

Nonlinear Programming: Concepts, Algorithms and Applications

L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA

Nonlinear Programming and Process Optimization

Introduction

Unconstrained Optimization

- Algorithms
- Newton Methods
- Quasi-Newton Methods

Constrained Optimization

- Karush Kuhn-Tucker Conditions
- Special Classes of Optimization Problems
- Reduced Gradient Methods (GRG2, CONOPT, MINOS)
- Successive Quadratic Programming (SQP)
- Interior Point Methods

Process Optimization

- Black Box Optimization
- Modular Flowsheet Optimization Infeasible Path
- The Role of Exact Derivatives

Large-Scale Nonlinear Programming

- Data Reconciliation
- Real-time Process Optimization

Further Applications

- Sensitivity Analysis for NLP Solutions
- Multiperiod Optimization Problems

Summary and Conclusions

Introduction

<u>Optimization</u>: given a system or process, find the best solution to this process within constraints.

<u>Objective Function</u>: indicator of "goodness" of solution, e.g., cost, yield, profit, etc.

<u>Decision</u> <u>Variables</u>: variables that influence process behavior and can be adjusted for optimization.

In many cases, this task is done by trial and error (through case study). Here, we are interested in a *systematic* approach to this task - and to make this task as efficient as possible.

Some related areas:

- Math programming
- Operations Research

Currently - Over 30 journals devoted to optimization with roughly 200 papers/month - a fast moving field!

<u>Mathematician</u> - characterization of theoretical properties of optimization, convergence, existence, local convergence rates.

<u>Numerical Analyst</u> - implementation of optimization method for efficient and "practical" use. Concerned with ease of computations, numerical stability, performance.

<u>Engineer</u> - applies optimization method to real problems. Concerned with reliability, robustness, efficiency, diagnosis, and recovery from failure.

Engineering

1. Edgar, T.F., D.M. Himmelblau, and L. S. Lasdon, <u>Optimization of Chemical</u> <u>Processes</u>, McGraw-Hill, 2001.

2. Papalambros, P. and D. Wilde, <u>Principles of Optimal Design</u>. Cambridge Press, 1988.

3. Reklaitis, G., A. Ravindran, and K. Ragsdell, Engineering Optimization, Wiley, 1983.

4. Biegler, L. T., I. E. Grossmann and A. Westerberg, <u>Systematic Methods of Chemical</u> <u>Process Design</u>, Prentice Hall, 1997.

Numerical Analysis

1. Dennis, J.E. and R. Schnabel, <u>Numerical Methods of Unconstrained Optimization</u>, Prentice-Hall, (1983), SIAM (1995)

- 2. Fletcher, R. Practical Methods of Optimization, Wiley, 1987.
- 3. Gill, P.E, W. Murray and M. Wright, Practical Optimization, Academic Press, 1981.
- 4. Nocedal, J. and S. Wright, <u>Numerical Optimization</u>, Springer, 1998

Motivation

Scope of optimization

Provide *systematic framework* for searching among a specified <u>space of alternatives</u> to identify an "optimal" design, i.e., as a *decision-making tool*

Premise

Conceptual formulation of optimal product and process design corresponds to a <u>mathematical programming</u> problem

$$\min f(x, y)$$

$$st h(x, y) = 0$$

$$g(x, y) \le 0$$

$$x \in R^{n} y \in \{0, 1\}^{ny}$$

Optimization in Design, Operations and Control

	MILP	MINLP	Global	LP,QP	NLP	SA/GA
HENS	X	X	X	Х	Х	Х
MENS	X	x	x	Х	х	Х
Separations	X	x				
Reactors		х	Х	Х	Х	
Equipment Design		Х			Х	Х
Flowsheeting		х			Х	
Scheduling	X	х		Х		Х
Supply Chain	X	х		Х		
Real-time optimization				Х	Х	
Linear MPC				Х		
Nonlinear MPC			X		Х	
Hybrid	X				X	

Chemical Unconstrained Multivariable Optimization

Problem: Min f(x) (*n* variables)

Equivalent to: Max -f(x), $x \in \mathbb{R}^n$

Nonsmooth Functions

- Direct Search Methods
- Statistical/Random Methods

Smooth Functions

- 1st Order Methods
- Newton Type Methods
- Conjugate Gradients

Example: Optimal Vessel Dimensions

What is the optimal L/D ratio for a cylindrical vessel? **Constrained Problem** $\operatorname{Min} \left\{ C_{\mathrm{T}} \; \frac{\pi \; \mathrm{D}^2}{2} \; + \; C_{\mathrm{s}} \; \pi \; \mathrm{DL} \; = \; \mathrm{cost} \right\}$ (1)s.t. V - $\frac{\pi D^2 L}{4} = 0$ Convert to Unconstrained (Eliminate L) $\operatorname{Min} \left\{ C_{\mathrm{T}} \frac{\pi \, \mathrm{D}^{2}}{2} + C_{\mathrm{s}} \frac{4\mathrm{V}}{\mathrm{D}} = \mathrm{cost} \right\}$ $\frac{d(\text{cost})}{dD} = C_T \pi D - \frac{4VC_s}{D^2} = 0 \quad (2)$ $D = \left(\frac{4V}{\pi} \frac{C_s}{C_T}\right)^{1/3} \qquad L = \left(\frac{4V}{\pi}\right)^{1/3} \left(\frac{C_T}{C_s}\right)^{2/3}$

 $=> L/D = C_T/C_S$

Note:

- What if L cannot be eliminated in (1) explicitly? (strange shape)
- What if D cannot be extracted from (2)? (cost correlation implicit)

Two Dimensional Contours of F(x)

Multimodal, Nonconvex

Discontinuous

Nondifferentiable (convex)

Local vs. Global Solutions

- •Find a *local minimum* point x* for f(x) for feasible region defined by constraint functions: $f(x^*) \le f(x)$ for all x satisfying the constraints in some neighborhood around x* (not for all $x \in \mathbf{X}$)
- •Finding and verifying *global solutions* will not be considered here.
- •Requires a more expensive search (e.g. spatial branch and bound).
- •A local solution to the NLP is also a global solution under the following *sufficient* conditions based on convexity.
- *f*(*x*) is convex in domain **X**, if and only if it satisfies:

 $f(\alpha \, y + (1 \text{-} \alpha) \, z) \leq \alpha \, f(y) \, + (1 \text{-} \alpha) f(z)$

for any α , $0 \le \alpha \le 1$, at all points *y* and *z* in **X**.

Some Definitions

- Scalars Greek letters, α , β , γ
- Vectors Roman Letters, lower case
- Matrices Roman Letters, upper case
- Matrix Multiplication:
 - $C = A B \text{ if } A \in \mathfrak{R}^{n \times m}, B \in \mathfrak{R}^{m \times p} \text{ and } C \in \mathfrak{R}^{n \times p}, C_{ij} = \sum_{k} A_{ik} B_{kj}$
- Transpose if $A \in \Re^{n \times m}$, interchange rows and columns --> $A^{T} \in \Re^{m \times n}$
- Symmetric Matrix $A \in \Re^{n \times n}$ (square matrix) and $A = A^T$
- Identity Matrix I, square matrix with ones on diagonal and zeroes elsewhere.
- Determinant: "Inverse Volume" measure of a square matrix $det(A) = \sum_{i} (-1)_{i+j} A_{ij} \underline{A}_{ij} \text{ for any } j, \text{ or}$ $det(A) = \sum_{j} (-1)_{i+j} A_{ij} \underline{A}_{ij} \text{ for any } i, \text{ where } \underline{A}_{ij} \text{ is the determinant}$ of an order *n*-1 matrix with row i and column j removed. det(I) = 1
- Singular Matrix: det (A) = 0

Linear Algebra - Background

Gradient Vector -
$$(\nabla f(\mathbf{x}))$$

$$\nabla f = \begin{bmatrix} \hat{o}f / \partial \mathbf{x}_1 \\ \partial f / \partial \mathbf{x}_2 \\ \vdots \\ \partial f / \partial \mathbf{x}_n \end{bmatrix}$$

<u>Hessian Matrix</u> ($\nabla^2 f(x)$ - Symmetric)

$$\nabla^{2} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \end{bmatrix}$$
$$\nabla^{2} f(\mathbf{x}) = \begin{bmatrix} \dots & \dots & \dots & \dots \\ \frac{\partial^{2} f}{\partial x_{n} \bar{\partial} x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \bar{\partial} x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$
$$Note: \quad \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} = \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$$

Linear Algebra - Background

- <u>Some Identities for Determinant</u> det(A B) = det(A) det(B); $det(A) = det(A^T)$ $det(\alpha A) = \alpha^n det(A);$ $det(A) = \prod_i \lambda_i(A)$
- <u>Eigenvalues</u>: det(A- λ I) = 0, Eigenvector: Av = λ v Characteristic values and directions of a matrix. For nonsymmetric matrices eigenvalues can be complex, so we often use <u>singular values</u>, $\sigma = \lambda (A^T A)^{1/2} \ge 0$
- <u>Vector Norms</u>

 $|| \mathbf{x} ||_{\mathbf{p}} = \left\{ \sum_{i} |\mathbf{x}_{i}|^{p} \right\}^{1/p}$

(most common are p = 1, p = 2 (Euclidean) and $p = \infty$ (max norm = max_i|x_i|))

• <u>Matrix Norms</u>

 $||A|| = \max ||A x|| / ||x|| \text{ over } x \text{ (for p-norms)}$

- $||A||_1$ max column sum of A, max_j ($\Sigma_i |A_{ij}|$)
- $||A||_{\infty}$ maximum row sum of A, max_i ($\Sigma_j |A_{ij}|$)

 $||A||_2 = [\sigma_{max}(A)]$ (spectral radius)

 $||A||_{F} = [\sum_{i} \sum_{j} (A_{ij})_{2}]_{1/2} (Frobenius norm)$ $\kappa(A) = ||A|| ||A^{-1}|| (condition number) = \sigma_{max}/\sigma_{min} (using 2-norm)$

Linear Algebra - Eigenvalues

Find v and λ where $Av_i = \lambda_i v_i$, i = i,nNote: $Av - \lambda v = (A - \lambda I) v = 0$ or det $(A - \lambda I) = 0$ For this relation λ is an <u>eigenvalue</u> and v is an <u>eigenvector</u> of A.

If A is <u>symmetric</u>, all λ_i are <u>real</u> $\lambda_i > 0$, i = 1, n; A is <u>positive definite</u> $\lambda_i < 0$, i = 1, n; A is <u>negative definite</u> $\lambda_i = 0$, some i: A is <u>singular</u>

 $\begin{array}{rcl} \underline{Quadratic \ Form \ can \ be \ expressed \ in \ \underline{Canonical \ Form \ } (Eigenvalue/Eigenvector)} \\ x^{T}Ax & \Rightarrow & A \ V \ = \ V \ \Lambda \\ V \ - \ eigenvector \ matrix \ (n \ x \ n) \\ \Lambda \ - \ eigenvalue \ (diagonal) \ matrix \ = \ diag(\lambda_{i}) \end{array}$

If A is <u>symmetric</u>, all λ_i are <u>real</u> and V can be chosen <u>orthonormal</u> (V⁻¹ = V^T). Thus, A = V Λ V⁻¹ = V Λ V^T

For <u>Quadratic</u> Function: $Q(x) = a^T x + \frac{1}{2} x^T A x$

Define: $z = V^T x$ and $Q(Vz) = (a^T V) z + \frac{1}{2} z^T (V^T A V) z$ = $(a^T V) z + \frac{1}{2} z^T \Lambda z$

<u>Minimum</u> occurs at (if $\lambda_i > 0$) $x = -A^{-1}a$ or $x = Vz = -V(\Lambda^{-1}V^{T}a)$

Positive (or Negative) Curvature Positive (or Negative) Definite Hessian

Both eigenvalues are strictly positive or negative

- A is <u>positive definite</u> or <u>negative definite</u>
- Stationary points are minima or maxima

Zero Curvature Singular Hessian

One eigenvalue is zero, the other is strictly positive or negative

- A is <u>positive semidefinite</u> or <u>negative semidefinite</u>
- There is a ridge of stationary points (minima or maxima)

Indefinite Curvature Indefinite Hessian

One eigenvalue is positive, the other is negative

- Stationary point is a saddle point
- A is indefinite

Note: these can also be viewed as two dimensional projections for higher dimensional problems

Eigenvalue Example

$$Min \quad Q(\mathbf{x}) = \begin{bmatrix} 1\\1 \end{bmatrix}^T x + \frac{1}{2} x^T \begin{bmatrix} 2 & 1\\1 & 2 \end{bmatrix} x$$
$$A\mathbf{V} = \mathbf{V}\Lambda \quad \text{with} \quad \mathbf{A} = \begin{bmatrix} 2 & 1\\1 & 2 \end{bmatrix}$$
$$V^T A V = \Lambda = \begin{bmatrix} 1 & 0\\0 & 3 \end{bmatrix} \text{ with } \mathbf{V} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2}\\-1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

- All eigenvalues are positive
- Minimum occurs at $z^* = -\Lambda^{-1}V^T a$

$$z = V^{T} x = \begin{bmatrix} (x_{1} - x_{2})/\sqrt{2} \\ (x_{1} + x_{2})/\sqrt{2} \end{bmatrix} \qquad x = Vz = \begin{bmatrix} (x_{1} + x_{2})/\sqrt{2} \\ (-x_{1} + x_{2})/\sqrt{2} \end{bmatrix}$$
$$z^{*} = \begin{bmatrix} 0 \\ 2/(3\sqrt{2}) \end{bmatrix} \qquad x^{*} = \begin{bmatrix} 1/3 \\ 1/3 \end{bmatrix}$$

Comparison of Optimization Methods

- 1. Convergence Theory
- Global Convergence will it converge to a local optimum (or stationary point) from a poor starting point?
- Local Convergence Rate how fast will it converge close to the solution?

2. Benchmarks on Large Class of Test Problems

Representative Problem (Hughes, 1981)

$$\begin{array}{l} Min \ f(x_1, x_2) = \alpha \exp(-\beta) \\ u = x_1 - 0.8 \\ v = x_2 - (a_1 + a_2 \, u^2 \, (1 - u)^{1/2} - a_3 \, u) \\ \alpha = -b_1 + b_2 \, u^2 \, (1 + u)^{1/2} + b_3 \, u \\ \beta = c_1 \, v^2 \, (1 - c_2 \, v) / (1 + c_3 \, u^2) \end{array}$$
$$\begin{array}{l} a = [\ 0.3, \ 0.6, \ 0.2] \\ b = [5, \ 26, \ 3] \\ c = [40, \ 1, \ 10] \\ x^* = [0.7395, \ 0.3144] \quad f(x^*) = 5.0893 \end{array}$$

Three Dimensional Surface and Curvature for Representative Test Problem

What conditions characterize an optimal solution?

 $\label{eq:constrained Local Minimum} \\ \underline{\mbox{Necessary Conditions}} \\ \nabla f (x^*) = 0 \\ p^T \nabla^2 f (x^*) \ p \ge 0 \quad \mbox{for } p \in \Re^n \\ (\mbox{positive semi-definite}) \\ \end{array}$

 $\frac{\text{Unconstrained Local Minimum}}{\text{Sufficient Conditions}}$ $\nabla f(x^*) = 0$ $p^T \nabla^2 f(x^*) p > 0 \text{ for } p \in \Re^n$ (positive definite)

For smooth functions, why are contours around optimum elliptical? <u>Taylor Series</u> in n dimensions about x^* :

$$f(x) = f(x^*) + \nabla f(x^*)^T (x - x^*) + \frac{1}{2} (x - x^*)^T \nabla^2 f(x^*) (x - x^*)$$

Since $\nabla f(x^*) = 0$, f(x) is <u>purely quadratic</u> for x close to x^*

Newton's Method

Taylor Series for f(x) **about** x^k

Take derivative wrt x, set LHS ≈ 0

 $O \approx \nabla f(x) = \nabla f(x^k) + \nabla^2 f(x^k) (x - x^k)$ $\Rightarrow (x - x^k) \equiv d = - (\nabla^2 f(x^k))^{-1} \nabla f(x^k)$

- *f*(*x*) is convex (concave) if for all *x* ∈ 𝔅ⁿ, ∇²*f*(*x*) is positive (negative) semidefinite i.e. min_j λ_j ≥ 0 (max_j λ_j ≤ 0)
- Method can fail if:
 - x^0 far from optimum
 - $\nabla^2 f$ is singular at any point
 - f(x) is not smooth
- Search direction, *d*, requires solution of linear equations.
- Near solution:

$$\| x^{k+1} - x^* \| = K \| x^k - x^* \|^2$$

Basic Newton Algorithm - Line Search

- 0. Guess x^0 , Evaluate $f(x^0)$.
- 1. At x^k , evaluate $\nabla f(x^k)$.
- 2. Evaluate $B^k = \nabla^2 f(x^k)$ or an approximation.
- 3. Solve: $B^k d = -\nabla f(x^k)$ If convergence error is less than tolerance: e.g., $//\nabla f(x^k) // \le \varepsilon$ and $//d// \le \varepsilon$ STOP, else go to 4.
- 4. Find α so that $0 < \alpha \le 1$ and $f(x^k + \alpha d) < f(x^k)$ sufficiently (Each trial requires evaluation of f(x))
- 5. $x^{k+1} = x^k + \alpha d$. Set k = k + 1 Go to 1.

Newton's Method - Convergence Path

Starting Points

[0.8, 0.2] needs steepest descent steps w/ line search up to 'O', takes 7 iterations to $//\nabla f(x^*)// \le 10^{-6}$

[0.35, 0.65] converges in four iterations with full steps to $//\nabla f(x^*)// \le 10^{-6}$

Newton's Method - Notes

- Choice of B^k determines method.
 - Steepest Descent: $B^k = \gamma I$
 - Newton: $B^k = \nabla^2 f(x)$
- With suitable B^k, performance may be good enough if f(x^k + αd) is sufficiently decreased (instead of minimized along line search direction).
- *Trust region extensions* to Newton's method provide very strong global convergence properties and very reliable algorithms.
- Local rate of convergence depends on choice of B^k .

Newton – Quadratic Rate :
$$\lim_{k \to \infty} \frac{\left\| x^{k+1} - x^* \right\|}{\left\| x^k - x^* \right\|^2} = K$$

Steepest descent – Linear Rate :
$$\lim_{k \to \infty} \frac{\left\| x^{k+1} - x^* \right\|}{\left\| x^k - x^* \right\|} < 1$$

Desired? – Superlinear Rate :
$$\lim_{k \to \infty} \frac{\left\| x^{k+1} - x^* \right\|}{\left\| x^k - x^* \right\|} = 0$$

Quasi-Newton Methods

Motivation:

- Need B^k to be positive definite.
- Avoid calculation of $\nabla^2 f$.
- Avoid solution of linear system for $d = -(B^k)^{-1} \nabla f(x^k)$

<u>Strategy</u>: Define matrix updating formulas that give (B^k) symmetric, positive definite <u>and</u> satisfy:

 $(B^{k+1})(x^{k+1} - x^k) = (\nabla f^{k+1} - \nabla f^k)$ (Secant relation)

DFP Formula: (Davidon, Fletcher, Powell, 1958, 1964)

$$B^{k+1} = B^{k} + \frac{(y - B^{k}s)y^{T} + y(y - B^{k}s)^{T}}{y^{T}s} - \frac{(y - B^{k}s)^{T}syy^{T}}{(y^{T}s)(y^{T}s)}$$
$$(B^{k+1})^{-1} = H^{k+1} = H^{k} + \frac{ss^{T}}{s^{T}y} - \frac{H^{k}yy^{T}H^{k}}{yH^{k}y}$$

where: $s = x^{k+1} - x^k$ $y = \nabla f(x^{k+1}) - \nabla f(x^k)$

Quasi-Newton Methods

BFGS Formula (Broyden, Fletcher, Goldfarb, Shanno, 1970-71)

$$B^{k+1} = B^k + \frac{yy^T}{s^T y} - \frac{B^k s s^T B^k}{s B^k s}$$

$$(B^{k+1})^{-1} = H^{k+1} = H^{k} + \frac{(s - H^{k}y)s^{T} + s(s - H^{k}y)^{T}}{y^{T}s} - \frac{(y - H^{k}s)^{T}yss^{T}}{(y^{T}s)(y^{T}s)}$$

Notes:

- 1) Both formulas are derived under <u>similar assumptions</u> and have symmetry
- 2) Both have superlinear convergence and terminate in n steps on quadratic functions. They are identical if α is minimized.
- 3) BFGS is more stable and performs better than DFP, in general.
- For n ≤ 100, these are the <u>best</u> methods for general purpose problems if second derivatives are not available.

Quasi-Newton Method - BFGS Convergence Path

[0.8, 0.2] starting from $B^0 = I$, converges in 9 iterations to $//\nabla f(x^*)// \le 10^{-6}$

Sources For Unconstrained Software

Harwell (HSL)

IMSL

NAg - Unconstrained Optimization Codes

Netlib (www.netlib.org)

•MINPACK

•TOMS Algorithms, etc.

- These sources contain various methods
 - •Quasi-Newton
 - •Gauss-Newton
 - •Sparse Newton
 - •Conjugate Gradient

Constrained Optimization (Nonlinear Programming)

Problem: $Min_x f(x)$ s.t. $g(x) \leq 0$ h(x) = 0

where:

- f(x) scalar objective function
 - *x n* vector of variables
- g(x) inequality constraints, *m* vector
- h(x) meq equality constraints.

Sufficient Condition for Unique Optimum

- f(x) must be *convex*, <u>and</u>
- feasible region must be convex,
 - i.e. g(x) are all *convex*
 - h(x) are all *linear*

Except in special cases, ther is <u>no guarantee</u> that a <u>local optimum</u> is <u>global</u> if sufficient conditions are violated.

Example: Minimize Packing Dimensions

What is the smallest box for three round objects? <u>Variables</u>: A, B, (x_1, y_1) , (x_2, y_2) , (x_3, y_3) <u>Fixed Parameters</u>: R_1 , R_2 , R_3 <u>Objective</u>: Minimize Perimeter = 2(A+B)<u>Constraints</u>: Circles remain in box, can't overlap Decisions: Sides of box, centers of circles.

$$\begin{cases} x_1, y_1 \ge R_1 & x_1 \le B - R_1, y_1 \le A - R_1 \\ x_2, y_2 \ge R_2 & x_2 \le B - R_2, y_2 \le A - R_2 \\ x_3, y_3 \ge R_3 & x_3 \le B - R_3, y_3 \le A - R_3 \end{cases}$$

in box $x_1, x_2, x_3, y_1, y_2, y_3, A, B \ge 0$

Characterization of Constrained Optima

What conditions characterize an optimal solution?

Optimal solution for inequality constrained problem

 $\begin{array}{ll} \mbox{Min} & f(x) \\ s.t. & g(x) \leq 0 \\ \hline \mbox{Analogy: Ball rolling down valley pinned by fence} \\ \hline \mbox{Note: Balance of forces } (\nabla f, \nabla g_1) \end{array}$

Optimal solution for general constrained problem

Optimality conditions for local optimum

Necessary First Order Karush Kuhn - Tucker Conditions

 $\nabla L(x^*, u, v) = \nabla f(x^*) + \nabla g(x^*) u + \nabla h(x^*) v = 0$ (Balance of Forces) $u \ge 0$ (Inequalities act in only one direction) $g(x^*) \le 0, h(x^*) = 0$ (Feasibility) $u_j g_j(x^*) = 0$ (Complementarity: either $g_j(x^*) = 0$ or $u_j = 0$) u, v are "weights" for "forces," known as KKT multipliers, shadow prices, dual variables

"To guarantee that a local NLP solution satisfies KKT conditions, a constraint qualification is required. E.g., the *Linear Independence Constraint Qualification* (LICQ) requires active constraint gradients, $[\nabla g_A(x^*) \ \nabla h(x^*)]$, to be linearly independent. Also, under LICQ, KKT multipliers are uniquely determined."

Necessary (Sufficient) Second Order Conditions

- Positive curvature in "constraint" directions.
- $p^T \nabla^2 L(x^*) p \ge 0$ $(p^T \nabla^2 L(x^*) p > 0)$ where *p* are the constrained directions: $\nabla g_A(x^*)^T p = 0$, $\nabla h(x^*)^T p = 0$

Single Variable Example of KKT Conditions

Consider three cases:

- $u_1 > 0, \ u_2 = 0$
- $u_1 = 0, \ u_2 > 0$
- $u_1 = u_2 = 0$

Upper bound is active, x = a, $u_1 = -2a$, $u_2 = 0$ Lower bound is active, x = -a, $u_2 = -2a$, $u_1 = 0$ Neither bound is active, $u_1 = 0$, $u_2 = 0$, x = 0

 $\begin{array}{l} \underline{\text{Second order conditions } (x^{*}, \, u_{1}, \, u_{2} = 0) \\ V_{xx}L\left(x^{*}, \, u^{*}\right) = 2 \\ p^{T}V_{xx}L\left(x^{*}, \, u^{*}\right) p = 2 \; (\Delta x)^{2} > 0 \end{array}$

Single Variable Example of KKT Conditions - Revisited

Consider three cases:

- $u_1 > 0, \ u_2 = 0$
- $u_1 = 0, \ u_2 > 0$
- $u_1 = u_2 = 0$

Upper bound is active, x = a, $u_1 = 2a$, $u_2 = 0$ Lower bound is active, x = -a, $u_2 = 2a$, $u_1 = 0$ Neither bound is active, $u_1 = 0$, $u_2 = 0$, x = 0

 $\begin{array}{l} \underline{\text{Second order conditions }}(x^{*}, \, u_{1}, \, u_{2} = 0) \\ V_{xx}L\left(x^{*}, \, u^{*}\right) = -2 \\ p^{T}V_{xx}L\left(x^{*}, \, u^{*}\right)p = -2(\varDelta x)^{2} < 0 \end{array}$

Interpretation of Second Order Conditions

For x = a or x = -a, we require the allowable direction to satisfy the active constraints exactly. Here, any point along the allowable direction, x^* must remain at its bound.

For this problem, however, there are no nonzero allowable directions that satisfy this condition. Consequently the solution x^* is defined entirely by the active constraint. The condition:

 $p^T V_{xx} L(x^*, u^*, v^*) p > 0$

for all allowable directions, is *vacuously* satisfied - because there are *no* allowable directions that satisfy $\nabla g_A(x^*)^T p = 0$. Hence, *sufficient* second order conditions are satisfied.

As we will see, sufficient second order conditions are satisfied by linear programs as well.

Role of KKT Multipliers

Special Cases of Nonlinear Programming

Linear Programming:

Min
$$c^{T}x$$

s.t. $Ax \le b$
 $Cx = d, x \ge 0$
Functions are all *convex* \Rightarrow global min.

Because of Linearity, can prove solution will always lie at vertex of feasible region.

Simplex Method

- Start at vertex
- Move to adjacent vertex that offers most improvement
- Continue until no further improvement

Notes:

- 1) LP has wide uses in planning, blending and scheduling
- 2) Canned programs widely available.

Linear Programming Example

Simplex Meth	nod					
Min $-2x_1$	- <i>3x</i> ₂			Min	-2x ₁ -	$3x_2$
s.t. $2x_1$	$+ x_2 \le 5$	\Rightarrow		s.t. 2	$2x_1 + x_2 + .$	$x_{3} = 5$
x_{l} ,	$x_2 \ge 0$				<i>x</i> ₁ , <i>x</i> ₂ ,	$x_3 \ge 0$
					(add s	lack variable)
Now, define f	$x = -2x_1 - 3$	$3x_2$	\Rightarrow	f + f	$2x_1 + 3x_2$	= 0
Set $x_1, x_2 = 0$,	$x_3 = 5 \text{ ar}$	nd form ta	ableau			
x_1	x_2	<i>x3</i>	f	b	x_{1}, x_{2}	nonbasic
2	1	1	0	5	x_3	basic
2	3	0	1	0	-	

To decrease *f*, increase x_2 . How much? so $x_3 \ge 0$

Underlined terms are -(reduced gradients); nonbasic variables (x_1, x_3) , basic variable x_2

Quadratic Programming

- 2) If B is positive definite, QP solution is unique.If B is pos. semidefinite, optimum value is unique.
- 3) Other methods for solving QP's (faster)
 - Complementary Pivoting (Lemke)
 - Range, Null Space methods (Gill, Murray).

Portfolio Planning Problem

Definitions:

x_i - fraction or amount invested in security i

 $r_{i}(t) - (1 + rate of return)$ for investment i in year t.

 μ_i - average r(t) over T years, i.e.

$$\mu_{i} = \frac{1}{T} \sum_{t=1}^{T} r_{i}(t)$$

$$Max \sum_{i} \mu_{i} x_{i}$$

$$s.t. \sum_{i} x_{i} = 1$$

$$x_{i} \ge 0, etc.$$

<u>Note</u>: maximize average return, no accounting for risk.

Portfolio Planning Problem <u>Definition of Risk</u> - fluctuation of ri(t) over investment (or past) time period.

To minimize risk, minimize variance about portfolio mean (risk averse).

Variance/Covariance Matrix, S

$$\{S\}_{ij} = \sigma_{ij}^2 = \frac{1}{T} \sum_{t=1}^{T} (r_i(t) - \mu_i) (r_j(t) - \mu_j)$$

$$Max \qquad x^{T} Sx$$

$$s.t. \qquad \sum_{i} x_{i} = 1$$

$$\sum_{i} \mu_{i} x_{i} \ge R$$

$$x_{i} \ge 0, \quad etc \quad .$$

Example: 3 investments

		μ_{i}	Γ <u>3</u>	1	- 0.5]
1.	IBM	1.3	$S = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	2	0.4
2.	GM	1.2			1
3.	Gold	1.08	L-0.3	0.4	ŢŢ

Portfolio Planning Problem - GAMS

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)

```
4
  OPTION LIMROW=0;
5
6 OPTION LIMXOL=0:
7
  VARIABLES IBM, GM, GOLD, OBJQP, OBJLP;
8
9
10 EQUATIONS E1, E2, QP, LP;
11
12 LP.. OBJLP = E= 1.3*IBM + 1.2*GM + 1.08*GOLD;
13
14 QP.. OBJQP =E= 3*IBM**2 + 2*IBM*GM - IBM*GOLD
15 + 2*GM**2 - 0.8*GM*GOLD + GOLD**2;
16
17 E1..1.3*IBM + 1.2*GM + 1.08*GOLD =G= 1.15;
18
19 E2.. IBM + GM + GOLD = E = 1;
20
21 IBM.LO = 0.;
22 IBM.UP = 0.75;
23 GM.LO = 0.;
24 GM.UP = 0.75;
25 GOLD.LO = 0.;
26 GOLD.UP = 0.75;
27
28 MODEL PORTQP/QP,E1,E2/;
29
30 MODEL PORTLP/LP,E2/;
31
32 SOLVE PORTLP USING LP MAXIMIZING OBJLP;
33
34
      SOLVE PORTQP USING NLP MINIMIZING OBJQP;
```


Portfolio Planning Problem - GAMS

SOLVE SUMMARY							
**** MODEL STATUS			1 OPTIMAL				
**** OBJECTIVE VALUE	ļ		1.2750				
RESOURCE USAGE, LIM	IT 1	1.270		1000.000			
ITERATION COUNT, LIM	11T 1	1		1000			
BDM - LP VERSION 1.0)1	-		1000			
A. Brooke, A. Drud, and A.	Meerau	5.					
Analytic Support Unit.		-,					
Development Research Dep	artment.						
World Bank.							
Washington D.C. 20433, U.	S.A.						
8							
Estimate work space needed	1 -		33 Kb				
Work space allocated				231 Kb			
EXIT OPTIMAL SOLU	TION F	OUND.					
LOW	'ER		LEVEL		UPPER		MARGINAL
EQU LP .							1.000
EQU E2 1.000)		1.000		1.000		1.200
LOW	ΈR		LEVEL		UPPER		MARGINAL
VAR IBM 0.75	50		0.750		0.100		
VAR GM .			0.250		0.750		
VAR GOLD .					0.750		-0.120
VAR OBJLP -INF	l -		1.275		+INF		
**** REPORT SUMMARY	ζ: () NONOPT					
			0 INFEASIBLE	E			
			0 UNBOUNDE	D			
SIMPLE PORTFOLIO INV	'ESTME	NT PROBLEM	(MARKOWITZ)				
Model Statistics SOLVE	PORTQ	P USING NLP F	FROM LINE 34				
MODEL STATISTICS							
BLOCKS OF EQUATIONS	3	3	SINGLE EQUA	TIONS		3	
BLOCKS OF VARIABLES	5	4	SINGLE VARIA	ABLES		4	
NON ZERO ELEMENTS	1	10	NON LINEAR N	N-Z		3	
DERIVITIVE POOL		8	CONSTANT PC	DOL		3	
CODE LENGTH	9	95					
GENERATION TIME		= 2.360 SE	ECONDS				
EXECUTION TIME	= 3	510 SECONDS					

.

.

Portfolio Planning Problem - GAMS

1 NORMAL COMPLETION

2 LOCALLY OPTIMAL

Ver: 225-DOS-02

OBJLP

34

MAXIMIZE

1000.000

1000

0

OBJECTIVE

DIRECTION

FROM LINE

0.4210

SOLVE SUMMARY MODEL PORTLP TYPE LP SOLVER MINOS5 **** SOLVER STATUS **** MODEL STATUS **** OBJECTIVE VALUE **RESOURCE USAGE, LIMIT** 3.129 ITERATION COUNT, LIMIT 3 0 **EVALUATION ERRORS** MINOS 5.3 (Nov. 1990) B.A. Murtagh, University of New South Wales and P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright Systems Optimization Laboratory, Stanford University.

ODTIMAL COLUTION FOUND

EXII OPTIMA	AL SOLUTION	FOUND				
MAJOR ITNS, LIMIT		1				
FUNOBJ, FUNCON CALLS 8		8				
SUPERBASICS			1			
INTERPRETER U	SAGE		.21			
NORM RG / NOR	M PI	3.732E-17				
	LOWER		LEVEL	τ	UPPER	MARGINAL
EQU QP						1.000
EQU E1	1.150		1.150	+	+INF	1.216
EQU E2	1.000		1.000	1	1.000	-0.556
	LOWER		LEVEL	τ	UPPER	MARGINAL
VAR IBM	•		0.183	С).750	
VAR GM	•		0.248	С).750	EPS
VAR GOLD).		0.569	С).750	
VAR OBJL	P -INF		1.421	+	+INF	
**** REPORT SU	MMARY :		0 NONOPT			
			0 INFEASIBLE			
			0 UNBOUNDED			
			0 ERRORS			
SIMPLE PORTFO	LIO INVEST	MENT PROBLEM	I (MARKOWITZ)			
Model Statistics	SOLVE PORT	CQP USING NLP	FROM LINE 34			
EXECUTION TIM	1E =	1.090 SECOND	S			

Algorithms for Constrained Problems

Motivation: Build on unconstrained methods wherever possible.

Classification of Methods:

- •<u>Reduced Gradient Methods</u> (with Restoration) GRG2, CONOPT
- •<u>Reduced Gradient Methods</u> (without Restoration) MINOS
- <u>Successive</u> Quadratic Programming generic implementations
 <u>Penalty Functions</u> popular in 1970s, but fell into disfavor. Barrier
- Methods have been developed recently and are again popular.
- •<u>Successive</u> Linear Programming only useful for "mostly linear" problems

We will concentrate on algorithms for first four classes.

<u>Evaluation</u>: Compare performance on "typical problem," cite experience on process problems.

Representative Constrained Problem (Hughes, 1981)

 $\begin{aligned} &\text{Min } f(x_1, x_2) = \alpha \exp(-\beta) \\ &g1 = (x_2 + 0.1)^2 [x_1^2 + 2(1 - x_2)(1 - 2x_2)] - 0.16 \leq 0 \\ &g2 = (x_1 - 0.3)^2 + (x_2 - 0.3)^2 - 0.16 \leq 0 \\ &x^* = [0.6335, 0.3465] \qquad f(x^*) = -4.8380 \end{aligned}$

 $\begin{array}{ll} Min \quad f(x) \\ s.t. \quad g(x) + s = 0 \ (add \ slack \ variable) \\ c(x) = 0 \\ a \leq x \leq b, \ s \geq 0 \end{array}$

 $\begin{array}{ll} Min & f(z) \\ `\Rightarrow & s.t. \ h(z) = 0 \\ a \leq z \leq b \end{array}$

- Partition variables into:
 - z_B dependent or <u>basic</u> variables
 - z_N <u>nonbasic</u> variables, fixed at a bound
 - z_s independent or superbasic variables

Analogy to linear programming. Superbasics required only if nonlinear problem

• Solve unconstrained problem in space of superbasic variables.

Let $z^T = [z_S^T \ z_B^T z_N^T]$ optimize wrt z_S with $h(z_S, z_B, z_N) = 0$

Calculate *constrained derivative* or *reduced gradient* wrt z_s.

•Dependent variables are $z_B \in R^m$

•Nonbasic variables z_N (temporarily) fixed

Definition of Reduced Gradient

$$\frac{df}{dz_{S}} = \frac{\partial f}{\partial z_{S}} + \frac{dz_{B}}{dz_{S}} \frac{\partial f}{\partial z_{B}}$$

Because h(z) = 0, we have :

$$dh = \left[\frac{\partial h}{\partial z_{s}}\right]^{T} dz_{s} + \left[\frac{\partial h}{\partial z_{B}}\right]^{T} dz_{B} = 0$$
$$\frac{dz_{B}}{dz_{s}} = -\left[\frac{\partial h}{\partial z_{s}}\right] \left[\frac{\partial h}{\partial z_{B}}\right]^{-1} = -\nabla_{z_{s}} h \left[\nabla_{z_{B}} h\right]^{-1}$$

This leads to :

$$\frac{df}{dz_{S}} = \frac{\partial f}{\partial z_{S}} - \nabla_{z_{S}} h \left[\nabla_{z_{B}} h \right]^{-1} \frac{\partial f}{\partial z_{B}}$$

•By remaining feasible always, h(z) = 0, $a \le z \le b$, one can apply an unconstrained algorithm (quasi-Newton) using (df/dz_s)

•Solve problem in reduced space of z_S variables

Example of Reduced Gradient

Min
$$x_1^2 - 2x_2$$

s.t. $3x_1 + 4x_2 = 24$
 $\nabla h^T = [3 \ 4], \ \nabla f^T = [2x_1 \ -2]$

Let
$$z_s = x_1, z_B = x_2$$

$$\frac{df}{dz_s} = \frac{\partial f}{\partial z_s} - \nabla_{z_s} h \left[\nabla_{z_B} h \right]^1 \frac{\partial f}{\partial z_B}$$

$$\frac{df}{dx_1} = 2x_1 - 3 \left[4 \right]^{-1} \left(-2 \right) = 2x_1 + 3/2$$

If ∇h^T is (m x n); $\nabla z_S h^T$ is m x (n-m); $\nabla z_B h^T$ is (m x m)

 (df/dz_S) is the change in f along constraint direction per unit change in z_S

Sketch of GRG Algorithm

- 1. Initialize problem and obtain a feasible point at z^0
- 2. At feasible point z^k , partition variables z into z_N , z_B , z_S
- 3. Calculate reduced gradient, (df/dz_S)
- 4. Evaluate search direction for z_S , $d = B^{-1}(df/dz_S)$
- 5. Perform a line search.
 - Find $\alpha \in (0,1]$ with $z_S := z_S^k + \alpha d$
 - Solve for $h(z_S^k + \alpha d, z_B, z_N) = 0$
 - If $f(z_S^{k} + \alpha d, z_B, z_N) < f(z_S^{k}, z_B, z_N)$, set $z_S^{k+1} = z_S^{k} + \alpha d$, k := k+1
- 6. If $||(df/dz_S)|/<\varepsilon$, Stop. Else, go to 2.

GRG Algorithm Properties

- 1. GRG2 has been implemented on PC's as GINO and is very reliable and robust. It is also the optimization solver in MS EXCEL.
- 2. CONOPT is implemented in GAMS, AIMMS and AMPL
- 3. GRG2 uses Q-N for small problems but can switch to conjugate gradients if problem gets large. CONOPT uses exact second derivatives.
- 4. Convergence of $h(z_S, z_B, z_N) = 0$ can get <u>very</u> expensive because ∇h is required
- 5. Safeguards can be added so that restoration (step 5.) can be dropped and efficiency increases.

Representative Constrained Problem Starting Point [0.8, 0.2]

- GINO Results 14 iterations to $\|\nabla f(x^*)\| \le 10^{-6}$
- CONOPT Results 7 iterations to $\|\nabla f(x^*)\| \le 10^{-6}$ from feasible point.

Reduced Gradient Method without Restoration (MINOS/Augmented)

<u>Motivation</u>: Efficient algorithms are available that solve linearly constrained optimization problems (MINOS):

$$\begin{array}{ll}
\text{Min} & f(x) \\
\text{s.t.} & Ax \leq b \\
& Cx = d
\end{array}$$

Extend to nonlinear problems, through successive linearization

Develop major iterations (linearizations) and minor iterations (GRG solutions). Strategy: (Robinson, Murtagh & Saunders)

- 1. <u>Partition</u> variables into basic, nonbasic variables and superbasic variables..
- 2. <u>Linearize</u> active constraints at z^k $D^k z = c^k$
- 3. Let $\psi = f(z) + v^T h(z) + \beta(h^T h)$ (Augmented Lagrange),
- 4. Solve linearly constrained problem: $Min \quad \psi(z)$ $s.t. \quad Dz = c$

$$Dz = c$$
$$a < z < b$$

using reduced gradients to get z^{k+1}

- 5. Set k = k + 1, go to 3.
- 6. Algorithm terminates when no movement between steps 3) and 4).

MINOS/Augmented Notes

- MINOS has been implemented very efficiently to take care of <u>linearity</u>. It becomes LP Simplex method if problem is totally linear. Also, very efficient matrix routines.
- 2. No restoration takes place, nonlinear constraints <u>are</u> reflected in $\psi(z)$ during step 3). MINOS is more efficient than GRG.
- 3. Major iterations (steps 3) 4)) converge at a <u>quadratic rate</u>.
- 4. Reduced gradient methods are complicated, monolithic codes: hard to integrate efficiently into modeling software.

<u>Representative Constrained Problem</u> – Starting Point [0.8, 0.2] MINOS Results: 4 major iterations, 11 function calls to $\|\nabla f(x^*)\| \le 10^{-6}$

Successive Quadratic Programming (SQP)

Motivation:

- Take KKT conditions, expand in Taylor series about current point.
- Take Newton step (QP) to determine next point.

 $\begin{array}{l} \underline{\text{Derivation}} - \text{KKT Conditions} \\ \overline{V_x}L\left(x^*, \, u^*, \, v^*\right) = \overline{V_f}(x^*) + \overline{V_g}A(x^*) \, u^* + \overline{V_h}(x^*) \, v^* = 0 \\ h(x^*) = 0 \\ g_A(x^*) = 0, \end{array} \quad \text{where } g_A \text{ are the } \underline{\text{active constraints}}. \end{array}$

$$\frac{\text{Newton} - \text{Step}}{\begin{bmatrix} \nabla_{xx} L & \nabla_{g_A} & \nabla h \\ \nabla g_A^T & 0 & 0 \\ \nabla h^T & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta u \\ \Delta v \end{bmatrix} = - \begin{bmatrix} \nabla_x L (x^k, u^k, v^k) \\ g_A (x^k) \\ h(x^k) \end{bmatrix}$$

Requirements:

\$\vec{V}_{xx}L\$ must be calculated and should be 'regular'
correct active set \$g_A\$
good estimates of \$u^k\$, \$v^k\$

SQP Chronology

- 1. Wilson (1963)
 - active set can be determined by solving QP:

Min	$\nabla f(x_k)^T d + 1/2 d^T \nabla_{xx} L(x_k, u_k, v_k) d$
d	
<i>s.t</i> .	$g(x_k) + \nabla g(x_k)^T d \le 0$
	$h(x_k) + \nabla h(x_k)^T d = 0$

- 2. Han (1976), (1977), Powell (1977), (1978)
 - approximate $\nabla_{xx}L$ using a positive definite quasi-Newton update (BFGS)
 - use a line search to converge from poor starting points.

Notes:

- Similar methods were derived using penalty (not Lagrange) functions.
- Method converges quickly; very few function evaluations.
- Not well suited to large problems (full space update used).
 For n > 100, say, use reduced space methods (e.g. MINOS).

Elements of SQP – Hessian Approximation

What about ∇xxL ?

- need to get second derivatives for f(x), g(x), h(x).
- need to estimate multipliers, u^k , v^k ; $\nabla_{xx}L$ may not be positive semidefinite
- \Rightarrow Approximate $\nabla_{xx}L(x^k, u^k, v^k)$ by B^k , a symmetric positive definite matrix.

$$B^{k+1} = B^{k} + \frac{yy^{T}}{s^{T}y} - \frac{B^{k}s s^{T}B^{k}}{sB^{k}s}$$

BFGS Formula $s = x^{k+1} - x^{k}$
 $y = VL(x^{k+1}, u^{k+1}, v^{k+1}) - VL(x^{k}, u^{k+1}, v^{k+1})$

- second derivatives approximated by change in gradients
- positive definite B^k ensures *unique* QP solution

Elements of SQP – Search Directions

How do we obtain search directions?

- Form QP and let QP determine constraint activity
- At each iteration, *k*, solve:

 $\begin{array}{ll} Min & \nabla f(x^k)^T d + 1/2 \ d^T \ B^k d \\ d \\ s.t. & g(x^k) + \nabla g(x^k)^T \ d \leq 0 \\ h(x^k) + \ \nabla h(x^k)^T \ d = 0 \end{array}$

Convergence from poor starting points

- As with Newton's method, choose α (stepsize) to ensure progress toward optimum: $x^{k+1} = x^k + \alpha d$.
- α is chosen by making sure a *merit function* is decreased at each iteration.

$$\begin{split} \underline{\text{Exact Penalty Function}} \\ \psi(x) &= f(x) + \mu \left[\sum max \left(0, \ g_j(x) \right) + \sum /h_j \left(x \right) / \right] \\ \mu &> max_j \left\{ / \ u_j \ /, \ / \ v_j \ / \right\} \\ \underline{\text{Augmented Lagrange Function}} \\ \psi(x) &= f(x) + uTg(x) + vTh(x) \\ &+ \eta/2 \left\{ \sum (h_j \left(x \right))^2 + \sum max \left(0, \ g_j \left(x \right) \right)^2 \right\} \end{split}$$

Newton-Like Properties for SQP

$\frac{\text{Fast Local Convergence}}{B = \nabla_{xx}L}$

 $\nabla_{xx}L$ is p.d and B is Q-N B is Q-N update, $\nabla_{xx}L$ not p.d Quadratic 1 step Superlinear 2 step Superlinear

Enforce Global Convergence

Ensure decrease of merit function by taking $\alpha \leq 1$ Trust region adaptations provide a stronger guarantee of global convergence - but harder to implement.

Basic SQP Algorithm

- 0. <u>Guess</u> x^0 , Set $B^0 = I$ (Identity). Evaluate $f(x^0)$, $g(x^0)$ and $h(x^0)$.
- 1. <u>At x^k </u>, evaluate $\nabla f(x^k)$, $\nabla g(x^k)$, $\nabla h(x^k)$.
- 2. If k > 0, update B^k using the BFGS Formula.
- 3. <u>Solve</u>: $Min_d \nabla f(x^k)^T d + 1/2 d^T B^k d$ s.t. $g(x^k) + \nabla g(x^k)^T d \le 0$ $h(x^k) + \nabla h(x^k)^T d = 0$

If KKT error less than tolerance: $\|\nabla L(x^*)\| \le \varepsilon$, $\|h(x^*)\| \le \varepsilon$, $\|g(x^*)_+\| \le \varepsilon$. STOP, else go to 4.

- 4. <u>Find</u> α so that $0 < \alpha \le 1$ and $\psi(x^k + \alpha d) < \psi(x^k)$ sufficiently (Each trial requires evaluation of f(x), g(x) and h(x)).
- 5. $x^{k+1} = x^k + \alpha d$. Set k = k + 1 Go to 2.

Problems with SQP

SQP Test Problem

Min x2
s.t.
$$-x_2 + 2 x_1^2 - x_1^3 \le 0$$

 $-x_2 + 2 (1-x_1)^2 - (1-x_1)^3 \le 0$
 $x^* = [0.5, 0.375].$

SQP Test Problem – First Iteration

SQP Test Problem – Second Iteration

$$1.25 d_1 - d_2 + 0.375 \le 0$$

$$d = [0, 0.375]^T \text{ with } \mu_1 = 0.5 \text{ and } \mu_2 = 0.5$$

$$x^* = [0.5, 0.375]^T \text{ is optimal}$$

Representative Constrained Problem SQP Convergence Path

<u>Starting Point[0.8, 0.2]</u> - starting from Bo = I and staying in bounds and linearized constraints; converges in 8 iterations to $//\nabla f(x^*)// \le 10^{-6}$

Barrier Methods for Large-Scale Nonlinear Programming

Solution of the Barrier Problem

⇒Newton Directions (KKT System)

$$\nabla f(x) + A(x)\lambda - v = 0$$

$$XVe - \mu e = 0$$

$$c(x) = 0$$

$$\Rightarrow \text{Reducing the System}$$

$$d_{v} = \mu X^{-1}e - v - X^{-1}Vd_{x}$$

$$\begin{bmatrix} W + \Sigma & A \\ A^{T} & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ \lambda^{+} \end{bmatrix} = -\begin{bmatrix} \nabla \varphi_{\mu} \\ c \end{bmatrix} \quad \Sigma = X^{-1}V$$

IPOPT Code – www.coin-or.org

Global Convergence of Newton-based Barrier Solvers

Merit Function

Exact Penalty: $P(x, \eta) = f(x) + \eta //c(x)//$

Aug'd Lagrangian: $L^*(x, \lambda, \eta) = f(x) + \lambda^T c(x) + \eta //c(x)//2$

Assess Search Direction (e.g., from IPOPT)

Line Search – choose *stepsize* α to give sufficient decrease of merit function using a 'step to the boundary' rule with $\tau \sim 0.99$.

for
$$\alpha \in (0, \overline{\alpha}], x_{k+1} = x_k + \alpha d_x$$

 $x_k + \overline{\alpha} d_x \ge (1 - \tau) x_k > 0$
 $v_{k+1} = v_k + \overline{\alpha} d_y \ge (1 - \tau) v_k > 0$
 $\lambda_{k+1} = \lambda_k + \alpha (\lambda_+ - \lambda_k)$

- How do we balance $\phi(x)$ and c(x) with η ?
- Is this approach globally convergent? Will it still be fast?

Global Convergence Failure

(Wächter and B., 2000)

Store (ϕ_k , θ_k) at allowed iterates

Allow progress if trial point is acceptable to filter with θ margin

If switching condition

 $\alpha[-\nabla\phi_k^T d]^a \ge \delta[\theta_k]^b, a > 2b > 2$

is satisfied, only an Armijo line search is required on φ_{k}

If insufficient progress on stepsize, evoke restoration phase to reduce θ .

Global convergence and superlinear local convergence proved (with second order correction)

 $\theta(x) = ||c(x)||$

Implementation Details

Modify KKT (full space) matrix if nonsingular

$$\begin{bmatrix} W_k + \Sigma_k + \delta_1 & A_k \\ A_k^T & -\delta_2 I \end{bmatrix}$$

 δ_1 - Correct inertia to guarantee descent direction δ_2 - Deal with rank deficient A_k

KKT matrix factored by MA27

Feasibility restoration phase

$$Min \| c(x) \|_{1} + \| x - x_{k} \|_{Q}^{2}$$
$$x_{l} \le x_{k} \le x_{u}$$

Apply Exact Penalty Formulation

Exploit same structure/algorithm to reduce infeasibility

Details of IPOPT Algorithm

Options

Line Search Strategies

- l_2 exact penalty merit function
- augmented Lagrangian function

- Filter method (adapted from Fletcher and Leyffer)

Hessian Calculation

- BFGS (reduced space)
- SR1 (reduced space)
- Exact full Hessian (direct)
- Exact reduced Hessian (direct)
- Preconditioned CG

Comparison

- 34 COPS Problems (600 - 160 000 variables) 486 CUTE Problems (2 - 50 000 variables) 56 MITT Problems
 - (12097 99998 variables)

Performance Measure

- $r_{p,l} = (\#iter_{p,l})/(\#iter_{p,min})$
- P(τ) = fraction of problems with log₂(r_{p, I}) < τ

IPOPT Comparison with KNITRO and LOQO

- •IPOPT has better performance, robustness on CUTE, MITT and COPS problem sets
- •Similar results appear with iteration counts
- •Can be downloaded from <u>http://www.coin-or.org</u>
- •See links for additional information

Recommendations for Constrained Optimization

- 1. Best current algorithms
 - GRG 2/CONOPT
 - MINOS
 - SQP
 - IPOPT
- 2. <u>GRG 2 (or CONOPT)</u> is generally slower, but is robust. Use with highly nonlinear functions. Solver in Excel!
- 3. For small problems (n \leq 100) with nonlinear constraints, use <u>SQP</u>.
- 4. For large problems ($n \ge 100$) with mostly linear constraints, use <u>MINOS</u>. ==> Difficulty with many nonlinearities

<u>Small, Nonlinear Problems</u> - SQP solves QP's, not LCNLP's, fewer function calls.
 <u>Large, Mostly Linear Problems</u> - MINOS performs sparse constraint decomposition.
 Works efficiently in reduced space if function calls are cheap!
 <u>Exploit Both Features</u> – IPOPT takes advantages of few function evaluations and large-scale linear algebra, but requires exact second derivatives

Available Software for Constrained Optimization

SQP Routines

HSL, NaG and IMSL (NLPQL) Routines NPSOL – Stanford Systems Optimization Lab SNOPT – Stanford Systems Optimization Lab (rSQP discussed later) IPOPT – http://www.coin-or.org

GAMS Programs

CONOPT - Generalized Reduced Gradient method with restoration MINOS - Generalized Reduced Gradient method without restoration A student version of GAMS is now available from the CACHE office. The cost for this package including Process Design Case Students, GAMS: A User's Guide, and GAMS - The Solver Manuals, and a CD-ROM is \$65 per CACHE supporting departments, and \$100 per non-CACHE supporting departments and individuals. To order please complete standard order form and fax or mail to CACHE Corporation. More information can be found on http://www.che.utexas.edu/cache/gams.html

MS Excel

Solver uses Generalized Reduced Gradient method with restoration

Rules for Formulating Nonlinear Programs

1) Avoid overflows and undefined terms, (do not divide, take logs, etc.) e.g. $x + y - \ln z = 0 \implies x + y - u = 0$

$$exp u - z = 0$$

- 2) If constraints must <u>always</u> be enforced, make sure they are linear or bounds. e.g. $v(xy - z^2)^{1/2} = 3$ \rightarrow vu = 3 $u^2 - (xy - z^2) = 0, u \ge 0$
- 3) Exploit linear constraints as much as possible, e.g. mass balance

$$\begin{aligned} x_i L + y_i V &= F z_i \Rightarrow l_i + v_i = f_i \\ L - \sum l_i &= 0 \end{aligned}$$

4) Use bounds and constraints to enforce characteristic solutions.

e.g. $a \le x \le b$, $g(x) \le 0$ to isolate correct root of h(x) = 0.

- 5) Exploit <u>global</u> properties when possibility exists. Convex (linear equations?) Linear Program? Quadratic Program? Geometric Program?
- 6) Exploit problem structure when possible.

e.g.
$$Min [Tx - 3Ty]$$

s.t. $xT + y - T^2 y = 5$
 $4x - 5Ty + Tx = 7$
 $0 \le T \le 1$

(If T is fixed \Rightarrow solve LP) \Rightarrow put T in outer optimization loop.

Process Optimization Problem Definition and Formulation

Mathematical Modeling and Algorithmic Solution

Large Scale NLP Algorithms

Motivation: Improvement of Successive Quadratic Programming as Cornerstone Algorithm

→ process optimization for design, control and operations

Evolution of NLP Solvers:

1999- : Simultaneous dynamic optimization over 1 000 000 variables and constraints

Current: Tailor structure, architecture and problems

Modular Simulation Mode

Physical Relation to Process

- Intuitive to Process Engineer
- Unit equations solved internally
- tailor-made procedures.

- •Convergence Procedures for simple flowsheets, often identified from flowsheet structure
- •Convergence "mimics" startup.
- •Debugging flowsheets on "physical" grounds

Flowsheet Optimization Problems - Features

Design Specifications

Specify # trays reflux ratio, but would like to specify overhead comp. ==> Control loop -Solve Iteratively

•Frequent block evaluation can be expensive

- •Slow algorithms applied to flowsheet loops.
- •NLP methods are good at breaking looks

Chronology in Process Optimization

Sim. Time Equiv.

1. Early Work - Black Box Approaches	
Friedman and Pinder (1972)	75-150
Gaddy and co-workers (1977)	300
2. Transition - more accurate gradients	
Parker and Hughes (1981)	64
Biegler and Hughes (1981)	13
3. Infeasible Path Strategy for Modular Simulators	
Biegler and Hughes (1982)	<10
Chen and Stadtherr (1985)	
Kaijaluoto et al. (1985)	
and many more	
4. Equation Based Process Optimization	
Westerberg et al. (1983)	<5
Shewchuk (1985)	2
DMO, NOVA, RTOPT, etc. (1990s)	1-2

Process optimization should be as cheap and easy as process simulation

Process Simulators with Optimization Capabilities (using SQP)

Aspen Custom Modeler (ACM) **Aspen/Plus** gProms Hysim/Hysys Massbal **Optisim Pro/II ProSim ROMeo VTPLAN**

Simulation and Optimization of Flowsheets

For single degree of freedom:

- work in space defined by curve below.
- requires repeated (expensive) recycle convergence

"Black Box" Optimization Approach

- Vertical steps are expensive (flowsheet convergence)
- Generally no connection between x and y.
- Can have "noisy" derivatives for gradient optimization.

SQP - Infeasible Path Approach

- solve and optimize simultaneously in x and y
- extended Newton method

Optimization Capability for Modular Simulators (FLOWTRAN, Aspen/Plus, Pro/II, HySys)

Architecture

- Replace convergence with optimization block
- Problem definition needed (in-line FORTRAN)
- Executive, preprocessor, modules intact.

Examples

- 1. Single Unit and Acyclic Optimization
 - Distillation columns & sequences
- 2. "Conventional" Process Optimization
 - Monochlorobenzene process
 - NH3 synthesis
- 3. Complicated Recycles & Control Loops
 - Cavett problem
 - Variations of above

Optimization of Monochlorobenzene Process

PHYSICAL PROPERTY OPTIONS

Cavett Vapor Pressure Redlich-Kwong Vapor Fugacity Corrected Liquid Fugacity Ideal Solution Activity Coefficient **OPT (SCOPT) OPTIMIZER** Optimal Solution Found After 4 Iterations

Kuhn-Tucker Error0.29616E-05Allowable Kuhn-Tucker Error0.19826E-04Objective Function-0.98259

Optimization Variables

 32.006
 0.38578
 200.00
 120.00
 HC1 Benze

 Tear Variables
 MCB

 0.10601E-19
 13.064
 79.229
 120.00
 50.000

 Tear Variable Errors (Calculated Minus Assumed)

-0.10601E-19 0.72209E-06

-0.36563E-04 0.00000E+00 0.00000E+00

-Results of infeasible path optimization

-Simultaneous optimization and convergence of tear streams.

Hydrogen and Nitrogen feed are mixed, compressed, and combined with a recycle stream and heated to reactor temperature. Reaction occurs in a multibed reactor (modeled here as an equilibrium reactor) to partially convert the stream to ammonia. The reactor effluent is cooled and product is separated using two flash tanks with intercooling. Liquid from the second stage is flashed at low pressure to yield high purity NH₃ product. Vapor from the two stage flash forms the recycle and is recompressed.

Ammonia Process Optimization

Optimization Problem

- Max {Total Profit @ 15% over five years}
- s.t.• 105 tons NH3/yr.
 - Pressure Balance
 - No Liquid in Compressors
 - $1.8 \le H2/N2 \le 3.5$
 - Treact $\leq 10000 \text{ F}$
 - NH3 purged \leq 4.5 lb mol/hr
 - NH3 Product Purity \geq 99.9 %
 - Tear Equations

Performance Characterstics

- 5 SQP iterations.
- 2.2 base point simulations.
- objective function improves by \$20.66 x 10⁶ to \$24.93 x 10⁶.
- difficult to converge flowsheet at starting point

	Optimum	Starting point
Objective Function(\$10 ⁶)	24.9286	20.659
1. Inlet temp. reactor (°F)	400	400
2. Inlet temp. 1st flash (°F)	65	65
3. Inlet temp. 2nd flash (°F)	35	35
4. Inlet temp. rec. comp. (°F)	80.52	107
5. Purge fraction (%)	0.0085	0.01
6. Reactor Press. (psia)	2163.5	2000
7. Feed 1 (lb mol/hr)	2629.7	2632.0
8. Feed 2 (lb mol/hr)	691.78	691.4

How accurate should gradients be for optimization?

Recognizing True Solution

- KKT conditions and Reduced Gradients determine true solution
- Derivative Errors will lead to wrong solutions!

Performance of Algorithms

Constrained NLP algorithms are gradient based

(SQP, Conopt, GRG2, MINOS, etc.)

Global and Superlinear convergence theory assumes accurate gradients

Worst Case Example (Carter, 1991)

Newton's Method generates an *ascent direction* and fails *for any* ε !

$$Min f(x) = x^{T} Ax$$

$$A = \begin{bmatrix} \varepsilon + 1/\varepsilon & \varepsilon - 1/\varepsilon \\ \varepsilon - 1/\varepsilon & \varepsilon + 1/\varepsilon \end{bmatrix}$$

$$x_{0} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{T} \quad \nabla f(x_{0}) = \varepsilon x_{0}$$

$$g(x_{0}) = \nabla f(x_{0}) + O(\varepsilon)$$

$$d = -A^{-1}g(x_{0})$$

Implementation of Analytic Derivatives

JAKE-F, limited to a subset of FORTRAN (Hillstrom, 1982)

DAPRE, which has been developed for use with the NAG library (Pryce, Davis, 1987) ADOL-C, implemented using operator overloading features of C++ (Griewank, 1990) ADIFOR, (Bischof et al, 1992) uses source transformation approach FORTRAN code . TAPENADE, web-based source transformation for FORTRAN code

Relative effort needed to calculate gradients is not n+1 but about 3 to 5 (Wolfe, Griewank)

Large-Scale SQP

Min	f(z)	Min	$\nabla f(z^k)^T d + 1/2 d^T W^k d$
<i>s.t</i> .	c(z)=0	<i>s.t</i> .	$c(z^k) + (A^k)^T d = 0$
	$z_L \le z \le z_U$		$z_L \le z^k + d \le z_U$

Characteristics

- Many equations and variables ($\geq 100\ 000$)
- Many bounds and inequalities ($\geq 100\ 000$)

<u>Few degrees of freedom (10 - 100)</u> Steady state flowsheet optimization Real-time optimization Parameter estimation

<u>Many degrees of freedom (≥ 1000)</u> Dynamic optimization (optimal control, MPC) State estimation and data reconciliation

Chemical Few degrees of freedom => reduced space SQP (rSQP)

- Take advantage of sparsity of $A = \nabla c(x)$
- project *W* into space of active (or equality constraints)
- curvature (second derivative) information only needed in space of degrees of freedom
- second derivatives can be applied or approximated with positive curvature (e.g., BFGS)
- use dual space QP solvers
- + easy to implement with existing sparse solvers, QP methods and line search techniques
- + exploits 'natural assignment' of dependent and decision variables (some decomposition steps are 'free')
- + does not require second derivatives
- reduced space matrices are dense
- may be dependent on variable partitioning
- can be very expensive for many degrees of freedom
- can be expensive if many QP bounds

Reduced space SQP (rSQP) Range and Null Space Decomposition

Assume no active bounds, QP problem with *n* variables and *m* constraints becomes:

$$\begin{bmatrix} W^k & A^k \\ A^{k^T} & 0 \end{bmatrix} \begin{bmatrix} d \\ \lambda_+ \end{bmatrix} = - \begin{bmatrix} \nabla f(x^k) \\ c(x^k) \end{bmatrix}$$

- Define reduced space basis, $Z^k \in \Re^{n \times (n-m)}$ with $(A^k)^T Z^k = 0$
- Define basis for remaining space $Y^k \in \mathcal{R}^{n \times m}$, $[Y^k Z^k] \in \mathcal{R}^{n \times n}$ is nonsingular.
- Let $d = Y^k d_Y + Z^k d_Z$ to rewrite:

$$\begin{bmatrix} \begin{bmatrix} Y^{k} & Z^{k} \end{bmatrix}^{T} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} W^{k} & A^{k} \\ A^{k^{T}} & 0 \end{bmatrix} \begin{bmatrix} Y^{k} & Z^{k} \end{bmatrix} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} d_{Y} \\ d_{Z} \\ \lambda_{+} \end{bmatrix} = -\begin{bmatrix} \begin{bmatrix} Y^{k} & Z^{k} \end{bmatrix}^{T} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \nabla f(x^{k}) \\ c(x^{k}) \end{bmatrix}$$

Reduced space SQP (rSQP) Range and Null Space Decomposition

- $(A^T Y) d_Y = -c(x^k)$ is square, d_Y determined from bottom row.
- Cancel Y^TWY and Y^TWZ ; (unimportant as d_Z , $d_Y \rightarrow 0$)
- $(Y^T A) \lambda = -Y^T \nabla f(x^k), \lambda$ can be determined by first order estimate
- Calculate or approximate $w = Z^T WY d_Y$, solve $Z^T WZ d_Z = -Z^T \nabla f(x^k) w$
- Compute total step: d = Y dY + Z dZ

Reduced space SQP (rSQP) Interpretation

Range and Null Space Decomposition

- SQP step (d) operates in a higher dimension
- Satisfy constraints using range space to get d_y
- Solve small QP in null space to get d_z
- In general, same convergence properties as SQP.

Choice of Decomposition Bases

1. Apply *QR* factorization to *A*. Leads to dense but well-conditioned *Y* and *Z*.

$$A = Q\begin{bmatrix} R\\0 \end{bmatrix} = \begin{bmatrix} Y & Z \begin{bmatrix} R\\0 \end{bmatrix}$$

2. Partition variables into decisions *u* and dependents *v*. Create orthogonal *Y* and *Z* with embedded identity matrices ($A^TZ = 0$, $Y^TZ=0$).

$$A^{T} = \begin{bmatrix} \nabla_{u} c^{T} & \nabla_{v} c^{T} \end{bmatrix} = \begin{bmatrix} N & C \end{bmatrix}$$
$$Z = \begin{bmatrix} I \\ -C^{-1}N \end{bmatrix} \quad Y = \begin{bmatrix} N^{T}C^{-T} \\ I \end{bmatrix}$$

3. Coordinate Basis - same *Z* as above, $Y^T = [0 \ I]$

- Bases use gradient information already calculated.
- Adapt decomposition to QP step
- Theoretically same rate of convergence as original SQP.
- Coordinate basis can be sensitive to choice of *u* and *v*. Orthogonal is not.
- Need consistent initial point and nonsingular *C*; automatic generation

rSQP Algorithm

- 1. Choose starting point x^0 .
- 2. At iteration k, evaluate functions $f(x^k)$, $c(x^k)$ and their gradients.
- 3. Calculate bases *Y* and *Z*.
- 4. Solve for step d_Y in Range space from ($A^T Y$) $d_Y = -c(x^k)$
- 5. Update projected Hessian $B^k \sim Z^T WZ$ (e.g. with BFGS), w_k (e.g., zero)
- 6. Solve small QP for step d_Z in Null space.

 $Min \quad (Z^T \nabla f(x^k) + w^k)^T d_Z + 1/2 d_Z^T B^k d_Z$ s.t. $x_I \leq x^k + Y d_Y + Z d_Z \leq x_U$

- 7. If error is less than tolerance stop. Else
- 8. Solve for multipliers using $(Y^T A) \lambda = -Y^T \nabla f(x^k)$
- 9. Calculate total step d = Y dy + Z dz.
- 10. Find step size α and calculate new point, $x_{k+1} = x_k + x_k$
- 11. Continue from step 2 with k = k+1.

rSQP Results: Computational Results for General Nonlinear Problems

Vasantharajan et al (1990)

Problem	Specifications		ions	M (5.2	INOS 2)	Reduced SQP	
	N	М	ME Q	TIME *	FUNC	TIME* RND/LP	FUNC
Ramsey	34	23	10	1.4	46	1.7 1.0/0.7	8
Chenery	44	39	20	2.6	81	4.6 2.1/2.5	18
Korcge	100	96	78	3.9	9	3.7 1.4/2.3	3
Camcge	280	243	243	23.6	14	24.4 10.3/14.1	3
Ganges	357	274	274	22.7	14	59.7 35.7/24.0	4

* CPU Seconds - VAX 6320

rSQP Results: Computational Results for Process Problems

Vasantharajan et al (1990)

Prob.	Specifications			MIN	OS (5.2)	Reduced SQP	
	N	М	MEQ	TIME*	FUNC	TIME* (rSQP/LP)	FUN.
Absorber (a) (b)	50	42	42	4.4 4.7	144 157	$\begin{array}{ccc} 3.2 & (2.1/1.1) \\ 2.8 & (1.6/1.2) \end{array}$	23 13
Distill'n Ideal (a) (b)	228	227	227	28.5 33.5	24 58	38.6 (9.6/29.0) 69.8 (17.2/52.6)	7 14
Distill'n Nonideal (1) (a) (b) (c)	569	567	567	172.1 432.1 855.3	34 362 745	130.1 (47.6/82.5) 144.9 (132.6/12.3) 211.5 (147.3/64.2)	14 47 49
Distill'n Nonideal (2) (a) (b) (c)	977	975	975	(F) 520.0 ⁺ (F)	(F) 162 (F)	230.6 (83.1/147.5) 322.1 (296.4/25.7) 466.7 (323/143.7)	9 26 34

* CPU Seconds - VAX 6320

(F) Failed

Comparison of SQP and rSQP

Coupled Distillation Example - 5000 Equations Decision Variables - boilup rate, reflux ratio

Real-time Optimization with rSQP Sunoco Hydrocracker Fractionation Plant (Bailey et al, 1993)

Existing process, optimization on-line at regular intervals: 17 hydrocarbon components, 8 heat exchangers, absorber/stripper (30 trays), debutanizer (20 trays), C3/C4 splitter (20 trays) and deisobutanizer (33 trays).

- square *parameter case* to fit the model to operating data.
- optimization to determine best operating conditions

Optimization Case Study Characteristics

Model consists of 2836 equality constraints and only ten independent variables. It is also reasonably sparse and contains 24123 nonzero Jacobian elements.

$$P = \sum_{i \in G} Z_i C_i^{G} + \sum_{i \in E} Z_i C_i^{E} + \sum_{m=1}^{NP} Z_i C_i^{P_m} - U$$

Cases Considered:

- 1. Normal Base Case Operation
- 2. Simulate fouling by reducing the heat exchange coefficients for the debutanizer
- 3. Simulate fouling by reducing the heat exchange coefficients for splitter feed/bottoms exchangers
- 4. Increase price for propane
- 5. Increase base price for gasoline together with an increase in the octane credit

	Case 0	Case 1	Case 2	Case 3	Case 4	Case 5
	Base	Base	Fouling 1	Fouling 2	Changing	Changing
	Parameter	Optimization			Market 1	Market 2
Heat Exchange						
Coefficient (TJ/d∞C)						J
Debutanizer Feed/Bottoms	6.565x10 ⁻⁴	6.565x10 ⁻⁴	5.000x10 ⁻⁴	2.000x10 ⁻⁴	6.565x10 ⁻⁴	6.565x10 ⁻⁴
Splitter Feed/Bottoms	1.030x10 ⁻³	1.030x10 ⁻³	5.000x10 ⁻⁴	2.000x10 ⁻⁴	1.030x10 ⁻³	1.030x10 ⁻³
Pricing						100
Propane (\$/m ³)	180	180	180	180	300	180
Gasoline Base Price (\$/m ³	300	300	300	300	300	350
Octane Credit (\$/(RON	2.5	2.5	2.5	2.5	2.5	10
m ³))						
T. 014	= 200 CO 0C			50/50/ 00		250052.00
Profit	230968.96	239277.57	239267.57	236706.82	258913.28	370053.98
(\$/d_04)	-	8308.41	8298.01 (2.6%)	5/5/.00 (2.5%)	2/944.52	(60.2%)
(5/4, 70)		(3.070)	(3.070)	(2.570)	(12.170)	(00.270)
Infeasible Initialization						
MINOS	5/075	0 /700				
(Major/Minor)	5/2/5	9//00	-	-	-	-
CPU Time (s)	182	5768	-	-	-	-
rSQP						
Iterations	5	20	12	24	17	12
CPU Time (s)	23.3	80.1	54.0	93.9	69.8	54.2
Parameter Initialization						
MINOS						
Iterations	n/a	12 / 132	14 / 120	16 / 156	11 / 166	11 / 76
(Major/Minor)	ala	460	400	1022	016	200
rSOP	11/a	402	408	1022	910	309
Iterations	n/a	13	8	18	11	10
CPU Time (s)	n/a	58.8	43.8	74.4	52.5	49.7
Time uSOD	12 80/2	10 70/	10 70/	7 20/2	5 70/2	16 10/2
$\frac{11me rSQr}{Time MINOS}$ (%)	12.070	12./70	10.770	1.370	5.770	10.170

Many degrees of freedom => full space IPOPT

$$\begin{bmatrix} W^{k} + \Sigma & A^{k} \\ A^{k^{T}} & 0 \end{bmatrix} \begin{bmatrix} d \\ \lambda_{+} \end{bmatrix} = -\begin{bmatrix} \nabla \varphi(x^{k}) \\ c(x^{k}) \end{bmatrix}$$

- work in full space of all variables
- second derivatives useful for objective and constraints
- use specialized large-scale Newton solver
- + $W = V_{xx}L(x,\lambda)$ and A = Vc(x) sparse, often structured
- + fast if many degrees of freedom present
- + no variable partitioning required
- second derivatives strongly desired
- W is indefinite, requires complex stabilization
- requires specialized large-scale linear algebra

Blending Problem & Model Formulation

f & *v* ----- flowrates and tank volumes q ----- tank qualities

Model Formulation in AMPL

$$\max \sum_{t} \sum_{k} \sum_{k} c_{k} f_{t,k} - \sum_{i} c_{i} f_{t,i})$$
s.t.
$$\sum_{k} f_{t,jk} - \sum_{i} f_{t,ij} + v_{t+1,j} = v_{t,j}$$

$$f_{t,k} - \sum_{j} f_{t,jk} = 0$$

$$\sum_{k} q_{t,j} f_{t,jk} - \sum_{i} q_{t,i} f_{t,ij} + q_{t+1,j} v_{t+1,j} = q_{t,j} v_{t,j}$$

$$q_{t,k} f_{t,k} - \sum_{j} q_{t,j} f_{t,jk} = 0$$

$$q_{k} \underset{\min}{\leq} q_{t,k} \leq q_{k} \underset{\max}{}$$

$$v_{j} \underset{\min}{} \overset{\leq}{\leq} v_{t,j} \leq v_{j} \underset{\max}{}$$

Small Multi-day Blending Models Single Qualities

Haverly, C. 1978 (HM)

	no. of iterations	objective	CPU (s)	normalized CPU (s)		no. of iterations	objective	CPU (s)	normalized CPU (s)
HM Day 1 $(N = 13, M = 8, S = 8)$				HM Day 25 (N = 325, M = 200, S = 200)					
LANCELOT	62	100	0.10	0.05	LANCELOT	67	1.00×10^{4}	6.75	3.04
MINOS	15	400	0.04	0.13	MINOS	801	6.40×10^{3}	1.21	3.83
SNOPT	36	400	0.02	0.01	SNOPT	739	1.00×10^{4}	0.59	0.27
KNITRO	38	100	0.14	0.06	KNITRO	>1000	а	а	а
LOQO	30	400	0.10	0.08	LOQO	31	1.00×10^{4}	0.44	0.33
IPOPT, exact	31	400	0.01	0.01	IPOPT, exact	47	1.00×10^{4}	0.24	0.24
IPOPT, L-BFGS	199	400	0.08	0.08	IPOPT, L-BFGS	344	1.00×10^4	1.99	1.99
AHM Day 1 ($N = 21$, $M = 14$, $S = 14$)				AHM Day 25 ($N = 525$, $M = 300$, $S = 350$)					
LANCELOT	112	49.2	0.32	0.14	LANCELOT	149	8.13×10^{2}	26.8	12.1
MINOS	29	0.00	0.01	0.03	MINOS	940	3.75×10^{2}	2.92	9.23
SNOPT	60	49.2	0.01	< 0.01	SNOPT	1473	1.23×10^{3}	1.47	0.66
KNITRO	44	31.6	0.15	0.07	KNITRO	316	1.13×10^{3}	17.5	7.88
LOQO	28	49.2	0.10	0.08	LOQO	30	1.23×10^{3}	0.80	0.60
IPOPT, exact	28	49.2	0.01	0.01	IPOPT, exact	44	1.23×10^{3}	0.25	0.25
IPOPT, L-BFGS	44	49.2	0.02	0.02	IPOPT, L-BFGS	76	1.23×10^3	0.98	0.98

Honeywell Blending Model – Multiple Days 48 Qualities

115

Performance profile (iteration count)

Comparison of NLP Solvers: Data Reconciliation

Sensitivity Analysis for Nonlinear Programming

At nominal conditions, p_0

$$\begin{array}{l} Min \, f(x, \, p_0) \\ s.t. \quad c(x, \, p_0) = 0 \\ a(p_0) \leq x \ \leq b(p_0) \end{array} \end{array}$$

How is the optimum affected at other conditions, $p \neq p_0$?

- Model parameters, prices, costs
- Variability in external conditions
- Model structure
- How sensitive is the optimum to parameteric uncertainties?
- Can this be analyzed easily?

Calculation of NLP Sensitivity

Take KKT Conditions

$$\nabla L(x^*, p, \lambda, v) = 0$$
 $c(x^*, p_0) = 0$
 $E^T x^* - bnd(p_0) = 0$

and differentiate and expand about p_0 .

$$\nabla_{px} L(x^*, p, \lambda, v)^T + \nabla_{xx} L(x^*, p, \lambda, v)^T \nabla_p x^{*T} + \nabla_x h(x^*, p, \lambda, v)^T \nabla_p \lambda^T + E \nabla_p v^T = 0 \nabla_p c(x^*, p_0)^T + \nabla_x c(x^*, p_0)^T \nabla_p x^{*T} = 0 E^T (\nabla_p x^{*T} - \nabla_p bnd^T) = 0$$

Notes:

• A key assumption is that under strict complementarity, the active set will not change for small perturbations of *p*.

- If an element of x^* is at a bound then $\nabla_p x_i^{*T} = \nabla_p bnd^T$
- Second derivatives are required to calculate sensitivities, $\nabla_p x^{*T}$
- Is there a cheaper way to calculate $\nabla_p x^{*T}$?

Decomposition for NLP Sensitivity

Let
$$L(x^*, p, \lambda, v) = f(x^*) + \lambda^T c(x^*) + (E^T (x^* - bnd(p)))^T v$$

$$\begin{bmatrix} W & A & E \\ A^T & 0 & 0 \\ E^T & 0 & 0 \end{bmatrix} \begin{bmatrix} \nabla_p x^{*T} \\ \nabla_p \lambda^T \\ \nabla_p v^T \end{bmatrix} = -\begin{bmatrix} \nabla_{xp} L(x^*, p, \lambda, v)^T \\ \nabla_p c(x^*, p)^T \\ -E^T \nabla_p bnd^T \end{bmatrix}$$

•Partition variables into basic, nonbasic and superbasic

$$\nabla_p x^T = Z \ \nabla_p x_S^T + Y \nabla_p x_B^T + T \nabla_p x_N^T$$

•Set $\nabla_p x_N^T = \nabla_p bnd_N^T$, nonbasic variables to rhs,

- •Substitute for remaining variables
- •Perform range and null space decomposition
- •Solve only for $\nabla_p x_S^T$ and $\nabla_p x_B^T$

Decomposition for NLP Sensitivity

$$\begin{bmatrix} Y^{T}WY & Y^{T}WY & Y^{T}A \\ Z^{T}WY & Z^{T}WZ & 0 \\ A^{T}Y & 0 & 0 \end{bmatrix} \begin{bmatrix} \nabla_{p} x_{B}^{T} \\ \nabla_{p} x_{S}^{T} \\ \nabla_{p} \lambda^{T} \end{bmatrix} = -\begin{bmatrix} Y^{T} (\nabla_{xp} L(x^{*}, p, \lambda, v)^{T} + W T \nabla_{p} x_{N}^{T}) \\ Z^{T} (\nabla_{xp} L(x^{*}, p, \lambda, v)^{T} + W T \nabla_{p} x_{N}^{T}) \\ \nabla_{p} c(x^{*}, p)^{T} + A^{T} T \nabla_{p} x_{N}^{T} \end{bmatrix}$$

- Solve only for $\nabla_p x_B^T$ from bottom row and $\nabla_p x_S^T$ from middle row
- If second derivatives are not available, Z^TWZ , $Z^TWY \nabla_p x_B^T$ and $Z^TWT \nabla_p x_N^T$ can be constructed by directional finite differencing
- If assumption of strict complementarity is violated, sensitivity can be calculated using a QP subproblem.

Second Order Tests

Reduced Hessian needs to be positive definite

At solution x*: Evaluate eigenvalues of $Z^T \nabla_{xx} L^* Z$ Strict local minimum if all positive.

- Nonstrict local minimum: If nonnegative, find eigenvectors for zero eigenvalues, → regions of nonunique solutions
- Saddle point: If any are negative, move along directions of corresponding eigenvectors and restart optimization.

Sensitivity for Flash Recycle Optimization (2 decisions, 7 tear variables)

- •Sensitivity to simultaneous change in feed rate and upper bound on purge ratio
- •Only 2-3 flowsheet perturbations required for second order information

Ammonia Process Optimization (9 decisions, 8 tear variables)

- •Dimension of reduced Hessian = 4
- •Eigenvalues = [2.8E-4, 8.3E-10, 1.8E-4, 7.7E-5]
- •Sensitivity to simultaneous change in feed rate and upper bound on reactor conversion
- •Only 5-6 extra perturbations for second derivatives

Multiperiod Optimization

- 1. Design plant to deal with different operating scenarios (over time or with uncertainty)
- 2. Can solve overall problem simultaneously
 - large and expensive
 - polynomial increase with number of cases
 - must be made efficient through specialized decomposition
- 3. Solve also each case independently as an optimization problem (inner problem with fixed design)
 - overall coordination step (outer optimization problem for design)
 - require sensitivity from each inner optimization case with design variables as external parameters

Multiperiod Flowsheet Example

Parameters	Period 1	Period 2	Period 3	Period 4
E (kJ/mol)	555.6	583.3	611.1	527.8
k ₀ (1/h)	10	11	12	9
F (kmol/h)	45.4	40.8	24.1	32.6
Time (h)	1000	4000	2000	1000

Multiperiod Design Model

 $\begin{aligned} &Min \, f_0(d) + \sum_i f_i(d, \, x_i) \\ &s.t. \, h_i(x_i, \, d) = 0, \, i = 1, \dots \, N \\ &g_i(x_i, \, d) \leq 0, \, i = 1, \dots \, N \\ &r(d) \leq 0 \end{aligned}$

Variables:

x: state (z) and control (u) variables in each operating period d: design variables (e. g. equipment parameters) used δ_i : substitute for d in each period and add $\delta_i = d$

$$\begin{split} &Min \, f_0(d) + \sum_i f_i(d, \, x_i) \\ &s.t. \, h_i(x_i, \, \delta_i) = 0, \, i = 1, \dots \, N \\ &g_i(x_i, \, \delta_i) + s_i = 0, \, i = 1, \dots \, N \\ &0 \leq s_i, \, d - \delta_i = 0, \, i = 1, \dots \, N \\ &r(d) \leq 0 \end{split}$$

- •Block diagonal bordered KKT matrix (arrowhead structure)
- •Solve each block sequentially (range/null dec.) to form small QP in space of d variables
- •Reassemble all other steps from QP solution

Multiperiod Decomposition Strategy

From decomposition of KKT block in each period, obtain the following directions that are parametric in Δd :

$$p_{Z_i} = A_{Z_i} + B_{Z_i} \Delta d \quad \text{and} \quad Z_i p_{Z_i} = Z_{A_i} + Z_{B_i} \Delta d$$
$$p_{Y_i} = A_{Y_i} + B_{Y_i} \Delta d \quad \text{and} \quad Y_i p_{Y_i} = Y_{A_i} + Y_{B_i} \Delta d$$

Substituting back into the original QP subproblem leads to a QP only in terms of Δd .

minimize
$$\phi = \left[\nabla_{d} f_{0}^{T} + \sum_{i=1}^{N} \{ \nabla_{p} f_{i}^{T} (Z_{B_{i}} + Y_{B_{i}}) + (Z_{A_{i}} + Y_{A_{i}})^{T} \nabla_{p}^{2} L_{i} (Z_{B_{i}} + Y_{B_{i}}) \} \right] \Delta d$$

+ $\frac{1}{2} \Delta d^{T} \left[\nabla_{d}^{2} L_{0} + \sum_{i=1}^{N} \{ (Z_{B_{i}} + Y_{B_{i}})^{T} \nabla_{p}^{2} L_{i} (Z_{B_{i}} + Y_{B_{i}}) \} \right] \Delta d$
subject to $r + \nabla_{d} r \Delta d \leq 0$

Once Δd is obtained, directions are obtained from the above equations.

Multiperiod Flowsheet 1

(13+2) variables and (31+4) constraints (1 period) 262 variables and 624 constraints (20 periods)

Multiperiod Example 2 – Heat Exchanger Network

(12+3) variables and (31+6) constraints (1 period) 243 variables and 626 constraints (20 periods)

Summary and Conclusions

-Unconstrained Newton and Quasi Newton Methods

- -KKT Conditions and Specialized Methods
- -Reduced Gradient Methods (GRG2, MINOS)

-Successive Quadratic Programming (SQP)

- -Reduced Hessian SQP
- -Interior Point NLP (IPOPT)

Process Optimization Applications

- -Modular Flowsheet Optimization
- -Equation Oriented Models and Optimization
- -Realtime Process Optimization
- -Blending with many degrees of freedom

Further Applications

-Sensitivity Analysis for NLP Solutions -Multiperiod Optimization Problems

Optimization of Differential-Algebraic Equation Systems

L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA

DAE Optimization Outline

- I <u>Introduction</u> Process Examples
- II <u>Parametric Optimization</u>
 - Gradient Methods
 - Perturbation
 - Direct Sensitivity Equations
 - Adjoint Equations
- III <u>Optimal Control Problems</u>
 - Optimality Conditions
 - Model Algorithms
 - Sequential Methods
 - Multiple Shooting
 - Indirect Methods
- IV <u>Simultaneous Solution Strategies</u>
 - Formulation and Properties
 - Process Case Studies
 - Software Demonstration

Dynamic Optimization Problem

t, time z, differential variables y, algebraic variables

t_f, final time u, control variables p, time independent parameters

DAE Models in Process Engineering

Differential Equations

Conservation Laws (Mass, Energy, Momentum)

Algebraic Equations

- •Constitutive Equations, Equilibrium (physical properties,
- hydraulics, rate laws)
- Semi-explicit form
- Assume to be index one (i.e., algebraic variables can be solved uniquely by algebraic equations)
- •f not, DAE can be reformulated to index one (see Ascher and Petzold)

Characteristics

- Large-scale models not easily scaled
- •Sparse but no regular structure
- Direct linear solvers widely used
- •Coarse-grained decomposition of linear algebra

Parameter Estimation

Catalytic Cracking of Gasoil (Tjoa, 1991)

$$A \xrightarrow{p_1} Q, Q \xrightarrow{p_2} S, A \xrightarrow{p_3} S$$

$$\dot{a} = -(p_1 + p_3)a^2$$

$$\dot{q} = -p_1a^2 - p_2q$$

$$a(0) = 1, q(0) = 0$$

vi

$$a(0) = 1, q(0) = 0$$

vi
0.4

number of states and ODEs: 2 number of parameters:3 no control profiles constraints: $p_L \le p \le p_U$

Objective Function: Ordinary Least Squares

 $(p_1, p_2, p_3)^0 = (6, 4, 1)$ $(p_1, p_2, p_3)^* = (11.95, 7.99, 2.02)$ $(p_1, p_2, p_3)_{true} = (12, 8, 2)$

- •Run between distillation batches
- •Treat as boundary value optimization problem
 - •When to switch from A to offcut to B?
 - •How much offcut to recycle?
 - •Reflux?
 - •Boilup Rate?
 - •Operating Time?

Nonlinear Model Predictive Control (NMPC)

Batch Process Optimization

Optimization of dynamic batch process operation resulting from reactor and distillation column

DAE models: z' = f(z, y, u, p)g(z, y, u, p) = 0 $\begin{array}{c}
A+B \longrightarrow C \\
C+B \longrightarrow P+E \\
P+C \longrightarrow G
\end{array}$

Constraints:

 $u_{\rm L} \le u(t) \le u_{\rm U}$ $y_{\rm L} \le y(t) \le y_{\rm U}$

 $\begin{aligned} z_L &\leq z(t) \leq z_U \\ p_L &\leq p \leq p_U \end{aligned}$

Objective Function: amortized economic function at end of cycle time tf

Reactor Design Example

Plug Flow Reactor Optimization

The cracking furnace is an important example in the olefin production industry, where various hydrocarbon feedstocks react. Consider a simplified model for ethane cracking (Chen et al., 1996). The objective is to find an optimal profile for the heat flux along the reactor in order to maximize the production of ethylene.

 $\begin{array}{ll} \text{Max} & F_{\text{exit}}^{\text{C}_{2}\text{H}_{4}} \\ \text{s.t. DAE} \\ T_{\text{exit}} &\leq 1180\text{K} \end{array}$

 $\begin{array}{cccc} CH \rightarrow 2CH \bullet & CH \bullet + CH \rightarrow CH + CH \bullet \\ 2 & 6 & 3 \\ H \bullet + CH \rightarrow H + CH \bullet & 2 & 6 & 4 & 2 & 5 \\ H \bullet + CH \rightarrow H + CH \bullet & 2 & 5 & 2 & 4 \\ CH \bullet + CH \rightarrow CH + CH \bullet & 2 & 5 & 4 & 10 \\ 2 & 5 & 2 & 4 & 3 & 6 & 3 \\ H \bullet + CH \rightarrow CH \bullet & 2 & 5 & 4 & 10 \\ H \bullet + CH \rightarrow CH \bullet & 2 & 4 & 2 & 5 \end{array}$

Concentration and Heat Addition Profile

Dynamic Optimization Approaches

Sequential Approaches - Parameter Optimization

Consider a simpler problem without control profiles:

e.g., equipment design with DAE models - reactors, absorbers, heat exchangers

 $Min \qquad \Phi(z(t_f))$ $z' = f(z, p), z(0) = z_0$ $g(z(t_f)) \le 0, h(z(t_f)) = 0$

By treating the ODE model as a "black-box" a sequential algorithm can be constructed that can be treated as a nonlinear program.

Task: How are gradients calculated for optimizer?

Gradient Calculation

Perturbation Sensitivity Equations Adjoint Equations

Perturbation

Calculate approximate gradient by solving ODE model (np + 1) times

Let $\psi = \Phi$, g and h (at t = t_f)

 $d\psi/dp_{i} = \{\psi \left(p_{i} + \Delta p_{i}\right) \text{ - } \psi \left(p_{i}\right)\} / \Delta p_{i}$

Very simple to set up

Leads to poor performance of optimizer and poor detection of optimum unless roundoff error $(O(1/\Delta p_i))$ and truncation error $(O(\Delta p_i))$ are small.

Work is proportional to np (expensive)

Direct Sensitivity

From ODE model:

$$\frac{\partial}{\partial p} \left\{ z' = f(z, p, t), z(0) = z_0(p) \right\}$$

define $s_i(t) = \frac{\partial z(t)}{\partial p_i} i = 1, \dots$ np
 $s'_i = \frac{d}{dt}(s_i) = \frac{\partial f}{\partial p_i} + \frac{\partial f}{\partial z}^T s_i, \ s_i(0) = \frac{\partial z(0)}{\partial p_i}$

(nz x np sensitivity equations)

- z and s_i , i = 1, ..., np, an be integrated forward simultaneously.
- for implicit ODE solvers, $s_i(t)$ can be carried forward in time after converging on z

• linear sensitivity equations exploited in ODESSA, DASSAC, DASPK, DSL48s and a number of other DAE solvers

Sensitivity equations are efficient for problems with many more constraints than parameters (1 + ng + nh > np)

Example: Sensitivity Equations

$$z'_{1} = z_{1}^{2} + z_{2}^{2}$$

$$z'_{2} = z_{1} z_{2} + z_{1} p_{b}$$

$$z_{1} = 5, z_{2}(0) = p_{a}$$

$$s(t)_{a,j} = \partial z(t)_{j} / \partial p_{a}, s(t)_{b,j} = \partial z(t)_{j} / \partial p_{b}, j = 1,2$$

$$s'_{a,1} = 2z_{1} s_{a,1} + 2z_{2} s_{a,2}$$

$$s'_{a,2} = z_{1} s_{a,2} + z_{2} s_{a,1} + s_{a,1} p_{b}$$

$$s_{a,1} = 0, s_{a,2}(0) = 1$$

$$s'_{b,1} = 2z_1 s_{b,1} + 2z_2 s_{b,2}$$

$$s'_{b,2} = z_1 + z_1 s_{b,2} + z_2 s_{b,1} + s_{b,1} p_b$$

$$s_{b,1} = 0, s_{b,2}(0) = 0$$

Adjoint Sensitivity

Adjoint or Dual approach to sensitivity

Adjoin model to objective function <u>or</u> constraint

$$(\Psi = \Phi, \text{g or h}) \qquad \Psi = \Psi(t_f) - \int_0^{t_f} \lambda^T (z' - f(z, p, t)) dt$$
$$\Psi = \Psi(t_f) + \lambda(0)^T z_0(p) - \lambda(t_f)^T z(t_f) + \int_0^{t_f} z^T \lambda' + \lambda^T F(z, p, t)) dt$$

 $(\lambda(t))$ serve as multipliers on ODE's)

Now, integrate by parts

$$d\psi = \begin{bmatrix} \frac{\partial \psi(z(t_f))}{\partial z(t_f)} & \lambda(t_f) \end{bmatrix} \delta z(t_f) + \begin{bmatrix} \frac{\partial z_0(p)}{\partial p} \lambda(0) \end{bmatrix}^T dp + \int_0^{t_f} \begin{bmatrix} \lambda' + \frac{\partial f}{\partial z} \lambda \end{bmatrix}^T \delta z(t) + \begin{bmatrix} \frac{\partial f}{\partial p} \lambda \end{bmatrix}^T dp dt$$

and find $d\psi/dp$ subject to feasibility of ODE's

Now, set all terms <u>not</u> in dp to zero.

Adjoint System

$$\lambda' = -\frac{\partial f}{\partial z} \lambda(t), \ \lambda(t_f) = \frac{\partial \psi(z(t_f))}{\partial z(t_f)}$$
$$\frac{\partial \psi}{\partial p} = \frac{\partial z_0(p)}{\partial p} \lambda(0) + \int_0^{t_f} \left[\frac{\partial f}{\partial p} \lambda(t)\right] dt$$

Integrate model equations <u>forward</u>

Integrate adjoint equations backward and evaluate integral and sensitivities.

Notes:

nz (ng + nh + 1) adjoint equations must be solved backward (one for each objective and constraint function)

for implicit ODE solvers, profiles (and even matrices) can be stored and carried backward after solving forward for z as in DASPK/Adjoint (Li and Petzold)

more efficient on problems where: np > 1 + ng + nh

Example: Adjoint Equations

$$z'_{1} = z_{1}^{2} + z_{2}^{2}$$
$$z'_{1} = z_{1} z_{2} + z_{1} p_{b}$$
$$z_{1} = 5, z_{2}(0) = p_{a}$$

Form $\lambda^T f(z, p, t) = \lambda_1 (z_1^2 + z_2^2) + \lambda_2 (z_1 z_2 + z_1 p_b)$ $\lambda' = -\frac{\partial f}{\partial z} \lambda(t), \ \lambda(t_f) = \frac{\partial \psi(z(t_f))}{\partial z(t_f)}$ $\frac{d\psi}{dp} = \frac{\partial z_0(p)}{\partial p} \lambda(0) + \int_0^{t_f} \left[\frac{\partial f}{\partial p} \lambda(t)\right] dt$

then becomes:

$$\lambda_1' = -2\lambda_1 z_1 - \lambda_2 (z_2 + p_b), \ \lambda_1(t_f) = \frac{\partial \psi(t_f)}{\partial z_1(t_f)}$$
$$\lambda_2' = -2\lambda_1 z_2 - \lambda_2 z_1, \ \lambda_2(t_f) = \frac{\partial \psi(t_f)}{\partial z_2(t_f)}$$

$$\frac{d\psi(t_f)}{dp_a} = \lambda_1(0)$$
$$\frac{d\psi(t_f)}{dp_b} = \int_0^{t_f} \lambda_2(t) z_1(t) dt$$

Example: Hot Spot Reactor $\underset{T_{P},T_{R},L,T_{S}}{Min} \Phi = L - \int_{0}^{L} (T(t) - T_{S} / T_{R}) dt$ s.t. $\frac{dq}{dt} = 0.3(1 - q(t)) \exp[20 - 20 / T(t)], q(0) = 0$ $\frac{dT}{dt} = -1.5(T(t) - T_{S} / T_{R}) + 2/3 \frac{dq}{dt}, T(0) = 1$ $\Delta H_{feed}(T_{R}, 110^{\circ} C) - \Delta H_{product}(T_{P}, T(L)) = 0$ $T_{P} = 120^{\circ} C, T(L) = 1 + 10^{\circ} C/T_{R}$

 T_P = specified product temperature T_R = reactor inlet, reference temperature L = reactor length T_S = steam sink temperature q(t) = reactor conversion profile T(t) = normalized reactor temperature profile

Cases considered:

- Hot Spot no state variable constraints
- Hot Spot with $T(t) \le 1.45$

Hot Spot Reactor: Unconstrained Case

Method: SQP (perturbation derivatives)

	L(norm)	$T_{R}(K)$	Ts(K)	$T_{P}(K)$
Initial:	1.0	462.23	425.26	250
Optimal:	1.25	500	470.1	188.4
13 SQP iterations / 2.67 CPU min. (µVax II)				

Constrained Temperature Case: could not be solved with sequential method

Variable Final Time (Miele, 1980)

Define
$$t = p_{n+1} \tau$$
, $0 \le \tau \le 1$, $p_{n+1} = t_f$
Let $dz/dt = (1/p_{n+1}) dz/d\tau = f(z, p) \Longrightarrow dz/d\tau = (p_{n+1}) f(z, p)$

Converting Path Constraints to Final Time

Define measure of infeasibility as a new variable, $z_{nz+1}(t)$ (Sargent & Sullivan, 1977):

$$z_{nz+1}(t_f) = \sum_{j=0}^{t_f} \int_{0}^{t_f} \max(0, g_j(z(t), u(t))^2 dt)$$

or $\dot{z}_{nz+1}(t) = \sum_{j=0}^{t_f} \max(0, g_j(z(t), u(t))^2, z_{nz+1}(0) = 0$

Enforce $z_{nz+1}(t_f) \le \varepsilon$ (however, constraint is degenerate)

Profile Optimization - (Optimal Control)

Optimal Feed Strategy (Schedule) in Batch Reactor

Optimal Startup and Shutdown Policy

Optimal Control of Transients and Upsets

Sequential Approach: Approximate control profile as through parameters (piecewise constant, linear, polynomial, etc.)

Apply NLP to discretization as with parametric optimization

Obtain gradients through adjoints (Hasdorff; Sargent and Sullivan; Goh and Teo) or sensitivity equations (Vassiliadis, Pantelides and Sargent; Gill, Petzold et al.)

Variational (Indirect) approach: Apply optimality conditions and solve as boundary value problem

Derivation of Variational Conditions Indirect Approach

Optimality Conditions (Bound constraints on u(t))

$$\begin{array}{ll} Min \quad \phi(z(tf))\\ s.t. \quad dz/dt = f(z, u), \ z \ (0) = z_0\\ g \ (z(t_f)) \leq 0\\ h \ (z(t_f)) = 0\\ a \leq u(t) \leq b \end{array}$$

Form Lagrange function - adjoin objective function and constraints:

$$\phi = \phi(t_f) + g(z(t_f))^T \mu + h(z(t_f))^T v$$

$$-\int_0^{t_f} \lambda^T (\dot{z} - f(z, u)) + \alpha_a^T (a - u(t)) + \alpha_b^T (u(t) - b) dt$$
Integrate by parts :
$$\phi = \phi(t_f) + g(z(t_f))^T \mu + h(z(t_f))^T v + \lambda^T (0) z(0) - \lambda^T (t_f) z(t_f)$$

$$+\int_0^{t_f} \dot{\lambda}^T z + \lambda^T f(z, u) + \alpha_a^T (a - u(t)) + \alpha_b^T (u(t) - b) dt$$

Derivation of Variational Conditions

$$\delta\phi = \left[\frac{\partial\phi}{\partial z} + \frac{\partial g}{\partial z}\mu + \frac{\partial h}{\partial z}v - \lambda\right]^{T}\delta z(t_{f}) + \lambda^{T}(0)\delta z(0)$$
$$+ \int_{0}^{t_{f}} \left[\dot{\lambda} + \frac{\partial f(z,u)}{\partial z}\lambda\right]^{T}\delta z(t) + \left[\frac{\partial f(z,u)}{\partial u}\lambda + \alpha_{b} - \alpha_{a}\right]^{T}\delta u(t) dt \ge 0$$

At optimum, $\delta \phi \ge 0$. Since u is the control variable, let all other terms vanish. $\Rightarrow \delta z(t_f):$ $\lambda(t_f) = \left\{ \frac{\partial \phi}{\partial z} + \frac{\partial g}{\partial z} \mu + \frac{\partial h}{\partial z} \gamma \right\}_{t=t_f}$

$$\delta z(0): \ \lambda(0) = 0 \ (\text{if } z(0) \text{ is not specified})$$

$$\delta z(t): \qquad \dot{\lambda} = -\frac{\partial H}{\partial z} = -\frac{\partial f}{\partial z} \lambda$$

Define Hamiltonian,
$$H = \lambda^T f(z, u)$$

For u not at bound:
 $\frac{\partial f}{\partial u} \lambda = \frac{\partial H}{\partial u} = 0$
For u at bounds:
 $\frac{\delta H}{\delta u} = \alpha_a - \alpha_b$
Upper bound, u(t) = b, $\frac{\delta H}{\delta u} = -\alpha_b \le 0$
 $\frac{\delta H}{\delta u} = -\alpha_b \le 0$

Car Problem

Travel a fixed distance (rest-to-rest) in minimum time.

Min +	Min $x_3(t_f)$
	s.t. $x_1 = x_2$
<i>s.t.</i> $x'' = u$	$x_{2} = u^{2}$
$a \le u(t) \le b$	$x_{2} = 1$
$x(0) = 0, x(t_f) = L$	$a \le u(t) \le h$
$x'(0) = 0, x'(t_f) = 0$	$x_1(0) = 0, x_1(t_f) = L$
	$x_2(0) = 0, x_2(t_f) = 0$

Hamiltonian :
$$H = \lambda_1 x_2 + \lambda_2 u + \lambda_3$$

Adjoints : $\dot{\lambda}_1 = 0 \Longrightarrow \lambda_1(t) = c_1$
 $\dot{\lambda}_2 = -\lambda_1 \Longrightarrow \lambda_2(t) = c_2 + c_1(t_f - t)$
 $\dot{\lambda}_3 = 0 \Longrightarrow \lambda_3(t_f) = 1, \ \lambda_3(t) = 1$
 $\frac{\partial H}{\partial u} = \lambda_2 = c_2 + c_1(t_f - t) \begin{cases} t = 0, c_1 t_f + c_2 > 0, u = b \\ t = t_f, c_2 > 0, u = a \end{cases}$
Crossover $(\lambda_2 = 0)$ occurs at $t = t_s$

 $tf = (1 - b / a) \left[\frac{2L}{b(1 - b / a)} \right]^{1/2}$

•For nonlinear and larger problems, the variational conditions can be solved numerically as boundary value problems.

Example: Batch reactor - temperature profile

Maximize yield of B after one hour's operation by manipulating a transformed temperature, u(t).

Cases Considered

- 1. <u>NLP Approach</u> piecewise constant and linear profiles.
- 2. Control Vector Iteration

Batch Reactor Optimal Temperature Program Piecewise Constant

<u>Results</u>

Piecewise Constant Approximation with Variable Time Elements Optimum B/A: <u>0.57105</u>

Batch Reactor Optimal Temperature Program Piecewise Linear

Results:

Piecewise Linear Approximation with Variable Time Elements Optimum B/A: 0.5726Equivalent # of ODE solutions: 32

Batch Reactor Optimal Temperature Program Indirect Approach

Results:

Control Vector Iteration with Conjugate Gradients Optimum (B/A): 0.5732Equivalent # of ODE solutions: 58

Small NLP problem, O(np+nu) (large-scale NLP solver not required)

- Use NPSOL, NLPQL, etc.
- Second derivatives difficult to get

Repeated solution of DAE model and sensitivity/adjoint equations, scales with nz and np

- Dominant computational cost
- May fail at intermediate points

Sequential optimization is not recommended for unstable systems. State variables blow up at intermediate iterations for control variables and parameters.

Discretize control profiles to parameters (at what level?)

Path constraints are difficult to handle exactly for NLP approach

Instabilities in DAE Models

This example cannot be solved with sequential methods (Bock, 1983):

 $dy_1/dt = y_2$ $dy_2/dt = \tau^2 y_1 + (\pi^2 - \tau^2) \sin(\pi t)$

The characteristic solution to these equations is given by:

$$y_1(t) = \sin (\pi t) + c_1 \exp(-\tau t) + c_2 \exp(\tau t)$$
$$y_2(t) = \pi \cos (\pi t) - c_1 \tau \exp(-\tau t) + c_2 \tau \exp(\tau t)$$

Both c_1 and c_2 can be set to zero by either of the following equivalent conditions:

IVP
$$y_1(0) = 0, y_2(0) = \pi$$

BVP $y_1(0) = 0, y_1(1) = 0$

IVP Solution

If we now add roundoff errors e_1 and e_2 to the IVP and BVP conditions, we see significant differences in the sensitivities of the solutions.

For the IVP case, the sensitivity to the *analytic* solution profile is seen by large changes in the profiles $y_1(t)$ and $y_2(t)$ given by:

 $y_1(t) = \sin (\pi t) + (e_1 - e_2/\tau) \exp(-\tau t)/2$ $+(e_1 + e_2/\tau) \exp(\tau t)/2$

$$y_2(t) = \pi \cos (\pi t) - (\tau e_1 - e_2) \exp(-\tau t)/2$$

+ $(\tau e_1 + e_2) \exp(\tau t)/2$

Therefore, even if e_1 and e_2 are at the level of machine precision (< 10⁻¹³), a large value of τ and t will lead to unbounded solution profiles.

BVP Solution

On the other hand, for the boundary value problem, the errors affect the *analytic* solution profiles in the following way:

$$\begin{split} y_1(t) &= \sin (\pi t) + [e_1 \exp(\tau) - e_2] \exp(-\tau t) / [\exp(\tau) - \exp(-\tau)] \\ &+ [e_1 \exp(-\tau) - e_2] \exp(\tau t) / [\exp(\tau) - \exp(-\tau)] \\ y_2(t) &= \pi \cos (\pi t) - \tau [e_1 \exp(\tau) - e_2] \exp(-\tau t) / [\exp(\tau) - \exp(-\tau)] \\ &+ \tau [e_1 \exp(-\tau) - e_2] \exp(\tau t) / [\exp(\tau) - \exp(-\tau)] \end{split}$$

Errors in these profiles never exceed t $(e_1 + e_2)$, and as a result a solution to the BVP is readily obtained.

BVP and IVP Profiles

 $e_1, e_2 = 10^{-9}$

Linear BVP solves easily

IVP blows up before midpoint

Dynamic Optimization Approaches

Multiple Shooting for Dynamic Optimization

Divide time domain into separate regions

Integrate DAEs state equations over each region

Evaluate sensitivities in each region as in sequential approach wrt u_{ii} , p and z_i

Impose matching constraints in NLP for state variables over each region

Variables in NLP are due to control profiles as well as initial conditions in each region

s.t.

Multiple Shooting Nonlinear Programming Problem

$$\min_{u_{i,j},p} \psi(z(t_f), y(t_f))$$

$$z(z_j, u_{i,j}, p, t_{j+1}) - z_{j+1} = 0$$

$$z_k^{\ l} \leq z(z_j, u_{i,j}, p, t_k) \leq z_k^{\ u}$$

$$y_k^{\ l} \leq y(z_j, u_{i,j}, p, t_k) \leq y_k^{\ u}$$

$$u_i^{\ l} \leq u_{i,j} \leq u_i^{\ u}$$

$$p^{\ l} \leq p \leq p^{\ u}$$

$$\left(\frac{dz}{dt}\right) = f(z, y, u_{i,j}, p), \quad z(t_j) = z_j$$
$$g(z, y, u_{i,j}, p) = 0$$
$$z_0^{o} = z(0)$$

Solved Implicitly

BVP Problem Decomposition

Consider: Jacobian of Constraint Matrix for NLP

- bound unstable modes with boundary conditions (dichotomy)
- can be done implicitly by determining stable pivot sequences in multiple shooting constraints approach
- well-conditioned problem implies dichotomy in BVP problem (deHoog and Mattheij)

Bock Problem (with t = 50)

- Sequential approach blows up (starting within 10⁻⁹ of optimum)
- Multiple Shooting optimization requires 4 SQP iterations

Larger NLP problem O(np+nu+NE nz)

- Use SNOPT, MINOS, etc.
- Second derivatives difficult to get

Repeated solution of DAE model and sensitivity/adjoint equations, scales with nz and np

- Dominant computational cost
- May fail at intermediate points

Multiple shooting can deal with unstable systems with sufficient time elements.

Discretize control profiles to parameters (at what level?)

Path constraints are difficult to handle exactly for NLP approach

Block elements for each element are dense!

Extensive developments and applications by Bock and coworkers using MUSCOD code

Dynamic Optimization Approaches

Discretization of Differential Equations Orthogonal Collocation

<u>Given:</u> dz/dt = f(z, u, p), z(0)=given

<u>Approximate</u> z and u by Lagrange interpolation polynomials (order K+1 and K, respectively) with interpolation points, t_k

$$z_{K+1}(t) = \sum_{k=0}^{K} z_k \ell_k(t), \ell_k(t) = \prod_{\substack{j=0\\j\neq k}}^{K} \frac{(t-t_j)}{(t_k-t_j)} \Longrightarrow z_{N+1}(t_k) = z_k$$
$$u_K(t) = \sum_{k=1}^{K} u_k \ell_k(t), \ell_k(t) = \prod_{\substack{j=1\\j\neq k}}^{K} \frac{(t-t_j)}{(t_k-t_j)} \Longrightarrow u_N(t_k) = u_k$$

Substitute z_{N+1} and u_N into ODE and apply equations at t_k .

$$r(t_k) = \sum_{j=0}^{K} z_j \dot{\ell}_j(t_k) - f(z_k, u_k) = 0, \quad k = 1, \dots K$$

Collocation Example

$$z_{K+1}(t) = \sum_{k=0}^{K} z_k \ell_k(t), \ell_k(t) = \prod_{\substack{j=0\\j\neq k}}^{K} \frac{(t-t_j)}{(t_k-t_j)} \Longrightarrow z_{N+1}(t_k) = z_k$$

$$t_0 = 0, t_1 = 0.21132, t_2 = 0.78868$$

$$\ell_0(t) = (t^2 - t + 1)/6, \quad \dot{\ell}_0(t) = t/3 - 1/6$$

$$\ell_1(t) = -8.195 t^2 + 6.4483 t, \quad \dot{\ell}_1(t) = 6.4483 - 16.39 t$$

$$\ell_2(t) = 2.19625 t^2 - 0.4641 t, \quad \dot{\ell}_2(t) = 4.392 t - 0.46412$$

$$Solve z' = z^2 - 3 z + 2, z(0) = 0$$

$$\Longrightarrow z_0 = 0$$

$$z_0 \dot{\ell}_0(t_1) + z_1 \dot{\ell}_1(t_1) + z_2 \dot{\ell}_2(t_1) = z_1^2 - 3 z_1 + 2$$

$$(2.9857 z_1 + 0.46412 z_2 = z_1^2 - 3 z_1 + 2)$$

$$z_0 \dot{\ell}_0(t_2) + z_1 \dot{\ell}_1(t_2) + z_2 \dot{\ell}_2(t_2) = z_2^2 - 3 z_2 + 2$$

$$(-6.478 z_1 + 3 z_2 = z_2^2 - 3 z_2 + 2)$$

$$z_0 = 0, z_1 = 0.291 (0.319), z_2 = 0.7384 (0.706)$$

$$z(t) = 1.5337 t - 0.76303 t^2$$

t

Converted Optimal Control Problem Using Collocation

How accurate is approximation

Results of Optimal Temperature Program Batch Reactor (Revisited)

<u>Results</u> - NLP with Orthogonal Collocation Optimum B/A - 0.5728# of ODE Solutions - 0.7 (Equivalent)

Collocation on Finite Elements

s.t.

min $\psi(z_f)$

Nonlinear Programming Problem

$$\sum_{j=0}^{K} (z_{ij} \dot{\ell}_{j}(\tau_{k})) - h_{i} f(z_{ik}, u_{ik}, p) = 0$$

$$g(z_{i,k}, y_{i,k}, u_{i,k}, p) = 0$$

$$\sum_{k=0}^{K} (z_{ik}, y_{i,k}, u_{i,k}, p) = 0$$

$$\sum_{j=0}^{K} (z_{i-1,j}\ell_j(1)) - z_{i0} = 0, \ i = 2,..NE$$

$$\sum_{j=0} (z_{NE,j} \ell_j(1)) - z_f = 0, \ z_{10} = z(0)$$

$$z_{i,j}^{l} \leq z_{i,j} \leq z_{i,j}^{u}$$
$$y_{i,j}^{l} \leq y_{i,j} \leq y_{i,j}^{u}$$
$$u_{i,j}^{l} \leq u_{i,j} \leq u_{i,j}^{u}$$
$$p^{l} \leq p \leq p^{u}$$

Finite elements, h_i , can also be variable to determine break points for u(t).

Add
$$h_u \ge h_i \ge 0$$
, $\sum h_i = t_f$

Can add constraints $g(h, z, u) \le \varepsilon$ for approximation error

Hot Spot Reactor Revisited $Min_{T_{P},T_{R},L,T_{S}} \Phi = L - \int_{0}^{L} (T(t) - T_{S} / T_{R}) dt$ s.t. $\frac{dq}{dt} = 0.3(1 - q(t)) \exp[20 - 20 / T(t)], q(0) = 0$ $\frac{dT}{dt} = -1.5(T(t) - T_{S} / T_{R}) + 2/3 \frac{dq}{dt}, T(0) = 1$ $\Delta H_{feed}(T_{R}, 110^{\circ}C) - \Delta H_{product}(T_{P}, T(L)) = 0$ $T_{P} = 120^{\circ}C, T(L) = 1 + 10^{\circ}C/T_{R}$

 T_P = specified product temperature T_R = reactor inlet, reference temperature L = reactor length T_S = steam sink temperature q(t) = reactor conversion profile T(t) = normalized reactor temperature profile

Cases considered:

- Hot Spot no state variable constraints
- Hot Spot with $T(t) \le 1.45$

Base Case Simulation

Method: OCFE at initial point with 6 equally spaced elements

	L(norm)	$T_{R}(K)$	Ts(K)	$T_{P}(K)$
Base Case:	1.0	462.23	425.26	250

Unconstrained Case

Method:	OCFE combined formulation with rSQP				
	identical to integrated profiles at optimum				
	L(norm)	$T_{R}(K)$	Ts(K)	$T_{P}(K)$	
Initial:	1.0	462.23	425.26	250	
Optimal:	1.25	500	470.1	188.4	

123 CPU s. (μVax II) φ* = -171.5

Temperature Constrained Case

 $T(t) \leq 1.45$

Method: OCFE combined formulation with rSQP, identical to integrated profiles at optimum

	L(norm)	$T_{R}(K)$	$T_{S}(K)$	$T_{P}(K)$
Initial:	1.0	462.23	$42\overline{5}.26$	$2\bar{5}0$
Optimal:	1.25	500	450.5	232.1

57 CPU s. (μVax II), φ* = -148.5

Theoretical Properties of Simultaneous Method

- A. <u>Stability and Accuracy of Orthogonal Collocation</u>
- Equivalent to performing a *fully implicit* Runge-Kutta integration of the DAE models at Gaussian (Radau) points
- 2K order (2K-1) method which uses K collocation points
- Algebraically stable (i.e., possesses A, B, AN and BN stability)
- B. <u>Analysis of the Optimality Conditions</u>
- An equivalence has been established between the Kuhn-Tucker conditions of NLP and the variational necessary conditions
- Rates of convergence have been established for the NLP method

Simultaneous DAE Optimization

Case Studies

- Reactor Based Flowsheets
- Fed-Batch Penicillin Fermenter
- Temperature Profiles for Batch Reactors
- Parameter Estimation of Batch Data
- Synthesis of Reactor Networks
- Batch Crystallization Temperature Profiles
- Grade Transition for LDPE Process
- Ramping for Continuous Columns
- Reflux Profiles for Batch Distillation and Column Design
- Source Detection for Municipal Water Networks
- Air Traffic Conflict Resolution
- Satellite Trajectories in Astronautics
- Batch Process Integration
- Optimization of Simulated Moving Beds

Production of High Impact Polystyrene (HIPS) Startup and Transition Policies (Flores et al., 2005a)

Initiation reactions			
Thermal			
	$3M_{c}$	k_{i0}	$2B^1_{\pi}$
Chemical	5145		$2m_S$
enemical		$f_1 k_d$	- 5
	1	$\xrightarrow{j_1 \sim u}$	2R
	$R + M_S$	$\xrightarrow{k_{i1}}$	R_S^1
	$R + B_0$	$\xrightarrow{k_{i2}}$	B_R
	$B_{P} + M_{S}$	k _{i3}	B^1_{DG}
Propagation reactions	$D_R + m_S$		D_{RS}
	\mathbf{D}^{j} , \mathbf{M}	k_p	-i+1
	$R_S' + M_S$	\xrightarrow{i}	R_S^{\prime}
	$B_{RS}^j + M_S$	$\xrightarrow{\kappa_p}$	B_{RS}^{j+1}
Definite termination reactions			
Homopolymer			
	$B_{\alpha}^{j} + B_{\alpha}^{m}$	k_t	P^{j+m}
Grafting	105 + 105		-
Granding	$D^{j} + D$	k_t	рj
	$R_S + B_R$		BP
	$R_S^j + B_{RS}^m$	$\xrightarrow{\kappa t}$	B_P^{j+m}
Crosslinking			
	$B_R + B_R$	$\xrightarrow{k_t}$	B_{EB}
	$B_{Da}^{j} + B_{P}$	$\xrightarrow{k_t}$	B^{j}_{pp}
	$R^{j} + R^{m}$	k_t	-PB pj+m
Transfer reactions	$D_{RS} + D_{RS}$		D_{PB}
Menomer			
Monomer	,	ke	
	$R_S^j + M_S$	$\xrightarrow{n f s}$	$P^{j} + R^{1}_{S}$
	$B_{PS}^{j} + M_{S}$	$\xrightarrow{k_{fs}}$	$B_{D}^{j} + R_{S}^{1}$
Grafting sites	Ro Poo		P - 3
	D ⁱ D	k_{fb}	
	$K_S + B_0$		$P^{j} + B_{R}$
	$B_{pq}^{j} + B_{0}$	$\xrightarrow{\kappa_{fb}}$	$B_{\rm D}^{j} + B_{\rm P}$

Phase Diagram of Steady States

Transitions considered among all steady state pairs

Startup to Unstable Steady State

HIPS Process Plant (Flores et al., 2005b)

•Many grade transitions considered with stable/unstable pairs

•1-6 CPU min (P4) with IPOPT

•Study shows benefit for sequence of grade changes to achieve wide range of grade transitions.

Batch Distillation – Optimization Case Study - 1

$$\frac{dx_{i,d}}{dt} = \frac{V}{H_{cond}} \left[\left(y_{i,N} - x_{i,d} \right) \right]$$
$$\frac{dx_{i,0}}{dt} = \frac{V}{S} \left[\left(x_{i,d} - x_{i,0} \right) \right]$$
$$\frac{dS}{dt} = \frac{-V}{R+1}$$

Gauge effect of column holdups
Overall profit maximization
Make Tray Count Continuous

Optimization Case Study - 1

Modeling Assumptions

- Ideal Thermodynamics
- •No Liquid Tray Holdup
- •No Vapor Holdup
- •Four component mixture (α = 2, 1.5, 1.25, 1)
- Shortcut steady state tray model

(Fenske-Underwood-Gilliland)

•Can be substituted by more detailed steady state models (Fredenslund and Galindez, 1988; Alkaya, 1997)

Optimization Problems Considered

•Effect of Column Holdup (Hcond)

Total Profit Maximization

Maximum Distillate Problem

Comparison of distillate profiles with and without holdup (H_{cond}) at 95.5% overall purity

Batch Distillation Profit Maximization

Max {Net Sales(D,
$$S_0$$
)/($t_f + T_{set}$) – TAC(N, V)}

$$\begin{split} N &= 20 \text{ trays, } T_{\text{setup}} = 1 \text{ hour} \\ x_{\text{d}} &= 0.98, \ x_{\text{feed}} = 0.50, \ \alpha = 2 \\ C_{\text{prod}}/C_{\text{feed}} &= 4.1 \\ V &= 120 \text{ moles/hr}, \ S_{\text{o}} = 100 \text{ moles.} \end{split}$$

Batch Distillation – Optimization Case Study - 2

$$\begin{aligned} \frac{dx_{1,N+1}}{dt} &= \frac{V}{H_{N+1}} \left[y_{1,N} - x_{1,N+1} \right] \\ \frac{dx_{1,p}}{dt} &= \frac{V}{H_{p}} \left[y_{1,p-1} - y_{1,p} + \frac{R}{R+1} \left(x_{1,p+1} - x_{1,p} \right) \right] p = 1, \dots, N \\ \frac{dx_{1,0}}{dt} &= \frac{V}{S} \left[x_{1,0} - y_{1,0} + \frac{R}{R+1} \left(x_{1,1} - x_{1,0} \right) \right] \\ \frac{dD}{dt} &= \frac{V}{R+1} \\ s^{0} x_{i,0}^{0} &= \left(s^{0} - \sum_{p=1}^{N+1} H_{p} \right) x_{i,0} + \sum_{p=1}^{N+1} H_{p} x_{i,p} \\ \sum_{1}^{C} x_{i,p} &= 1.0 \qquad \sum_{1}^{C} y_{i,p} = 1.0 \end{aligned}$$

 $\frac{\text{Ideal Equilibrium Equations}}{y_{i,p} = K_{i,p} \ x_{i,p}}$

Binary Column (55/45, Cyclohexane, Toluene) S₀ = 200, V = 120, H_p = 1, N = 10, ~8000 variables, < 2 CPU hrs. (Vaxstation 3200)

Optimization Case Study - 2

Modeling Assumptions

- Ideal Thermodynamics
- Constant Tray Holdup
- •No Vapor Holdup
- •Binary Mixture (55 toluene/45 cyclohexane)
- •1 hour operation
- Total Reflux Initial Condition

Cases Considered

Constant Composition over Time
Specified Composition at Final Time
Best Constant Reflux Policy
Piecewise Constant Reflux Policy

Reflux Optimization Cases

Constant Purity over Time

 $x_1(t) \ge 0.995$ D*(t_f) = 38.61

Overall Distillate Purity $\int x_d(t) V/(R+1) dt) /D(t_f) \ge 0.998$ $D^*(t_f) = 42.34$

Shortcut Comparison $D^*(t_f) = 37.03$

Reflux Optimization Cases

Constant Reflux over Time

 $\begin{array}{l} x_{\text{d}}(t) \; V/(\text{R+1}) \; dt) \; / D(t_{\text{f}}) \; \geq 0.998 \\ D^{*}(t_{\text{f}}) \; = \; 38.9 \end{array}$

Piecewise Constant Reflux over Time

$$\begin{split} & \int x_{\rm d}(t) \; V/(\text{R+1}) \; dt) \; / D(t_{\rm f}) \; \geq 0.998 \\ & D^{*}(t_{\rm f}) \; = \; 42.26 \end{split}$$

Batch Reactive Distillation – Case Study 3

Reversible reaction between acetic acid and ethanol

 $\mathbf{CH_3COOH} + \mathbf{CH_3CH_2OH} \leftrightarrow \mathbf{CH_3COOCH_2CH_3} + \mathbf{H_2O}$

t = 0, x = 0.25for all components

Wajde & Reklaitis (1995)₆₆

Optimization Case Study - 3

Modeling Assumptions

- Ideal Thermodynamics
- Constant Tray Holdup
- •No Vapor Holdup
- •Tertiary Mixture (EtOH, HOAc, ETAc, H₂O)
- Cold Start Initial Condition

Cases Considered

- •Specified Composition at Final Time
- •Optimum Reflux Policy
- •Various Trays Considered (8, 15, 25)
- •1 hour operation

Batch Reactive Distillation

Condenser Composition (8 trays)

< 5000 variables
< 260 DAEs
10 degrees of freedom
10 finite elements
< 50 IPOPT iterations
< 11 CPU minutes

Distillate Composition

Batch Reactive Distillation

Trays	DAEs	Discretized Variables	Iterations	CPU Global	U (s) Elemental
8	98	1788	14	56.4	37.2
15	168	3048	32	245.7	207.5
25	258	4678	45	1083.2	659.3

CPU Decomposition Time

Nonlinear Model Predictive Control (NMPC)

Dynamic optimization in a MATLAB Framework

Unstable Reactor

11 Controls; Product, Purge streams

Model extended with energy balances

Tennessee Eastman Challenge Process

DAE Model		NLP Optimization problem	
Number of differential equations	30	Number of variables of which are fixed	1092
Number of algebraic variables	152	Number of constraints	1026
Inchar of algebraic equations 141	Number of lower bounds	78	
	141	Number of upper bounds	54
vifference (control variables)	11	Number of nonzeros in Jacobian	4923

Number of nonzeros in Hessian

Method of Full Discretization of State and Control Variables

Large-scale Sparse block-diagonal NLP

14700

Setpoint change studies

Process variable	Туре	Magnitude
Production rate change	Step	-15% Make a step change to the variable(s) used to set the process production rate so that the product flow leaving the stripper column base changes from 14,228 to 12,094 kg h ⁻¹
Reactor operating pressure change	Step	-60 kPa Make a step change so that the reactor operating pressure changes from 2805 to 2745 kPa
Purge gas composition of component B change	Step	+2% Make a step change so that the composition of component B in the gas purge changes from 13.82 to 15.82%

Setpoint changes for the base case [Downs & Vogel]

Case Study: Change Reactor pressure by 60 kPa

Control profiles

All profiles return to their base case values

Same production rate

Same product quality

Same control profile

Lower pressure – leads to larger gas phase (reactor) volume

Less compressor load

TE Case Study – Results I

Shift in TE process

Same production rate

More volume for reaction

Same reactor temperature

Initially less cooling water flow (more evaporation)

Chemical Case Study- Results II

Shift in TE process

Shift in reactor effluent to more condensables

Increase cooling water flow

Increase stripper steam to ensure same purity

Less compressor work

Case Study: Change Reactor Pressure by 60 kPa

Optimization with IPOPT

1000 Optimization Cycles

5-7 CPU seconds

11-14 Iterations

Optimization with SNOPT

Often failed due to poor conditioning

Could not be solved within sampling times

> 100 Iterations

Chemical Optimization as a Framework for Integration

+ Directly handles interactions, multiple conditions+ Trade-offs unambiguous, quantitative

- Larger problems to solve
- Need to consider a diverse process models

Research Questions

How should diverse models be integrated? Is further algorithmic development needed?

Batch Integration Case Study

What are the Interactions between Design and Dynamics and Planning?
What are the differences between Sequential and Simultaneous Strategies?
Especially Important in Batch Systems

Simultaneous Dynamic Optimization

- discretize (DAEs), state and control profiles
- large-scale optimization problem
- handles profile constraints directly
- incorporates equipment variables directly
- DAE model solved only once
- converges for unstable systems

Scheduling Formulation

- sequencing of tasks, products equipment
- expensive discrete combinatorial optimization
- consider ideal transfer policies (UIS and ZW)
- closed form relations (Birewar and Grossmann, 1989)

Zero Wait (ZW) Immediate transfer required Slack times dependent on pair Longer production cycle required

Case Study Example

4 stages, 3 products of different purity Dynamic reactor - temperature profile Dynamic column - reflux profile

 $A + B \to C$ $C + B \to P + E$ $P + C \to G$

Process Optimization Cases

- SQ Sequential Design Scheduling Dynamics
- SM Simultaneous Design and Scheduling Dynamics with endpoints fixed .
- SM* Simultaneous Design, Scheduling and Dynamics

Scenarios in Case Study

Comparison of Dynamic vs. Best Constant Profiles

R0 - best constant temperature profile

R1 - optimal temperature policy

C0 - best constant reflux ratio

C1 - optimal reflux ratio

Results for Simultaneous Cases

- ZW schedule becomes tighter
- less dependent on product sequences

Summary

Sequential Approaches

- Parameter Optimization
 - Gradients by: Direct and Adjoint Sensitivity Equations
- Optimal Control (Profile Optimization)
 - Variational Methods
 - NLP-Based Methods
- Require Repeated Solution of Model
- State Constraints are Difficult to Handle

Simultaneous Approach

- Discretize ODE's using orthogonal collocation on finite elements (solve larger optimization problem)
- Accurate approximation of states, location of control discontinuities through element placement.
- Straightforward addition of state constraints.
- Deals with unstable systems

Simultaneous Strategies are Effective

- Directly enforce constraints
- Solve model only once
- Avoid difficulties at intermediate points

Large-Scale Extensions

- Exploit structure of DAE discretization through decomposition
- Large problems solved efficiently with IPOPT

DAE Optimization Resources

References

Bryson, A.E. and Y.C. Ho, <u>Applied Optimal Control</u>, Ginn/Blaisdell, (1968). Himmelblau, D.M., T.F. Edgar and L. Lasdon, <u>Optimization of Chemical</u> <u>Processes</u>, McGraw-Hill, (2001).

Ray. W.H., Advanced Process Control, McGraw-Hill, (1981).

<u>Software</u>

- Dynamic Optimization Codes
- ACM Aspen Custom Modeler
- DynoPC simultaneous optimization code (CMU)
- COOPT sequential optimization code (Petzold)
- gOPT sequential code integrated into gProms (PSE)
- MUSCOD multiple shooting optimization (Bock)
- NOVA SQP and collocation code (DOT Products)
- Sensitivity Codes for DAEs
- DASOLV staggered direct method (PSE)
- DASPK 3.0 various methods (Petzold)
- SDASAC staggered direct method (sparse)
- DDASAC staggered direct method (dense)

DynoPC – Windows Implementation

Example: Batch Reactor Temperature

a+b+c = 1

$\begin{array}{c|c} \hline \textbf{Min} & \textbf{t}_{f} \\ \hline \textbf{s.t.} & \textbf{z}_{1} \stackrel{'}{=} \textbf{z}_{2} \\ & \textbf{z}_{2} \stackrel{'}{=} \textbf{u} \\ & \textbf{z}_{2} \leq \textbf{z}_{max} \\ & -2 \leq \textbf{u} \leq 1 \end{array}$

subroutine model(nz,ny,nu,np,t,z,dmz,y,u,p,f)
double precision t, z(nz),dmz(nz), y(ny),u(nu),p(np)

double precision f(nz+ny)

f(1) = p(1)*z(2) - dmz(1)f(2) = p(1)*u(1) - dmz(2)

return

end

Example: Crystallizer Temperature

