ≥  3R                 3x  ≤ B- 3R , 3 y ≤  A - 3R                 

 

 
 

 
 

1x  -  2x( )2 +  1y  -  2y( )2  ≥  1R  +  2R( )2

1x  -  3x( )2  +  1y  -  3y( )2  ≥  1R  +  3R( )2

2x  -  3x( )2 +  2y  -  3y( )2  ≥  2R  +  3R( )2

 

 
 

 
 

Example:  Minimize Packing Dimensions

What is the smallest box for three round objects?
Variables:  A, B, (x1, y1),  (x2, y2),  (x3, y3)
Fixed Parameters:  R1,  R2,  R3

Objective:  Minimize Perimeter = 2(A+B)
Constraints:  Circles remain in box, can’t overlap
Decisions:  Sides of box, centers of circles.

no overlaps
in box

x1, x2, x3, y1, y2, y3,  A, B ≥ 0
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Min

Linear Program

Min

Linear Program
(Alternate Optima)

Min

Min

Min

Convex Objective Functions
Linear Constraints

Min

Min

Min

Nonconvex Region
Multiple Optima

MinMin

Nonconvex Objective
Multiple Optima

Characterization of Constrained Optima
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What conditions characterize an optimal solution?

Unconstrained Local Minimum
Necessary Conditions

∇ f (x*) = 0
pT∇ 2f (x*) p � 0   for  p∈ℜ n

(positive semi-definite)

Unconstrained Local Minimum
Sufficient Conditions

∇ f (x*) = 0
pT∇ 2f (x*) p > 0   for p∈ℜ n

(positive definite)
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Optimal solution for inequality constrained problem

Min f(x)
s.t.   g(x) � 0

Analogy:  Ball rolling down valley pinned by fence
Note:  Balance of forces (∇ f, ∇ g1)
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Optimal solution for general constrained problem

Problem: Min f(x)
s.t. g(x) � 0

h(x) = 0
Analogy:  Ball rolling on rail pinned by fences
Balance of forces:  ∇ f, ∇ g1, ∇ h
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Necessary First Order Karush Kuhn - Tucker Conditions

∇ L (x*, u, v) = ∇ f(x*) + ∇ g(x*) u + ∇ h(x*) v = 0
(Balance of Forces)
u � 0 (Inequalities act in only one direction)
g (x*) � 0,  h (x*) = 0 (Feasibility)
uj gj(x*) = 0 (Complementarity: either gj(x*) = 0 or  uj = 0)
u, vare "weights" for "forces," known as KKT multipliers, shadow 
prices, dual variables

“To guarantee that a local NLP solution satisfies KKT conditions, a constraint 
qualification is required. E.g., the Linear Independence Constraint Qualification
(LICQ) requires active constraint gradients, [∇ gA(x*) ∇ h(x*)], to be linearly
independent. Also, under LICQ, KKT multipliers are uniquely determined.”

Necessary (Sufficient) SecondOrderConditions
- Positive curvature in "constraint" directions.
- pT∇ 2L (x*) p ≥ 0  (pT∇ 2L (x*) p > 0) 

where p are the constrained directions: ∇ gA(x*)Tp = 0, ∇ h(x*)Tp = 0

Optimality conditions for local optimum
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Single Variable Example of  KKT Conditions

-a a

f(x)

x

Min (x)2 s.t. -a � x � a, a > 0
x* = 0 is seen by inspection

Lagrange function :
L(x, u) = x2 + u1(x-a) + u2(-a-x)

First Order KKT conditions:
∇ L(x, u) = 2 x + u1 - u2 = 0
u1 (x-a) = 0
u2 (-a-x) = 0
-a � x � a u1, u2 � 0

Consider three cases:
• u1 > 0,  u2 = 0 Upper bound is active, x = a, u1 = -2a, u2 = 0
• u1 = 0,  u2 > 0 Lower bound is active, x = -a, u2 = -2a, u1 = 0
• u1 = u2 = 0 Neither bound is active, u1 = 0, u2 = 0,  x = 0

Second order conditions (x*, u1, u2 =0) 
∇ xxL (x*, u*) = 2 
pT∇ xxL (x*, u*) p = 2 (∆x)2 > 0 
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Single Variable Example 
of  KKT Conditions - Revisited

Min -(x)2 s.t. -a � x � a, a > 0
x* = ±a is seen by inspection

Lagrange function :
L(x, u) = -x2 + u1(x-a) + u2(-a-x)

First Order KKT conditions:
∇ L(x, u) = -2x + u1 - u2 = 0
u1 (x-a) = 0
u2 (-a-x) = 0
-a � x � a u1, u2 � 0

Consider three cases:
• u1 > 0,  u2 = 0 Upper bound is active, x = a, u1 = 2a, u2 = 0
• u1 = 0,  u2 > 0 Lower bound is active, x = -a, u2 = 2a, u1 = 0
• u1 = u2 = 0 Neither bound is active, u1 = 0, u2 = 0,  x = 0

Second order conditions (x*, u1, u2 =0) 
∇ xxL (x*, u*) = -2 
pT∇ xxL (x*, u*) p = -2(∆x)2 < 0 

a-a

f(x)

x
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For x = a or x = -a, we require the allowable direction to satisfy the 
active constraints exactly. Here, any point along the allowable 
direction, x* must remain at its bound.

For this problem, however, there are no nonzero allowable directions 
that satisfy this condition. Consequently the solution x* is defined 
entirely by the active constraint. The condition: 

pT ∇ xxL (x*, u*, v*) p  > 0
for all allowable directions, is vacuously satisfied - because there are 
noallowable directions that satisfy ∇ gA(x*)T p  = 0. Hence, sufficient
second order conditions are satisfied.

As we will see, sufficient second order conditions are satisfied by linear 
programs as well.

Interpretation of Second Order Conditions
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Role of KKT Multipliers

a-a

f(x)

x a + ∆a

Also known as:
• Shadow Prices
• Dual Variables
• Lagrange Multipliers

Suppose a in the constraint is increased to a + ∆a
f(x*) = (a + ∆a)2

and
[f(x*, a + ∆a) - f(x*, a)]/∆a = 2a + ∆a

df(x*)/da = 2a = u1
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Linear Programming:
Min cTx
s.t. Ax � b

Cx = d,  x � 0
Functions are all convex ⇒ global min.
Because of Linearity, can prove solution will 
always lie at vertex of feasible region.

x2

x1

Simplex Method
- Start at vertex
- Move to adjacent vertex that offers most improvement
- Continue until no further improvement

Notes:  
1) LP has wide uses in planning, blending and scheduling
2) Canned programs widely available.  

Special Cases of Nonlinear Programming
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Simplex Method
Min -2x1 - 3x2 Min -2x1 - 3x2

s.t. 2x1 + x2 � 5 ⇒ s.t. 2x1 + x2 + x3 = 5
x1, x2 � 0 x1, x2, x3 � 0

(add slack variable)
Now, define f = -2x1 - 3x2 ⇒ f + 2x1 + 3x2 = 0
Set x1, x2 = 0,  x3 = 5 and form tableau

x1 x2 x3 f b x1, x2 nonbasic
2 1 1 0 5 x3 basic
2 3 0 1 0

To decrease f, increase x2.  How much?  so x3 � 0
x1 x2 x3 f b
2 1 1 0 5
-4 0 -3 1 -15

f can no longer be decreased!  Optimal

Underlined terms are -(reduced gradients); nonbasicvariables (x1, x3), basic variable x2

Linear Programming Example
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Problem: Min aTx + 1/2 xT B x
A x � b
C x = d

1) Can be solved using LP-like techniques:  
(Wolfe, 1959)

⇒ Min Σj (zj+ + zj-)
s.t. a + Bx + ATu + CTv = z+ - z-

Ax - b + s = 0
Cx - d = 0
s, z+, z- � 0
{u j sj = 0}

with complicating conditions.

2) If B is positive definite, QP solution is unique.
If B is pos. semidefinite, optimum value is unique.

3) Other methods for solving  QP’s (faster)
- Complementary Pivoting (Lemke)
- Range, Null Space methods (Gill, Murray).

Quadratic Programming
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iµ  =  
1

T
 ir

t=1

T

∑ (t)

Definitions:
xi - fraction or amount invested in security i
ri (t) - (1 + rate of return) for investment i in year t.
µi - average r(t) over T years, i.e. 

Note:  maximize average return, no accounting for risk.

Portfolio Planning Problem
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ijS{ }  =  ij
2σ  =  

1

T
 ir (t) - iµ( )

t =1
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-0.5   0.4           1

 

 

 
 

 

 

 
 

Definition of Risk - fluctuation of ri(t) over investment (or past) time period.
To minimize risk, minimize variance about portfolio mean (risk averse).

Variance/Covariance Matrix, S   

Example:  3 investments
µj

1. IBM 1.3
2. GM 1.2
3. Gold 1.08

Portfolio Planning Problem
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SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)
4
5 OPTION LIMROW=0;
6 OPTION LIMXOL=0;
7
8 VARIABLES IBM, GM, GOLD, OBJQP, OBJLP;
9
10 EQUATIONS E1,E2,QP,LP;
11
12 LP.. OBJLP =E= 1.3*IBM + 1.2*GM + 1.08*GOLD;
13
14 QP.. OBJQP =E= 3*IBM**2 + 2*IBM*GM  - IBM*GOLD
15 +    2*GM**2 - 0.8*GM*GOLD +  GOLD**2;
16
17 E1..1.3*IBM + 1.2*GM + 1.08*GOLD =G= 1.15;
18
19 E2.. IBM + GM + GOLD =E= 1;
20
21 IBM.LO = 0.;
22 IBM.UP = 0.75;
23 GM.LO = 0.;
24 GM.UP = 0.75;
25 GOLD.LO = 0.;
26 GOLD.UP = 0.75;
27
28 MODEL PORTQP/QP,E1,E2/;
29
30 MODEL PORTLP/LP,E2/;
31
32 SOLVE PORTLP USING LP MAXIMIZING OBJLP;
33
34 SOLVE PORTQP USING NLP MINIMIZING OBJQP;

Portfolio Planning Problem - GAMS
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S O L VE  S U M M A R Y
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE 1.2750
RESOURCE USAGE, LIMIT 1.270 1000.000
ITERATION COUNT, LIMIT 1 1000
BDM  - LP VERSION 1.01
A. Brooke, A. Drud, and A. Meeraus,
Analytic Support Unit,
Development Research Department,
World Bank,
Washington D.C. 20433, U.S.A.

Estimate work space needed - - 33  Kb
Work space allocated - - 231  Kb
EXIT - - OPTIMAL SOLUTION FOUND.

LOWER LEVEL UPPER MARGINAL
- - - - EQU LP . . . 1.000
- - - - EQU E2 1.000 1.000 1.000 1.200

LOWER LEVEL UPPER MARGINAL
- - - - VAR IBM 0.750 0.750 0.100
- - - - VAR GM . 0.250 0.750 .
- - - - VAR GOLD . .. 0.750 -0.120
- - - - VAR OBJLP -INF 1.275 +INF .
**** REPORT SUMMARY  : 0        NONOPT

0   INFEASIBLE
0  UNBOUNDED

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)
Model Statistics     SOLVE PORTQP USING NLP FROM LINE 34
MODEL STATISTICS
BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 3
BLOCKS OF VARIABLES 4 SINGLE VARIABLES 4
NON ZERO ELEMENTS 10 NON LINEAR N-Z 3
DERIVITIVE POOL 8 CONSTANT POOL 3
CODE LENGTH 95
GENERATION TIME =        2.360 SECONDS
EXECUTION TIME           =         3.510 SECONDS

Portfolio Planning Problem - GAMS



49

S O L VE  S U M M A R Y
MODEL PORTLP OBJECTIVE OBJLP
TYPE LP DIRECTION MAXIMIZE
SOLVER MINOS5 FROM LINE 34
**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE 0.4210
RESOURCE USAGE, LIMIT 3.129 1000.000
ITERATION COUNT, LIMIT 3 1000
EVALUATION ERRORS 0 0
M I N O S 5.3 (Nov. 1990) Ver:  225-DOS-02
B.A. Murtagh, University of New South Wales
and

P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright
Systems Optimization Laboratory, Stanford University.

EXIT - - OPTIMAL SOLUTION FOUND
MAJOR ITNS, LIMIT 1
FUNOBJ, FUNCON CALLS 8
SUPERBASICS 1
INTERPRETER USAGE .21
NORM RG / NORM PI 3.732E-17

LOWER LEVEL UPPER MARGINAL
- - - - EQU QP . .   . 1.000
- - - - EQU E1 1.150 1.150 +INF 1.216
- - - - EQU E2 1.000 1.000 1.000 -0.556

LOWER LEVEL UPPER MARGINAL
- - - - VAR IBM . 0.183 0.750 .
- - - - VAR GM . 0.248 0.750 EPS
- - - - VAR GOLD . 0.569 0.750 .
- - - - VAR OBJLP -INF 1.421 +INF .
**** REPORT SUMMARY  : 0        NONOPT

0   INFEASIBLE
0  UNBOUNDED
0         ERRORS

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)
Model Statistics     SOLVE PORTQP USING NLP FROM LINE 34
EXECUTION TIME           =         1.090  SECONDS

Portfolio Planning Problem - GAMS
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Motivation:  Build on unconstrained methods wherever possible.

Classification of Methods:

•Reduced Gradient Methods - (with Restoration) GRG2, CONOPT 
•Reduced Gradient Methods - (without Restoration) MINOS
•Successive Quadratic Programming - generic implementations
•Penalty Functions - popular in 1970s, but fell into disfavor. Barrier   
Methods have been developed recently and are again popular.
•Successive Linear Programming - only useful for "mostly linear" 
problems

We will concentrate on algorithms for first four classes.

Evaluation:  Compare performance on "typical problem," cite experience 
on process problems.

Algorithms for Constrained Problems
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Representative Constrained Problem 
(Hughes, 1981)

g1 Š 0

g2 Š 0

Min f(x1, x2) = α exp(-β)
g1 = (x2+0.1)2[x1

2+2(1-x2)(1-2x2)] - 0.16 � 0
g2 = (x1 - 0.3)2 + (x2 - 0.3)2 - 0.16 � 0
x* = [0.6335, 0.3465] f(x*) = -4.8380
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Min    f(x) Min f(z)

s.t. g(x) + s = 0 (add slack variable) ‘⇒ s.t. h(z) = 0

c(x) = 0 a � z � b

a � x � b, s � 0

• Partition variables into: 

zB - dependent or basicvariables

zN - nonbasicvariables, fixed at a bound

zS - independent or superbasic variables

Analogy to linear programming. Superbasics required only if nonlinear problem

• Solve unconstrained problem in space of superbasicvariables.

Let zT = [zS
T zB

T zN
T] optimize wrtzS with h(zS, zB , zN) = 0

Calculateconstrained derivativeor reduced gradientwrt zS.  

•Dependent variables are zB ∈ Rm

•Nonbasic variables zN (temporarily) fixed

Reduced Gradient Method with Restoration
(GRG2/CONOPT)
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•By remaining feasible always, h(z) = 0, a � z � b, one can apply an  
unconstrained algorithm (quasi-Newton) using (df/dzS)

•Solve problem in reduced space of zS variables

Definition of Reduced Gradient
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If ∇ hT is (m x n); ∇ zShT is m x (n-m); ∇ zBhT is (m x m)

(df/dzS) is the change in f along constraint direction per unit change in zS

Example of Reduced Gradient
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Sketch of GRG Algorithm

1.1. Initialize problem and obtain a feasible point at zInitialize problem and obtain a feasible point at z00

2.2. At feasible point At feasible point zzkk, partition variables , partition variables zz into into zzNN, , zzBB, , zzSS

3.3. Calculate reduced gradient, Calculate reduced gradient, ((df/dzdf/dzSS))

4.4. Evaluate search direction for Evaluate search direction for zzSS, , d = Bd = B--11(df/dz(df/dzSS) ) 

5.5. Perform a line search.Perform a line search.

•• Find Find αα∈ (0,1] with zzSS := := zzSS
kk + + αα dd

•• Solve for Solve for h(zh(zSS
kk + + αα d, d, zzBB, , zzNN) = 0) = 0

•• If If f(zf(zSS
kk + + αα dd, , zzBB, , zzNN) ) < < f(zf(zSS

kk, , zzBB, , zzNN), ), 
setsetzzSS

k+1 k+1 ==zzSS
kk + + αα d, k:= k+1d, k:= k+1

6.6. If ||If ||((df/dzdf/dzSS)||<)||< ε, ε, Stop. Else, go to 2. Stop. Else, go to 2. 
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1. GRG2 has been implemented on PC’s as GINO and is very reliable and 

robust. It is also the optimization solver in MS EXCEL. 

2. CONOPT is implemented in GAMS, AIMMS and AMPL

3. GRG2 uses Q-N for small problems but can switch to conjugate 

gradients if problem gets large. CONOPT uses exact second derivatives.

4. Convergence of h(zS, zB , zN) = 0 can get veryexpensive because ∇ h is 

required

5. Safeguards can be  added so that restoration (step 5.) can be dropped 

and efficiency increases.

Representative Constrained Problem Starting Point [0.8, 0.2]

• GINO Results- 14 iterations to ||∇ f(x*)|| � 10-6

• CONOPT Results- 7 iterations to ||∇ f(x*)|| � 10-6 from feasible point.

GRG Algorithm Properties
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Motivation: Efficient algorithms 
are available that solve linearly 
constrained optimization 
problems (MINOS):

Min   f(x)
s.t. Ax � b

Cx = d

Extend to nonlinear problems, 
through successive linearization

Develop major iterations 
(linearizations) and minor 
iterations (GRG solutions) .

Reduced Gradient Method without Restoration 
(MINOS/Augmented)

Strategy: (Robinson, Murtagh & Saunders)
1. Partitionvariables into basic, nonbasic

variables and superbasic variables.. 

2. Linearizeactive constraints at zk

Dkz = ck

3. Let ψ = f (z) + vTh (z) + β (hTh)
(Augmented Lagrange), 

4. Solve linearly constrained problem:
Min ψ (z)
s.t. Dz = c

a � z � b
using reduced gradients to get zk+1

5.  Set k=k+1,  go to 3.
6. Algorithm terminates when no 

movement between steps 3) and 4).
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1. MINOS has been implemented very efficiently to take care of 
linearity.  It becomes LP Simplex method if problem is totally 
linear.  Also, very efficient matrix routines.

2. No restoration takes place, nonlinear constraints arereflected in 
ψ(z) during step 3). MINOS is more efficient than GRG.

3. Major iterations (steps 3) - 4)) converge at a quadraticrate.
4. Reduced gradient methods are complicated, monolithic codes: 

hard to integrate efficiently into modeling software.

Representative Constrained Problem– Starting Point [0.8, 0.2]
MINOS Results: 4 major iterations, 11 function calls 

to ||∇ f(x*)|| � 10-6

MINOS/Augmented Notes
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Motivation:
• Take KKT conditions, expand in Taylor series about current point.
• Take Newton step (QP) to determine next point. 

Derivation– KKT Conditions
∇ xL (x*, u*, v*) = ∇ f(x*) + ∇ gA(x*) u* + ∇ h(x*) v* = 0

h(x*) = 0 
gA(x*) = 0, where gA are the activeconstraints.

Newton- Step

xx∇ L
A

g∇ ∇ h

A
g∇ T 0 0

∇ hT 0 0
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Requirements:
• ∇ xxL must be calculated and should be ‘regular’
•correct active set gA

•good estimates of uk, vk

Successive Quadratic Programming (SQP)
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1. Wilson (1963)
- active set can be determined by solving QP:

Min ∇ f(xk)
Td + 1/2 dT ∇ xx L(xk, uk, vk) d

d
s.t. g(xk) + ∇ g(xk)

T d � 0
h(xk) + ∇ h(xk)

T d = 0

2. Han (1976), (1977), Powell (1977), (1978)
- approximate ∇ xxL using a positive definite quasi-Newton update (BFGS)
- use a line search to converge from poor starting points.

Notes:
- Similar methods were derived using penalty (not Lagrange) functions.
- Method converges quickly; very few function evaluations.
- Not well suited to large problems (full space update used).  

For n > 100, say, use reduced space methods (e.g. MINOS).

SQP Chronology
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What about ∇ xxL?
• need to get second derivatives for f(x), g(x), h(x).
• need to estimate multipliers, uk, vk;  ∇ xxL may not be positive 

semidefinite
⇒ Approximate ∇ xxL (xk, uk, vk) by Bk, a symmetric positive 

definite matrix.

BFGS Formula s = xk+1 - xk

y = ∇ L(xk+1, uk+1, vk+1) - ∇ L(xk, uk+1, vk+1)
• second derivatives approximated by change in gradients
• positive definite Bk ensures unique QP solution

Elements of SQP – Hessian Approximation

k+1B  =  kB  + 
Tyy

Ts y
 -  

kB s Ts kB
ks B s
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How do we obtain search directions?
• Form QP and let QP determine constraint activity
• At each iteration, k, solve:

Min ∇ f(xk) Td + 1/2 dT Bkd
d

s.t. g(xk) + ∇ g(xk) T d � 0
h(xk) + ∇ h(xk) T d = 0

Convergence from poor starting points
• As with Newton's method, choose α (stepsize) to ensure progress  

toward optimum:       xk+1 = xk + α d.
• α is chosen by making sure a merit function is decreased at each 

iteration.
Exact Penalty Function
ψ(x) = f(x) + µ [Σ max (0, gj(x)) + Σ |hj (x)|]

µ > maxj {| uj |, | vj |}
Augmented Lagrange Function
ψ(x) = f(x) + uTg(x) + vTh(x) 

+ η/2 {Σ (hj (x))2 + Σ max (0, gj (x))2}

Elements of SQP – Search Directions
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Fast Local Convergence
B = ∇ xxL Quadratic
∇ xxL is p.d and B is Q-N 1 step Superlinear
B is Q-N update, ∇ xxL not p.d 2 step Superlinear

Enforce Global Convergence
Ensure decrease of merit function by taking α � 1
Trust region adaptations provide a stronger guarantee of global 
convergence - but harder to implement.

Newton-Like Properties for SQP



64

0. Guessx0,  Set B0 = I (Identity). Evaluate  f(x0), g(x0) and h(x0).

1. At xk, evaluate ∇ f(xk),  ∇ g(xk), ∇ h(xk).

2. If k > 0, updateBk using the BFGS Formula.

3. Solve: Mind ∇ f(xk)Td + 1/2 dTBkd

s.t. g(xk) + ∇ g(xk)Td ≤ 0
h(xk) + ∇ h(xk)Td = 0

If KKT error less than tolerance:||∇ L(x*)|| ≤ ε, ||h(x*)|| ≤ ε, 

||g(x*)+||≤ ε. STOP, else go to 4. 

4. Find α so that 0 < α ≤ 1 and ψ(xk + αd) < ψ(xk) sufficiently 

(Each trial requires evaluation of f(x), g(x)and h(x)).

5. xk+1 = xk + α d.  Set k = k + 1Go to 2.

Basic SQP Algorithm
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Nonsmooth Functions- Reformulate
Ill-conditioning- Proper scaling
Poor Starting Points – Trust Regions can help
Inconsistent Constraint Linearizations
- Can lead to infeasible QP's

x2

x1

Min x2

s.t.    1 + x1 - (x2)2 � 0
1 - x1 - (x2)2 � 0

x2 � -1/2

Problems with SQP
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SQP Test Problem

1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

Min x2
s.t. -x2 + 2 x1

2 - x1
3 � 0

-x2 + 2 (1-x1)2 - (1-x1)3 � 0
x* = [0.5, 0.375].
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SQP Test Problem – First Iteration

1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

Start from the origin (x0 = [0, 0] T) with B0 = I , form: 

Min d2 + 1/2 (d1
2 + d2

2)
s.t. d2 � 0

d1 + d2 � 1
d = [1, 0]T. with µ1 = 0 and µ2 = 1. 
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1.21.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

x*

From x1 = [0.5, 0]T with B1 = I 
(no update from BFGS possible), form: 

Min d2 + 1/2 (d1
2 + d2

2)
s.t. -1.25 d1 - d2 + 0.375 � 0

1.25 d1 - d2 + 0.375 � 0
d = [0, 0.375]T with µ1 = 0.5 and µ2 = 0.5

x* = [0.5, 0.375]T is optimal

SQP Test Problem – Second Iteration
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Representative Constrained Problem 
SQP Convergence Path

g1  Š 0

g2  Š 0

Starting Point[0.8, 0.2] - starting from B0 = I and staying in bounds 

and linearized constraints; converges in 8 iterations to ||∇ f(x*)|| � 10-6



70

Barrier Methods for Large-Scale 
Nonlinear Programming
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Solution of the Barrier Problem

⇒ Newton Directions (KKT System)
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Global Convergence of Newton-based  
Barrier Solvers

Merit Function

Exact Penalty: P(x, η) = f(x) + η ||c(x)||

Aug’d Lagrangian:L*(x, λ, η) = f(x) + λTc(x) + η ||c(x)||2

Assess Search Direction (e.g., from IPOPT)

Line Search – choose stepsizeα to give sufficient decrease of merit function 
using a ‘step to the boundary’ rule with τ ~0.99. 

• How do we balanceφ (x) and c(x) with η?

• Is this approach globally convergent? Will it still be fast?
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Global Convergence Failure
(Wächter and B., 2000)

0 ,

01)(

0
2

1
  ..

)( 

32

2
2

1

31

≥
=−−

=−−

xx

xx

xxts

xfMin

xx11

xx22

0 

0)()(

>+

=+

x
k

k
x

Tk

dx

xcdxA

α

Newton-type line search ‘stalls’
even though descent directions 
exist

Remedies:

•Composite Step Trust Region 
(Byrd et al.)

•Filter Line Search Methods



74

Line Search Filter Method

Store (φk, θk) at allowed iterates

Allow progress if trial point is 
acceptable to filter with θ margin

If switching condition 

is satisfied, only an Armijo line 
search is required on φk

If insufficient progress on stepsize, 
evoke restoration phase to reduce θ.

Global convergence and superlinear
local convergence proved (with 
second order correction)

22,][][ >>≥−∇ bad b
k

aT
k θδφα

φ(x)

θ(x) = ||c(x)||
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Implementation Details

Modify KKT (full space) matrix if nonsingular

� δ1 - Correct inertia to guarantee descent direction
� δ2 - Deal with rank deficient Ak

KKT matrix factored by MA27

Feasibility restoration phase

Apply Exact Penalty Formulation

Exploit same structure/algorithm to reduce infeasibility 
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Details of IPOPT Algorithm

Options 

Line Search StrategiesLine Search Strategies

- l2 exact penalty merit function

- augmented Lagrangian
function

- Filter method (adapted from 
Fletcher and Leyffer)

Hessian Calculation Hessian Calculation 

- BFGS (reduced space)

- SR1 (reduced space)

- Exact full Hessian (direct)

- Exact reduced Hessian (direct)

- Preconditioned CG 

Comparison

34 COPS Problems 

(600 - 160 000 variables)

486 CUTE Problems 

(2 – 50 000 variables)

56 MIT T Problems 

(12097 – 99998 variables)

Performance MeasurePerformance Measure

- rp, l = (#iterp,l)/ (#iterp, min)

- P(τ) = fraction of problems 
with log2(rp, l) < τ
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IPOPT Comparison with KNITRO and 
LOQO

•IPOPT has better performance, 
robustness on CUTE, MITT and 
COPS problem sets

•Similar results appear with iteration  
counts

•Can be downloaded from 
http://www.coin-or.org

•See links for additional information
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Recommendations for Constrained Optimization

1. Best current algorithms
• GRG 2/CONOPT
• MINOS
• SQP
• IPOPT

2. GRG 2 (or CONOPT)is generally slower, but is robust.  Use with highly 
nonlinear functions. Solver in Excel!

3. For small problems (n � 100) with nonlinear constraints, use SQP.
4. For large problems (n � 100) with mostly linear constraints, use MINOS.  

==> Difficulty with many nonlinearities

SQP MINOS
CONOPT

Small, Nonlinear Problems- SQP solves QP's, not LCNLP's, fewer function calls.
Large, Mostly Linear Problems - MINOS performs sparse constraint decomposition.  
Works efficiently in reduced space if function calls are cheap!
Exploit Both Features– IPOPT takes advantages of few function evaluations and large-
scale linear algebra, but requires exact second derivatives 

Fewer Function

Evaluations

Tailored Linear

Algebra
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SQP Routines
HSL, NaG and IMSL (NLPQL) Routines
NPSOL – Stanford Systems Optimization Lab
SNOPT – Stanford Systems Optimization Lab (rSQP discussed later)
IPOPT – http://www.coin-or.org

GAMS Programs
CONOPT - Generalized Reduced Gradient method with restoration
MINOS - Generalized Reduced Gradient method without restoration
A student  version of GAMS is now available from the CACHE office. The cost for this package 
including Process Design Case Students, GAMS: A User’s Guide, and GAMS - The Solver Manuals, 
and a CD-ROM is $65 per CACHE supporting departments, and $100 per non-CACHE supporting 
departments and individuals. To order please complete standard order form and fax or mail to 
CACHE Corporation. More information can be found on http://www.che.utexas.edu/cache/gams.html

MS Excel 
Solver uses Generalized Reduced Gradient method with restoration

Available Software for Constrained 
Optimization
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1) Avoid overflows and undefined terms, (do not divide, take logs, etc.) 
e.g. x + y - ln z = 0Î x + y - u = 0

exp u - z = 0
2) If constraints must alwaysbe enforced, make sure they are linear or bounds.

e.g. v(xy - z2)1/2 = 3 Î vu = 3
u��- (xy - z2) = 0, u � 0

3) Exploit linear constraints as much as possible, e.g. mass balance
xi L + yi V = F zi Î l i + vi = f i

L – ∑ l i = 0
4) Use bounds and constraints to enforce characteristic solutions.

e.g. a � x � b,  g (x) � 0
to isolate correct root of h (x) = 0.

5) Exploit globalproperties when possibility exists. Convex (linear equations?)
Linear Program? Quadratic Program? Geometric Program?

6) Exploit problem structure when possible.
e.g. Min [Tx - 3Ty]
s.t. xT + y - T2 y = 5

4x - 5Ty + Tx = 7
0 � T � 1

(If T is fixed ⇒ solve LP) ⇒  put T in outer optimization loop.

Rules for Formulating Nonlinear Programs
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State of Nature and Problem Premises

Restrictions: Physical, Legal
Economic, Political, etc.

Desired Objective: Yield, 
Economic, Capacity, etc.

Decisions

Process Model Equations

Constraints Objective Function

Additional Variables

Process Optimization
Problem Definition and Formulation

Mathematical Modeling and Algorithmic Solution
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Large Scale NLP Algorithms
Motivation: Improvement of Successive Quadratic Programming 
as Cornerstone Algorithm 

Î process optimization for design, control and operations

Evolution of NLP Solvers:

1981-87: Flowsheet optimization 
over 100 variables and constraints  

1988-98: Static Real-time optimization
over 100 000 variables and constraints

1999- : Simultaneous dynamic optimization
over 1 000 000 variables and constraints

SQP rSQP IPOPT

rSQP++

Current: Tailor structure, architecture and problems
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In Out

Modular Simulation Mode
Physical Relation to Process

- Intuitive to Process Engineer
- Unit equations solved internally 
- tailor-made procedures.

•Convergence Procedures - for simple flowsheets, often identified
from flowsheet structure

•Convergence "mimics" startup.
•Debugging flowsheets on "physical" grounds

Flowsheet Optimization Problems - Introduction
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C

1
3

2 4

Design Specifications
Specify # trays reflux ratio, but would like to specify 
overhead comp. ==> Control loop  -Solve Iteratively

•Frequent block evaluation can be expensive
•Slow algorithms applied to flowsheet loops.
•NLP methods are good at breaking looks

Flowsheet Optimization Problems - Features

Nested Recycles Hard to Handle
Best Convergence Procedure?



85

Chronology in Process Optimization

Sim. Time Equiv.
1. Early Work - Black Box Approaches

Friedman and Pinder (1972) 75-150
Gaddy and co-workers (1977) 300

2. Transition - more accurate gradients
Parker and Hughes (1981) 64
Biegler and Hughes (1981) 13

3. Infeasible Path Strategy for Modular Simulators
Biegler and Hughes (1982) <10
Chen and Stadtherr (1985)
Kaijaluoto et al. (1985)

and many more 
4. Equation Based Process Optimization

Westerberg et al. (1983) <5
Shewchuk (1985) 2
DMO, NOVA, RTOPT, etc. (1990s) 1-2

Process optimization should be as cheap and easy as process simulation
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Aspen Custom Modeler (ACM)

Aspen/Plus

gProms

Hysim/Hysys

Massbal

Optisim

Pro/II

ProSim

ROMeo

VTPLAN

Process Simulators with Optimization 
Capabilities (using SQP)
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4

3 2

1

5

6
h(y) = 0

w(y) y

f(x, y(x))

x

Simulation and Optimization of Flowsheets

Min f(x), s.t. g(x) � 0
For single degree of freedom:
• work in space defined by curve below.  
• requires repeated (expensive) recycle convergence
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Expanded Region with Feasible Path



89

"Black Box" Optimization Approach
• Vertical steps are expensive (flowsheet convergence)
• Generally no connection between x and y.
• Can have "noisy"  derivatives for gradient optimization.
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SQP - Infeasible Path Approach
• solve and optimize simultaneously in x and y
• extended Newton method
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Architecture
- Replace convergence with optimization block
- Problem definition needed (in-line FORTRAN)
- Executive, preprocessor, modules intact.

Examples
1. Single Unit and Acyclic Optimization
- Distillation columns & sequences

2. "Conventional" Process Optimization 
- Monochlorobenzene process
- NH3 synthesis

3. Complicated Recycles & Control Loops
- Cavett problem
- Variations of above

Optimization Capability for Modular Simulators
(FLOWTRAN, Aspen/Plus, Pro/II, HySys)
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S06
HC1

A-1
ABSORBER

15 Trays
(3 Theoretical Stages)

32 psia

P

S04
Feed
80

o
F

37 psia

T

270
o

F

S01 S02

Steam
360

o
F

H-1
U = 100

Maximize
Profit

Feed Flow Rates
LB Moles/Hr

HC1           10
Benzene     40
MCB          50

S07

S08

S05

S09

HC1

T-1

TREATER

  F-1
FLASH

S03

S10

25
psia

S12

S13
S15

P-1

C

1200F

T

MCB

S14

U = 100 Cooling
Water
80oF

S11

Benzene,
0.1 Lb Mole/Hr

of MCB

D-1
DISTILLATION 

30 Trays
(20 Theoretical Stages)

Steam
360oF

12,000
Btu/hr- ft

2

90
o
F

H-2
U = 100

Water
80o

F

PHYSICAL PROPERTY OPTIONS
Cavett Vapor Pressure
Redlich-Kwong Vapor Fugacity
Corrected Liquid Fugacity
Ideal Solution Activity Coefficient
OPT  (SCOPT)  OPTIMIZER
Optimal Solution Found After 4 Iterations
Kuhn-Tucker Error 0.29616E-05
Allowable Kuhn-Tucker Error  0.19826E-04
Objective Function                  -0.98259

Optimization Variables
32.006  0.38578  200.00 120.00
Tear Variables
0.10601E-19  13.064   79.229  120.00  50.000
Tear Variable Errors (Calculated Minus Assumed)
-0.10601E-19  0.72209E-06
-0.36563E-04   0.00000E+00 0.00000E+00
-Results of infeasible path optimization
-Simultaneous optimization and convergence of tear streams.

Optimization of Monochlorobenzene Process
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H2

N2

Pr

Tr

To

T Tf f
ν

Product

Hydrogen and Nitrogen feed are mixed, compressed, and combined 
with a recycle stream and heated to reactor temperature. Reaction 
occurs in a multibed reactor (modeled here as an equilibrium reactor) to 
partially convert the stream to ammonia. The reactor effluent is cooled 
and product is separated using two flash tanks with intercooling. Liquid 
from the second stage is flashed at low pressure to yield high purity 
NH3 product. Vapor from the two stage flash forms the recycle and is 
recompressed.

Ammonia Process Optimization

Hydrogen Feed  Nitrogen Feed
N2 5.2%       99.8%
H2 94.0% ---
CH4 0.79 % 0.02%
Ar --- 0.01% 
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Optimization Problem

Max {Total Profit @ 15% over five years}

s.t. • 105 tons NH3/yr.
• Pressure Balance
• No Liquid in Compressors
• 1.8 � H2/N2 � 3.5
• Treact� 1000o F
• NH3 purged � 4.5 lb mol/hr
• NH3 Product Purity � 99.9 %
• Tear Equations

Performance Characterstics

• 5 SQP iterations. 
• 2.2 base point simulations. 
• objective function improves by 
$20.66 x 106 to $24.93 x 106. 
• difficult to converge flowsheet
at starting point

691.4691.788. Feed 2 (lb mol/hr)

2632.02629.77. Feed 1   (lb mol/hr)

20002163.56. Reactor Press. (psia)

0.010.00855. Purge fraction (%)

10780.524. Inlet temp. rec. comp. (oF)

35353. Inlet temp. 2nd flash (oF)

65652. Inlet temp. 1st flash (oF)

4004001. Inlet temp.  reactor (oF)

20.65924.9286Objective Function($106)

Starting pointOptimum

Ammonia Process Optimization
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Recognizing True Solution
• KKT conditions and Reduced Gradients determine true solution
• Derivative Errors will lead to wrong solutions!

Performance of Algorithms
Constrained NLP algorithms are gradient based 
(SQP, Conopt, GRG2, MINOS, etc.)

Global and Superlinear convergence theory assumes accurate gradients

Worst Case Example(Carter, 1991)
Newton’s Method generates an ascent directionand fails for any ε !

How accurate should gradients be for optimization?
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Implementation of Analytic Derivatives

Module Equations

c(v, x, s, p, y) = 0

Sensitivity 

Equations

x y

parameters, p exit variables, s

dy/dx
ds/dx
dy/dp
ds/dp

Automatic Differentiation Tools

JAKE-F, limited to a subset of FORTRAN (Hillstrom,  1982) 
DAPRE, which has been developed for use with the NAG library (Pryce, Davis,  1987)
ADOL-C,  implemented  using operator overloading features of C++ (Griewank, 1990)
ADIFOR, (Bischof et al, 1992) uses source transformation approach FORTRAN code .
TAPENADE, web-based source transformation for FORTRAN code

Relative effort needed to calculate gradients is not n+1 but about 3 to 5 
(Wolfe, Griewank)
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S1 S2

S3

S7

S4
S5

S6

P

Ratio

Max S3(A)  *S3(B) - S3(A)  - S3(C)  + S3(D) - (S3(E))
2 2 3 1/2

Mixer Flash

1 2
0

100

200

GRG

SQP

rSQP

Numerical                                  Exact

C
P

U
 S

ec
on

ds
 (

V
S 

32
00

)
Flash Recycle Optimization
(2 decisions + 7 tear variables)

1 2
0

2000

4000

6000

8000

GRG

SQP

rSQP

Numerical                                          Exact

C
P

U
 S

ec
on

ds
 (V

S 
32

00
)

Reactor

Hi P

Flash

Lo P

Flash

Ammonia Process Optimization
(9 decisions and 6 tear variables)
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Min f(z) Min     ∇ f(zk)T d + 1/2 dT Wk d
s.t. c(z)=0 s.t. c(zk) + (Αk)T d = 0

zL � z � zU zL � zk + d � zU

Characteristics
• Many equations and variables (� 100 000)
• Many bounds and inequalities (� 100 000)

Few degrees of freedom (10 - 100)
Steady state flowsheet optimization
Real-time optimization
Parameter estimation

Many degrees of freedom (� 1000)
Dynamic optimization (optimal control, MPC)
State estimation and data reconciliation

Large-Scale SQP
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• Take advantage of sparsity of  A=∇ c(x)
• project W into space of active (or equality constraints)
• curvature (second derivative) information only needed in space of degrees of 

freedom
• second derivatives can be applied or approximated with positive curvature 

(e.g., BFGS)
• use dual space QP solvers

+ easy to implement with existing sparse solvers, QP methods and line search  
techniques

+ exploits 'natural assignment' of dependent and decision variables (some   
decomposition steps are 'free')

+ does not require second derivatives

- reduced space matrices are dense
- may be dependent on variable partitioning
- can be very expensive for many degrees of freedom
- can be expensive if many QP bounds

Few degrees of freedom => reduced space SQP (rSQP)



100

Reduced space SQP (rSQP)
Range and Null Space Decomposition
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Assume no active bounds, QP problem with n variables and m
constraints becomes:

• Define reduced space basis, Zk∈ ℜ n x (n-m)with (Ak)TZk = 0
• Define basis for remaining space Yk∈ ℜ n x m, [Yk Zk]∈ℜ n x n

is nonsingular. 
• Let d = Yk dY + Zk dZ to rewrite:
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Reduced space SQP (rSQP)
Range and Null Space Decomposition

• (ATY) dY =-c(xk) is square, dY determined from bottom row.

• Cancel YTWYand YTWZ; (unimportant as dZ, dY --> 0)

• (YTA) O = -YT∇ f(xk), λ can be determined by first order estimate

• Calculate or approximate  w= ZTWY dY, solve ZTWZ dZ =-ZT∇ f(xk)-w

• Compute total step: d  =  Y dY + Z dZ
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Range and Null Space Decomposition
• SQP step (d) operates in a higher dimension 
• Satisfy constraints using range space to get dY

• Solve small QP in null space to get dZ

• In general, same convergence properties as SQP.

Reduced space SQP (rSQP) Interpretation

ddYY

ddZZ
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1. Apply QRfactorization to A. Leads to dense but well-conditioned Y and Z.

2. Partition variables into decisions u and dependents v. Create 
orthogonal Y and Z with embedded identity matrices (ATZ = 0, YTZ=0).

3. Coordinate Basis - same Z as above, YT =  [ 0   I ]

• Bases use gradient information already calculated.
• Adapt decomposition to QP step
• Theoretically same rate of convergence as original SQP.
• Coordinate basis can be sensitive to choice of u and v. Orthogonal is not.
• Need consistent initial point and nonsingular C;  automatic generation

Choice of Decomposition Bases

[ ] 







=








=

00

R
ZY

R
QA

[ ] [ ]









=








−

=

=∇∇=
−

− I

CN
Y

NC

I
Z

CNccA
TT

T
v

T
u

T

    1



104

1. Choose starting point x0.
2. At iteration k, evaluate functions f(xk), c(xk) and their gradients.
3. Calculate bases Y and Z.
4. Solve for step dY in Range space from 

(ATY) dY =-c(xk)
5. Update projected Hessian Bk ~ ZTWZ(e.g. with BFGS), wk (e.g., zero)
6. Solve small QP for step dZ in Null space.

7. If error is less than tolerance stop.  Else
8. Solve for multipliers using   (YTA) λ = -YT∇ f(xk)
9. Calculate total step  d = Y dY + Z dZ.
10. Find step size α and calculate new point, xk+1 = xk + 
11.  Continue from step 2 with k = k+1.

rSQP Algorithm
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TkkT

xZdYdxxts

dBddwxfZMin

≤++≤

++∇

        ..

2/1))((   



105

rSQP Results:  Computational Results for 
General Nonlinear Problems

Vasantharajan et al (1990)
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rSQP Results:  Computational Results 
for Process Problems
Vasantharajan et al (1990)
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Coupled Distillation Example - 5000 Equations
Decision Variables - boilup rate, reflux ratio

Method         CPU Time   Annual Savings     Comments
1. SQP* 2 hr negligible Base Case 
2. rSQP 15 min. $  42,000 Base Case
3. rSQP 15 min. $  84,000 Higher Feed Tray Location
4. rSQP 15 min. $  84,000 Column 2 Overhead to Storage
5. rSQP 15 min $107,000 Cases 3 and 4 together

18

10

1

QVK
QVK

Comparison of SQP and rSQP
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REACTOR EFFLUENT FROM 
LOW PRESSURE  SEPARATOR
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• square parameter case to fit the model to operating data.  
• optimization to determine best operating conditions

Existing process, optimization on-line at regular intervals: 17 hydrocarbon 
components, 8 heat exchangers, absorber/stripper (30 trays), debutanizer (20 
trays), C3/C4 splitter (20 trays) and deisobutanizer (33 trays).  

Real-time Optimization with rSQP
Sunoco Hydrocracker Fractionation Plant 

(Bailey et al, 1993)
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Model consists of 2836 equality constraints and only ten independent variables. It 
is also reasonably sparse and contains 24123 nonzero Jacobian elements.  

P= ziCi
G

i ∈ G
∑ + ziCi

E

i ∈ E
∑ + ziCi

Pm

m=1

NP

∑ −U

Cases Considered:
1. Normal Base Case Operation
2. Simulate fouling by reducing the heat exchange coefficients for the debutanizer
3. Simulate fouling by reducing the heat exchange coefficients for splitter 

feed/bottoms exchangers
4. Increase price for propane
5. Increase base price for gasoline together with an increase inthe octane credit 

Optimization Case Study Characteristics
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Many degrees of freedom=> full space IPOPT

• work in full space of all variables
• second derivatives useful for objective and constraints
• use specialized large-scale Newton solver

+ W=∇ xxL(x,λ) and A=∇ c(x)sparse, often structured
+ fast if many degrees of freedom present
+ no variable partitioning required

- second derivatives strongly desired
- W is indefinite, requires complex stabilization
- requires specialized large-scale linear algebra
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Blending Problem & Model Formulation
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F1  

F2  

F3  

P 1 

B 1  

B 2  

 

F 1  

F 2  

F 3  

P 2 

P 1 

B 1  

B 2  

B 3  

Haverly, C. 1978 (HM) Audet & Hansen 1998 (AHM)

Small MultiSmall Multi--day Blending Models  day Blending Models  

Single Qualities Single Qualities 
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Honeywell Blending Model Honeywell Blending Model –– Multiple DaysMultiple Days
48 Qualities48 Qualities
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Summary of Results – Dolan-Moré plot

Performance profile (iteration count)
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Comparison of NLP Solvers: Data Reconciliation
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At nominal conditions, p0

Min f(x, p0)
s.t.   c(x, p0) = 0

a(p0) � x  � b(p0)

How is the optimum affected at other conditions, p � p0?
• Model parameters, prices, costs
• Variability in external conditions
• Model structure

• How sensitive is the optimum to parameteric uncertainties?
• Can this be analyzed easily?

Sensitivity Analysis for Nonlinear Programming
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Take KKT Conditions
∇ L(x*, p, λ, v) = 0

c(x*, p0) = 0
ETx* - bnd( p0)=0

and differentiate and expand about p0. 
∇ pxL(x*, p, λ, v)T + ∇ xxL(x*, p, λ, v)T ∇ px*T + ∇ xh(x*, p, λ, v)T ∇ pλT + Ε ∇ pv

T = 0
∇ pc(x*, p0)

T + ∇ xc(x*, p0)
T ∇ px*T = 0

ET (∇ px*T - ∇ pbndT)=0
Notes:
• A key assumption is that under strict complementarity, the active set will not 
change for small perturbations of p.
• If an element of x* is at a bound then ∇ pxi*

T = ∇ pbndT

• Second derivatives are required to calculate sensitivities, ∇ px*T

• Is there a cheaper way to calculate ∇ px*T?

Calculation of NLP Sensitivity
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Decomposition for NLP SensitivityDecomposition for NLP Sensitivity
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•Partition variables into basic, nonbasic and superbasic

∇ pxT= Z ∇ pxS
T + Y∇ pxB

T + T∇ pxN
T

•Set∇ pxN
T = ∇ pbndN

T, nonbasic variables to rhs, 

•Substitute for remaining variables

•Perform range and null space decomposition 

•Solve only for ∇ pxS
T and∇ pxB

T
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Decomposition for NLP SensitivityDecomposition for NLP Sensitivity

















∇+∇
∇+∇
∇+∇

−=
















∇
∇
∇

















T
Np

TT
p

T
Np

T
xp

T

T
Np

T
xp

T

T
p

T
Sp

T
Bp

T

TT

TTT

xTApxc

xTWvpxLZ

xTWvpxLY

x

x

YA

WZZWYZ

AYWYYWYY

)*,(

) ),,*,((

) ),,*,((

00

0 λ
λ

λ

• Solve only for ∇ pxB
T from bottom row and∇ pxS

T from middle row

• If second derivatives are not available, ZTWZ, ZTWY ∇ pxB
T and

ZTWT ∇ pxN
T can be constructed by directional finite differencing

• If assumption of strict complementarity is violated, sensitivity can be

calculated using a QP subproblem. 
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x1

x2

z 1

z 2

Saddle 
Point

x*

At solution x*: Evaluate eigenvalues of   ZT∇ xxL
*Z

Strict local minimum if all positive. 

• Nonstrict local minimum: If nonnegative, find eigenvectors for 
zero eigenvalues, Î regions of nonunique solutions

• Saddle point: If any are negative, move along directions of 
corresponding eigenvectors and restart optimization. 

Second Order Tests

Reduced Hessian needs to be positive definite



123

Sensitivity for Flash Recycle Optimization
(2 decisions, 7 tear variables)

S1 S2

S3

S7

S4
S5

S6

P

Ratio

Max S3(A)  *S3(B) - S3(A)  - S3(C)  + S3(D) - (S3(E))
2 2 3 1/2

Mixer Flash

•Second order sufficiency test:
•Dimension of reduced Hessian = 1
•Positive eigenvalue
•Sensitivity to simultaneous change in feed rate and upper bound on purge ratio
•Only 2-3 flowsheet perturbations required for second order information
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Actual

QP2

QP1

Sensitivity

Ammonia Process Optimization
(9 decisions, 8 tear variables)

•Second order sufficiency test:
•Dimension of reduced Hessian = 4
•Eigenvalues = [2.8E-4, 8.3E-10, 1.8E-4, 7.7E-5]
•Sensitivity to simultaneous change in feed rate and upper bound on reactor conversion
•Only 5-6 extra perturbations for second derivatives
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Multiperiod Optimization
Coordination

Case 1 Case 2 Case 3 Case 4 Case N

1. Design plant to deal with different operating scenarios (over time or with 
uncertainty) 

2. Can solve overall problem simultaneously
• large and expensive
• polynomial increase with number of cases
• must be made efficient through specialized decomposition

3. Solve also each case independently as an optimization problem (inner 
problem with fixed design)
• overall coordination step (outer optimization problem for design)
• require sensitivity from each inner optimization case with design  

variables as external parameters
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Multiperiod Flowsheet Example

T
i

1

A

i 
C

 T
i

2
F

i

1
F

i
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TwT
i

w

W
 i

i 
C T

 0A

A

0

2 1

1

V

Parameters Period 1 Period 2 Period 3 Period 4
E (kJ/mol) 555.6 583.3 611.1 527.8
k0 (1/h) 10 11 12              9
F (kmol/h) 45.4 40.8 24.1 32.6
Time (h) 1000 4000 2000 1000
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d

hi, gi

Min f0(d) + Σi fi(d, xi)
s.t. hi(xi, d) = 0, i = 1,… N

gi(xi, d) � 0, i = 1,… N
r(d) � 0 

Variables:
x: state (z) and control (u) variables in each operating period 
d: design variables (e. g. equipment parameters) used
δi: substitute for d in each period and add δi = d

Multiperiod Design Model

Min f0(d) + Σi fi(d, xi)
s.t. hi(xi, δi) = 0, i = 1,… N

gi(xi, δi) +si = 0, i = 1,… N
0 � si, d –δi=0, i = 1,… N
r(d) � 0
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Multiperiod Decomposition Strategy
SQP Subproblem

•Block diagonal bordered KKT matrix

(arrowhead structure) 

•Solve each block sequentially (range/null dec.)

to form small QP in space of d variables

•Reassemble all other steps from QP solution
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minimize φ =  ∇ d f 0
T +  { ∇ p f i

T  (ZBi
+  YBi

) +   (ZAi
+  YAi

)T  ∇ p
2Li

i =1

N

∑  (ZBi
+  YB i

) } 
 

 
 
 ∆d

                        +  
1

2
∆dT ∇ d

2L0 +  { (ZBi
+  YBi

)T  ∇ p
2Li

i =1

N

∑  (ZBi
+  YB i

) } 
 

 
 
 ∆d

subject to               r +  ∇ dr ∆d ≤  0

Substituting back into the original QP subproblem leads to 
a QP only in terms of ∆d. 

Multiperiod Decomposition Strategy

From decomposition of KKT block in each period, obtain the 
following directions that are parametric in∆d:

Once ∆d is obtained, directions are obtained from the above 
equations.  
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� pi steps are parametric in ∆d and their  
components are created independently

� Decomposition linear in number of 
periods and trivially parallelizable

� Choosing the active inequality 
constraints can be done through:

-Active set strategy (e.g., bound 
addition)

-Interior point strategy using 
barrier terms in objective

• Easy to implement in decomposition

Starting  Point

Original QP 
Decoupling

  Null - Range 
Decomposition

 QP  at  d

Calculate   
    Step  

Calculate  
Reduced 
Hessian

Line search

Optimality  
Conditions

NO

YES

Optimal  Solution

  Active Set Update

Bound AdditionMINOR  
ITERATION 
LOOP

Multiperiod Decomposition Strategy



131

T
i

1

A

i 
C

 T
i

2
F

i

1
F

i
2

TwT
i

w

W
 i

i 
C T

 0A

A

0

2 1

1

V

Multiperiod Flowsheet 1
(13+2) variables and (31+4) constraints (1 period)

262 variables and 624 constraints (20 periods)
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Multiperiod Example 2 – Heat Exchanger Network
(12+3) variables and (31+6) constraints (1 period)

243 variables and 626 constraints (20 periods)
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-Unconstrained Newton and Quasi Newton Methods
-KKT Conditions and Specialized Methods
-Reduced Gradient Methods (GRG2, MINOS)
-Successive Quadratic Programming (SQP)
-Reduced Hessian SQP
-Interior Point NLP (IPOPT)

Process Optimization Applications
-Modular Flowsheet Optimization
-Equation Oriented Models and Optimization
-Realtime Process Optimization
-Blending with many degrees of freedom

Further Applications
-Sensitivity Analysis for NLP Solutions
-Multiperiod Optimization Problems

Summary and Conclusions
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I Introduction
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• Perturbation
• Direct - Sensitivity Equations
• Adjoint Equations

III Optimal ControlProblems
- Optimality Conditions
- Model Algorithms

• Sequential Methods
• Multiple Shooting
• Indirect Methods

IV SimultaneousSolutionStrategies
- Formulation and Properties
- Process Case Studies
- Software Demonstration

DAE Optimization Outline



3

tf, final time
u, control variables
p, time independent parameters

t,  time
z, differential variables
y, algebraic variables

Dynamic Optimization Dynamic Optimization ProblemProblem
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DAE Models in Process Engineering

Differential Equations
•Conservation Laws (Mass, Energy, Momentum)

Algebraic Equations
•Constitutive Equations, Equilibrium (physical properties, 
hydraulics, rate laws)
•Semi-explicit form
•Assume to be index one (i.e., algebraic variables can be solved 
uniquely by algebraic equations)
•If not, DAE can be reformulated to index one (see Ascher and 
Petzold)

Characteristics
•Large-scale models – not easily scaled
•Sparse but no regular structure
•Direct linear solvers widely used
•Coarse-grained decomposition of linear algebra
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Catalytic Cracking of Gasoil (Tjoa, 1991)

number of states and ODEs: 2
number of parameters:3
no control profiles
constraints: pL � p � pU

Objective Function: Ordinary Least Squares

(p1, p2, p3)0 = (6, 4, 1)
(p1, p2, p3)* = (11.95, 7.99, 2.02)
(p1, p2, p3)true = (12, 8, 2)
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Batch Distillation Multi-product Operating Policies
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Nonlinear Model Predictive Control (NMPC)

Process

NMPC Controller

d : disturbances
z : differential states
y : algebraic states

u : manipulated
variables

ysp : set points

( )
( )dpuyzG

dpuyzFz

,,,,0

,,,,

=
=′

NMPC Estimation and Control

sConstraintOther 

sConstraint Bound

)(
)),(),(),((0
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u

NMPC Subproblem

Why NMPC?

� Track a profile

� Severe nonlinear dynamics (e.g, 
sign changes in gains)

� Operate process over wide range 
(e.g., startup and shutdown)

Model Updater
( )
( )dpuyzG

dpuyzFz

,,,,0
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Optimization of dynamic batch process operation resulting from reactor and 
distillation column 

DAE models:
z’ = f(z, y, u, p)
g(z, y, u, p) = 0

number of states and DAEs: nz + ny
parameters for equipment design 
(reactor, column)
nu control profiles for optimal operation

Constraints: uL � u(t) � uU zL � z(t) � zU

yL � y(t) � yU pL � p � pU

Objective Function: amortized economic function at end of cycle time tf

zi,I
0 zi,II

0
zi,III
0 zi,IV

0

zi,IV
f

zi,I
f zi,II

f zi,III
f

Bi

A+B→C

C+B→P+E

P+C→G
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15

20

25

580

590

600

610
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630

640

0 0.5 1 1.5 2 2.50 0.25 0.5 0.75 1 1.25
Tim e  (h r.)

Dyn a mic

C o nsta nt

Dyn a mic

C o nsta nt

optimal reactor temperature policy         optimal column reflux ratio

Batch Process Optimization
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Reactor Design Example
Plug Flow Reactor Optimization

The cracking furnace is an important example in the olefin production industry, where various 
hydrocarbon feedstocks react. Consider a simplified model for ethane cracking (Chen et al., 
1996). The objective is to find an optimal profile for the heat flux along the reactor in order to 
maximize the production of ethylene. 

Max   
s.t. DAE

The reaction system includes six molecules, three free radicals, and seven reactions. The 
model also includes the heat balance and the pressure drop equation. This gives a total of 
eleven differential equations.

Concentration and Heat Addition Profile
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Dynamic Optimization Approaches

DAE Optimization Problem

Sequential Approach

Vassiliadis(1994)Discretize 
controls

Variational Approach

Pontryagin(1962)

Inefficient for constrained 
problems

Apply a NLP solver

Efficient for constrained problems
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Sequential Approaches - Parameter Optimization

Consider a simpler problem without control profiles: 

e.g., equipment design with DAE models - reactors, absorbers, heat exchangers

Min Φ (z(tf))

z’ = f(z, p), z (0) = z0

g(z(tf)) � 0, h(z(tf)) = 0

By treating the ODE model as a "black-box" a sequential algorithm can be constructed that can 
be treated as a nonlinear program.

Task:  How are gradients calculated for optimizer?

NLP
Solver

ODE
Model

Gradient
Calculation

P

φ,g,h

z (t)
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Gradient Calculation

Perturbation

Sensitivity Equations

Adjoint Equations

Perturbation

Calculate approximate gradient by solving ODE model  (np + 1) times

Let ψ = Φ, g and h (at t = tf)

dψ/dpi = {ψ (pi + ̈ pi) - ψ (pi)}/ ¨pi

Very simple to set up

Leads to poor performance of optimizer and poor detection of optimum 
unless roundoff error (O(1/¨pi) and truncation error (O(¨pi)) are small. 

Work is proportional to np (expensive)
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Direct Sensitivity

From ODE model:

(nz x np sensitivity equations)

• z and si , i = 1,…np, an be integrated forward simultaneously.

• for implicit ODE solvers, si(t) can be carried forward in time after converging on z

• linear sensitivity equations exploited in ODESSA, DASSAC, DASPK, DSL48s and a 
number of other DAE solvers

Sensitivity equations are efficient for problems with many more constraints than 
parameters (1 + ng + nh > np)
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Example:  Sensitivity Equations
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Adjoint Sensitivity 

Adjoint or Dual approach to sensitivity

Adjoin model to objective function orconstraint 

(ψ = Φ,g or h)

(λ(t)) serve as multipliers on ODE’s)

Now, integrate by parts

and  find  dψ/dp subject to feasibility of ODE’s

Now, set all terms notin dp to zero.

∫ −′−=
ft

T
f dttpzfzt

0

)),,(()( λψψ

∫ +′+−+=
ft

TT
f

T
f

T
f dttpzFztztpzt

0

0 )),,()()()()0()( λλλλψψ

0
0

∫ 







∂
∂+





∂
∂+′+








∂

∂+











−

∂
∂

=
ft TTT

ff
f

f dtdp
p

f
tz

z

f
dp

p

pz
tzt

tz

tz
d

0

0  )()0(
)(

)()(
)(

))((
λδλλλδλ

ψ
ψ



16

Adjoint System

Integrate model equations forward

Integrate adjoint equations backward and evaluate integral and sensitivities.  

Notes:

nz (ng + nh + 1) adjoint equations must be solved backward (one for each 
objective and constraint function)

for implicit ODE solvers, profiles (and even matrices) can be stored and 
carried backward after solving forward for z as in DASPK/Adjoint (Li and 
Petzold)

more efficient on problems where: np > 1 + ng + nh
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Example:  Adjoint Equations
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A + 3B --> C + 3D

L

T s

T R

T P

3:1 B/A 
383 K

TP =  specified product temperature
TR =  reactor inlet, reference temperature
L    =  reactor length
Ts  =  steam sink temperature
q(t) =  reactor conversion profile
T(t) = normalized reactor temperature profile

Cases considered:
• Hot Spot - no state variable constraints
• Hot Spot with T(t) � 1.45

Example:  Hot Spot Reactor
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Method: SQP (perturbation derivatives)

L(norm)  TR(K) TS(K) TP(K)
Initial: 1.0 462.23 425.26 250
Optimal: 1.25 500 470.1 188.4
13 SQP iterations / 2.67 CPU min. (µVax II)

Constrained Temperature Case: could not be solved with sequential method 

Hot Spot Reactor: Unconstrained Case
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Variable Final Time(Miele, 1980)

Define t = pn+1 τ,  0 ≤ τ ≤ 1, pn+1 = tf

Let  dz/dt = (1/ pn+1) dz/dτ = f(z, p) ⇒  dz/dτ = (pn+1) f(z, p)

Converting Path Constraints to Final Time

Define measure of infeasibility as a new variable, znz+1(t) (Sargent & Sullivan, 1977):

Tricks to generalize classes of problems

)degenerate is constraint (however,   )(   Enforce
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Profile Optimization - (Optimal Control)

Optimal Feed Strategy (Schedule) in Batch Reactor 

Optimal Startup and Shutdown Policy

Optimal Control of Transients and Upsets

Sequential Approach: Approximate control profile as through parameters (piecewise 
constant, linear, polynomial, etc.)

Apply NLP to discretization as with parametric optimization

Obtain gradients through adjoints (Hasdorff; Sargent and Sullivan; Goh and Teo) or 
sensitivity equations (Vassiliadis, Pantelides and Sargent; Gill, Petzold et al.)

Variational (Indirect) approach: Apply optimality conditions and solve as boundary 
value problem
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Optimality Conditions(Bound constraints on u(t))

Min φ(z(tf))
s.t. dz/dt = f(z, u), z (0) = z0

g (z(tf)) � 0
h (z(tf)) = 0
a � u(t) � b

Form Lagrange function - adjoin objective function and constraints:

Derivation of Variational Conditions 
Indirect Approach
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At optimum, δφ ≥0.  Since u is the control variable, let all other terms vanish.
⇒ δ z(tf):

δz(0): λ(0) = 0  (if z(0) is not specified)
δz(t):

Define Hamiltonian, H = λTf(z,u)
For u notat bound:
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Car Problem
Travel a fixed distance (rest-to-rest) in minimum time.
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t f

u(t)

b

a

t s

1 / 2 bt2,t <  ts

1 / 2 bts
2 - a ts - tf( )2( ),  t ≥ ts

 
 
 

  

bt,   t <  ts

bts + a t - ts( ),   t ≥ ts

 
 
 

2L

b 1- b / a( )
 

  
 

  

1/2

(1− b / a)
2L

b 1 - b / a( )
 

  
 

  

1/2

Optimal Profile

From state equations:

x1(t) = 

x2 (t) = 

Apply boundary conditions at t = tf:
x1(tf) = 1/2 (b ts

2 - a (ts - tf)
2) = L

x2(tf) = bts + a (tf - ts) = 0
⇒  ts = 

tf = 

•Problem is linear in u(t). Frequently 
these problems have "bang-bang" 
character.
•For nonlinear and larger problems, the 
variational conditions can be solved 
numerically as boundary value 
problems.

Car Problem
Analytic Variational Solution
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A B

C

u

u /2
2

u(T(t))

Example:  Batch reactor - temperature profile 

Maximize yield of B after one hour’s operation by manipulating a transformed 
temperature, u(t). 

⇒ Minimize -zB(1.0)
s.t.

z’A = -(u+u2/2) zA

z’B = u zA

zA(0) = 1
zB(0) = 0
0 � u(t) � 5

Adjoint Equations:
H = -λA(u+u2/2) zA + λB u zA

∂H/∂u = λA (1+u) zA + λB zA
λ’A = λA(u+u2/2) - λB u,   λA(1.0) = 0
λ’B = 0,                             λB(1.0) = -1

Cases Considered
1. NLP Approach- piecewise constant and linear profiles.
2. Control Vector Iteration
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Batch Reactor Optimal Temperature Program 
Piecewise Constant

O
p

tim
a

l P
ro

fil
e

, u
(t

)

0. 0.2 0.4 0.6 0.8 1.0

2

4

6

Time, h

Results
Piecewise Constant Approximation with Variable Time Elements
Optimum B/A:  0.57105
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O
p

tim
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l P
ro
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e

, u
(t

)

0. 0.2 0.4 0.6 0.8 1.0

2

4

6

Time, h

Results:
Piecewise Linear Approximation with Variable Time Elements
Optimum B/A:  0.5726
Equivalent # of ODE solutions:  32

Batch Reactor Optimal Temperature Program 
Piecewise Linear
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O
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, u
(t

)

0. 0.2 0.4 0.6 0.8 1.0

2

4

6

Time, h

Results:
Control Vector Iteration with Conjugate Gradients
Optimum (B/A):  0.5732
Equivalent # of ODE solutions:  58

Batch Reactor Optimal Temperature Program 

Indirect Approach
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Dynamic Optimization - Sequential Strategies

Small NLP problem, O(np+nu) (large-scale NLP solver not required) 
• Use NPSOL, NLPQL, etc. 
• Second derivatives difficult to get

Repeated solution of DAE model and sensitivity/adjoint equations, scales with 
nz and np

• Dominant computational cost
• May fail at intermediate points

Sequential optimization is not recommended for unstable systems. State 
variables blow up at intermediate iterations for control variables and 
parameters.

Discretize control profiles to parameters (at what level?)

Path constraints are difficult to handle exactly for NLP approach
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Instabilities in DAE Models
This example cannot be solved with sequential methods (Bock, 1983):

dy1/dt = y2

dy2/dt = τ2 y1 + (π2 − τ2) sin (π t)

The characteristic solution to these equations is given by:

y1(t) = sin (π t) + c1 exp(-τ t) + c2 exp(τ t)

y2 (t) = πcos (π t) - c1 τ exp(-τ t) + c2 τ exp(τ t) 

Both c1 and c2 can be set to zero by either of the following equivalent 
conditions:

IVP y1(0) = 0, y2 (0) = π

BVP y1(0) = 0, y1(1) = 0
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IVP Solution
If we now add roundoff errors e1 and e2 to the IVP and BVP conditions, we 
see significant differences in the sensitivities of the solutions. 

For the IVP case, the sensitivity to the analytic solution profile is seen by 
large changes in the profiles y1(t) and y2(t) given by:

y1(t) = sin (π t) + (e1 - e2/τ) exp(-τ t)/2  

+(e1 + e2/τ) exp(τ t)/2

y2 (t) = πcos (π t) - (τ e1 - e2) exp(-τ t)/2 

+ (τ e1 + e2) exp(τ t)/2

Therefore, even if e1 and e2 are at the level of machine precision (< 10-13), a 
large value of τ and t will lead to unbounded solution profiles. 
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BVP Solution

On the other hand, for the boundary value problem, the errors 
affect the analytic solution profiles in the following way: 

y1(t) = sin (π t) + [e1 exp(τ)- e2] exp(-τ t)/[exp(τ) - exp(-τ)] 

+ [e1 exp(-τ) - e2] exp(τ t)/[exp(τ) - exp(-τ)] 

y2(t) = πcos (π t) – τ [e1 exp(τ)- e2] exp(-τ t)/[exp(τ) - exp(-τ)] 

+ τ [e1 exp(-τ) - e2] exp(τ t)/[exp(τ) - exp(-τ)] 

Errors in these profiles never exceed t (e1 + e2), and as a result a 
solution to the BVP is readily obtained.
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BVP and IVP Profiles

e1, e2 = 10-9

Linear BVP solves easily

IVP blows up before midpoint
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Dynamic Optimization Dynamic Optimization ApproachesApproaches

DAE Optimization Problem

Multiple Shooting

Sequential Approach

Vassiliadis(1994)

Can not handle instabilities properly
Small NLP

Handles instabilities Larger NLP

Discretize some 
state variables

Discretize 
controls

Variational Approach

Pontryagin(1962)

Inefficient for constrained 
problems

Apply a NLP solver

Efficient for constrained problems
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Multiple Shooting for Dynamic Optimization
Divide time domain into separate regions

Integrate DAEs state equations over each region 

Evaluate sensitivities in each region as in sequential approach wrt uij, p and zj

Impose matching constraints in NLP for state variables over each region

Variables in NLP are due to control profiles as well as initial conditions in each region
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Multiple Shooting
Nonlinear Programming Problem
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BVP Problem Decomposition

Consider: Jacobian of Constraint Matrix for NLP

• bound unstable modes with boundary conditions (dichotomy)

• can be done implicitly by determining stable pivot sequences in multiple shooting constraints 
approach

• well-conditioned problem implies dichotomy in BVP problem (deHoog and Mattheij)

Bock Problem (with t = 50)

• Sequential approach blows up (starting within 10-9 of optimum)

• Multiple Shooting optimization requires 4 SQP iterations

B1 A1

A2

A3

A4

AN

B2

B3

B4

BN

IC

FC
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Dynamic Optimization – Multiple Shooting Strategies

Larger NLP problem O(np+nu+NE nz) 
• Use SNOPT, MINOS, etc.
• Second derivatives difficult to get

Repeated solution of DAE model and sensitivity/adjoint equations, scales with 
nz and np

• Dominant computational cost
• May fail at intermediate points

Multiple shooting can deal with unstable systems with sufficient time 
elements. 

Discretize control profiles to parameters (at what level?)

Path constraints are difficult to handle exactly for NLP approach

Block elements for each element are dense!

Extensive developments and applications by Bock and coworkers using 
MUSCOD code
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Dynamic Optimization Dynamic Optimization ApproachesApproaches

DAE Optimization Problem

Simultaneous Approach

Sequential Approach

Vassiliadis(1994)

Can not handle instabilities properly
Small NLP

Handles instabilities Large NLP

Discretize all 
state variables

Discretize 
controls

Variational Approach

Pontryagin(1962)

Inefficient for constrained 
problems

Apply a NLP solver

Efficient for constrained problems
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Nonlinear Dynamic
Optimization Problem 

Collocation on
finite Elements

Continuous variablesContinuous variables

Nonlinear Programming
Problem (NLP)

Discretized variablesDiscretized variables

Nonlinear Programming Formulation
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Discretization of Differential Equations 
Orthogonal Collocation

Given:dz/dt = f(z, u, p), z(0)=given

Approximate z and u by Lagrange interpolation polynomials (order 
K+1 and K, respectively) with interpolation points, tk
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Collocation Example
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z(t)

z N+1(t)

St
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te
 P
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t ft 1 t 2 t 3

r(t)

t 1 t 2 t 3

Min φ(z(tf))
s.t. z’ = f(z, u, p), z(0)=z0

g(z(t), u(t), p) � 0
h(z(t), u(t), p) = 0

to Nonlinear Program

How accurate is approximation

Converted Optimal Control Problem

Using Collocation
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Results of Optimal Temperature Program 
Batch Reactor (Revisited)

Results- NLP with Orthogonal Collocation
Optimum B/A - 0.5728
# of ODE Solutions - 0.7(Equivalent)
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Nonlinear Programming ProblemNonlinear Programming Problem
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Finite elements,hi, can also be variable to 
determine break points for u(t).

Add  hu � hi � 0, Σ hi=tf

Can add constraints g(h, z, u) � ε for 
approximation error
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A + 3B --> C + 3D

L

T s

T R

T P

3:1 B/A 
383 K

TP =  specified product temperature
TR =  reactor inlet, reference temperature
L    =  reactor length
Ts  =  steam sink temperature
q(t) =  reactor conversion profile
T(t) = normalized reactor temperature profile

Cases considered:
• Hot Spot - no state variable constraints
• Hot Spot with T(t) � 1.45

Hot Spot Reactor Revisited

R
oo

P

Pproduct
o

Rfeed

RS

L

RS
TLTT

C/T   C,  T(L)   T

 , T(L)) (THC) -,(T+

T
dt

dq
TTtT

dt

dT

qtTtq
dt

dq
ts

dtTTtTLMin
SRP

101120

0110 

1)0(  ,3/2)/)((5.1      

0)0(  )],(/2020exp[))(1(3.0   ..

)/)((   
0

,,,

+==

=∆

=+−−=

=−−=

−−=Φ ∫



49

1.21.00.80.60.40.20.0
0

1

2

integrated profile

collocation

Normalized Length

C
on

ve
rs

io
n

1.21.00.80.60.40.20.0
1.0

1.2

1.4

1.6

1.8

integrated profile

collocation

Normalized Length

T
em

pe
ra

tu
re

Base Case Simulation
Method: OCFE at initial point with 6 equally spaced elements

L(norm)  TR(K) TS(K) TP(K)
Base Case: 1.0 462.23 425.26 250
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Unconstrained Case
Method: OCFE combined formulation with rSQP

identical to integrated profiles at optimum 
L(norm)  TR(K) TS(K) TP(K)

Initial: 1.0 462.23 425.26 250
Optimal: 1.25 500 470.1 188.4

123 CPU s. (µVax II)
φ∗ = -171.5
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Temperature Constrained Case
T(t)  � 1.45

Method: OCFE combined formulation with rSQP, 
identical to integrated profiles at optimum

L(norm)     TR(K) TS(K) TP(K)
Initial: 1.0 462.23       425.26 250
Optimal: 1.25 500 450.5 232.1

57 CPU s. (µVax II), φ∗ = -148.5
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Theoretical Properties of Simultaneous Method

A.  Stability and Accuracy of Orthogonal Collocation

• Equivalent to performing a fully implicit Runge-Kutta integration of 
the DAE models at Gaussian (Radau) points

• 2K order (2K-1) method which uses K collocation points
• Algebraically stable (i.e., possesses A, B, AN and BN stability)

B.  Analysis of the Optimality Conditions

• An equivalence has been established between the Kuhn-Tucker 
conditions of NLP and the variational necessary conditions

• Rates of convergence have been established for the NLP method
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Case Studies
• Reactor - Based Flowsheets
• Fed-Batch Penicillin Fermenter
• Temperature Profiles for Batch Reactors
• Parameter Estimation of Batch Data
• Synthesis of Reactor Networks
• Batch Crystallization Temperature Profiles
• Grade Transition for LDPE Process
• Ramping for Continuous Columns
• Reflux Profiles for Batch Distillation and Column Design
• Source Detection for Municipal Water Networks
• Air Traffic Conflict Resolution
• Satellite Trajectories in Astronautics
• Batch Process Integration
• Optimization of Simulated Moving Beds

Simultaneous DAE Optimization
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Production of High Impact Polystyrene (HIPS)
Startup and Transition Policies (Flores et al., 2005a)

Catalyst 

Monomer, 
Transfer/Term. 
agents

Coolant

Polymer
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Upper Steady−State

Bifurcation Parameter

System State

Lower Steady−State

Medium Steady−State

Phase Diagram of Steady States

Transitions considered among all steady state pairs
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• 926 variables
• 476 constraints
• 36 iters. / 0.95 CPU s (P4)

Startup to Unstable Steady State



57

HIPS Process Plant (Flores et al., 2005b)

•Many grade transitions considered with stable/unstable pairs

•1-6 CPU min (P4) with IPOPT

•Study shows benefit for sequence of grade changes to 
achieve wide range of grade transitions. 
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Batch Distillation – Optimization Case Study - 1
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%DWFK�'LVWLOODWLRQ�3URILW�0D[LPL]DWLRQ
Max {Net Sales(D, S0)/(tf +Tset) – TAC(N, V)}

N = 20 trays, Tsetup= 1 hour
xd = 0.98, xfeed= 0.50, α = 2
Cprod/Cfeed= 4.1
V = 120 moles/hr, S0 = 100 moles. 
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%DWFK�'LVWLOODWLRQ� 2SWLPL]DWLRQ�&DVH�6WXG\�� �

D(t), x d

V(t)

R(t)

xb

Ideal Equilibrium Equations
yi,p = Ki,p xi,p

Binary Column (55/45, Cyclohexane, Toluene)
S0 = 200, V = 120, Hp = 1, N = 10, ~8000 variables, 
< 2 CPU hrs. (Vaxstation 3200)
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Batch Reactive Distillation – Case Study 3

max Ddt
t f

0

1=
∫max Ddt
t f

0

1=
∫

s.t.   DAE

xD
Ester ≥ 0 4600.xD

Ester ≥ 0 4600.

Reversible reaction between acetic acid and ethanolReversible reaction between acetic acid and ethanol

CH3COOH + CH3CH2OH l CH3COOCH2CH3 + H2O

t = 0, x = 0.25
for all components

Wajde & Reklaitis (1995)

D(t), x d

V(t)

R(t)

xb
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Batch Reactive Distillation

Distillate Composition  
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CPU Decomposition Time
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Global Elemental

Batch Reactive Distillation
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Nonlinear Model Predictive Control (NMPC)

Process

NMPC Controller

d : disturbances
z : differential states
y : algebraic states

u : manipulated
variables

ysp : set points

( )
( )dpuyzG

dpuyzFz

,,,,0

,,,,

=
=′

NMPC Estimation and Control

sConstraintOther 

sConstraint Bound

)(
)),(),(),((0

)),(),(),(()(
..

||))||||)(||min
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1sp
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u
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u(tu(t
u

NMPC Subproblem

Why NMPC?

� Track a profile

� Severe nonlinear dynamics (e.g, 
sign changes in gains)

� Operate process over wide range 
(e.g., startup and shutdown)

Model Updater
( )
( )dpuyzG

dpuyzFz

,,,,0

,,,,

=
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Dynamic optimization in a 
MATLAB Framework

Dynamic Optimization 
Problem

Process Model

Inequality Constraints

Initial Conditions

Constraints at Final Time

Objective Function

( ) 0puyxxf =′ t,,,,,

( ) 0=t,,,, puyxg

0),,,,,( ≤′ tpuyxxh

0xx =)( 0t

( ) 0,,,)(,)(,)(,)( 0 =′ fffff ttttt pxuyxxϕ

( )fff
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,,),(t,)(,)( P 0f
,,(t),

min
0

xpuyx
xpu

NLP Optimization 
Problem

Process Model

Inequality Constraints

Constraints at Final Time

Objective Function

( ) 0xpuyxf 0 =,,,ˆ,ˆ,ˆˆ
ft

( ) 0puyxg =ft,,ˆ,ˆ,ˆˆ

0),,ˆ,ˆ,ˆ(ˆ ≤ftpuyxh

( ) 0,,,, =fNNN t
ttt

puyxϕ

( )fNNN t
ttt

,,,, Pmin puyx

Full 
Discretization 
of State and 

Control 
Variables

Discretization 
Method

No. of Time 
Elements

Collocation 
Order

 Saturator-System

copy ofDesign

Wärmeschaltplan
Nr. -F Ref T  - 
Erlangen, 13.Oct.1999

SIEMENS AG
F Ref T In Bearbeitung

P..Druck..bar

M..Massenstrom..kg/s

PHI..Luft-Feuchte..%

H..Enthalpie..kJ/kg

T..Temperatur..°C

bar kJ/kg
kg/s °C  (X)

JOBKENNUNG : C:\Krawal-modular\IGCC\IGCC_Puertol lano_komplett.gek

Alle Drücke sind absolut

Dynamic Process
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Tennessee Eastman Process

Unstable Reactor

11 Controls; Product, Purge streams

Model extended with energy balances
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Tennessee Eastman Challenge Process

Method of Full Discretization of State and Control Variables

Large-scale Sparse block-diagonal NLP

11Difference (control variables)

141Number of algebraic equations

152Number of algebraic variables

30Number of differential equations

DAE Model

14700Number of nonzeros in Hessian

49230Number of nonzeros in Jacobian

540Number of upper bounds

780Number of lower bounds

10260Number of constraints

10920
0

Number of variables
of which are fixed

NLP Optimization problem
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Setpoint change studies

Setpoint changes for the base case [Downs & Vogel]

+2%
Make a step change so that the composition of 
component B in the gas purge changes from 
13.82 to 15.82%

Step
Purge gas composition of 
component B change

-60 kPa
Make a step change so that the reactor operating 
pressure changes from 2805 to 2745 kPa

Step
Reactor operating pressure 
change

-15%
Make a step change to the variable(s) used to set 
the process production rate so that the product 
flow leaving the stripper column base changes 
from 14,228 to 12,094 kg h-1

StepProduction rate change

MagnitudeTypeProcess variable
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Case Study:
Change Reactor pressure by 60 kPa

Control profiles 

All profiles return to their 
base case values

Same production rate

Same product quality

Same control profile

Lower pressure – leads to 
larger gas phase (reactor) 
volume

Less compressor load
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TE Case Study – Results I

Shift in TE process 

Same production rate

More volume for reaction

Same reactor temperature

Initially less cooling water flow 
(more evaporation)
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Case Study- Results II

Shift in TE process 

Shift in reactor effluent to more 
condensables

Increase cooling water flow

Increase stripper steam to 
ensure same purity

Less compressor work
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Case Study: 
Change Reactor Pressure by 60 kPa

Optimization with IPOPT

1000 Optimization Cycles

5-7 CPU seconds

11-14 Iterations

Optimization with SNOPT

Often failed due to poor 
conditioning

Could not be solved within 
sampling times

> 100 Iterations
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+ Directly handles interactions, multiple conditions
+ Trade-offs unambiguous, quantitative

- Larger problems to solve 
- Need to consider a diverse process models

Research Questions

How should diverse models be integrated?
Is further algorithmic development needed?

Optimization as a Framework for IntegrationOptimization as a Framework for Integration
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:KDW�DUH�WKH�,QWHUDFWLRQV�EHWZHHQ�'HVLJQ�
DQG�'\QDPLFV�DQG�3ODQQLQJ"

:KDW�DUH�WKH�GLIIHUHQFHV�EHWZHHQ�6HTXHQWLDO�DQG�
6LPXOWDQHRXV�6WUDWHJLHV"

(VSHFLDOO\�,PSRUWDQW�LQ�%DWFK�6\VWHPV

Batch Integration Case Study 

Production Planning
Stage 1

Stage 2

A

A B

B C

C

Plant Design

T
R

Time Time

Dynamic Processing  
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GLVFUHWL]H �'$(V���VWDWH�DQG�FRQWURO�SURILOHV
ODUJH�VFDOH�RSWLPL]DWLRQ�SUREOHP
KDQGOHV�SURILOH�FRQVWUDLQWV�GLUHFWO\
LQFRUSRUDWHV�HTXLSPHQW�YDULDEOHV�GLUHFWO\�
'$(�PRGHO�VROYHG�RQO\�RQFH
FRQYHUJHV�IRU�XQVWDEOH�V\VWHPV

6LPXOWDQHRXV�'\QDPLF�2SWLPL]DWLRQ

Best transient Best constant

Higher conversion 
in same time

T

Time

C
on

v.

Time

Fewer 
product batches

TSame conversion 
in reduced time

Time

C
on

v.

Time

Shorter 
processing times

Dynamic Processing  

Production Planning
Stage 1

Stage 2

A

A B

B C

C

Shorter Planning 
Horizon
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Scheduling Formulation

VHTXHQFLQJ�RI�WDVNV��SURGXFWV�HTXLSPHQW
H[SHQVLYH�GLVFUHWH�FRPELQDWRULDO�RSWLPL]DWLRQ
FRQVLGHU�LGHDO�WUDQVIHU�SROLFLHV��8,6�DQG�=:�
FORVHG�IRUP�UHODWLRQV��%LUHZDU DQG�*URVVPDQQ�������

A B N
stage I

stage 2

stage I

stage 2

A B N

=HUR�:DLW��=:��
,PPHGLDWH�WUDQVIHU�UHTXLUHG
6ODFN�WLPHV�GHSHQGHQW�RQ�SDLU
/RQJHU�SURGXFWLRQ�F\FOH�UHTXLUHG

8QOLPLWHG�,QW��6WRUDJH�8,6�
6KRUW�SURGXFWLRQ�F\FOH
&\FOH�WLPH�LQGHSHQGHQW�RI�VHTXHQFH
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Case Study ExampleCase Study Example

z i ,I
0 zi ,II

0
z i ,III

0 zi ,IV
0

z i ,IV
f

zi ,I
f z i ,II

f z i ,III
f

Bi

A + B → C

C + B → P + E

P + C → G

4 stages, 3 products of different purity 
Dynamic reactor - temperature profile
Dynamic column - reflux profile

Process Optimization Cases

SQ - Sequential Design - Scheduling - Dynamics
SM - Simultaneous Design and Scheduling

Dynamics with endpoints fixed . 
SM* - Simultaneous Design, Scheduling and Dynamics
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Results for Simultaneous Cases

R0/R1 
best constant /    
optimal temperature
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optimal reflux ratio
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Summary
Sequential Approaches
- Parameter Optimization

• Gradients by: Direct and Adjoint Sensitivity Equations
- Optimal Control (Profile Optimization)

• Variational Methods
• NLP-Based Methods

- Require Repeated Solution of Model
- State Constraints are Difficult to Handle

Simultaneous Approach
- Discretize ODE's using orthogonal collocation on finite elements (solve larger optimization problem)
- Accurate approximation of states, location of control discontinuities through element placement.
- Straightforward addition of state constraints.
- Deals with unstable systems

Simultaneous Strategies are Effective
- Directly enforce constraints
- Solve model only once
- Avoid difficulties at intermediate points

Large-Scale Extensions
- Exploit structure of DAE discretization through decomposition
- Large problems solved efficiently with IPOPT
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Software
• Dynamic Optimization Codes
ACM – Aspen Custom Modeler
DynoPC - simultaneous optimization code (CMU)
COOPT - sequential optimization code (Petzold)
gOPT - sequential code integrated into gProms (PSE)
MUSCOD - multiple shooting optimization (Bock)
NOVA - SQP and collocation code (DOT Products)
• Sensitivity Codes for DAEs
DASOLV - staggered direct method (PSE)
DASPK 3.0 - various methods (Petzold)
SDASAC - staggered direct method (sparse)
DDASAC - staggered direct method (dense)

DAE Optimization Resources
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Interface of DynoPC

Outputs/Graphic & TextsModel in FORTRAN

F2c/C++

ADOL_C

Preprocessor

DDASSL

COLDAE

Data/Config.

Simulator/Discretizer

F/DF

Starting Point Linearization

Optimal Solution

FILTER

Redued SQP

F/DF
Line Search

Calc. of independent 
variable move

Interior Point
For QP

Decomposition

DynoPC – Windows Implementation
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A B C
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Example: Batch Reactor Temperature
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Example: Car Problem

Min tf
s.t. z1’ = z2

z2’ = u
z2 � zmax

-2 � u � 1

subroutine model(nz,ny,nu,np,t,z,dmz,y,u,p,f)
double precision t, z(nz),dmz(nz), y(ny),u(nu),p(np)

double precision f(nz+ny)

f(1) = p(1)*z(2) - dmz(1)
f(2) = p(1)*u(1) - dmz(2)

return
end403020100
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Example: Crystallizer Temperature

Steam

Cooling 
water

TT TC

Control variable = Tjacket = f(t)?

Maximize crystal size
at final time
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SUBROUTINE model(nz,ny,nu,np,x,z,dmz,y,u,p,f)
implicit double precision (a-h,o-z)
double precision f(nz+ny),z(nz),dmz(nz),Y(ny),yp(4),u(1)
double precision kgr, ln0, ls0, kc, ke, kex, lau, deltT, alpha
dimension a(0:3), b(0:3)
data alpha/1.d-4/,a/-66.4309d0, 2.8604d0, -.022579d0, 6.7117d-5/,
+  b/16.08852d0, -2.708263d0, .0670694d0, -3.5685d-4/, kgr/ 4.18d-3/,
+  en / 1.1d0/, ln0/ 5.d-5/, Bn / 3.85d2/, em / 5.72/, ws0/ 2.d0/,
+  Ls0/ 5.d-4     /, Kc / 35.d0 /, Kex/ 65.d0/, are/ 5.8d0 /,
+  amt/ 60.d0  /, V0 / 1500.d0/, cw0/ 80.d0/,cw1/ 45.d0/,v1 /200.d0/,
+ tm1/ 55.d0/,x6r/0.d0/, tem/ 0.15d0/,clau/ 1580.d0/,lau/1.35d0/,
+   cp/ 0.4d0    /,cbata/ 1.2d0/, calfa/ .2d0   /, cwt/ 10.d0/

ke = kex*area  
x7i = cw0*lau/(100.d0-cw0)
v = (1.d0 - cw0/100.d0)*v0 
w = lau*v0  
yp(1) = (deltT + dsqrt(deltT**2 + alpha**2))*0.5d0
yp(2) = (a(0) + a(1)*yp(4) + a(2)*yp(4)**2 + a(3)*yp(4)**3)
yp(3) = (b(0) + b(1)*yp(4) + b(2)*yp(4)**2 + b(3)*yp(4)**3)
deltT = yp(2) - z(8)  
yp(4) = 100.d0*z(7)/(lau+z(7))

f(1) = Kgr*z(1)**0.5*yp(1)**en - dmz(1)
f(2) = Bn*yp(1)**em*1.d-6 - dmz(2)
f(3) = ((z(2)*dmz(1) + dmz(2) * Ln0)*1.d+6*1.d-4) -dmz(3)
f(4) = (2.d0*cbata*z(3)*1.d+4*dmz(1)+dmz(2)*Ln0**2*1.d+6)-dmz(4)
f(5) = (3.d0*calfa*z(4)*dmz(1)+dmz(2)*Ln0**3*1.d+6) - dmz(5)
f(6) = (3.d0*Ws0/(Ls0**3)*z(1)**2*dmz(1)+clau*V*dmz(5))-dmz(6)
f(7) = -dmz(6)/V - dmz(7)
f(8) = (Kc*dmz(6) - Ke*(z(8) - u(1)))/(w*cp) - dmz(8)
f(9) = y(1)+YP(3)- u(1) 
return
end


