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Aﬁﬁé Introduction

Optimization: given a system or process, find the best solution to
this process within constraints.

Objective Function: indicator of "goodness" of solution, e.g., cost,
yield, profit, etc.

Decision Variables: variables that influence process behavior and
can be adjusted for optimization.

In many cases, this task is done by trial and error (through case
study). Here, we are interested in a systematic approach to this
task - and to make this task as efficient as possible.

Some related areas:
- Math programming
- Operations Research

Currently - Over 30 journals devoted to optimization with roughly
200 papers/month - a fast moving field!



Aﬁﬁé Optimization Viewpoints

Mathematician - characterization of theoretical properties
of optimization, convergence, existence, local
convergence rates.

Numerical Analyst - implementation of optimization
method for efficient and "practical" use. Concerned with
ease of computations, numerical stability, performance.

Engineer - applies optimization method to real problems.
Concerned with reliability, robustness, efficiency,
diagnosis, and recovery from failure.
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Aﬁﬁé Motivation

Scope of optimization

Provide systematic framework for searching among a specified
space of alternatives to identify an “optimal” design, i.e., as a
decision-making tool

Premise
Conceptual formulation of optimal product and process design
corresponds to a mathematical programming problem

min f (X, Yy)

st h(x,y)=0
9(x,y)< 0

xOR" yO{0,1}"™



Aﬁﬁé Optimization in Design, Operations and Control

MILP MINLP Global LP,QP NLP SAIGA




Aﬁﬁé Unconstrained Multivariable Optimization

Problem: Min f(x) (nvariables)

Equivalent to: Max -f(x), x /R"

Nonsmooth Functions
- Direct Search Methods
- Statistical/Random Methods

Smooth Functions

- 1st Order Methods

- Newton Type Methods
- Conjugate Gradients




Aﬁﬁé Example : Optimal Vessel Dimensions

What is the optimal L/D ratio for a cylindrical vessel?
Constrained Problem
(1)
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Note:
- What if L cannot be eliminated in (1) explicitly? (strange shape
- What if D cannot be extracted from (2)?
(cost correlation implicit)



A%" Two Dimensional Contours of F(x)
EH(IBI\IG

Convex Function Nonconvex Function

Multimodal, Nonconvex

Q
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Discontinuous Nondifferentiable (convex)
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Aﬁﬁé Local vs. Global Solutions

*Find a local minimum point x* for f(x) for feasible region defined by
constraint functions: f(x*) < f(x) for all x satisfying the constraints in
some neighborhood around x* (not for all x /7X)

*Finding and verifying global solutions will not be considered here.
*Requires a more expensive search (e.g. spatial branch and bound).

*A local solution to the NLP is also a global solution under the
following sufficient conditions based on convexity.

« f(X) Is convex in domain X, if and only if it satisfies:
flay + (1-a) z) = af(y) + (1-0)(z)
foranya,0<a <1, atall pointsy and z in X.

11



Aﬁg Linear Algebra - Background

Some Definitions

Scalars - Greek lettergq, (3, y

Vectors - Roman Letters, lower case

Matrices - Roman Letters, upper case

Matrix Multiplication:

C=ABIifA[ "xm B[ mxPand C[TJ nxp, G = 2, A, By
Transpose - if AT1 nxm

interchange rows and columns --3[A] mxn

Symmetric Matrix - ALI] rxn(square matrix) and A ='A
|dentity Matrix - |, square matrix with ones on gamal
and zeroes elsewhere.

Determinant: "Inverse Volume" measure of a squaaéix

det(A) =2i (-1)+ A; A; for any j, or

det(A) =2j (-1)+ A, A, for any i, wheréA, is the determinant
of an ordemn-1 matrix with row i and column j removed.
det(l) =1

Singular Matrix: det (A) =0

12



O%f(x) = U ...

Linear Algebra - Background

Gradient Vector (LIf(x))

[of | g, L

L 1 5.0
Of = d(z[

O C
o [ ox,.C

Hessian Matrix(CJ%f(x) - Symmetric)

2 2 2
ot ot qopp ot
Uoki  Oxi0xe Z3Y2 s
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o f VA DDDDfZ

)Xn OX1 OXn OX2 OXn

92f 2
Note: = g
OXj 0X j anaXi
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Linear Algebra - Background

e Some ldentities for Determinant

det(A B) = det(A) det(B);  det (A) = det(B

det@A)

= a"det(A); det(A) =l \.(A)

 Eigenvaluesdet(A-A 1) = 0, Eigenvector: Av A v

Characteristic values and directions of a matrix.
For nonsymmetric matrices eigenvalues can be complex,
so we often use singular valuesz A(ATA)¥2>0

e \ector Norms

1 x = {2 [xlP} v
(most common are p = 1, p = 2 (Euclidean) ancep(max norm = makx|))
e Matrix Norms

A
A

A
A
A

= max [|A x]||/||x|| over x (for p-norms)
- max column sum of A, mak2., |A;|)
. - maximum row sum of A, max2, |A,|)
b = [Oma(A)] (Spectral radius)

L= [2 Zj (A;)2]v2(Frobenius norm)

K(A) = ||A|| [|AY| (condition number) gmad Omin (USING 2-NOrmM)

14



ical
ERING

Linear Algebra - Eigenvalues

Find v and\ where Ay = A, v, i =1i,n

Note: Av-Av=(A-Al)v=0 ordet(A-Al)=0
For this relation\ is an eigenvaluand v is an eigenvectof A.

If A is symmetric all A; are _real
A >0,i=1,n; Ais positivelefinite
A <0,i1=1,n; Aisnegativeefinite
A; =0, some i: A is singular

QuadratidcFormcan be expressed in CanoniEarm (Eigenvalue/Eigenvector)

xTAx 0O AV =V A
V - eigenvector matrix (n xn)
N - eigenvalue (diagonal) matrix = diag)

If A is symmetric all A; are reabnd V can be chosen orthonorr(ii! = V7).
Thus, A=VAV1I=VAVT

For Quadratidunction Q(x) = ax + %2 XTAx

Define: z=Vx and Q(Vz)=(&)z+% Z (VTAV)z
=@V)z+%ZANz

Minimum occurs at (iA, > 0) x=-A'a or X =Vz =-V\'VTa)

15



A% Positive (or Negative) Curvature
Positive (or Negative) Definite Hessian

Both eigenvalues are strictly positive or negative
 As positive definiteor negative definite
e Stationary points are minima or maxima

X1

16



Zero Curvature
Singular Hessian

One eigenvalue is zero, the other is strictly positive or negative
* As positive semidefiniter negative semidefinite
 There is a ridge of stationary points (minima or maxima)

17



Indefinite Curvature
Indefinite Hesslian

One eigenvalue is positive, the other is negative
e Stationary point is a saddle point
 Aisindefinite

Note: these can also be viewed as two dimensional projections for Higlensional problems

18



Eigenvalue Example

Min Q(x) -ﬂﬂ“lxﬁ %
_ﬁ}} J—
101
AV =VA with A= B, ZH
1 QL/\/E 1/«f2
AV =AN\= hV =
v 0 :Ewn Gl/fo 1/«f2

 All eigenvalues are positive
e« Minimum occurs at z* =-A'VTa

_ ] L
g=vx= TRy R)IN2
%, + X,) /20 %+ %) 2T
O o O [1/3]

““Biad  CTHA

19



Aﬁﬁ’é Comparison of Optimization Methods

1. Convergence Theory

 Global Convergence - will it converge to a local optimum
(or stationary point) from a poor starting point?

* Local Convergence Rate - how fast will it converge close to
the solution?

2. Benchmarks on Large Class of Test Problems

Representative Problem (Hughes, 1981)

Min f(x, %) = a exp(#)
u=x,-0.8 0B
V=X-(a +a,u(1-u}2-a,u) 07}
a=-b, + b, u?(1+u)¥?+ b, u 06k
B =c,V?(1-c,Vv)/(1+ cu?) 25l
a=[0.3,0.6,0.2] ““"
b =[5, 26, 3] |
c =[40, 1, 10] 021
x* = [0.7395, 0.3144] f(x*) =5.0893 °'|

o1 o0X 03 04 05 06 O0OF OB 09 1 1.1



Three Dimensional Surface and Curvature for Representative Test Problem
ENGINEELTS

Regions where minimum
eigenvalue is less than:

[0, -10, -50, -100, -150, -200]




Aﬁﬁ’é What conditions characterize an optimal solution?

o A Unconstrained Local Minimum

Necessary Conditions
Of (x¥) =0

pTl%f (x*) p>0 fordd "

(positive semi-definite)

Unconstrained Local Minimum
Sufficient Conditions
Of (x¥) =0
p'lef (x*)p>0 forpll "
(positive definite)

Contours B f(x)

-
X1

For smooth functions, why are contours around optimum elliptical?
Taylor Seriesin n dimensions about*:

f(x) = f(x*) +0F ()T (x= x*) +%(x—x*)TD2f(x*)(x—x*)

Since/f(x*) = 0, f(x) is purelyquadratidor x close tox*

22



Aﬁﬁé Newton’s Method

Taylor Seriesfor f(x) about x

Take derivative wrt x, set LHSO

0 =[H(X) = LR(XK) + [PFX) (X - %)
[ (x-X) =d= - ([PH(xX9)T CF(x)

f(x) is convex (concave) if for ald /777 ", [Pf(x) is positive (negative) semidefinite
l.e. minA; =0 (maxA; <0)
Method can falil if:
- X0 far from optimum
- [Pfis singular at any point
- f(x) Is not smooth
Search directiond, requires solution of linear equations.
Near solution:

| X0 - xxll = K xR - x|

2

23



Basic Newton Algorithm - Line Search

0. Guess®, Evaluatef(xV).
1. AtxK evaluate f(xv).
2. EvaluateB = [A(X¥) or an approximation.

3. Solve: Bkd=-Vf(xK
If convergence error is less than tolerance:

e.g..||LA(X¥) || <€and]|d|| =€ STOP, else go to 4.

4. Finda so that 0 <0 < 1 andf(xk+ a d) < f(xY)
sufficiently (Each trial requires evaluationf@f))

5. xxt1=xk+ gd. Setk=k+ 1Goto 1.

24



Aﬁﬁ’é Newton’s Method - Convergence Path

09F

0.8 F

0.7 F

06|

05

0.4

03r

0.2F

0.1F

01 02 03 04 05 06 07 03 092 1 11

Starting Points
[0.8,0.2] needs steepest descent steps wédiaech up to O, takes 7 iterations|tof(x*)|| <10°

[0.35, 0.65] converges in four iterations with fsieps td| Zf(x*)|| < 10°
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Aﬁﬁé Newton’s Method - Notes

« Choice ofBk determines method.
- Steepest Descergk =yl
- Newton:BX = [Pf(x)

« With suitableB, performance may be good enougf{if + ad)
Is sufficiently decreased (instead of minimizedhgldine search
direction).

» Trust region extensiort®e Newtors method provide very strong
global convergence properties and very reliable agorithms.

 Local rate of convergence depends on choice of BX.

k+1

Newton— Quadratic Rate: lim HX _ X*H =
. —00 2
‘xk - X*
| - ka+1 —x*
Steepest descentlLinear Rate: limp <1
x|
ka+1 —x*

o

Desired?> Superlinear Rate: lim,, ka - X*H

26
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ERING

Quasi-Newton Methods

Motivation:

 Need B to be positive definite.
« Avoid calculation of 14,
» Avoid solution of linear system fat = - (B¥)-1 f(x¥)

Strategy Define matrix updating formulas that givekjBymmetric, positive
definite andsatisfy:
(B L) (k1 - XKy = (Lfk+1 - [fK) (Secant relation)

DFP Formula(Davidon, Fletcher, Powell, 1958, 1964)

L b-B9y +y(y g9 (V- BYsyy

d z TP
@) =H" = S
where: S = X+l XK

y = LF (x1) - LF (X9

27



A@ Quasi-Newton Methods

BFGS Formula(Broyden, Fletcher, Goldfarb, Shanno, 1970-71)

gon = gk 4 WY B'SSB
T k
sy sB'S

E-HY)S +s6-HY) (- H9ysS

—1
(Bk+1 :Hk+1 — Hk + - _ :
Y's V')
Notes:
1) Both formulas are derived under simiéesumptionand have
symmetry

2) Both have superlineaonvergencand terminate in n steps on
guadratic functions. They are identicabifs minimized.

3) BFGS is more stable and performs better than DFP, in general.

4) For n< 100, these are the basethods for general purpose
problems if second derivatives are not available.

28



Quasi-Newton Method - BFGS
Convergence Path

09r

08

0.7 r

06

0ar

0.4 r

03r

02r

01r

01 02 03 04 05 06 07 08 08 1 11
Starting Point
[0.8, 0.2] starting fromB® = |, converges in 9 iterations fidf(x*)|| <10®
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Aﬁﬁé Sources For Unconstrained Software

Harwell (HSL)
IMSL
NAg - Unconstrained Optimization Codes
Netlib (www.netlib.org)
*MINPACK
*TOMS Algorithms, etc.
These sources contain various methods
*Quasi-Newton
eGauss-Newton
eSparse Newton
*Conjugate Gradient

30
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Constrained Optimization
(Nonlinear Programming)

Problem Min, f(x)
S.t. g(x)=0
h(x) =0
where

f(x) - scalar objective function

X - nvector of variables
g(x) - inequality constraintsn vector
h(X) - meqgequality constraints.

Sufficient Condition for Unique Optimum
- f(x) must beconvex and
- feasible region must be convex,
l.e. g(x)are allconvex
h(x) are alllinear
Except in special cases, ther isqumranteehat a locabptimumis globalif
sufficient conditions are violated.

31
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Example: Minimize Packing Dimensions

| A
What is the smallest box for three round objects? Y
Variables A, B, (X, Vi), (% ¥2), (%, ¥s)
Fixed ParametersR,, R, R
Objective Minimize Perimeter 2(A+B)
Constraints Circles remain in box, cant overlap ﬁ @
Decisions Sides of box, centers of circles. l‘\
|- B -
Ekl, Y, 2 R x1 € B-Ry Yy, £ A-R; E(m - %2l + 01 - v2f 2 (R1 + Ro)?
EXZ’ Y22 R: Xe <B-Ra Yo = ARe x1 - xaf’ + (n - Y3)2 > (R + Ra)

> <B- < A- 0
X, ¥a = Rs Xs <B-Ra, Y5 = A-Rs {x2 - xaf + (2 - y3)2 > (R2 + R3)?

INn box

no overlaps
X1y X9y X3, Y1, Vo, Y2, A, B=0 P



Characterization of Constrained Optima

SO Min N

Linear Program Linear Program
(Alternate Optima)

Min

Convemive Functions

Linear Constraints

i in
i Min

T T~

; Min
Nonconvex Region .
Objective
Multiple Optima Nonconvex Obj

Multiple Optima
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Aﬁﬁ’é What conditions characterize an optimal solution?

. A
Contonrs ofFf{x)
x1
Unconstrained Local Minimum Unconstrained Local Minimum
Necessary Conditions Sufficient Conditions
Of (x¥) =0 Of (x¥) =0
pTlf (x*)p>0 for gl " p'a2f (x*) p>0 forgl "

(positive semi-definite) (positive definite)

34



Aﬁﬁ’é Optimal solution for inequality constrained problem
A

Min f(x)

s.t. g(X)<0
Analogy. Ball rolling down valley pinned by fence
Note Balance of forced {f, [Ig1)

35



X2

A

A@ Optimal solution for general constrained problem
ERING

gl(x) =0

Vhix*)
Vai(x* -

hix) =10

-V E(x*) _ g2(x) < 0

-l

Contours of-f{x) g

Problem: Min f(x)
S.t. g(x)<0
h(x)=0
Analogy. Ball rolling on rail pinned by fences
Balance of forces{If, [lg1, [h

36



Optimality conditions for local optimum

ical
ERING

Necessary First Order Karush Kuhn - Tucker Conditions

[JL (X*, u, v) =[A(x*) + [(x*)u+ Lh(x*)v=0

(Balance of Forces)

u > 0 (Inequalities act in only one direction)

g (X*) <0, h (x*) =0 (Feasibility)

ug(x*) =0 (Complementarity: either(*) =0 or y=0)

u, vare "weights" for "forces," known as KKT multiplieishadow
prices dual variables

“To guarantee that a local NLP solution satisfies KKT conditionsprastraint
qualification is required. E.g., tHanear Independence Constraint Qualification
(LICQ) requires active constraint gradientég[(x*) Lh(x*)], to be linearly
independent. Also, under LICQ, KKT multipliers are uniquely determined.”

Necessary (Sufficient) SecotderConditions
- Positive curvature in "constraint" directions.
- pT/L (x¥)p=0 (p'J%L (x*) p > 0)
wherep are the constrained directionsy,(x*)'p = 0, Lh(x*)'p =0

37



A@ Single Variable Example of KKT Conditions
ERING

Min (x)? s.t.-a<x<a,a>0
x* = 0 is seen by inspection fOO

Lagrange function :
L(X, u) = ¥ + u,(x-a) + u,(-a-x) I |

First Order KKT conditions:
[L(X, u)=2Xx+y-u,=0

| |
u, (x-a) =0 | |
u,(-a-x) =0 l l
-a<x<a u, u, >0 q X o
Consider three cases:
e u>0, u=0 Upper bound is actives = a, y=-2a, y =0
e u=0, u>0 Lower bound is activex = -a, u=-2a, u =0
e u=u,=0 Neither bound is active, =0, u,=0, x=0

Second order conditiorfg*, u,, u, =0)
L (X, u¥) =2
pTL L (X*, u*)p=2(Ax)3>>0

38



Single Variable Example
of KKT Conditions - Revisited

Min -(x)2 s.t. -a<x<a,a>0 - X

ical
ERING

X* = #ais seen by inspection

Lagrange function :
L(X, u) = -¥ + u,(x-a) + u,(-a-x)

- — T Q

First Order KKT conditions: |
[L(X, u)=-2Xx+Yy-u,=0 I I
u, (x-a) =0

u,(-a-x) =0
-a<x<a U, U, >0 o)

Consider three cases:
e u>0, u=0 Upper bound is actives = a, y=2a, U, =
e u=0, u>0 Lower bound is activex = -a, u = 2a, U,
e u=u,=0 Neither bound is active, =0, u,= 0, X

Second order conditiorfg*, u,, u, =0)
L L (X, u*) = -2
pTL L (X*, u*) p =-2(4x)°< 0

39



Aﬁﬁ’é Interpretation of Second Order Conditions

For x =a or x = -a, we require the allowable ditean to satisfy the
active constraints exactly. Here, any point aloing allowable
direction, x* must remain at its bound.

For this problem, however, there are no nonzemwalble directions
that satisfy this condition. Consequently the sotuk* is defined
entirely by the active constraint. The condition:

p' L L (x*, u*,v’)p >0
for all allowable directions, sacuouslysatisfied - because there are
no allowable directions that satisfyg,(x*)"T p = 0. Hence sufficient
second order conditions are satisfied.

As we will see, sufficient second order conditians satisfied by linear
programs as well.

40



Aﬁﬁé Role of KKT Multipliers

Also known as: |
e Shadow Prices
 Dual Variables

. f(x)
e Lagrange Multipliers

Supposea In the constraint is increaseddor da
f(x*) = (a + da)?
and
[f(x*, a + 4da) - f(x*, a)]/da = 2a + Jda
df(x*)/da = 2a =y

41
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Special Cases of Nonlinear Programming

Linear Programming
Min cTx
s.t. Ax<b
Cx=d, x>0
Functions are attonvex[] global min.
Because of Linearity, can prove solution will
always lie at vertex of feasible region.

Simplex Method
- Start at vertex
- Move to adjacent vertex that offers most improvement
- Continue until no further improvement

Notes
1) LP has wide uses in planning, blending and scheduling
2) Canned programs widely available.

42



A% Linear Programming Example
ical
ERING

Simplex Method

Min -2x, - 3X, Min -2X; - 3%,
St 2X+X,<5 [ St 25X+ X,+X;=5
X1 % =0 X1 X1 %320
(add slack variable)

Now, definef = -2x, - 3x%, [J f+2x +3x,=0
Set x, X,=0, %=15 and form tableau

X, X, X3 f b X, %, nhonbasic

2 1 1 0 5 Xy basic

2 3 0 1 0

To decreasg increase X How much? sox> 0

X, X, X, f b
2 1 1 0 5
-4 0 -3 1 -15

f can no longer be dgcrease@pti mal

Underlined terms are -(reduced gradients); nonhesiables (X, x,), basic variable x

43



Quadratic Programming

Problem Min ax+ 1/2 X B x
Ax<b
Cx=d

1) Can be solved using LP-like techniques:
(Wolfe, 1959)
N Min 2j (zi+ + 7-)
S.t. a+Bx+Au+Cv=2z-27
AX-b+s=0
Cx-d=0
S,#z#,Z >0
{u;s =0}
with complicating conditions.

2) If B is positive definite, QP solution is unique.
If B is pos. semidefinite, optimum value is unique.

3) Other methods for solving QP’s (faster)
- Complementary Pivoting (Lemke)
- Range, Null Space methods (Gill, Murray). "



Aﬁﬁé Portfolio Planning Problem

Definitions
X. - fraction or amount invested in security |
r. (t) - (1 + rate of return) for investment i in ydar
L - average r(t) over T years, i.e.

Zr (t)

_M —I||—\

Max '
sit. inzl
X =0, etc

Note maximize average return, no accounting for risk.

45



Aﬁﬁé Portfolio Planning Problem

Definition of Risk - fluctuation of ri(t) over investment (or past) time period.

To minimize risk, minimize variance about portfolio mean (risk s&er

Variance/Covariance Matris

{g i = g = % Z(ri(t)'lui)(ri(t)'ﬂj)

Example 3 investments

L 0o 3 1 -0.5
1. IBM 1.3 s =01 2 0.4

2. GM 1.
3. Gold 1.08 0.5 0.4 t

46



i Portfolio Planning Problem - GAMS

SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)

4
5 OPTION LIMROW=0;
6 OPTION LIMXOL=0;
7
8
9

VARIABLES IBM, GM, GOLD, OBJQP, OBJLP;
10 EQUATIONS E1,E2,QP,LP;
12 LP.. OBJLP =E= 1.3*IBM + 1.2*GM + 1.08*GOLD;

14 QP.. OBJQP =E= 3*IBM**2 + 2*IBM*GM - IBM*GOLD
15 + 2*GM**2 - 0.8*GM*GOLD + GOLD**2;

17 E1..1.3*IBM + 1.2*GM + 1.08*GOLD =G= 1.15;
19 E2.. IBM + GM + GOLD =E=1;

21 IBM.LO =0,

22 IBM.UP =0.75;

23 GM.LO =0,

24 GM.UP =0.75;

25 GOLD.LO =0,

26 GOLD.UP =0.75;

28 MODEL PORTQP/QP,E1,E2/;

30 MODEL PORTLP/LP,E2/,

32 SOLVE PORTLP USING LP MAXIMIZING OBJLP;

34 SOLVE PORTQP USING NLP MINIMIZING OBJQP;



w Portfolio Planning Problem - GAMS

SOLVE SUMMARY

**** MODEL STATUS 1 OPTIMAL

**** OBJECTIVE VALUE 1.2750

RESOURCE USAGE, LIMIT 1.270 1000.000
ITERATION COUNT, LIMIT 1 1000

BDM - LP VERSION 1.01

A. Brooke, A. Drud, and A. Meeraus,
Analytic Support Unit,

Development Research Department,
World Bank,

Washington D.C. 20433, U.S.A.

Estimate work space needed -- 33 Kb
Work space allocated -- 231 Kb
EXIT - - OPTIMAL SOLUTION FOUND.
LOWER LEVEL UPPER MARGINAL
---- EQULP . . . 1.000
---- EQUE2 1.000 1.000 1.000 1.200
LOWER LEVEL UPPER MARGINAL
---- VAR IBM 0.750 0.750 0.100
---- VAR GM . 0.250 0.750
---- VAR GOLD . . 0.750 -0.120
---- VAR OBJLP -INF 1.275 +INF
**** REPORT SUMMARY : 0 NONOPT

0 INFEASIBLE

0 UNBOUNDED
SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)
Model Statistics SOLVE PORTQP USING NLP FROMNH 34
MODEL STATISTICS

BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 3
BLOCKS OF VARIABLES 4 SINGLE VARIABLES 4
NON ZERO ELEMENTS 10 NON LINEAR N-Z 3
DERIVITIVE POOL 8 CONSTANT POOL 3
CODE LENGTH 95

GENERATION TIME = 2.360 SECONDS

EXECUTION TIME = 3.510 SECONDS
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Portfolio Planning Problem -

SOLVE SUMMARY

MODEL PORTLP OBJECTIVE OBJLP
TYPE LP DIRECTION MAXIMIZE
SOLVER MINOS5 FROM LINE 34
***&* SOLVER STATUS 1 NORMAL COMPLETION
& MODEL STATUS 2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE 0.4210
RESOURCE USAGE, LIMIT 3.129 1000.000
ITERATION COUNT, LIMIT 3 1000
EVALUATION ERRORS 0 0
MINOS 53 (Nov. 1990) Ver: 225-DOS-02
B.A. Murtagh, University of New South Wales

and

P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright
Systems Optimization Laboratory, Stanford Universit

EXIT - - OPTIMAL SOLUTION FOUND

MAJOR ITNS, LIMIT 1
FUNOBJ, FUNCON CALLS 8
SUPERBASICS 1
INTERPRETER USAGE 21
NORM RG / NORM PI 3.732E-17
LOWER LEVEL UPPER
---- EQUQP .
---- EQUE1 1.150 1.150 +INF
---- EQUE2 1.000 1.000 1.000
LOWER LEVEL UPPER
---- VAR IBM . 0.183 0.750
---- VAR GM . 0.248 0.750
---- VARGOLD . 0.569 0.750
---- VAROBJILP -INF 1.421 +INF
ok REPORT SUMMARY 0  NONOPT

0 INFEASIBLE

0 UNBOUNDED

0 ERRORS
SIMPLE PORTFOLIO INVESTMENT PROBLEM (MARKOWITZ)
Model Statistics SOLVE PORTQP USING NLP FROM\NH 34
EXECUTION TIME = 1.090 SECONDS

GAMS

MARGINAL

1.000
1.216
-0.556

MARGINAL

EPS
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Aﬁﬁé Algorithms for Constrained Problems

Motivation: Build on unconstrained methods wherever possible.

Classification of Methods:

*Reduced Gradient Methods - (with Restoration) GRG2, CONOPT
* Reduced Gradient Methods - (without Restoration) MINOS

e Successive Quadratic Programming - generic implementations

* Penalty Functions - popular in 1970s, but fell into disfavor. Barrier
Methods have been developed recently and are again popular.

e Successive Linear Programming - only useful for "mostly linear"
problems

We will concentrate on algorithms for first four classes.

Evaluation: Compare performance on "typical problem," cite experience
on process problems.
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Representative Constrained Problem
(Hughes, 1981)

09F

0.8 F

0.7 F

06|

05

0.4

03r

0.2F

0.1F

01 02 03 04 05 06 07 03 092 1 11

Min f(X, X;) = a exp(f3)

gl = (x+0.1¢[x2+2(1-%,)(1-2x%)] - 0.16<0
g2 = (% -0.3¢+ (x,- 0.3F-0.16<0

x* = [0.6335, 0.3465] f(x*) = -4.8380
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A%Reduced Gradient Method with Restoration

(GRG2/CONOPT)
Min  f(X) Min f(2)
s.t. g(x) + s =0 (add slack variable) [] s.t. h(z) =0
c(x)=0 a<z<b

a<x<b,s>0

e Partition variables into:
Z, - dependent or baswariables
Z,, - honbasiovariables, fixed at a bound
Z - iIndependent or superbasic variables
Analogy to linear programming. Superbasics requaag if nonlinear problem
» Solve unconstrained problem in space of superbasiables.
Letz' = [z z,"z,"] optimize wrtzgwith h(z, z,, ) =0
Calculateconstrained derivativer reduced gradienivrt z.
Dependent variables azg /R™
*Nonbasic variableg (temporarily) fixed
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Definition of Reduced Gradient

df _ dzB of
dz az sz 0z,
Becausd(z) = 0,wehave

Oon O Oonh O
dh_FD dz, + DdZB 0

dz, __Coh [ah E o, no, i

dz. 9z (197 ]
Thisleadsto:

-9 o, npo, 2

dz, 0z St T 0z,

*By remaining feasible alwayB(z) = 0, a<z <b, one can apply an
unconstrained algorithm (quasi-Newton) usidfjdz)

*Solve problem in reduced spacezgbariables
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Aﬁﬁ; Example of Reduced Gradient

Min  x° - 2x,
st. 3x +4x,=24
Oh" =[3 4], Of T =[2x, - 2]

Let z, = X, Zg = X,

di _ of _ h[D h]l of
dz, 0z 0z,
df

o =2x - 3[4 (2)=2x,+3/2

If OhTis (m x n);0zh"™ is m x (n-m);0zh" is (m x m)

(df/dz) is the change ifialong constraint direction per unit change dn z
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A% Sketch of GRG Algorithm

1. Initialize problem and obtain a feasible point&t z

. At feasible point, partition variableg into z, Zg, Z
Calculate reduced gradieldf/dz)

Evaluate search direction fzg d = B1(df/dz)

Perform a line search.

e Findall(0,1] with z5:= z*+ ad

e Solve forh(z+ ad,z;,z) =0

+ Iff(zf+ ad, 7, 7)) <z z. 7).
setzf*1=zX+ ad, ki= k+1

6. If ||(df/dz)||< ¢, Stop. Else, go to 2.

g A~ D



GRG Algorithm Properties

1. GRG2 has been implemented on PC’s as GINO arerysreliable and
robust. It is also the optimization solver in MS EEL.

2. CONOPT is implemented in GAMS, AIMMS and AMPL

3. GRG2 uses Q-N for small problems but can switctonjugate
gradients if problem gets large. CONOPT uses eseaind derivatives.

4. Convergence of h{zz;, z,) = 0 can get vergxpensive becauséh is
required

5. Safeguards can be added so that restoratigng9tean be dropped
and efficiency increases.

Representative Constrained Probl8tarting Point [0.8, 0.2]
 GINO Results 14 iterations to [}f(x*)|| < 10°
e CONOPT Results 7 iterations to [Jf(x*)|| < 10° from feasible point.
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Aﬁﬁé Reduced Gradient Method without Restoration
(MINOS/Augmented)

Motivation: Efficient algorithms Strategy (Robinson, Murtagh & Saunders)
are available that solve linearly 1. Partitionvariables into basic, nonbasic

constrained optimization variables and superbasic variahles.
problems (MINOS): 2. Linearizeactive constraints at
Dkz = ¢
Min f(X) 3. Lety=1(z) +Vv'h(z) + 5(h™h)
s.t. Ax<b (Augmented Lagrange),
Cx=d 4. Solve linearly constrained problem:
Min W (z)
Extend to nonlinear problems, S.t. Dz=c
through successive linearization a<z<b
using reduced gradients to gt
Develop major iterations 5. Setk=k+1, goto 3.
(linearizations) and minor 6. Algorithm terminates when no

iterations (GRG solutions) . movement between steps 3) and 4).
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MINOS/Augmented Notes

1. MINOS has been implemented very efficiently to take care of
linearity. It becomes LP Simplex method if problem is totally
linear. Also, very efficient matrix routines.

2. No restoration takes place, nonlinear constrainteeflexted in

¢Az) during step 3). MINOS is more efficient than GRG.

Major iterations (steps 3) - 4)) converge at a quadraiiec

Reduced gradient methods are complicated, monolithic codes:

hard to integrate efficiently into modeling software.

W

Representative Constrained Probler@tarting Point [0.8, 0.2]
MINOS Results: 4 major iterations, 11 function calls
to |[Zf(x*)|| < 10°
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Aﬁﬁé Successive Quadratic Programming (SQP)

Motivation:

« Take KKT conditions, expand in Taylor series abmutent point.
« Take Newton step (QP) to determine next point.

Derivation— KKT Conditions
LIL (X*, u*, v¥) = LF(x*) + Loa(x*) u* + Lh(x*) v: =0
h(x*) =0
ga(x*) = 0, whereg, are the activeonstraints

Newton- Step
[] L k’ k, kY[
%]xx-lr— DSA ] h[| %XE %] (X u, Vv )[

g oUmuO= -+ 6 ) ¢

ThT 0 08wl H  hxY) E

Requirements:

 [] L must be calculated and should be ‘regular’
scorrect active sed,

egood estimates af, ¥

59



Aﬁ?ﬁ SQP Chronology

1. Wilson (1963)
- active set can be determined by solving QP:
Min [f(x)'d+1/2d [, L(X, U, V) d
d
s.t. g(x) + Lh(x)Td<0
h(x) + h(x)"d=0

2. Han (1976), (1977), Powell (1977), (1978)
- approximate’/,L using a positive definite quasi-Newton update (BFGS
- use a line search to converge from poor startmgts.

Notes
- Similar methods were derived using penalty (nagrbage) functions.
- Method converges quickly; very few function evdioas.
- Not well suited to large problems (full space updased).
For n > 100, say, use reduced space methods (NP §).
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Aﬁﬁé Elements of SQP — Hessian Approximation

What about/AxL?
* need to get second derivatives fier), g(x), h(x).

* need to estimate multiplierst, %, /,L may not be positive
semidefinite

[0 Approximate/Z, L (X<, U, ) by BX, a symmetric positive

definite matrix.
.

gt = gk 4 Y B'SSB
T k
S sB'S
BFGS Formula S = X1 - XK
y = LXK gL Wk D) - O (XK ikt D
» second derivatives approximated by change in gradients
e positive definite B ensuresinique QP solution
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Aﬁﬁé Elements of SQP — Search Directions

How do we obtain search directions?

. Form QP and let QP determine constraint activity
. At each iterationk, solve:
Min [F(X¥) Td + 1/2 d BXd
d

s.t. g + g Td<0
h(X)+ h(X)Td=0

Convergence from poor starting points
« As with Newtor's method, choose a (stepsize) to ensure progress
toward optimum:;  x<*1=xk+ ad.
* O Ischosen by making sure a merit functionis decreased at each
Iteration.
Exact Penalty Function
Yx) = 1(x) + [ 2 max (0, gx)) + 2 h; (x)]]
H>max{| |, | v}
Augmented L agrange Function
YX) = f(x) + uTg(x) + vTh(x)
+ 012 {2 (hy ()P + Zmax (0, g())
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Newton-Like Properties for SQP

Fast Local Convergence

B = OxL Quadratic
[IxL is p.d and B is Q-N 1 step Superlinear
B is Q-N updatel IxL not p.d 2 step Superlinear

Enforce Global Convergence

Ensure decrease of merit function by takong 1
Trust region adaptations provide a stronger guaeaot global
convergence - but harder to implement.
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W N = O

Basic SQP Algorithm

Guess®, SetBY =1 (ldentity). Evaluatef(x®), g(>®) andh(>).

At XK evaluate f(x¥), Lh(X), Lh(xX).
If K > 0, updatdBx using the BFGS Formula.
Solve Min, [f(x)Td + 1/2 d'Bxd
s.t. g + Lg(X¥)'d <0
h(X) + Zh(X)'d =0
If KKT error less than tolerancf{L(x*)|| < &, |h(x*)|| < €,

llg(x*).,]|< €. STOP, else go to 4.

. Finda so that 0 <a < 1 andy(xk+ ad) < ¢(x¥) sufficiently

(Each trial requires evaluation f§k), g(x)andh(x)).

. Xl=xk+ gd. Setk =k + K50 to 2.
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Problems with SQP

Nonsmooth Functions Reformulate
lll-conditioning- Proper scaling

Poor Starting Points — Trust Regions can help
Inconsistent Constraint Linearizations

- Can lead to infeasible G

X2

Min X,
\ st. 1+%-(%)?<0
/ " 1-x-(x)?<0
/ ' XZZ']./Z
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X2

12

1.0 7

0.8 7

0.6 7

04 7

0.2 7

0.0

SQP Test Problem

|

0.0 0.2 04 , 06 0.8 1.0 1.2

Min x2
St. X%+2x%-x.3<0
X, + 2 (1-%)? - (1-x)3<0
x* =[0.5, 0.375].
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B. sor

1.0

0.8 7

X2

0.6 7

04 7

0.2 7

00 7

Test Problem — First Iteration

00 ' 02 ba X'll o6 | 1 Toh ! 1.0 1..2

Start from the origirfx, = [0, 0] ) with B =1, form:

Min d,+1/2 (d?+ d,?)
st. d¢=>0
d+d,>1
d =11, O]". with ¢, =0 andy,= 1.
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10 1

0.8 7

X2

0.6 7

04 7

02 7

0.0

Aﬁﬁ‘é SQP Test Problem — Second Iteration

0.0 | d; | d4 1 d6 | ds | Lo
Fromx, = [0.5, 0] with B1 = |
(no update from BFGS possible), form:

Min d,+1/2 (d?+ d,?)

st. -1.25d-d,+0.375<0
1.25d-d,+0.375<0

d =[O0, 0.375] with 1, = 0.5 andy, = 0.5
x* =[0.5, 0.375] is optimal

12
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_ Representative Constrained Problem
SQP Convergence Path

(HR=NC

(IR=N

0.7 F

06|

0ar

0.4F

03F

02r

01k

III.I“I III.IE III.IH D.Id III.IE III.IE III.IF" III.IB III.IEI 1I 1.11
Starting PoirfD.8, 0.2] - starting fronBo = | and staying in bounds
and linearized constraints; converges in 8 iteratiton| Jf(x*)|| <10°

69



ical
ERING

Barrier Methods for Large-Scale
Nonlinear Programming

I>‘<rD]DI[‘] f (X) Can generalize for
Original Formulation ~ S.t ¢(X) =0 a<x<b
x=0

Barrier Approach YXEDID ¢#(X) = ]c(X)—,Ll;”]Xi

s.t ¢(x)=0

JAs 4 2 0, x*(u) = x* Fiacco and McCormick (1968)
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[J Newton Directions (KKT System)

f (X)) + A(X)A -V

[1 Reducing the System

A

W+2 A

0

s

Aﬁﬁé Solution of the Barrier Problem

D,

C

IPOPT Code — www.coin -or.org

= 0
XVe —ue = 0
c(x) =0
]
d, =X e-v-X"Vd

>=XV



Aﬁﬁé Global Convergence of Newton-based
Barrier Solvers

Merit Function

Exact Penalty:  P(x,n) = f(x) + 7 [|c(X)]

Aug’d Lagrangianli*(x, A, n) = f(x) + ATc(x) + 17 ||c(X)||?
Assess Search Direction (e.g., from IPOPT)

Line Search — choosestepsizar to give sufficient decrease of merit function
using a ‘step to the boundary’ rule with-0.99.

foraU@©O,a], x.,, =% +tad,
x+ad =@1-7)x >0

Vi, =V, +tad,2@0-1)v, >0
A =Ata (A, —A)

- How do we balanceap(x) andc(x) with 1?
- Is this approach globally convergent? Will it shé fast?
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Aﬁﬁé Global Convergence Failure

(Wachter and B., 2000)

Min f (X)

1
, St. X, - X, ——=0

X | 1T 2
i ()(1)2_)(2_1:0

X5, X320

Newton-type line search ‘stalls’
even though descent directions
exist

X

AX)Td, +c(x*)=0

X“+ad >0

Remedies:

Composite Step Trust Region
(Byrd et al.)

*Filter Line Search Methods 73



Aﬁ Line Search Filter Method

Store (¢x, 6«) at allowed iterates

Allow progress if trial point is
acceptable to filter with 8 margin

If switching condition
a[-0¢@ d]? 2 9[6,]°,a>2b>2

Is satisfied, only an Armijo line
search is required on ¢

If insufficient progress on stepsize,

evoke restoration phase to reduce 0.

Global convergence and superlinear
local convergence proved (with
second order correction)

6(x) = [lc()ll
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Implementation Details

Modify KKT (full space) matrix if nonsingular

W43, 45 A
[] []
[ ] AI _52|D

9, - Correct inertia to guarantee descent direction
d, - Deal with rank deficient A,

KKT matrix factored by MA27

Feasibility restoration phase

Min [|c(x) ]} + 11X =%, |l
X < % <X,

Apply Exact Penalty Formulation

Exploit same structure/algorithm to reduce infeasibility
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Options
Line Search Strategies

- [, exact penalty merit function

- augmented Lagrangian
function

- Filter method (coopted from
Fletcher and Leyffer)

Hessian Calculation

- BFGS (reduced space)

- SR1 (reduced space)

- Exact full Hessian (direct)

- Exact reduced Hessian (direct)
- Preconditioned CG

i Details of IPOPT Algorithm

Comparison

34 COPS Problems

(600 - 160 000 variables)
486 CUTE Problems

(2 — 50 000 varicoles)
56 MITT Problems

(12097 — 99998 variables)

Performance Measure

- rp,l = (#i'l'eer)/ (#iTerp, min)

- P(1) = fraction of problems
with IogQ(rp, D<T
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A@ IPOPT Comparison with KNITRO and

) CPU time (COPS)
CPU time (CUTE) ; ;
T T L — IPOPT ||
1k — IPOPT 1| 1 — KNITRO
— KNITRO — LoQo
— LOQO
0.9 0.9+
0.8+
0.7+
0.6
[=] |
< |
=05 —
|
|
0.4 ‘\P‘
.
0.3 I
]
0.2 B 02 |
0.1 E 0.1+
O Il Il Il Il Il Il Il 0 Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

CPU time (MITT)

«|POPT has better performance,
robustness on CUTE, MITT and

— | COPS problem sets
=] eSimilar results appear with iteration
] counts

Can be downloaded from
http://www.coin-or.org

0.2

*See links for additional information

0.1r-




Aﬁﬁ’é Recommendations for Constrained Optimization

1. Best current algorithms
. GRG 2/CONOPT

. MINOS
. SQP
- IPOPT

2. GRG 2 (or CONOPT)s generally slower, but is robust. Use with highly
nonlinear functions. Solver in Excel!

3. For small problems (# 100) with nonlinear constraints, use SQP

4. For large problems @g1100) with mostly linear constraints, use MINOS
==> Difficulty with many nonlinearities

Fewer Function SQF P MINOS Tailored Linear

Evaluations - CONOPT  Algebra

Small, Nonlinear ProblemsSQP solves QB, not LCNLFP's, fewer function calls.

Large, Mostly Linear Problems - MINOS performs sparse constraint decomposition.

Works efficiently in reduced space if function calls are cheap!

Exploit Both Features IPOPT takes advantages of few function evaluations and large-
scale linear algebra, but requires exact second derivatives
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Aﬁﬁé Available Software for Constrained
Optimization

SOQP Routines

HSL, NaG and IMSL (NLPQL) Routines

NPSOL — Stanford Systems Optimization Lab

SNOPT - Stanford Systems Optimization Lab (rSQP dised later)
IPOPT — http://www.coin-or.org

GAM S Programs
CONOPT - Generalized Reduced Gradient method wgtoration

MINQOS - Generalized Reduced Gradient method withesitoration

A student version of GAMS is now available frosm@ACHE office. The cost for this package
including Process Design Case Students, GAMS: AdJSsaide, and GAMS - The Solver Manuals,
and a CD-ROM is $65 per CACHE supporting departseanid $100 per non-CACHE supporting
departments and individuals. To order please cote@tandard order form and fax or mail to
CACHE Corporation. More information can be foundhatp://www.che.utexas.edu/cache/gams.html

M S Excel
Solver uses Generalized Reduced Gradient methddrestoration
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1)

2)

3)

4)

5)

6)

Aﬁg Rules for Formulating Nonlinear Programs

Avoid overflows and undefined terms, (do not divide, take logs, etc.)
eg. X+ty-Inz=0=> x+y-u=0

expu-z=0
If constraints must alwayse enforced, make sure they are linear or bounds.
e.qg. vixy-21”2=3 => vu =3

uw-(xy-z9=0u>0
Exploit linear constraints as much as possible, e.g. masxbala
xL+yV=Fz =2 l.+v, =f

Use bounds and constraints to enforce characteristic solutions.
e.g. a<x<b, g(x)<0

to isolate correct root d¢f (x) = O.
Exploit globalproperties when possibility exists. Convex (linear equations?)
Linear Program? Quadratic Prograi@eometric Program?
Exploit problem structure when possible.
e.g. Min [Tx - 3Ty]
st. xT+y-Py=5
4x - 3Ty + Tx=7
0<T<1
(If Tis fixedd solve LP) O putT in outer optimization loop.
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Process Optimization
Problem Definition and Formulation

State of Nature and Problem Premises

/ \

Restrictions: Physical, Legall Desired Objective: Yield
Economic, Political, etc. ' '

Economic, Capacity, etc.

Decisions

Mathematical Modeling and Algorithmic Solution

Process Model Equations

/\

|Cons’rroin’rs | Objective Function

Additional Variables




A% Large Scale NLP Algorithms

Motivation: Improvement of Successive Quadratic Programming
as Cornerstone Algorithm

=» process optimization for design, control and operations

Evolution of NLP Solvers:
SQP — rSQP —— IPOPT

e
y 3

rSQP++

1999- : Simultaneous dynamic optimization
over 1 000 000 variables and constraints

Current: Tailor structure, architecture and problems
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Modular Simulation M ode
Physical Relation to Process

In Out

Aﬁﬁé Flowsheet Optimization Problems - Introduction

- Intuitive to Process Engineer
- Unit equations solved internally
- tailor-made procedures.

«Convergence Procedures - for simple flowsheetsenattentified

from flowsheet structure

«Convergence "mimics" startup.

*Debugging flowsheets on "physical” grounds
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Aﬁﬁé Flowsheet Optimization Problems - Features

Specify # trays reflux ratio, but would like to specify
overhead comp. ==> Control loop -Solve Iteratively

/l: Design Specifications

— 1S

Nested Recycles Hard to Handle , 4
Best Convergence Procedure? ]\ T J

*Frequent block evaluation can be expensive
«Slow algorithms applied to flowsheet loops.
*NLP methods are good at breaking looks
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Aﬁﬁé Chronology in Process Optimization

Sim. Time Equiv.
1. Early Work - Black Box Approaches

Friedman and Pinder (1972) 75-150
Gaddy and co-workers (1977) 300

2. Transition - more accurate gradients
Parker and Hughes (1981) 64
Biegler and Hughes (1981) 13

3. Infeasible Path Strategy for Modular Simulators
Biegler and Hughes (1982) <10

Chen and Stadtherr (1985)
Kaijaluoto et al. (1985)
and many more
4. Equation Based Process Optimization

Westerberg et al. (1983) <5
Shewchuk (1985) 2
DMO, NOVA, RTOPT, etc. (1990s) 1-2

Process optimization should be as cheap and easy as process simulation
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Process Simulators with Optimization
Capabilities (using SQP)

Aspen Custom Modeler (ACM)

Aspen/Plus

gProms
Hysim/Hysys

Massbal

Optisim

Pro/ll

ProSim

ROMeo

VTPLAN
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e

/h(y) b 0

Aﬁﬁé Simulation and Optimization of Flowsheets

2

— 4 — 6

b

w(y)

y

Min f(x), s.t. g(xXx0
For single degree of freedom:

» work in space defined by curve below.
e requires repeated (expensive) recycle convergence

f(x, y(x))
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T, wix})

Expanded Region with Feasible Path

gife, v =<0

g=ix, vi=0
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gi(x, yv)=0

"Black Box" Optimization Approach

» Vertical steps are expensive (flowsheet convergence)
» Generally no connection between x and y.

« Can have "noisy" derivatives for gradient optimization.
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gi{x, y) =0

SOP - Infeasible Path Approach
* solve and optimize simultaneously in x and y
« extended Newton method
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Aﬁﬁé Optimization Capability for Modular Simulators
(FLOWTRAN, Aspen/Plus, Pro/ll, HySys)

Architecture
- Replace convergence with optimization block
- Problem definition needed (in-line FORTRAN)

- Executive, preprocessor, modules intact.

Examples
1. Single Unit and Acyclic Optimization
- Distillation columns & sequences

2. "Conventional" Process Optimization
- Monochlorobenzene process
- NH3 synthesis

3. Complicated Recycles & Control Loops
- Cavett problem
- Variations of above
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it OQptimization of Monochlorobenzene Process

ﬁ Y e

80°F
-

A-1
ABSORBER @
PHYSICAL PROPERTY OPTIONS G Thet?eTﬂfCa;’lSStages) AN S11
Cavett Vapor Pressure 32 psia - -
Redlich-Kwong Vapor Fugacity S05 25 o ene
Corrected Liquid Fugacity g S04 N\ psia of MCB
Ideal Solution Activity Coefficient e () s07 S10 D-1
OPT (SCOPT) OPTIMIZER 37psia 210F —- PISTILLATION
Optimal Solution Found After 4 Iterations B HC1 (20 Theoretical Stages)
Kuhn-Tucker Error 0.29616E-05 s09 4
Allowable Kuhn-Tucker Error 0.19826E-04 03 08 w Steam
Objective Function -0.98259 H-1 w1 ) {D 12,000
U =100 T-1 s1o Btu/hr- ft
Feed Flow Rates M aximize TREATER‘ 90 ';_2

Optimization Variables LB Moles/Hr { - Profit < U =100
32.006 0.38578 200.00 120.00 He e o S1X Yater
Tear Variables MCB 50 - (9 s15 "y ‘a S
0.10601E-19 13.064 79.229 120.00 50.000 Bl %F MCB

Tear VariableErrors (Calculated Minus Assumed)
-0.10601E-19 0.72209E-06

-0.36563E-04 0.00000E+00 0.00000E+00
-Results of infeasible path optimization

-Simultaneous optimization and conver gence of tear streams.
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Ammonia Process Optimization

%
=] 25

®
Hydrogen Feed Nitrogen Fe
N2 5.2% 99.8% ﬂ
H2 94.0%
CH4 0.79 % 0.02% —
Ar 0.01% ®'7// ' " @, ©,

]

Product

Hydrogen and Nitrogen feed are mixed, compresseticarmbined
with a recycle stream and heated to reactor terypereReaction
occurs in a multibed reactor (modeled here as ailil@mgum reactor) to
partially convert the stream to ammonia. The raaefituent is cooled
and product is separated using two flash tanks m#rcooling. Liquid
from the second stage is flashed at low pressweld high purity
NH, product. Vapor from the two stage flash forms #®ycle and is
recompressed.

93



i Ammonia Process Optimization

Optimization Problem Perfor mance Char acter stics
Max {Total Profit @ 15% over five years} *5 SQP iterations.
« 2.2 base point simulations.
s.t.e 105 t%ﬁzs'\;':féyé-alance « objective function improves by
» No Liquid in Compressors $29'_66 x 1010 $24.93 x 1@
« 1.8< H2/N2<3.5 » difficult to converge flowsheet
* Treact= 10000 F at starting point

NH3 purgedk 4.5 Ib mol/hr
NH3 Product Purity- 99.9 %
Tear Equations

Optimum Starting point
Objective Function($19 24.9286 20.659
1. Inlet temp. reactork) 400 400
2. Inlet temp. 1st flasi?i) 65 65
3. Inlet temp. 2nd flasi?k) 35 35
4. Inlet temp. rec. compK) 80.52 107
5. Purge fraction (%) 0.0085 0.01
6. Reactor Press. (psia) 2163.5 2000
7.Feed 1 (Ib mol/hr) 2629.7 2632.0
8. Feed 2 (Ib mal/hr) 691.78 691.4 94




How accurate should gradients be for optimization?

ical
ERING

Recoqgnizing True Solution
» KKT conditions and Reduced Gradients determine salution
» Derivative Errors will lead to wrong solutions!

Performance of Algorithms
Constrained NLP algorithms are gradient based
(SQP, Conopt, GRG2, MINOS, etc.)
Global and Superlinear convergence theory assunoesade gradients

Worst Case Examplg€arter, 1991)
Newton’s Method generates aacent directiorand failsfor any ¢!

Min f (x) = X' AX
_[E+1lle e-1/eO
_%—1/5 5+1/5%
% =M1 1" Of(x)=€X%
9(%) =0f (%) +O(¢)
d=-A"g(x)
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A@ Implementation of Analytic Derivatives
ERING

parameters, p exit variables, s

/'

Module Equations y

R —

c(v,Xx,s,p,y)=0

dy/dx
Sensitivity 335%
Equations ds/dp

Automatic Differentiation Tools

JAKE-F, limited to a subset of FORTRAN (Hillstrom, 1982)

DAPRE, which has been developed for use with the NAG library (Pryce, Davis, 1987)
ADOL-C, implemented using operator overloading features of C++ (Griewank, 1990)
ADIFOR, (Bischof et al, 1992) uses source transformation approach FORTRAN code .
TAPENADE, web-based source transformation for FORTRAN code

Relative effort needed to calculate gradients is not n+1 but about 3to 5
(Wolfe, Griewank)
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—— S3

1 S2
—»S Mixer Flash
P
E
£—\

S6

S5 S4

» S7

Ratio

A@Flash Recycle Optimization
"l (2 decisions + 7 tear variables)

5 2 3 1/2
Max S3(A) *S3(B) - S3(A) - S3(C) + S3(D) - (S3(E))

CPU Seconds (V'S 3200)

Reactor
A A

Ammonia Process Optimization
(9 decisions and 6 tear variables)

CPU Seconds (VS 3200)




Large-Scale SQP

Min f(2) Min (297 d + 1/2 d" WK d
s.t. ¢(2)=0 S.t. clg+ (ATd =0

7 <2<z, 7 <7+ d <z,
Characteristics

* Many equations and variables 100 000)
 Many bounds and inequalities 100 000)

Few degrees of freedom (10 - 100)
Steady state flowsheet optimization
Real-time optimization

Parameter estimation

Many degrees of freedorr (.000)
Dynamic optimization (optimal control, MPC)
State estimation and data reconciliation
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A%Few degrees of freedom => reduced space SQP (rSQP)

« Take advantage of sparsity é=/1(x)

e projectW into space of active (or equality constraints)

e curvature (second derivative) information only dee in space of degrees of
freedom

« second derivatives can be applied or approximaitpositive curvature
(e.g., BFGS)

« use dual space QP solvers

+ easy to implement with existing sparse solveid nigthods and line search
techniques

+ exploits'natural assignment' of dependent and decision variables (some
decomposition steps are 'free)

+ does not require second derivatives

- reduced space matrices are dense

- may be dependent on variable partitioning

- can be very expensive for many degrees of freedom
- can be expensive if many QP bounds
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Aﬁﬁé Reduced space SQP (rSQP)

Range and Null Space Decomposition

Assume no active bounds, QP problem witlariables anan

constraints becomes:

W AOdO
AT 0 L

T (X¥)

Ho(x)

]

]

 Define reduced space basds/ 77 "* (-mwith (AX)TZk=0
* Define basis for remaining spag@ /7 "xm [YkZK] /] nx"

IS nonsingular.

e Letd = Ykd, + ZXd, to rewrite:

k zk]T OLIWK AT

v 7 o

5 0 |%'§N‘T O 0 |
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Reduced space SQP (rSQP)
Range and Null Space Decomposition

M YkTAk Y|:| B(kTDf (X )I:I

kn/ K k D_
VTVY Wz TOf ()
EAkYk 0 0 +D E c(x) H

(ATY) d, =-c(x¥) is squareg, determined from bottom row.
CancelY"WYandY™WZ (unimportant asl,, d, --> 0)

(YTA) A =-YT[F(xK), A can be determined by first order estimate
Calculate or approximater= Z"'WY d, solveZ™WZ d, =-ZT [ f(xk)-w
Compute total ste = YdY +Z dZ
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Reduced space SQP (rSQP) Interpretation

Range and Null Space Decomposition

» SQP step (d) operates in a higher dimension

« Satisfy constraints using range space to getd

e Solve small QP in null space to get d

* In general, same convergence properties as SQP.
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Aﬁﬁé Choice of Decomposition Bases

1. Apply QRfactorization toA. Leads to dense but well-conditiong&ndZ.

A= Q[b gl \ Z]
2. Partition variables into decisiongnd dependents Create
orthogonalY andZ with embedded identity matrice&'¢ = 0, Y'Z=0).
A =0 Oc =[N C]
ol O, INCcT'O

Y =
FonE TP

3. Coordinate Basis - sardeas aboveY'= [0 | ]

« Bases use gradient information already calculated.
« Adapt decomposition to QP step
 Theoretically same rate of convergence as orighGaiP.

« Coordinate basis can be sensitive to choiagafdv. Orthogonal is not.

« Need consistent initial point and nonsingularautomatic generation
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Aﬁﬁé rSQP Algorithm

Choose starting point.
At iterationk, evaluate functiongx¥), c(X) and their gradients.
Calculate basegandZ.
Solve for step din Range space from

(ATY) d, =-c(x¥)
Update projected Hessi8~ Z’'WZ (e.g. with BFGS)w, (e.g., zero)
6. Solve small QP for stagy in Null space.

Min (Z"Of (x*)+w*)"d, +1/2d,' B*d,
st. X <x“+Yd +Zd, <x,

> wnN e

o1

7. If error is less than tolerance stop. Else

8. Solve for multipliers using(YTA) A = -YT/f(x¥)

9. Calculate total stepl =Y d + Z dz.

10. Find step sizer and calculate new point,,, = X, +
11. Continue from step 2 with= k+1.
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ISQP Results: Computational Results for

General Nonlinear Problems
Vasantharajan et al (1990)

Problem Specifications MINOS Reduced SQP
(5.2)
N M ME | TIME| FUNC| TIME" FUNC
Q * END/LP
Ramsey 34 23 10 14 46 1.7 8
1.0/0.7
Chenery 44 39 20 26 g1 4.6 18
21725
Korcge 100 06 78 3.0 g 37 3
1.4/2.3
Camcge 2801 243 243 23.6 14 244 3
10.3/14.1
Ganges 3zT7 274 274 22.7 14 59.7 4
35.7/24.0

* CPU Seconds - VAX 6320
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r'SQP Results: Computational Results

for Process Problems
Vasantharajan et al (1990)

Prob. Specifications MINOS (5.2) Reduced SQP
N %I MEQ TIME* FUNC TIME* FUN.
(rSQP/LP)

Absorber 50 42 42
(a) 4.4 144 3.2 (2.1/1.1) 23
(b) 4.7 157 p.8 (1.6/1.2) 13
Distill'n
Tdeal 228 227 227
(a) 28.5 24 PB8.6 (9.6/29.0) 7
(b) 33.5 58 60.8 (17.2/52.6) 14
Distill’n
Nonideal 569 567 567
(1) 172.1 34 |130.1 (47.6/82.5) 14
(a) 432.1 362 144.9 (132.6/12.3) 47
(b) 855.3 745  P11.5 (147.3/64.2) 49
(c)
Distill'n
Nonideal Q77 975 075
(2) (F) (F) 230.6 (83.1/147.5) 0
(a) 5200+ 162 PB22.1 (296.4/25.7) | 26
(b) (F) () k667 (323/143.7) 34
(c)

* (CPU Seconds - VAX 6320

+ MINOS (5.1)

(F) Failed
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Comparison of SQP and rSQP

Coupled Distillation Example - 5000 Equations
Decision Variables - boilup rate, reflux ratio

Method CPU Time Annual Savings Comteen
1. SQP* 2 hr negligible Base Case
2. rSQP 15min. $ 42,000 Base Case
3. rSQP 15min. $ 84,000 Higher Feed Tray Location
4, rSQP 15min. $ 84,000 Column 2 Overhead to Storage
5. rSQP 15 min  $107,000 Cases 3 and 4 together

Q/k

5

-—

b

18

10

QU
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Aﬁ Real-time Optimization with rSQP
Sunoco Hydrocracker Fractionation Plant
(Bailey et al, 1993)

Existing process, optimization on-line at regulatervals: 17 hydrocarbon
components, 8 heat exchangers, absorber/stripPdraiss), debutanizer (20
trays), C3/C4 splitter (20 trays) and deisobutan(3a trays).

REACTOR EFFLUENT FROM
LOW PRESSURE SEPARATOR

L LIGHT

NAPHTHA

PREFLASH

[

REFORMER
NAPHTHA

RECYCLE
OIL

MAIN FRAC.

e squargparameter case fit the model to operating data.
 optimization to determine best operating conditions



Aﬁé Optimization Case Study Characteristics

Model consists of 2836 equality constraints and only ten independent variable
IS also reasonably sparse and contains 24123 nonzero Jacobian elements.

P= Zzqu+ ZZiQE T %Ziqpm -U
Ine T =)

Cases Considered:

1. Normal Base Case Operation

2. Simulate fouling by reducing the heat exchange coefficients for theahezer

3. Simulate fouling by reducing the heat exchange coefficients faesplit
feed/bottoms exchangers

4. Increase price for propane

5. Increase base price for gasoline together with an increttse actane credit
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Case Case 1 Case 2 Case 3 Case 4 Case 5 |
Base Base Fouling ! Fouling2 Changing Changing
Parameter Optimization Market 1 Market 2
Heat Exchange
Coefficient (TJ/doeC)
Debutanizer Feed/Bottoms ¢ s¢5.1074 6.565x10  5.000x10™ 2.000x10™ 6.565x107 6.565x107
Splitter Feed/Bottoms 1.030x107 1.030x107  5.000x10™4 2.000x107% 1.030x10™> 1.030x10™
Pricing
Propane (.‘I:'.-"'1113} 180 180 180 180 300 180
Gasoline Base Price (.‘B.-"'1113 300 300 300 300 300 350
Octane Credit ($/(RON 2.5 2.5 2.5 2.5 2.5 10
1113))
Profit 230968.96 239277.37 239267.57 236706.82 258913.28 370053.98
Change from base case - 8308.41 8298.61 5737.86 27944.32 139085.02
($/d. %) (3.6%) (3.6%) (2.5%) (12.1%) (60.2%)
Infeasible Initialization
MINOS
Tterations 5/275 9 /788 - - - -
(Major/Minor)
CPU Time (s) 182 5768 - - - -
rSQP
Tterations 5 20 12 24 7 12
CPU Time (s) 233 20.1 54.0 939 69 .8 54.2
Parameter Initialization
MINOS
Tterations n'a 12/132 14/120 16/ 156 117166 11/76
(Major/Minor)
CPU Time (s) n/a 462 408 1022 916 309
rSQP
Tterations n/a 13 8 18 11 10
CPU Time (s) n/a 58.8 43.8 74.4 52.5 49.7
Time rSQP o 12.8% 12.7% 10.7% 7.3% 5.7% 16.1%
Time MINOS (*0)
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W+ AX
;jAkT 0

[[d [

I, =~
A0

« work in full space of all variables
« second derivatives useful for objective and camsts
» use specialized large-scale Newton solver

Dp(x")

- o(x¥)

Aﬁﬁé Many degrees of freedom=> full space IPOPT

]
|

+ W=/ L (x,A) andA=/k(x) sparse, often structured
+ fast if many degrees of freedom present
+ no variable partitioning required

- second derivatives strongly desired
- Wis indefinite, requires complex stabilization
- requires specialized large-scale linear algebra
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Gasoline Blending

OIL TANKS

A

s,

Gasoline Blending Here

w
In.iia-ks FINAL PRODUCT TRUCKS
e AN B

e o

GAS STATIONS
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G

G

i

Supply tanks (i) | | Intermediatetanksj)

Final Product tanks (k)

------ flowrates and tank volumes

------ tank qualities

Model Formulation in AMPL

Aﬁﬁé Blending Problem & Model Formulation

max Z(chft,k_.zcifti)
t k [

S.t. f o =>»f  + =
%t,]k izt,lj Vt+],j Vt,j

ft,k _JZ f‘[’ Jk :0

f - o =
%q[,j t, jk Izch t,|j+qt+1jvt+],j qt,jvt,j

f - f. =
qt,kt,k JZqI,JLJk 0

O = =%k =%
min max

Vi SV SV
t,
Jmin = T Imax
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Small Multi-day Blending Models

Single Qualities

Haverly, C. 1978 (HM) Audet & Hansen 1998 (AHM)

L

—

F2 |

5 =

no. of CPU  normalized no. of CPU  normalized
iterations  objective (s CPU (s) iterations  objective (=) CPLI (s)
HM Day 1 (N= 13, M=8, 5=8§) HM Day 25 (N= 325, M= 200, 5= 200)
LANCELOT G2 100 .10 0.05 LANCELOT 67 1.00 = 104 6.75 4.04
WMIMNOS 15 400 0.04 0.13 MWMIMNOS ROl 6.40 =« 10° 1.21 3.83
SNOPT a6 400 0.02 0.01 SNOPT 739 1.00 = 104 0.59 0.27
KMNITRO 38 100 .14 0.06 KMNITRO = 1000 a a a
LO00 30 400 .10 0.08 LOQO 31 1.00 = 104 0.44 0.33
[POPT, exact 31 400 0.01 0.01 [POPT, exact 47 1.00 = 104 0.24 0.24
[POPT. L-BFGS 199 400 .08 0.08 IPOPT, L-BFGS 344 1.00 = 104 1.99 1.99
AHM Day 1 (N=21. M= 14, 5= 14) AHM Day 25 (N= 525, M= 300, 5= 350}

LANCELOT 112 49.2 .32 0.14 LANCELOT 149 8.13 =« 102 26.8 12.1
WIMNOS 29 0.00 0.01 0.03 MIMNOS 040 3.75 =« 102 2.92 0.23
SNOPT G0 49.2 0.01 =0.01 SNOPT 1473 1.23 = 10° 1.47 0.66
KMITRO 44 31.6 .15 0.07 KMNITRO 316 1.13 = 10* 17.5 T.88
LO00 28 49.2 0.10 0.08 LOQO a0 1.23 = 10 .80 0.60
[POPT, exact 23 492 0.01 0.01 [POPT, exact 44 1.23 = 10% 0.25 0.25
[POPT. L-BFGS 44 49.2 0.02 0.02 IPOPT, L-BEFGS 76 1.23 = 10 .98 0.98
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Honeywell Blending Model — Multiple Days
48 Qu

iLtFCC HAp FCoe  "HERS 7 Dehed Btine Dehed Btms  Dehak Ohd oSl ASlOcap 0 JBE b LMRHAT stream
- ) B B ) ) B ) ) THiS e g oS e ° ° ° ° - N ° ° ° - B ° LrHT diwider
- H T ° ) ° ) ° ) ) ° ) ) - ° - ° - ° ° ° divider - ° - - ) T lsomerate
J - U I N v s R v =3 I v =1 =1 . P TR
) ) ) - HSER Tk = ) ) ) ) ‘HiDbehdl: Tk LobDeHex Tk D=ORd TK1332 ) ) ) " b LEMap. ) B g T,

LIFCC The
a0yt a1 -
: :

Al Tk 142

TATEE

CiCA T DIsE

G

Qs
Etharnol T Etharnol Tk

no. of CPU normalized
iterations  objective (s) CPU (s)

[HM Day 1 (W= 2003, M= 1595, 5= 1449)
LANMCELOT 388 6.14 = 10! 1.17 = 10° 5.28 = 10°
MIMNOS 2238 6.14 = 10 5.24 = 10! 1.66 = 102
SMOPT a a a a
KMNITRO ar 1.00 2 102 1.58 = 102 7.11 = 100
LOOO b i) b b
IPOPT, exact 21 6.14 = 10 2.60 2.60
IPOPT. L-BEGS 52 6.14 = 10" 8.89 8.89

IHM Day 5 (N= 10 134, M= 8073, 5= 72309}
LANCELOT [ c c [
MINOS BOT5 1.39 2 105 3.08 » 102 074 =« 108
SMNOPT a a a a
KENITRO a a a a
LOO0O b b i b
[POPT, exact 39 1.30 = 105 1.06 = 10* 1.06 = 102
IPOPT. L-BFCGS 1000 1.39 % 105 2.01 » 105 201 » 10°

FIHT C4 (02
icd A0S nCAaY

no. of CPU normalized
iterations  objective (s) CPU (s)
[HM Day 10 (N= 20 826, M = 16 074, 5= 15 208)
LANCELOT c ¢ c c
MINOS a a a a
SNOPT a a a a
KNITRO a a a a
LOOO b b b b
[ IPOPT, exact 65 264 x 100 1L12x 100 112 x 10° |
[HM Day 15 (N= 31 743, M =25 560, 5= 23 073)
LANCELOT c ¢ c C
MINOS a a a a
SMNOPT a a a a
KNITRO a a a a
LOQO h b b h
| IPOPT, exact 110 4.15x 10¢ 7.25% 100 7.25 x 10¢ | 125




e Summary of Results — Dolan-More plot

Performance profile (iteration count)

1 \ 4 \ 4 \ 4 & m
0.9
0.8 -
0.7 \ DA DA
0.6
S
0.5 —e— IPOPT
—=— LOQO
0.4 KNITRO
SNOPT
0.3 4 —%— MINOS
—e— LANCELOT
0.2
0.1
0 | | | | |
10 100 1000 10000 100000 1000000 10000000
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Comparison of NLP Solvers: Data Reconciliation

26

28

0.01

1000

800 - —e— LANCELOT

—=— MINOS

0
5600 / SNOPT
IS
5 400 — KNITRO
- —%— LOQO

200 N

—o— |POPT
0 -y 0
0 200 400 600
Degrees of Freedom

100
— | -
£ 10 - —e—LANCELOT
E —=— MINOS
L SNOPT
Q
£ )0 KNITRO
= —%—LOQO
T 0.1 -
% : —e—IPOPT

Degrees of Freedom

117



Aﬁé Sensitivity Analysis for Nonlinear Programming

At nominal conditionsp,

Min f(x, p)
st. ¢c(x,p=0
a(py) =X <b(py)

How is the optimum affected at other conditiong, p,?
 Model parameters, prices, costs

« Variability in external conditions

e Model structure

 How sensitive is the optimum to parameteric uncertainties?
e Can this be analyzed easily?
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Aﬁﬁé Calculation of NLP Sensitivity

Take KKT Conditions
[L(X*, p,A, v)=0
c(x*,p,) =0
E™x* - bnd( p)=0

and differentiate and expand aboyt p
UpXL(x*, P, A, V)T + L L(X* p, A, V) pr*T + [h(x*, p,A, V) Up/\T + EUva =0
Le(X*, po)T + LLe(X*, pp)T Ljx*T =0
E"(Ox*T - bnd)=0
Notes:
* A key assumption is that under strict complemetytatine active set will not
change for small perturbations f
* If an element ok* is at a bound thea/x* "= Lfbnd'
e Second derivatives are required to calculate seniss$, pr*T
* Is there a cheaper way to calculé{)e(*T?
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Decomposition for NLP Sensitivity

Let L(x*, p,A,v) = f(x*) + ATc(x*) + (ET (x* —=bnd(p))) v

W A ECT X*Tg DL (X poA, v)T%
%A\T 0 O%Dp/ﬂ D_ [] [] C(X* p) []

£ 0 ooV H -E'Opbnd H

Partition variables into basic, nonbasic and superbasic

LXT=Z [JX"+ YO Xg" + TLIXT
Set/x" =L7bnd,’, nonbasic variables to rhs,
*Substitute for remaining variables

*Perform range and null space decomposition
*Solve only forZjxs"and’ jxg"
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Aﬁﬁé Decomposition for NLP Sensitivity

YWY YWY YTA[meBT% ™ (0,,L(¢%, p, A, V)T +WTDprT)E
%TWY Z'WZ 0 %]pxSTD:—%T(DXpL(x*, P AV +WTO X, )0

HAY 0 o HOAH H o Octep) +ATO X" H

* Solve only for[jxg" from bottom row andjxs' from middle row

» If second derivatives are not availablléWZz, ZWY [/ xz" and
Z'WT [jxy' can be constructed by directional finite differencing

o If assumption of strict complementarity is violated, sensitivity can be
calculated using a QP subproblem.
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Aﬁﬁé Second Order Tests

Reduced Hessian needs to be positive definite

At solution x*: Evaluate eigenvalues oZ'/] | "Z
Strict local minimum if all positive.

* Nonstrict local minimum: If nonnegative, find eigenvectors for
zero eigenvalues® regions of nonunique solutions

e Saddle point: If any are negative, move along directions of
corresponding eigenvectors and restart optimization.

Y

TR

\
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Sensitivity for Flash Recycle Optimization
(2 decisions, 7 tear variables)

—» S3 Sensifivity vs. Re-optimized Points
2
S1 S2 =
—— Mixer Flash o
P 2
S6 b
S5 S4 —j
- —» S7 L
L= Ratio 5
2 2 3 12 &2
Max S3(A) *S3(B) - S3(A) - S3(C) + S3(D) - (S3(E))
0.01 ,

=]

|
e Second order sufficiency test: =
* Dimension of reduced Hessian = .
 Positive eigenvalue
« Sensitivity to simultaneous change in feed ratewgmer bound on purge ratio
*Only 2-3 flowsheet perturbations required for secoraer information

Relative change - Perturbation
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Ammonia Process Optimization
(9 decisions, 8 tear variables)

20

Sensitivities vs. Re-optimized Hts
T Reactor 19.5 -
c —{F— Sensitivity
o
5 194 —0— QP1
c
= —O— QP2
gs LL 185 0
q>_) —2X— Actual
o
2
o)
LoP D O .
Flash
17

« Second order sufficiency test: Relative perturbation change
* Dimension of reduced Hessian =4

eEigenvalues = [2.8E-4, 8.3E-10, 1.8E-4, 7.7E-5]

 Sensitivity to simultaneous change in feed rate and upper bound on ceEswtersion

*Only 5-6 extra perturbations for second derivatives

0.001 7]

124



A% Multiperiod Optimization

Coordination

Case 1 Case 2 Case 3 Case 4 Case N

1. Design plant to deal with different operating scenarios (awer @r with
uncertainty)

2. Can solve overall problem simultaneously
 large and expensive
 polynomial increase with number of cases
 must be made efficient through specialized decomposition

3. Solve also each case independently as an optimization prohlen (i
problem with fixed design)
« overall coordination step (outer optimization problem for design)
e  require sensitivity from each inner optimization case wasigh
variables as external parameters

125



Multiperiod Flowsheet Example

Parameters
E (kJ/mol)
K, (1/h)

F (kmol/h)
Time (h)

_J
— (A )
nal

Period 1 Period 2 Period 3 Period 4
555.6 583.3 611.1 527.8
10 11 12 9

45.4  40.8 24.1 32.6
1000 4000 2000 1000
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A%ﬂ Multiperiod Design Model

Min f,(d) + 2 f.(d, x)
s.t. h(x,d)=0,1=1,... N

g(x,d)<0,i=1,... N

rid) <0
Variables:

X: state (z) and control (u) variables in each apeg period
d: design variables (e. g. equipment parametees) us
d.: substitute for d in each period and &ld d

Min f,(d) + 2 f.(d, x)

st.h(x,3)=0,i=1,...N
g(x, ) +s=0,i=1,... N
0<s,d-0=0,1=1,... N
r(d) <0
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Multiperiod Decomposition Strategy
SQP Subproblem

minimize ¢ = V, f, Ad + —Ad” ViL, Ad +
) 2

N T ]. _J'_ _"}
Z(?pf; P; T ;Pr v;_}"{.fil}i)
i=1 i

subject to ,?_rf + V‘Dﬂfp}_ =0 i=1 .. N

i

r+ Vi Ad <0

o x) it | 0
o=l | R=|ges| VA=V V@0
57 _ &t ~ Ad 1

*Block diagonal bordered KKT matrix

(arrowhead structure)

*Solve each block sequentially (range/null dec.)

to form small QP in space of d variables

*Reassemble all other steps from QP solution
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Aﬁﬁé Multiperiod Decomposition Strategy

From decomposition of KKT block in each period, obtain the
following directions that are parametricAul:

p; = 4; + B, Ad and Z,p; = Z, tZy Ad
py = 4, + By Ad and Ypy, =Y, + Y3 Ad

Substituting back into the original QP subproblem leads to
a QP only in terms ofld.

N
minimize ¢ = gjdfg + {067 (Zg + Yg) + (Zy + Y, O2L (Zg + YBi)}gAd
i=1
1 N N
00T T+ 3 {(Zg + YT O3 (Z + Y,)} A0

subject to r+ UoyAd <0

OnceAd is obtained, directions are obtained from the above
equations.
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A% ? Starting Point
ical
ERING ( Original QP ]

Decoupling

Multiperiod Decomposition Strategy v

G\ctive Set Update }

A
i . '
= p. steps are parametric Ad and their CDggy) - Range | )
components are created independently
n Decomposition linear in number Of%q|cu|qfe e —
. . : educed
periods and trivially parallelizable Hessian =
» Choosing the active inequality
constraints can be done through: .
-Active set strategy (e.g., bound |
addition) Coanate |
-Interior point strategy using !
barrier terms in objective CBound o ) !
e Easy to implement in decompositior:i"E";fT'fon T
LOOP ¥
C Line search )
ptimality NO -

Conditions

YES
Optimal Solution
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Multiperiod Flowsheet 1

(13+2) variables and (31+4) constraints (1 period)
262 variables and 624 constraints (20 periods)

400
i
CAo T0 v
- - 300_
i i i
F2 T2 F1 |
™ CPU time (s)
200- B SQP (T
\ y, B MINOS()
| o MPD/SQP(T)
L, 100-
— A (Aa)
~— 1 _ ]
W I 0- T T T
i Y 0 10 20 30

T Periods
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Multiperiod Example 2 — Heat Exchanger Network
(12+3) variables and (31+6) constraints (1 period)
243 variables and 626 constraints (20 periods)

50

40
563 K

30
CPU time () ;
20-

o SQP ()

® MINOS (T)

© MPD/SQP (T)

393 K
107

. , . , .
0 10 ] 20 30
350 K Periods
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Summary and Conclusions

-Unconstrained Newton and Quasi Newton Methods
-KKT Conditions and Specialized Methods
-Reduced Gradient Methods (GRG2, MINOS)
-Successive Quadratic Programming (SQP)
-Reduced Hessian SQP

-Interior Point NLP (IPOPT)

Process Optimization Applications

-Modular Flowsheet Optimization

-Equation Oriented Models and Optimization
-Realtime Process Optimization

-Blending with many degrees of freedom

Further Applications

-Sensitivity Analysis for NLP Solutions
-Multiperiod Optimization Problems
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Aﬁﬁé DAE Optimization Outline

I Introduction
Process Examples
1 ParametricOptimization
- Gradient Methods
* Perturbation
 Direct - Sensitivity Equations
« Adjoint Equations
|1 Optimal Control Problems
- Optimality Conditions
- Model Algorithms
« Sequential Methods
e Multiple Shooting
* |Indirect Methods
IV SimultaneousSolutionStrateqgies
- Formulation and Properties
- Process Case Studies
- Software Demonstration




Aﬁé Dynamic Optimization Problem

min & (z(), y(t), u(t), p. t )

t, time
z, differential variables
y, algebraic variables

=2 = £ (=(0), y(©),u(t) t, p)
g(z(t), y(),u(t),t, p)=0

z(0)

z(t) < z"
y(t) < y*
u(t) < u"

p< p°

A A A A

ZO
ZI
yI
Ul
pl

t;, final time
u, control variables
p, time independent parameters



Aﬁﬁé DAE Models in Process Engineering

Differential Equations
«Conservation Laws (Mass, Energy, Momentum)

Algebraic Equations
«Constitutive Equations, Equiliorium (ohysical properties,
hydraulics, rate laws)
Semi-explicit form
*Assume to e index one (i.e., algebraic variables can e solved
uniquely by algebraic equations)
df Nnot, DAE caon e reformulated to index one (see Ascher and
Petzold)

Characteristics
J_arge-scale models — not easily scaled
Sparse but no regular structure
irect linear solvers widely used
«Coarse-grained decomposition of linear algetra



Aﬁﬁé Parameter Estimation

Catalytic Cracking of Gasoil (Tjoa, 1991)

AO® Q,QU™ S, AR S
a=—(p +p,)a

q=-pa’-p,q
a@=1 q(0)=0

Yi

number of states and ODEs: 2
number of parameters:3

no control profiles

constraints: p<p<py

1.0

0.8 A

0.6 1

04 1

02

0.0

0.0 02 0.4 0.6 0.8 1.0
t

Objective Function: Ordinary Least Squares

(P1, P P3)°= (6, 4, 1)
(Py, Py Po)* = (11.95, 7.99, 2.02)

(p11 pZ’ ps)true: (12’ 8’ 2)

YA_data
YQ_data
YA_estim
YQ_estimr



Aﬁﬁ’é Batch Distillation Multi-product Operating Policies

*Run between distillation batches

*Treat as boundary value optimization problem
\When to switch from A to offcut to B?
How much offcut to recycle?
*Reflux?
*Boilup Rate?
*Operating Time?

(>
Lo (H




Aﬁﬁé Nonlinear Model Predictive Control (NMPC)

g,
. I : 1ge
. S S} - beam D lkyp ¢
Input horizon :
y o

Output horizon

P

-t

min
u

St.

S 1Y = y* lly, +3 lu) - ut*)1l,,

Z'(t) = F(z(t), y(t), u(t),t)
0=G((t), y(t),u(t).)
z(t) = z™

Bound Constrains
OtherConstrains
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Batch Process Optimization

Optimization of dynamic batch process operation resulting from reaator

distillation column

DAE models:
z’=1(z,y, u, p)
g(z’ y’ u’ p) - O

number of states and

DAEs:, fin,

parameters for equipment design

(reactor, column)

n, control profiles for optimal operation

Constraints:

u<u(t) <u,

YL <y(t) <y

Objective Function: amortized economic function at end of cyclettime

640

Temperature (deg. R)
g o o o o
© O B N ®
© O o o O

[¢)]
[ee]
o

| —%— constant

® —®— Dynamic ¢
i

L

L J
I /
7 )

[ s
".. o o4

0 025 05 075 1
Tme (hr)

1.25

f

Reflux Ratio

optimal reactor temperature policy

A+B-C

C+B-P+E

P+C-G
Y B
;/ZTI qu L] ZTIII

25

N
o

=
ol

=
o
1

ol

z, <z(t) <z,
PL=P=Py

—®— Dynamic

—— Constant g

0.5 1 1.5 2

o

2.5

optimalumn reflux ratio




Reactor Design Example

Plug Flow Reactor Optimization
The cracking furnace is an important example inaleéin production industry, where various
hydrocarbon feedstocks react. Consider a simplifiredie| for ethane cracking (Chen et al.,
1996). The objective is to find an optimal profite the heat flux along the reactor in order to
maximize the production of ethylene.

CoH
quzj)( F%xi !

s.t. DAE
T, <1180K

exi

The reaction system includes six molecules, thee fadicals, and seven reactions. The
model also includes the heat balance and the peedsop equation. This gives a total of

eleven differential equations. -y . CHy+CH,. CHr iy
26 3 6" 425
He+CH L H+CH. CHe CH+bB
- ng 2(:25(:H 25 24
S+ <fiy- Chlg Oy AT
He+CH _, CHe
24" 725

Concentration and Heat Addition Profile

6 2500
o 5] el T 2000 &
° 4 == — £
g S __--- 711500 3
o 3 A SaoTs x
s, ~ol + 1000 3
g Tl s00 §
T 11 . T

0 | 0

0 2 4 6 8 10
Length m
,,,,,,, C2H4 ....... C2H6 log(H2)+12 q




Dynamic Opfimization Approaches

Pontryagin(1962)

Inefficient for constrained
problems

Discretize Vassiliadis(1994)

Efficient for constrained problems

10



Aﬁﬁ’é Sequential Approaches - Parameter Optimization

Consider a simpler problem without control profiles
e.g., equipment design with DAE models - reactdrspebers, heat exchangers
Min @ (z(ty)
z=1(zp),2(0 = 2
a(z(t)) <0, h(z(t)) = 0

By treating the ODE model as a "black-box" a segjakalgorithm can be constructed that can
be treated as a nonlinear program.

NLP
Solver
P
ODE ¢9,h - Gradient
Model 7 (1) [ Calculation

Task: How are gradients calculated for optimizer?

11



Aﬁﬁ’é Gradient Calculation

Perturbation

Sensitivity Equations

Adjoint Equations

Perturbation

Calculate approximate gradient by solving ODE moffgd + 1) times
Lety =®,gandh (att )t

dy/dp = {W (p; + Ap) - W (P)} Ap,
Very simple to set up

Leads to poor performance of optimizer and pooect&in of optimum
unless roundoff error (O(Ap;) and truncation error (@Qf,)) are small.

Work is proportional to np (expensive)

12



Aﬁﬁé Direct Sensitivity

From ODE model: aip{z = f(z p,t),z(0) = zo(p)}

defines (t) :?i =1,...np

,_d of of' 0z(0)
= - 4 ’ 0) =

§=4 ) op 9z | 5(0) on

(nz X np sensitivity equations)
ez and s, i =1,...np, an be integrated forward simultaneously.
« for implicit ODE solvers, §) can be carried forward in time after converging on z

* linear sensitivity equations exploited in ODESSA, DASSAC, DASP&L48s and a
number of other DAE solvers

Sensitivity equations are efficient for problems with many morstaints than
parameters (1 + ng + nh > np)

13
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Example: Sensitivity Equations

4=2+2
L,=22,+7p,

2,=572,0)=p,

S(t), ; =02(t), /9p,, S(t),,; =0(t), /9p,, ] =12
Sz,a,l = 2lea,l T Zzzsa,z

S;\,Z = Zisa,z + ZZSa,l T Sa,l pb

Sa,l = O’ Sa,z (O) = 1

S1=22S,: %225,
S2=2+28,,+28,,+S,,P,
S1— 0, S.2 0)=0

14



Aﬁﬁ‘é Adjoint Sensitivity

Adjoint or Dual approach to sensitivity

Adjoin model to objective function @monstraint
L

W=®80M —yt,) - jATz—f(zpt»dt

Y=wt)+A0) z,(p) - A(t,)" z(t,) +IZT/|' +A'F(z, p,b))dt

(A(t)) serve as multipliers on ODES)
Now, integrate by parts O 0)

ul of .0
AL )5 &(t)+ - AP dp ot
0z w1

and find dy/dp subject to feasibility of ODE's

Now, set all terms non dp to zero.

15
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Adjoint System

o _op(a(,))
¥ == A0 A0 == S

dy _ 0z,(p) Eﬂi
o o A(0) + f A(t)Ddt

Integrate model equations forward

Integrate adjoint equations backward and evaluaégral and sensitivities.

Notes:

nz (ng + nh + 1) adjoint equations must be solved bac#\one for each
objective and constraint function)

for implicit ODE solvers, profiles (and even ma#sg can be stored and
carried backward after solving forward for z aPRSPK/Adjoint (Li and

Petzold)

more efficient on problems where: np > 1 + ng + nh

16



Example: Adjoint Equations

Z=2+2
2=2272+7p,
2=52(0)=p,

Form A" f(z, p,t) =A(Z' +Z) +A,(z22,+2 p,)
oy(z(t,))
oz(t,)

,__of _
A'==5,A0 A)

dy :azo(p)A(O)+j%A(t)Bdt
) n

dp ap
thenbecomes
, oY(t,)
A ==-2M7 -A(z,+p,), Alt;)= azi(t:)
oY(t,)
A ==2Az2 —-A A(t,)=
2 122 221 2( f) azz(tf)
dy(t
vt _ ) o)
dp,
dy(t,)

o AUCTOL

17



Example: Hot Spot Reactor
Min -~ ® =L - [(T(t)~Ts/T.)d

St. —=
dt

Tp.Tr,L.Ts

dg _

dT
dt

0.3(1—q(t)) exp[20—20/T(t)], q(©) =0

T 15T(t)-T,/T) +2/3%9, T(0) =1

dt

AH 1ey(To,110°C) -AH [ (Tp, T(L)) = 0

T, = 120°C, T(L) = 1 + 10°C/T,

9

Cases considered:

A+3B-->C+3D

()

T, = specified product temperature

= reactor inlet, reference temperature
= reactor length

TR

L

Tg = steam sink temperature

g(t) = reactor conversion profile

T(t) = normalized reactor temperature profile

Hot Spot - no state variable constraints
Hot Spot with T(t< 1.45

18



Aﬁﬁé Hot Spot Reactor: Unconstrained Case

Method: SQP (perturbation derivatives)

L(norm) TrR(K) Ts(K) Tr(K)
Initial: 1.0 462.23 425.26 250
Optimal: 1.25 500 470.1 188.4
13 SQP iterations / 2.67 CPU mipMax II)

1.€

=
N

=
o

e
e

o
2]
1

e

&

o
[<2)
1 n
e
@

Conversion, q
Normalized Temperature
=
N

o
s

=
N

o
N
=
o
L 1 L 1

o
o

0.5 1.0

o
o

0.5 1.0 15

o
[=}

Normalized Length Normalized Length

15

Constrained Temperature Case: could not be solwdsequential method



Aﬁﬁé Tricks to generalize classes of problems

Variable Final Time(Miele, 1980)

Define t=pn17 0s7<1p,, =L
Let dz/dt = (1/ pn+1) dz/d7 =1(z, p) L7 dz/dT= (pn+1) f(z p)

Converting Path Constraints to Final Time

Define measure of infeasibility as a new variahlg, (t) (Sargent & Sullivan, 1977):
ty
Zua(t;) = Y [MaxO,g; ((t), u(n)” dt
10

or an+1(t) = Z maX(O, gj (Z(t)’ u(t))2 ’ an+1 (O) - O

Enforce z_,,(t;) <& (howeverconstrainisdegeneraje

20



Aﬁﬁ’é Profile Optimization - (Optimal Control)

Optimal Feed Strategy (Schedule) in Batch Reactor
Optimal Startup and Shutdown Policy

Optimal Control of Transients and Upsets

Sequential Approach: Approximate control profile as through parameters (piecewise
constant, linear, polynomial, etc.)

Apply NLP to discretization as with parametric optimization

Obtain gradients through adjoints (Hasdorff; Sargent and Sullivan; Goh ajdiTe
sensitivity equations (Vassiliadis, Pantelides and Sargent;Reilzold et al.)

Variational (Indirect) approach: Apply optimality conditions and solve as boundary
value problem

21



Aﬁﬁé Derivation of Variational Conditions
Indirect Approach

Optimality ConditiongBound constraints on u(t))

Min  ¢(z(tf))
st. dz/dt = f(z u), z(0) = z,
g(t)) <0
h (z(t)) = 0
a<u(t) <b

Form Lagrange function - adjoin objective functiordaonstraints:

=@t )+g(z(t;)" u+h(z(t,)) v
- [[' AT (2= f(zu) +a](a-u(t) +a;] (u(t) - b) d
Integrate by parts :
@=@t,)+g(z(t,)" u+h(z(t,) v+ AT (0)z(0) - A" (t,)z(t,)
+ Iotf ATz+ AT f(z,u) +al(a-u(t)) +a/ (u(t) - b) dt

22



Aﬁﬁé Derivation of Variational Conditions

P 0 dh uf
= oz "0zt g TR TN @20)

af af(z u) , d Pf (z,u) . d
IF\ . Ap RO A e, —a, g du() 2 0

At optimum,d@ =0. Since u is the control variable, let all other terms vanish.

o z(t): ¢ 0g oh
A = ? +—u +
(tf) 0z 0z H azyH:tf

0z(0): A(0) =0 (if z(0) is not specified)

6Z(t): A :_OH :_Of p
0z 0z
Define HamiltonianH = A™(zu)
For u notat bound: 4 COH ai(a-u(t))
TR T a, (ut) - b)
S < u(t) su,
For u atbounds: Oo‘_u =a, - a, a,20a,20
— 6H
Upper boundu(t) = b,ﬁ =-a, <0 Lower boundu(t) = a, P =a, =20

ou
23
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Car Problem
Travel a fixed distance (rest-to-rest) in minimum time.
i, i )
st. X'=u X,'= U
asu(t)<b %=1

X(0)=0,x(t;)=L

asu(t)<b
X'(0)=0,X(t;)=0

% 0)=0,x(t;) =L
X, (0) =0,%,(t;) =0

Hamiltonien: H = A X, + A,u+ A,
Adjoints: A, =0==>A,(t) =¢,

Ay ==A ==>A,(t) =c, +c (t; —1)
/13 =0==>A,(t;) =1 A(D) =1

oH [t =0,ct; +c,>0,u=Db
—=A,=c,+¢c(t; -t
ou 2 2 Cl(f )% ’[:'[f,C2>O,U:a

Crossove(A, = 0) occursatt =t

24



Aﬁﬁé Car Problem

Analytic Var'kational Solution

b

Optimal Profile

u(®

From state equations: S

A/2 bft < tg

(0= 0 E}lz(bé a(ts- t;) )t>tS

a 4

xz(t)— [bt, t < tg
Dbt5+a(t t) t=tg

*Problem is linear in u(t). Frequently
these problems have "bang-bang"
character.

*For nonlinear and larger problems, the
variational conditions can be solved
numerically as boundary value
problems.

ts tr
Apply boundary conditions at t = t
X(t) =12 (bt*-a (g-t)?) =L
X(t) =bt,+a(t-t)=0
O ts= o 2 d?
Bb(1-b/3H

= wooraag

25



Aﬁ Example: Batch reactor - temperature profile

Maximize yield of B after one hour's operation by manipulating a tramsfdr

temperature, u(t).
[ Minimize -zs(1.0)
S.L.
Z’rn = -(UtWw/2) za
ZB=UZ2
z7(0) =1
zs(0) =0
O<u(t)<5
Adjoint Equations:
H = Aa(U+P/2) Z, + Ag U Z,
OH/OU = A, (1+U) Zy + A5 Z,
Ny = A U+w/2) -Agu, A,(1.0)=0
Ng =0, Ag(1.0) =-1

Cases Considered

um)

1. NLP Approach piecewise constant and linear profiles.

2. Control Vector Iteration

26



Aﬁﬁé Batch Reactor Optimal Temperature Program
Piecewise Constant

6
S 4
o)
0
(a
o)
£
Q
@)

0. 0.2 04 0.6 0.8 1.0
Time, h

Results

Piecewise Constant Approximation with Variable TigElements
Optimum B/A: 0.57105

27



Batch Reactor Optimal Temperature Program
Piecewise Linear

S

Optimal Profile, u(®)
N

0. 0.2 04 0.6 0.8 1.0
Time, h

Results:

Piecewise Linear Approximation with Variable Timkegents
Optimum B/A: 0.5726

Equivalent # of ODE solutions: 32

28
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Batch Reactor Optimal Temperature Program
Indirect Approach

6
S 4
)
0 i
o
6 m
£ 2.
o
O m
0. 0.2 0.4 0.6 0.8 1.0
Time, h
Results:

Control Vector Iteration with Conjugate Gradients
Optimum (B/A): 0.5732
Equivalent # of ODE solutions: 58

29



Aﬁﬁé Dynamic Optimization - Sequential Strategies

Small NLP problem, O(np+nu) (large-scale NLP solvetrrequired)
. Use NPSOL, NLPQL, etc.

. Second derivatives difficult to get
Repeated solution of DAE model and sensitivity/adjequations, scales with
nz and np
. Dominant computational cost
. May fail at intermediate points

Sequential optimization is not recommended for alnstsystems. State
variables blow up at intermediate iterations fantcol variables and
parameters.

Discretize control profiles to parameters (at wieatl?)

Path constraints are difficult to handle exactlyN.P approach

30



A% Instabilities in DAE Models

This example cannot be solved with sequential nutiiBock, 1983):
dy,/dt =y,
dy,/dt =12y, + (TP — %) sin (tt)
The characteristic solution to these equationsvisngby:
y,(t) = sin (Tt) + ¢ exp(Tt) + ¢, exp( t)
Y, () =1tcos (tt) -c, texp(-tt) + c, T exp( t)

Both ¢ and g can be set to zero by either of the following eglent
conditions:

VP y,(0)=0,%(0) =T
BVP y,(0) =0, y(1)=0

31



A% VP Solution

If we now add roundoff errors and g to the IVP and BVP conditions, we
see significant differences in the sensitivitiesh& solutions.

For the IVP case, the sensitivity to talytic solution profile is seen by
large changes in the profilegly and y(t) given by:

y,(t) = sin (tt) + (e - /1) exp(x t)/2
+(e, + &/T) exp( t)/2

Yy, (t) =T1tCcos (tt) - (Te -e,) exp(xt)/2
+ (Te +e)expht)2

Therefore, even if gand g are at the level of machine precision (<!j0a
large value of and t will lead to unbounded solution profiles.

32



A% BVP Solution

On the other hand, for the boundary value problem, the errors
affect theanalytic solution profiles in the following way:

y,(t) = sin (1) + [, exp(r)- &;] exp(T t)/[exp(t) - exp(-T)]
+ [, exp(-1) - &) exp(t y/[exp(r) - exp(-T)]
y(t) =TTCOS (Tt) —T [€; exp(r)- &] exp( t)/[exp(r) - exp(-1)]
+ T [&,exp(T) - &] exp(t t)/[exp(r) - exp(-T)]

Errors in these profiles never exceed,t{e,), and as a result a
solution to the BVP is readily obtained.

33



A% BVP and IVP Profiles

e, e =10°
Linear BVP solves easily

IVP blows up before midpoint

A L NV A o~ v ow o~
[ N SR SR B |
I I I I

A L L A o~ v ow o~

T T T T T T T T
0 0.2 04 06 038 1 0 0.2 0.4 06 0.8 1

Time Time

34



«  Dynamic Optimization Approaches

ERING

Pontryagin(1962)

DAE Optimization Problem

Inefficient for constrained

problems
Discretize Vassiliadis(1994)
— _

Efficient for gonstrained problems Can not handle instabilities properly

Small NLP
Discretize some

state variables

Handles instabilities  Larger NLP
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Multiple Shooting for Dynamic Optimization

Divide time domain into separate regions

\

| | |

Integrate DAESs state equations over each region

Evaluate sensitivities in each region as in sequential approach wrt uy, p and z

i
Impose matching constraints in NLP for state variables over each region

Variables in NLP are due to control profiles as well as initial conditions in each region

36
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S.t.

Multiple Shooting
Nonlinear Programming Problem

min ¢ (z(t,), y(t,))

z(z;,u; ;, Pt

z, <2(z;,u;,pt)<z”
Ykl < y(z;,U;;, P.ty) S Vi

I

Solved Implicitly

37
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Bl

Al

B2

A2

B3

A3

B4

BVP Problem Decomposition

AN

AN

Consider: Jacobian of Constraint Matrix for NLP

» bound unstable modes with boundary conditionsh@mmy)

 can be done implicitly by determining stable pigetjuences in multiple shooting constraints

approach

» well-conditioned problem implies dichotomy in B\@iroblem (deHoog and Mattheij)
Bock Problem (with t = 50)
« Sequential approach blows up (starting withir d® optimum)

» Multiple Shooting optimization requires 4 SQP dtigons

38



Aﬁﬁé Dynamic Optimization — Multiple Shooting Strategies

Larger NLP problem O(np+nu+NE nz)

- Use SNOPT, MINOS, etc.
- Second derivatives difficult to get

Repeated solution of DAE model and sensitivity/adjequations, scales with
nz and np

- Dominant computational cost
- May falil at intermediate points

Multiple shooting can deal with unstable systemh wufficient time
elements.

Discretize control profiles to parameters (at wieatl?)
Path constraints are difficult to handle exactiyN.P approach
Block elements for each element are dense!

Extensive developments and applications by Bockcamnegbrkers using
MUSCOD code

39



«  Dynamic Optimization Approaches

ERING

Pontryagin(1962)

Inefficient for constrained

problems
Discretize Vassiliadis(1994)
— _

Efficient for gonstrained problems Can not handle instabilities properly

Small NLP
Discretize all

state variables

Handles instabilities Large NLP



Aﬁé Nonlinear Programming Formulation

- Continuous variables

Discretized variables -

41



Aﬁﬁ’é Discretization of Differential Equations
Orthogonal Collocation

Given:dz/dt = f(z u, p), Z(0)=given

Approximate zandu by Lagrange interpolation polynomials (order
K+1 and K, respectively) with interpolation points,

K (t-t) _
Zea(t) = gzk (0,4, () = n oty e =2
_< (t-t) __ _
uK(t)—;ukfka),fk(t)—p o) ==

[

Substitutez,, ; anduy into ODE and apply equationstat

rt,)= izj'fj(tk)— f(z,u)=0 k=1.K

42
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Collocation Example

==>7,.() =2

Zy () = 2 z 0 (1), 0, (t) = [l (it __tt. ))

J#k

t, = 0,t, = 021132 ,t, = 0.78868

(o) = (t?-t +1)/ 6, /) =t3-1/6

/() = -8195t2 + 6.4483t, /. (f) = 6.4483 - 1639 t
0 () = 21962512 - 0.4641t, 7,(f) = 4392t- 0.46412
Solvez = z°-3z + 2,2 0) =

==> z, = 0

2o Uo(t,) + 2, 0, (t,) + 2, 0,(t,) = z,°-3z, + 2
(29857 z, + 046412 z, = z,°-3z, + 2)

Zo Lo(t,) + 2 04(ty) + 2, 0,(t,) = 2,7 - 32, + 2
(-6478 z, + 3z, = 2,°-3z, + 2)

z, = 0,2z, = 0.291 (0319),z, = 0.7384 (0.706)
z(t) = 15337 t- 0.76303 t*
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Aﬁﬁé Converted Optimal Control Problem
Using Collocation

Min  ¢z(tr)) A
st. Z=1(z u,p), Z20)=z,
g(z(t), u(t), p) <0 2N (D

h(z(t), u(t), p) = 0

to Nonlinear Program

State Profile

z(h)

Min oz, )
K . ]

szfj t)-f(z.u)=0 7= Z(O)[j

B

9(z.,u. )<0 %(zL...K IT TI 1 T
h(z.u,)=0 -

‘ E rch

szfj(l)—zfzo — /\T -
1= 11 t2 3

How accurate IS approximation
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Results of Optimal Temperature Program
Batch Reactor (Revisited)

6
—fO——  CVI Solution
— —*— 5 point Collocation
=5 4
9
S
(a8
©
E 2
o
o B -,_..i,m-::ff:JEI
—:‘E—-T:‘—ﬂ._—gq"i—f
0. 0.2 0.4 0.6 0.8 1.0

Time, h

Results NLP with Orthogonal Collocation
Optimum B/A - 0.5728
# of ODE Solutions - 0.7(Equivalent)

45



Aﬁé Collocation on Finite Elements

Polynomials

i-1
tij:IZh,+hrj,rD[0,1]/ \,4-.---c-~-
- -~ _ __.'o' “-\
< L4 < >
~ ’-./

| e~

dz_ 10z ~ . |
dt h dr OO R AN RO e
i | ey ey X 7aN Zay X PaS Y as 3¢ ¢ X
% _hi@u t ENC N — t
dr ' 0 | Collocation points f

< =
-

I | - h
- ' : Mesh points  Discontinuous Algeoraic and
Finite element, | Control variobles

Confinuous Differential varicbles | iy )r oo o
. lllx-.--- men 00 ®” Ce,
element i q= 2....* '>|<
..x.....X.O.

- oot \X \‘\X

I YO=3 L0 UO= 10 b
2= 0%

r(t) = i(zijkj(rk))_h f(z.,u,p)=0 k=1,.K,i=1,.NE
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S.t.

Aﬁé Nonlinear Programming Problem

min t,b(zf)
i(zijkj(rk))_h f(z,uy, p)=0

g(zi,k’ YioUi ko p): 0

i(zi—l,jgj (1)) —Z, = 0, 1=2,.NE

i(zNE,jf,- M)-2, =0, ,=2(0)

Sy <p b Finite elementdh,, can also be variable to
SR ¥ B determine break points foit).
ey <y Y

Y = Y= Add h,> h 20, X h=t,

Uij = Ui s Ui Can add constraintgh, z, u) < efor

o'<p< p approximation error
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Hot Spot Reactor Revisited

Min @=L [(T(O-Te/T)dt

St. —=
dt

Tp.Tr,L.Ts

dg _

dT
dt

0.3(1—q(t)) exp[20—20/T(t)], q(©) =0

T 15T(t)-T,/T) +2/3%9, T(0) =1

dt

AH 1ey(To,110°C) -AH [ (Tp, T(L)) = 0

T, = 120°C, T(L) = 1 + 10°C/T,

9

Cases considered:

A+3B-->C+3D

()

T, = specified product temperature

= reactor inlet, reference temperature
= reactor length

TR

L

Tg = steam sink temperature

g(t) = reactor conversion profile

T(t) = normalized reactor temperature profile

Hot Spot - no state variable constraints
Hot Spot with T(t< 1.45
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Base Case Simulation

Method: OCFE at initial point with 6 equally spaced elements
L(norm) Tr(K)  Ts(K)  Tpr(K)
Base Case: 1.0 462.23 425.26 250

P 1.8
E —8— infegrated profile
——— integrated profile ———  collocation
——— collocation
1.6 1
5 o
R 3
n ©
o 17 & 141
> o
c
S 5
o ~
1.2
O P T T T T T 10 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Normalized Length Normalized Length



Conversion, g

I
[

Aﬁﬁé Unconstrained Case

Method: OCFE combined formulation with rSQP
identical to integrated profiles at optimum
L(norm) Tr(K)  Ts(K)  Tr(K)

Initial: 1.0 462.23 425.26 250
Optimal: 1.25 500 470.1 1884

123 CPU s.|fVax Il)
@=-171.5

1.€

e
e

o
o

o
o

o
&

I
N

o
o

1.5

1.4

1.3

Normalized Temperature

o
=}

T T v L A g T
0.5 1.0 15 0.0 0.5 1.0

. Normalized Length
Normalized Length

15

50



ical
ERING

Conversion

Temperature Constrained Case
T(t) <145

Method: OCFE combined formulation with rSQP,

identical to integrated profiles at optimum

L(norm)  To(K) TK)  Tp(K)
Initial: 1.0 462.23  425.26 250
Optimal: 1.25 500 450.5 232.1

57 CPU s. Vax Il), = -148.5

1.2

1.8

1.0
14

o
I3

1.3

1.2

o
(2]
Temperature

o
.

1.1

o
N

o
o
=

0.5 1.0 15 .0.0 .6.5 o ’e i.O ¢ 15

Normalized Length Normalized Length

o
o
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Aﬁé Theoretical Properties of Simultaneous Method

A. Stability and Accuracy of Orthogonal Collocatio

Equivalent to performing tully implicit Runge-Kutta integration of
the DAE models at Gaussian (Radau) points

2K order (2K-1) method which uses K collocationme
Algebraically stable (i.e., possesses A, B, AN Bidstability)

. Analysis of the Optimality Conditions

An equivalence has been established between tha-Kucker
conditions of NLP and the variational necessary tars$
Rates of convergence have been established fodltRemethod
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Aﬁﬁé Simultaneous DAE Optimization

Case Studies

. Reactor - Based Flowsheets

. Fed-Batch Penicillin Fermenter

. Temperature Profiles for Batch Reactors

. Parameter Estimation of Batch Data

. Synthesis of Reactor Networks

. Batch Crystallization Temperature Profiles

. Grade Transition for LDPE Process

. Ramping for Continuous Columns

. Reflux Profiles for Batch Distillation and Colunidesign
. Source Detection for Municipal Water Networks
. Air Traffic Conflict Resolution

. Satellite Trajectories in Astronautics

. Batch Process Integration

. Optimization of Simulated Moving Beds
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=3 Production of High Impact Polystyrene (HIPS)
[k Startup and Transition Policies (Flores et al., 2005a)

Monomer,
Transfer/Term.

agents

—>
Coolant
<

—>
Catalyst

Initiation reactions

Thermal
ko 1
3Ms —% 2RL
Chemical
J QLY
ke -
R+Ms — RL
R+B, 2 By
kq
Propagation reactions
ke
RL+Ms % RE
|EC .
Bhg+Ms —% B
Definite termination reactions
Homopolymer
Ri+Rp [t pitm
Grafting
Ry +Br — Bp
k i+
Ri+BE g
Crosslinking
k
Br+Br — Bgg
Bps+Br — Bppg
J ket j+m
Bps+BEs — DBpp
Transfer reactions
Monomer
kfa
RL+Ms = PiiR}
kis i
Bhe +Ms - B+ R}
Grafting sites
k
RL+B, & PiyBp
A' .
Bho+By = BL+Bp




600

550

500

Temperature (K)
~
[$a)
o
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Phase Diagram of Steady States

Transitions considered among all steady state pairs

1: Qi =0.0015
2: Qi =0.0025
3: Qi = 0.0040

A5

N3

a0t S
AL -
o 2 _
R/ - T T
| 3
[ A3
Ad N1
300F
| | | | | | | | |
0 05 1 15 2 25 3 35 4 45 5

Cooling water flowrate (L/s)

650 3
600
550 9
g 1
0 500
=]
[
Q
g 1:Qcw =10
2 4501 2:Qew=1.0
3:Qcw=0.1
\
400
l@\} N2
[HANN
1] SR C1
) oL —
- — . - — — _ _ _
- Bl 2 82 ~ ~®83 1 g
300 i | | | | |
0 0.02 0.04 0.06 0.08 0.1 0.12

Initiator flowrate (L/s)
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c

D
o
o

w
o
o

=
o

o
&

Feedrate Flow. [I/sec]

o

Initiator Flow. [l/sec] Reactor ;I'oemp. [KI Initiator Conc. [moll]
a1

w

N

=

=

o

=

o

Startup to Unstable Steady State

x 10

o

0.5 1 15 2
Time [hl

Q.3 05 1 15 2
Time [hl

20 40 60 80 100

0
Time [hl
0 0.5 1 15 2

Time [h]

210
2 g|
o
@)
o 6
=
o
s 4 ' ' '
s 0 0.5 1 15 2
< 320 Time [hl
2 310
()
|_
= 300
V4
@
290 ' : '
"'g- 0 0.5 1 15 2
2 4 , Time [hl
2
IS
LL
o 0.5}
IS
=
(@]
S 0 : : :
S 0 0.5 1 15 2
O Time [h]

e 926 variables
e 476 constraints
* 36 iters. / 0.95 CPU s (P4)
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Aﬁﬁé HIPS Process Plant (Flores et al., 2005b)

|
1<

l
QB RIE RER

--------------------------------------------------------------------------- | —

Many grade transitions considered with stable/unstable pairs
*1-6 CPU min (P4) with IPOPT

«Study shows benefit for sequence of grade changes to
achieve wide range of grade transitions.
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Am Batch Distillation — Optimization Case Study - 1

)
J

r‘)(T)—>iD(T)Xd dX.d_ \Vi [ﬁy ﬂ
- i, N )(Id

cond

XIO = Y Exld Xloﬂ

dS_ -V
dt R+1

<
N\
—
"

*Gauge effect of column holdups
*Overall profit maximization
Make Tray Count Continuous



Aﬁ.& Optimization Case Study - 1

Modeling Assumptions

*ldeal Thermodynamics

*No Liquid Tray Holdup

*No Vapor Holdup

*Four component mixture (a = 2, 1.5, 1.25, 1)

Shortcut steady state tray model
(Fenske-Underwood-Gilliland)

«Can be substituted by more detailed steady state models
(Fredenslund and Galindez, 1988; Alkaya, 1997)

Optimization Problems Considered

Effect of Column Holdup (Hcona)
*Total Profit Maximization
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Maximum Distillate Problem

30

Reflux Ratio

r T

O v 1 v 1 N )
0.0 0.2 04 0.6

Time ( hours )

Comparison of distillate
profiles with and without
hOldUp (Hcond) at 95.5%

overall purity

Distillate Composition

=+ With Holdup
-~ No Holdup

Comparison of optimal reflux profiles

" with and without holdup (Hcond)

0.98 7
097 J
0.96 1%
0.95 :

= With Holdup
-~ No Holdup

0.94 A

0.93 A

0.92 A

OQ] N 1 v 1 v 1 v 1 v 1
0.0 02 0.4 0.6 0.8 1.0

Time (hours ) 60



A% Batch Distillation Profit Maximization

Max {Net Sales(D, 8/(t: +Tse) — TAC(N, V)}

N = 20 trays Tsewp= 1 hour

Xd = 0.98 Xweea= 0.50,0 = 2

Cprod/ Crea= 4.1

V =120 moles/hr, S 100 moles.

30

=+ N=20
< N=337

Reflux Ratio

Time ( hours)
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Aﬁﬁé Batch Distillation — Optimization Case Study - 2

dX, i V
i N+ o
( ~N D1 D), X d dt oo [yl,N 1IN 1]
‘ dx,, V i
| — dtp _H_p Yipa™ Yop R+1EX1 p+1” 1,p%|, p=1,...,N
[— dx,
: dt"‘:—[ 1,0 y10 R+1EX11 10@
db__V
|v(h) dt R+1
O, N+ O N+1
SOXIC,)OZES)- ZHDD(I,O-'- ZHpXLp
D p:]- D p:]_

C C
%xi’p =10 % Yp =10

|deal Equilibrium Equations

Vip = Ki,p Xi,p

Binary Column (55/45, Cyclohexane, Toluene)

S=200,V =120, =1, N = 10, ~8000 variables,

< 2 CPU hrs. (Vaxstation 3200)
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Aﬁ.& Optimization Case Study - 2

Modeling Assumptions

ldeal Thermodynamics

«Constant Tray Holdup

*No Vapor Holdup

*Binary Mixture (55 toluene/45 cyclohexane)
1 hour operation

*Total Reflux Initial Condition

Cases Considered

*Constant Composition over Time
*Specified Composition at Final Time
*Best Constant Reflux Policy
*Piecewise Constant Reflux Policy
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Reflux Optimization Cases

6 0.006

Reflux Policy

- 0.001

= T T T T 0.000
0.0 0.2 0.4 0.6 0.8 1.0

Time (hrs.)

Overall Distillate Purity
x4(t) V/(R+1) dt) /D(t) >0.998
D*(t) = 42.34

Shortcut Comparison
D*(t:) = 37.03

Top Plate Purity, (1-x)

Constant Purity over Time

D*(t) = 38.61

Reflux Palicy

O = T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Time (hrs))

ek 0.000

Digtillate Purity, (1-x)
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Aﬁﬁé Reflux Optimization Cases

Il s Gonstant Reflux over Time
33 o x«(t) V/(R+1) dt) /D(t) >0.998
o+ e 0001 E D*(tf) — 389

0.0 0.2 _I?:ne (hrs.)0.6 0.8 1.0

Piecewise Constant o006 A

Reflux over Time oom E

fxit) VI(R+1) dt) /D(t) >0.998 *
D*(t) = 42.26

Time (hrs.) -



Aﬁé Batch Reactive Distillation — Case Study 3

Reversible reaction between acetic acid and ethanol

CH,COOH + CH,CH,OH <> CH,COOCH,CH, + H,0

t=0,x=0.25
for all components

R | 1

ts =
—» f
D, x d maxL Ddt

I V(T)‘ I

)
)

X5 > 0.4600

Wajde & Reklaitis (1995)



Aﬁ.& Optimization Case Study - 3

Modeling Assumptions

ldeal Thermodynamics

«Constant Tray Holdup

*No Vapor Holdup

*Tertiary Mixture (EtOH, HOAc, ETAc, H20)
Cold Start Initial Condition

Cases Considered

*Specified Composition at Final Time
*Optimum Reflux Policy

*Various Trays Considered (8, 15, 25)
1 hour operation
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Optimal Reflux Profiles

100
ST
g I
ISR
A
B 0 ‘\‘\ ‘\ . .
0.0 0.2 0.4 0.6 0.8 1.0
time (hr)

— 8 trays — 15 trays — 25 trays

*< 5000 variables

+< 260 DAEs 3 "

*10 degrees of freedom § 0.35

*10 finite elements z
L

< 50 IPOPT iterations 0.25
< 11 CPU minutes

Aﬁﬁé Baich Reactive Distillation

Condenser Composition (8 trays)

Z=

0.50 N
e
<

e
2 0301 “
< ot
© .\
= 0.10 .

0.00 T —— |

0.6
0.8
tlme(hr) 1.0

W Ester O Eth. 5 Wat. BAA

Distillate Composition

7

0.0 0.2 04 0.6 0.8 1.0

time (hr)
— 8 trays — 15 trays — 25 trays
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Aﬁé Batch Reactive Distillation

Trays DAES Discretized | Iterations CPU ()
Variables Global Elemental
8 98 1788 14 56.4 37.2
15 168 3048 32 245.7 207.5
25 258 4678 45 1083.2 659.3
CPU Decomposition Time
21 7
5 . pd
g 11 / —
ES 6 //

90 130

170 210

DAEs

250
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Aﬁﬁé Nonlinear Model Predictive Control (NMPC)

g,
. I : 1ge
. S S} - beam D lkap ¢
: Input horizon :
y o

Output horizon

P

-t

min
u

St.

S 1Y = y* lly, +3 lu) - ut*)1l,,

Z'(t) = F(z(t), y(t), u(t),t)
0=G((t), y(t),u(t).)
z(t) = z™

Bound Constrains
OtherConstrains
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MATLAB Framework

Dynamic Process

Dynamic Optimization
Problem

Dynamic optimization in a

[

Process Model
f (x’,x,y,u,p,t): 0
g(x,y,u,pt)=0

Discretization
Method
No. of Time
Elements
Collocation
Orlder

NLP Optimizatior
Problem

Inequality Constraints

h(x',x,y,u,p,t) <0

l

Process Model
f(®9,0,p.t,,%,)=0

(k.9.0.p.t,)=0

[(@))

Initial Conditions
X (t,) = X,

Constraints at Final Time
¢ (x(t, ) x(t, )y () ult, )Xo, Pt )=0

Full
Discretizatio

.
of State and a

Control
Variables

Objective Function
min Py, ).ut).p.xot,)

u(t),p.xo.ts

Inequality Constraints
h(%,,0,p,t,)<0

Constraints at Final Time
¢(xN[,yNt,uNt,p,tf):O

Objective Function

min Pk, .Yy, Uy, P:t;)
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A% Tennessee Eastman Process

® @ ®
| & - S T o
- = @ |
® ] d ] @ . @ @ J_:
o) L 2 I Condenser | 13 TR A
D @ ;“ ___@
~gt : ©- tﬁi
[ @& : : @ . E%
__i__ o Vap/liq L] “@
' : @ separator
8
ST o felem o
Cond 5___@
[c)- ®& s @ 2 | Promusi

Unstable Reactor
11 Controls; Product, Purge streams

Model extended with energy balances



Aﬁ; Tennessee Eastman Challenge Process

DAE Model ‘ NL P Optimization problem

Number of differential equations 30 Number of variables 10920
of which are fixed 0
Number of algebraic variables 152 Number of constraints 10260
_ _ Number of lower bounds 780

Number of algebraic equations 141
Number of upper bounds 540
Difference (control variables) 11 Number of nonzeros in Jacobian 49230
Number of nonzeros in Hessian 14700

Method of Full Discretization of State and Control Variables

Large-scale Sparse block-diagonal NLP



A% Setpoint change studies

Processvariable Type Magnitude

-15%

Make a step change to the variable(s) used to set
Production rate change Step the process production rate so that the product

Reactor operating pressur
change

Purge gas composition of
component B change

Step

Step

flow leaving the stripper column base changes
from 14,228 to 12,094 kgh

-60 kPa
Make a step change so that the reactor operating
pressure changes from 2805 to 2745 kPa

+2%
Make a step change so that the composition of

component B in the gas purge changes from
13.82 to 15.82%

Setpoint changes for the base case [Downs & Vogel]
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Case Study:

Change Reactor pressure by 60 kPa

| — Feed étream 1177

Mo '%'""“"""““i """"""""" i """"""""" i" — Feed Stream 2 1---

T ‘ "i""_""""""i _________________ E _________________ i_ — Feed Stream 4 |77

] ,\ S e i | — Purge stream | i

10 20 a0 40 50 60
Time [h]

Control profiles

All profiles return to their
base case values

Same production rate
Same product quality
Same control profile

Lower pressure — leads to
larger gas phase (reactor)
volume

Less compressor load
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150

= 100F

[kmo

a0

TE Case Study — Results |

—— Reaction rate equation R1
----- Reaction rate equation R2
— - Reaction rate equation R3

0 10 20 30 40 50 g0
Time [h]
T T T T T
— Reactor temperature
i i i i i
Wil A
WVEARRRR o e e O UM AMARAOUOEOELMANARIAN.
Lo S SO - -[— Reactor cooling water flow |- -
i i i i i
10 20 30 40 50 g0
Time [h]

Shift in TE process

Same production rate
More volume for reaction
Same reactor temperature

Initially less cooling water flow
(more evaporation)

] .
@ _ . @
[E)— &2~ & L
SC
Q@
@, |0
I_j Ty CW3
........ ]
=
—i] @
to e [owe)

IMMNLr®2ZB
[:}1n

(=]
®
Reactor i
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i Case Study- Results |l

Shift in TE process

2000 T T T T T
- 1800 : 1 Shift in reactor effluent to more
S 1600 L — Stream 6 _
groeeor Stream 7 condensables

1200 | | | | | Increase cooling water flow

1500 T T T T T
— 1000k : —— ] Increase stripper steam to
= i ream -
£ T Stream 5 | ensure same purity

0 ' ' ' | | Less compressor work

516 . , , , ,

] I e R S g o] ] ol e T
gt e I . S | oEl | oy ;'.?i@ l -
S ot i i (i ] G i . -

508 | ' ' ii— L ! {EEF:_L a@
e = ! ! ! ! | < @ L j

! I : : i . @__ — @ 10
g™ mHHH‘“HH\H'\'H'E'\'\"”""'”H””“””|"|"|"””"””"”HH””'|”HH | [“*’ o
L (AT e L =3
: j —~— et

380 i i i i i [ Stwwer | &

10 20 30 40 50 60
Time [h] - 1 FI
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Ohjective value []

Case Study:
Change Reactor Pressure by 60 kPa

Calculation time [s]

& | —o— CPUs(Opt)
vl

lterations

—a- No. of terations

—&— Objective value

@ max congtr viol
1 % maxKET error

Time Horizon [h]

Optimization with IPOPT
1000 Optimization Cycles
5-7 CPU seconds

11-14 Iterations
Optimization with SNOPT

Often failed due to poor
conditioning

Could not be solved within
sampling times

> 100 lterations
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A%Optimization as a Framework for Integration

+ Directly handles interactions, multiple conditions
+ Trade-offs unambiguous, quantitative

- Larger problems to solve
- Need to consider a diverse process models
Research Questions

How should diverse models be integrated?
Is further algorithmic development needed?
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Batch Integration Case Study

[ Plant Design ]

4[ Production Planning ]7

Stagel [ A B

Stage 2 Al 1-

Sequential

*What are the Interactions between Design
and Dynamics and Planning?

\What are the differences between Sequential and
Simultaneous Strategies?

*Especially Important in Batch Systems
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Simultaneous Dynamic Optimization

4[ Dynamic Processing ]7

Shorter
processing times

Same conversion
in reduced time

Time Time

Fewer
product batches

Production Planning .
Stage I[ A 0B Shorter Planning
‘.L. Horizon
Stage 2[_A | B

« discretize (DAES), state and control profiles
* large-scale optimization problem

« handles profile constraints directly

* incorporates equipment variables directly
 DAE model solved only once

 converges for unstable systems

Higher conversion
in same time

"I'im‘e‘ | Time
— Besttransient --- Bestconstant




Aﬁﬁé Scheduling Formulation

sequencing of tasks, products equipment

expensive discrete combinatorial optimization
consider ideal transfer policies (UIS and ZW)

closed form relations (Birewar and Grossmann, 1989)

A
stage |
Unlimited Int. Storage(UIS) J N - - -

Short production cycle

stage 2 | | I

Cycle time independent of sequence

Zero Wait (ZW)
Immediate transfer required
A B N Slack times dependent on pair
stage | mimm ] ] Longer production cycle required

stage 2

L ]
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Aﬁﬁé Case Study Example

4 stages, 3 products of different purity
Dynamic reactor - temperature profile
Dynamic column - reflux profile

A+B - C
C+B - P+E
P+C - G

Zi0,| | |l Z; ||| | Z| AV — B
O \:/
~——— Z; || Zi |||

Process Optimization Cases

SQ - Sequential Design - Scheduling - Dynamics
SM - Simultaneous Design and Scheduling
Dynamics with endpoints fixed .
SM* - Simultaneous Design, Scheduling and Dynamics
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Scenarios in Case Study

Comparison of Dynamic vs. Best Constant Profiles

RO - best constant temperature profile
R1 - optimal temperature policy

CO - best constant reflux ratio
C1 - optimal reflux ratio

o
N
o
[}
N
&

\‘ —— Constant —®— Constant g
6301 —— ,
= ¥ —®—Dynamic o 20 - - Dynam|c.
on 6204 ° <
I o
=z | = ®
(=3
@ 610 b 157 o
= S 9000000000 ®
= 600 2z I~
) 10- Ly
& 590 3
*
580 . . . . 5 -#— . . .
0 025 05 075 1 1.25 0O 05 1 15 2

Tme (hr.)
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Results for Simultaneous Cases

20000

RO/R1
15000 best constant /
. optimal temperature
&
;,: 10000
o Cco/C1
5000 best constant /
optimal reflux ratio
° ROCO RlICO R0IC1 R:ILCl
C ases
-Seque ntia | |:I\/Sviri’rt]hu léli(lggostuastes I:I\Isv"i’rt]hlhj IIt:aRTEeI‘EostjaSte s
|
SQ - e !
a a I
e s BRY
1 | |
SM '@ 1
[ I ] |V
1 1 ] |
SM* 1 1
|1
*Sa
1 | | |V

- ZW schedule becomes tighter

- less dependent on product sequences
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Aﬁﬁé Summary

Sequential Approaches
- Parameter Optimization
 Gradients by: Direct and Adjoint Sensitivity Equais
- Optimal Control (Profile Optimization)
* Variational Methods
* NLP-Based Methods
- Require Repeated Solution of Model
- State Constraints are Difficult to Handle

Simultaneous Approach

- Discretize ODEs using orthogonal collocation on finite elements (solve larger optimization problem)
- Accurate approximation of states, location of control discontinuities through element placement.

- Straightforward addition of state constraints.

- Deals with unstable systems

Simultaneous Strateqgies ar e Effective

- Directly enforce constraints

- Solve model only once
- Avoid difficulties at intermediate points

L arge-Scale Extensions
- Exploit structure of DAE discretization through decomposition
- Large problems solved efficiently with IPOPT
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A@ DAE Optimization Resources

References

Bryson, A.E. and Y.C. Ho, Applied Optimal Contrdinn/Blaisdell, (1968).
Himmelblau, D.M., T.F. Edgar and L. Lasdon, Optiatian of Chemical
ProcessedMcGraw-Hill, (2001).

Ray. W.H., Advanced Process ContidicGraw-Hill, (1981).

Software

. Dynamic Optimization Codes

ACM — Aspen Custom Modeler

DynoPC - simultaneous optimization code (CMU)
COOPT - sequential optimization code (Petzold)
gOPT - sequential code integrated into gProms (PSE)
MUSCOD - multiple shooting optimization (Bock)
NOVA - SQP and collocation code (DOT Products)
. Sengitivity Codesfor DAEs

DASOLYV - staggered direct method (PSE)

DASPK 3.0 - various methods (Petzol d)

SDASAC - staggered direct method (Sparse)
DDASAC - staggered direct method (dense)
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DynoPC — Windows Implementation

Model in FORTRAN

Data/Config.

--—-t{ ADOL_C

Pr epr ocessor

Simulator/Discr etizer

F/DF

Outputs/Graphic & Textd

T

" Redued SQP

‘ Calc. of independent
» variable move

[

ﬂnposition

~

Interior Point

Startin Poij(

»
L

\_

I <&
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Example: Batch Reactor Temperature

1 2
A —| B —> C
Max bt )
st. T~
da E, b
2 a®pier)a =
db E, s

S =k exp(-—= )@ -k, expt-—2 )b

at RT

at+b+c =1

89



Time

Example: Car Problem
o al
Eii(I:I\IIi
Min t;
S.t. z'=2,
Z, = U
ZZ < Zmax
-2<u<l
2 12
14 Z| 3 - 10
0- : subroutine model(nz,ny,nu,np,t,z,dmz,y,u,p,f)
= " " o > double precision t, z(nz),dmz(nz), y(ny),u(nu),p(np
'§ 11 S I > double precision f(nz+ny)
2 L4
< - f(1) = p(1)*2(2) - dmz(1)
& f(2) = p(1)*u(1) - dmz(2)
-3 T r ; ——1to return
10 20 30 40 end
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_ Example: Crystallizer Temperature

ERING
45E-03 60
sl
4,0E-03 1 SUBROUTINE model(nz,ny,nu,np,x,z,dmz,y,u,p,f)
3.5E-03 e / 50 implicit double precision (a-h,o0-z)
3.0E-03 \ / 40 double precision f(nz+ny),z(nz),dmz(nz),Y(ny),yp¢{L)

S double precision kgr, In0, Is0, kc, ke, kex, laeltd, alpha
2.5E-03 - dimension a(0:3), b(0:3
/ \ 1y @ (0:3), b(0:3)

<

—

rystal size
+

2 OE-03 data alpha/1.d-4/,a/-66.4309d0, 2.8604d0, -.022679d117d-5/,
1'5E 0 / \ 2 - b/16.08852d0, -2.708263d0, .0670694d0, -3.5685kgr/ 4.18d-3/,
o

1.0E-03 / \

en/1.1d0/, In0/ 5.d-5/, Bn / 3.85d2/, em / 5,%#&0/ 2.d0/,
Ls0/5.d-4 /, Kc/35.d0 /, Kex/ 65.d0/, abeBdO /,
amt/ 60.d0 /, VO / 1500.d0/, cw0/ 80.d0/,cwa/d®/,v1 /200.d0/,

T
.
o
+ + + + +

5.0E-04 tm1/ 55.d0/,x6r/0.d0/, tem/ 0.15d0/,clau/ 1580Jd0/1.35d0/,
0.0E+00 : : : —Lo cp/ 0.4d0  /,chata/ 1.2d0/, calfa/ .2dCcw/ 10.d0/
0 5 10 15 20
ke = kex*area
Time (hr) X7i = cw0*au/(100.d0-cw0)
v = (1.dO - cw0/100.d0)*v0
w = lau*v0

— Crystal Size —T jacket

yp(1) = (deltT + dsqrt(deltT**2 + alpha**2))*0.5d0

yp(2) = (a(0) + a(1)*yp(4) + a(2)*yp(4)**2 + a(3)4)**3)
yp(3) = (b(0) + b(1)*yp(4) + b(2)*yp(4)**2 + b(3)"y(4)**3)
deltT = yp(2) - z(8)

yp(4) = 100.d0*z(7)/(lau+z(7))

Maximize crystaysize
; ; f(1) = Kgr*z(1)**0.5*yp(1)**en - dmz(1)
at fi nal tim f(2) = Bn*yp(1)**em*1.d-6 - dmz(2)
f(3) = ((z(2)*dmz(1) + dmz(2) * Ln0)*1.d+6*1.d-4)dmz(3)

Steam f(4) = (2.d0*cbata*z(3)*1.d+4*dmz(1)+dmz(2)*Ln0**2¥.d+6)-dmz(4)
f(5) = (3.d0*calfa*z(4)*dmz(1)+dmz(2)*Ln0**3*1.d+6} dmz(5)
f(6) = (3.d0*Ws0/(Ls0**3)*z(1)**2*dmz(1)+clau*V*dmZ5))-dmz(6)
f(7) = -dmz(6)/V - dmz(7)

Cooli ng £(8) = (Kcrdmz(6) - Ke*(z(8) - u(L)))/(w*cp) - dmz(8)
water f(9) = y(1)+YP(3)- u(1)
return
i end
Control variable=T, = f(t)?
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