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Applications of nonlinear optimization problems with many degrees of freedom have become
more common in the process industries, especially in the area of process operations. However,
most widely used nonlinear programming (NLP) solvers are designed for the efficient solution
of problems with few degrees of freedom. Here we consider a new NLP algorithm, IPOPT,
designed for many degrees of freedom and many potentially active constraint sets. The IPOPT
algorithm follows a primal-dual interior point approach, and its robustness, improved
convergence, and computational speed compared to those of other popular NLP algorithms will
be analyzed. To demonstrate its effectiveness on process applications, we consider large gasoline
blending and data reconciliation problems, both of which contain nonlinear mass balance
constraints and process properties. Results on this computational comparison show significant
benefits from the IPOPT algorithm.

1. Introduction

Consider a nonlinear programming (NLP) problem
with equality constraints and variable bounds; these
problems are often classified by variable types at the
solution. Nonbasic variables are at their bounds at the
solution, basic variables can be determined uniquely by
the equality constraints (with other variables fixed), and
the remaining variables, termed superbasic variables,
represent the degrees of freedom available for optimiza-
tion.1 Most popular NLP solvers are designed to consider
problems with few superbasic variables. For instance,
linear programs and related successive linear program-
ming (SLP) methods assume no superbasics at all. As
observed in a number of studies,2-5 these codes become
inefficient when the number of superbasics becomes
large. As a result, this study considers a new algorithm
tailored for process applications with many degrees of
freedom.

Large-scale nonlinear optimization problems tend to
arise naturally in the physical sciences and engineering
and are becoming more widely used in economics and
management sciences. Such problems have become an
important part of computer-aided process operations in
areas such as optimal control,2 parameter estimation,6
data reconciliation,7 and blending operations.8-10 Many
of these applications lead to NLP problems with many
thousands of variables and also many degrees of free-
dom for optimization. Applicable solvers for these
problems need to exploit sparsity and problem structure
and usually require second-order information from the
optimization model. Moreover, these methods also need
to handle computational difficulties such as redundant
(i.e., degenerate) constraints and lack of positive defi-
niteness in the reduced Hessian matrix.

In the past 2 decades, the sequential quadratic
programming (SQP)5,11-13 algorithms have proven to be

suitable for solving these kinds of problems. Extensions
of these algorithms to deal with many degrees of
freedom have been developed by Lucia and co-work-
ers,4,5 Betts and Frank,14 and Sargent and Ding.12 SQP
solves a nonlinear optimization problem by successively
solving a series of quadratic programming subproblems.
At each iteration, a quadratic program (QP) is obtained
from the nonlinear program through a quadratic ap-
proximation of the Lagrange function and a linear
approximation of the constraints. This leads to a search
direction and a line-search step size, which determines
the next iterate.11 Here, the presence of many inequality
constraints can become a bottleneck during the solution
of the QPs as a result of the identification of the active
set of inequality constraints. Identification of the active
set can increase exponentially with increasing problem
size, and as a consequence, these algorithms have
become less attractive.

Other popular NLP algorithms include reduced-
gradient methods such as MINOS1 and CONOPT,15

which may not be well suited for problems with many
superbasic variables. These methods approximate second-
order information using dense quasi-Newton updates
in the reduced space, and consequently the computa-
tional effort grows polynomially with problem size.
Moreover, active set selection is a combinatorial process
that may be expensive, especially on degenerate prob-
lems. Finally, augmented Lagrangian methods have
been adapted to large-scale problems. For instance,
LANCELOT incorporates second-order information and
a bound-constrained trust region method to deal with
negative curvature. These features allow interesting
comparisons with SQP methods.

To overcome these limitations, we consider a novel
full space barrier (or interior point) approach termed
IPOPT. Here a novel filter line-search strategy, which
ensures convergence of the barrier problem, is incorpo-
rated along with efficient ways to incorporate second-
order information. Interior point methods were initially
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developed by Fiacco and McCormick.16 Moreover, the
past decade has seen intensive research17-20 in interior
point methods for general NLPs after encouraging work
by Karmarkar.21 In particular, the interior point ap-
proach overcomes the combinatorial bottleneck of cur-
rent SQP methods in identifying the active set and
appears to be especially well suited to problems with
many degrees of freedom. An excellent description and
comprehensive analysis of interior point methods can
be found in work by Forsgren et al.22 Lasdon et al. also
extend primal-dual interior point procedures to solve
small-to-medium size NLPs.23

Finally, to facilitate the general purpose calculation
of second-order information, a mathematical program-
ming modeling language is essential. In this study, we
use AMPL, which provides automatic generation of first
and second derivatives of constraint and objective
functions.24 The AMPL modeling language is linked to
various state of the art NLP solvers, which can also be
accessed over the Internet, and allows the user to choose
easily among solvers and options that may improve
solver performance.24

The objective of this study is to apply a new NLP
algorithm to process engineering and economics prob-
lems with many degrees of freedom. As representative
examples, we consider applications in gasoline blending
and data reconciliation. The interior point algorithm
used in this study follows a primal-dual interior point
approach, and its robustness, improved convergence,
and computational speed are compared to those of a
number of popular NLP solvers. This study also ad-
dresses some further research questions in work done
by Lasdon et al.23 by extending interior point methods
to solve large-scale problems. Section 2 gives a back-
ground summary of NLP solvers used in this study. The
large-scale engineering applications, gasoline blending,
and data reconciliation are discussed in section 3. Spe-
cific model formulations for these problems are pre-
sented in section 4, and numerical results and the solver
comparison are given in section 5. Conclusions and
directions for future work are presented in section 6.

2. Summary of NLP Solvers

Five other NLP solvers (LANCELOT,3 MINOS,1
SNOPT,11 KNITRO,17,25 and LOQO19) are summarized
here and chosen in order to compare the relative
efficiency of IPOPT.20 All of these methods have been
linked to AMPL to allow a straightforward comparison
and are classified in Figure 1.

IPOPT Solver. To simplify the presentation of the
IPOPT primal-dual interior point algorithm,20 we
consider NLPs rewritten with lower bounds of zero.
Without loss of generality, the optimization problem
(NLP) can be stated as

We assume the objective function f(x): Rn f R and the
equality constraints c(x): Rn f Rm with m < n are
sufficiently smooth. The bounds are now replaced by a
logarithmic barrier term, which is added to the objective
term to give

The barrier method solves a sequence of barrier prob-
lems (indexed by l ) for decreasing values of µl with
limlf∞ µl ) 0. Under mild assumptions, it can be shown
that a sequence of x*(µl ) of (approximate) local solutions
of eq 2 converges to a local solution of the original NLP
(eq 1).16,22 Since the exact solution x*(µl ) is not of
interest for large values of µl, the corresponding barrier
problem is solved only to a relaxed accuracy εl with
limlf∞ εl ) 0. To solve the barrier problem for a fixed
value of µl, a primal-dual approach 22 is used, and with
that, search directions for the primal and dual variables
are generated.

For fixed values of µl, the barrier problem eq 2 is
solved using a Newton method, with directions deter-
mined by solving the linear system at iteration k:

where λk is the vector of multiplier estimates at iteration
k, A(xk) ) ∇c(xk), W(xk,λk) is the Hessian of the Lagrange
function Lµ(xk,λk) shown as

and Σk is a diagonal matrix that represents the barrier
term. Once the search direction is computed, a back-
tracking line-search procedure is used where a decreas-
ing sequence of step sizes Rk,l ∈ (0, Rk

max] (l ) 0, 1, 2, ...)
is tried until some acceptance criterion is satisfied. Here
Rk

max ) max {R ∈ (0, 1]: xk + Rkdk g (1 - τ)xk} for a fixed
parameter τ ∈ (0, 1], chosen close to 1. For the line-
search filter method in IPOPT, the trial point is ac-
cepted if it improves a feasibility measure, i.e., ||c[xk(Rk,l)]-
|| < ||c(xk)||, or if it improves the barrier function, i.e.,
æµ[xk(Rk,l)] < æµ(xk). The motivation for filter methods26

is to avoid finding a suitable penalty parameter for a
merit function that trades off reductions in infeasibility
with improvements in the barrier function. Assuming
that Newton directions are usually “good” directions
(e.g., when exact second-derivative information is used),
filter methods can be more efficient than algorithms
based on merit functions because they generally accept
larger steps, Rk,l. Moreover, to guarantee global conver-

Figure 1. Summary of NLP solvers.

min f(x) (1)

s.t. c(x) ) 0

x g 0

min æµ(x) ) f(x) - µ∑
i

log(x(i)) (2)

s.t. c(x) ) 0

[W(xk,λk) + Σk A(xk)
A(xk)

T 0 ][dk
λk ]) -[∇æµ(xk)

c(xk) ] (3)

Lµ(xk,λk) ) f(xk) + ∑λkc(xk) - µ∑
i

log(xk
(i)) (4)
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gence, several precautions are added to ensure that
IPOPT terminates either at a KKT point or a point
where the infeasibility is (locally) minimized.20 IPOPT
also exploits the sparsity of the KKT matrix in eq 3,
and it also deals with negative curvature and dependent
constraints through regularization of the KKT matrix
in eq 3. When these are detected, positive quantities are
added to the diagonal elements of the matrix in eq 3 in
order to ensure a stable pivot sequence and a nonsin-
gular matrix. Finally, to assess the impact of incorpo-
rating exact second-derivative information in eq 3 and
to compare with quasi-Newton approximations, we also
consider the L-BFGS option for IPOPT. Here the matrix
W(xk,λk) is approximated using a limited-memory BFGS
quasi-Newton update in the full space.

LOQO and KNITRO Interior Point Solvers. The
NLP solvers LOQO19 and KNITRO25 both implement
algorithms for solving the barrier problem (2) for a
sequence of barrier parameters, µl f 0, and are similar
in concept to IPOPT. Both methods allow for second-
derivative information and exploit the sparsity of the
KKT matrix in eq 3. Also, penalty-based merit functions
are used to promote convergence. The differences in
these solvers are largely due to the steps that promote
global convergence. LOQO uses a line search based on
a penalty-based merit function. On the other hand,
KNITRO applies the composite step trust region method
by Byrd et al.;17 here the KKT matrix (3) is decomposed
to determine normal and tangential steps. One signifi-
cant difference in KNITRO is that an iterative linear
(conjugate-gradient) solver is used to determine the
tangential step. This leads to a different search direction
in the presence of negative curvature or ill-conditioning
in eq 3. Generally, this trust region approach requires
more iterations than the line-search methods of IPOPT
and LOQO, although it can be more reliable on poorly
conditioned problems.

Reduced-Space SQP Method. The NLP solver
SNOPT11 implements a SQP algorithm for solving large
nonlinearly constrained optimization problems. This
method has significant differences from interior point
solvers. First, unlike the barrier approach, SNOPT
applies an active set strategy determined from the
solution of a QP. SNOPT also does not use second-order
information; instead, quasi-Newton information is de-
rived. Moreover, the KKT system solved in the QP
(essentially eq 3 with ∑k ) 0) is solved by projection into
the null space of the active constraints and does not
exploit sparsity of Wk. Finally, SNOPT uses a line
search with an augmented Lagrangian merit function
to guarantee convergence.

LANCELOT Augmented Lagrangian Method.
The NLP solver LANCELOT3 is based on a minimiza-
tion of the augmented Lagrangian function through
nested calculation loops. The outer level updates the
Lagrange multipliers, while the inner loop updates the
primal variables, x. This inner minimization applies a
bound-constrained trust region minimization of the
augmented Lagrangian function using Newton’s method,
similar to eq 3. As a trust region method, it also applies
an iterative linear (conjugate gradient) solver.

Reduced-Gradient Methods. For this comparison,
we describe two popular solvers, CONOPT15 and MI-
NOS1. CONOPT sets the nonbasic variables to their
bounds, performs an implicit elimination of the basic
variables by solving nonlinear constraints, and applies
a quasi-Newton method to minimize the objective func-

tion in the space of the superbasic variables. CONOPT
is a careful implementation that incorporates efficient
nonlinear solvers and (re)partitioning of the variable
sets. However, because CONOPT is currently not linked
to AMPL, we did not consider this solver in our
comparison. Nevertheless, the NLP solver MINOS also
implements a reduced-gradient algorithm with quasi-
Newton approximations and is similar to CONOPT.
However, instead of an implicit elimination of the basic
variables, MINOS first linearizes the constraints and
uses this linearization for the elimination. The approach
is based on a sequential linearly constrained (SLC)
algorithm for nonlinear constraints. Both CONOPT and
MINOS are suitable for large constrained problems with
a mixture of linear and nonlinear constraints. They are
most efficient for problems with (mostly) linear con-
straints and not too many superbasic variables (say, a
few hundred).

Another popular method is SLP. SLP technology is
the cornerstone of all solvers found in oil refinery and
petrochemical large-scale planning systems.27 SLP suc-
cessively linearizes the objective and constraint func-
tions and solves the resulting linear program. However,
because linear programs terminate only at vertex solu-
tions, SLP does not account explicitly for superbasic
variables. Consequently, the problem performs poorly
on problems with many superbasic variables. Moreover,
there are few implementations of SLP methods, none
of which are available with AMPL. For these reasons,
SLP methods are not considered in this study.

3. Process Problem Classes with Many Degrees
of Freedom

We describe two problem classes with many degrees
of freedom that are frequently encountered in process
operations. In this section, we consider blending prob-
lems, particularly for gasoline products, as well as a
typical data reconciliation problem. Both problem types
consist of nonlinear mass balances, which include
concentration, quality, or temperature information.
Moreover, their problem sizes can be extended through
multiperiod formulations, and their degrees of freedom
increase proportionally.

While these problems are nonconvex and admit to
locally optimal solutions, we consider only local, and not
global, optimization solvers here. Instead, we emphasize
that the focus of the study is on computational perfor-
mance and comparison of these local solvers. Neverthe-
less, this comparison is also relevant for most global
solvers because they often require local solvers in their
algorithms.

Gasoline Blending Problem. Gasoline blending
problems represent large-scale multiperiod nonlinear
programs with mass balance constraints, nonlinear
blending properties, large-scale structure (particularly
across multiperiods), and combinatorial aspects dealing
with bounds and possible switching strategies. Gasoline
is one of the most important refinery products as it can
yield 60-70% of a typical refinery’s total revenue.28

Thus, tight control of blending operations can provide
a crucial edge to the profitability of a refinery. Gasoline
blending is featured in the dashed-line rectangle in the
supply chain diagram for gasoline production and
distribution in Figure 2.

There are various motivations to blend gasoline. First,
there are variations in regional demands. For instance,
gasoline blends supplied to the state of California must
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have a certain amount of alcohol additives to reduce the
CO emissions in the atmosphere, as compared to the
conventional gasoline blends in other areas. Second,
seasonal variations account for particular blends during
the summer and winter months. Finally, variations in
process rundown quantities and qualities also account
for the need to blend gasoline.

A generalization also known as the pooling problem
is used to model many actual systems, which have
intermediate mixing (or pooling) tanks in the blending
process.29 The pooling problem is a planning problem
that arises when blending materials to produce prod-
ucts, e.g., from crude or refined petroleum.10 Kelly and
Mann27 provide a new scheduling approach and problem
formulation for crude oil blending. Blending systems are
also encountered in other chemical process industries,
such as chemical, pharmaceutical, cosmetics, and food.
The classical blending problem arises in refinery pro-
cesses where feeds with different attribute qualities or
properties (e.g., sulfur composition, density or octane
number, boiling point temperatures, and flow rate) are
mixed together to obtain final products that are dis-
patched to several locations. There are usually several
ways of satisfying the requirements, and the problem
is posed as maximizing the difference between the
revenue generated by selling the final blends and the
cost of purchasing the feeds. The need for blending
occurs when the requirements of a demand product are
not met by a single feed.

Gasoline blending models often include nonconvex
nonlinearities, which lead to the existence of several
locally optimal solutions.30 Given the high volume of
sales of petroleum products, global optimization of the
pooling and blending processes can lead to substantial
savings in cost, resulting in higher profit margins.
Pooling problems have been studied in both the opera-
tions research and chemical engineering literature since
1978, when Haverly31 showed how difficult a small
weight-based monoperiod fuel-oil blending problem is
to solve to global optimality. Since then, several re-
searchers have studied this problem. Simon and Azma32

compared the performance of Exxon’s SLP and SQP
techniques with reduced-gradient methods. Floudas and
Aggarwal8 presented a search technique used to obtain
global optima in the pooling problem. Floudas et al.9
presented a number of literature pooling problems,
allowing a quick assessment of local and global solution
methods. Lodwick33 developed methods to uncover
redundancies, infeasibilities, and bound structures on
variables for nonlinear constraints with applications to
the pooling problem. Main34 presented practical aspects

of recursion techniques for large models. Ben-Tal et al.35

reduced the duality gap of pooling problems using global
minimization strategies. Greenberg36 presented ap-
proaches for diagnosing infeasible linear programs for
pooling problems, and Quesada and Grossmann37 pre-
sented global optimization techniques for bilinear pro-
cess networks with multicomponent flows. Amos et al.38

introduced cumulative functions for distillation yields
in pooling problems. Adjiman et al.39 presented a global
optimization method for general twice differentiable
constrained NLPs. Adya and Sahinidis30 introduced a
new Lagrangian relaxation approach for developing
lower bounds for the pooling problem, and Audet et al.29

presented alternative formulations and methods for the
pooling problem.29 Finally, Tawarmalani and Sahini-
dis10 addressed the development of an efficient solution
strategy to obtain global optima of nonlinear programs.
A general review of bilinear problems is given by Al-
Khayyal.40

In this study, we do not consider global methods for
pooling problems. Instead, the focus of this study is the
performance of local solvers for this problem class. Local
solvers can also lead to significant improvements, and
solutions can be generated much faster, even for blend
planning and scheduling applications. Moreover, ef-
ficient local solvers are often necessary components of
global optimization algorithms. A general gasoline
blending formulation is presented below:

where indices i, j, k, and t refer to feeds, intermediates,
products, and time, respectively, and the variables f, q,
and v are flows, tank qualities, and tank volumes,
respectively. The classical blending problem determines
the optimal way to mix feeds directly into blends. The
basic structure of the pooling problem is similar, except
for one set of intermediate pools where the feeds are
mixed prior to being directed to the final blends.
Generally, there are three types of pools: source pools,
having a single purchased feed as the input, intermedi-
ate pools with multiple inputs and outputs, and final
pools, having a single final blend as the output. Also, if
the jk pools have two or more outlet flows at the same
time, then splitter equations qt,jk1 - qt,jk2 ) 0 need to be
added to enforce the same qualities on the outlet. The
objective is derived through the input of the source pools
and the output of the final pools. Since the qualities
blend nonlinearly, bilinear terms are introduced in the
model and the difficulty of the bilinear programming
problem can be estimated by the number of bilinear

Figure 2. Gasoline production/supply chain diagram.

max Profit ) ∑
t

(∑
k

ckft,k - ∑
i

cift,i)

s.t. ∑
k

ft,jk - ∑
i

ft,ij + vt+1,j ) vt,j

ft,k - ∑
j

ft,jk ) 0

∑
k

qt,kft,jk - ∑
i

qt,ift,ij + qt+1,jvt+1,j ) qt,jvt,j (5)

qt,kft,k - ∑
j

qt,jft,jk ) 0

qkmin
e qt,k e qkmax

vkmin
e vt,k e vkmax
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variables and constraints. Additional difficulties occur
when the constraint gradients become linearly depend-
ent and the KKT matrix in eq 3 becomes singular. Note
that, for this case, a regularization procedure is intro-
duced in IPOPT. The models in the optimization prob-
lems are formulated as bilinear programming models;
the objective function remains linear, with the nonlin-
earities seen only in the constraints. The objective
function of the gasoline blending model minimizes cost
or maximizes profit of production of blends.

In the next section, we consider three categories of
blending models. The first category consists of two
simple (1-day) models [Haverly31 (Figure 3) and Audet
and Hansen29 (Figure 4)] formulated as bilinear pro-
gramming models, with the measure of difficulty seen
in the increase in the number of blending tanks to
product tanks. One quality was maintained in the tanks
for both the Haverly and the Audet and Hansen models.
The second category consists of extending the two simple
(1-day) models to run on a multiperiod basis (25 days)
and analyzing the various characteristics of the model
formulation with independent constraints. For these
multiday problems, tanks constitute pools with inven-
tory. The third category applies the bilinear program-
ming formulation to a Honeywell Industrial Solutions
problem (Figure 5) with dependent constraints, which
extends its mathematical programming model to run
on a 15-day cycle with 48 different qualities (such as
octane number, Reid vapor pressure, etc.) maintained
in the tanks. The model diagram for these problems is
shown in Figure 5.

Data Reconciliation Problem. Another large-scale
engineering application is the data reconciliation prob-
lem. In any modern chemical plant, petrochemical
process, or refinery, hundreds or even thousands of
variables (such as flow rates, temperatures, pressures,
levels, and compositions) are routinely measured and
automatically recorded for process control, online opti-
mization, or process economic evaluation.7,41 Modern
data systems facilitate the collection and processing of
large data sets sampled with a frequency of minutes or
even seconds. The motivation to have process data
reconciled is to obtain reliable information that can be
used for management planning, modeling, optimization,
design of monitoring systems, instrument maintenance,
and environmental compliance and to establish base-
lines for future work.41

Data reconciliation exploits redundancy in process
data in order to determine measurement adjustments

that lead to data sets that are consistent with the plant
model. Here we define a system as redundant when the
amount of available data (information) exceeds the
minimum amount necessary to solve the simulation
problem.41 Data reconciliation has been developed to
improve the accuracy of measurements by reducing the
effect of errors in the data. Chemical process data
inherently contain some degree of error, and these
errors may be random or gross. Random errors are small
errors due to the normal fluctuation of the process such
as power supply fluctuations, network and signal con-
version noise, and changes in ambient temperature.7 On
the other hand, gross errors are larger, systematic errors
due to incorrect calibration or malfunction of the instru-
ments, process leaks, and wear or corrosion of sensors.
Thus, if the measurement is repeated with the same
instrument under identical conditions, the contribution
of a gross error will be the same.41 Gross error detection
is a companion technique to data reconciliation that has
been developed to detect and identify gross errors. Thus,
data reconciliation and gross data detection are applied
together to improve the accuracy in measured data and
to identify instrumentation problems that require spe-
cial maintenance and correction. Moreover, detection of
incipient gross errors can reduce maintenance costs and
provide smoother plant operation. These methods can
also be extended to detect faulty equipment41 but are
beyond the scope of this study.

A general formulation of the data reconciliation
problem is presented below:

where y, u, and x are vectors of measurements, un-
measured variables, and measured variables at time t,
Φ is the covariance matrix, and f and g are vectors of
equality and inequality constraints at time t, respec-
tively.

Two popular optimization methods for the nonlinear
data reconciliation problem are the reduced-gradient
and SQP methods, and several commercial data recon-
ciliation and gross error detection software packages are
available. The GAMS optimization package is used to
solve the data reconciliation problem using the MINOS
reduced-gradient algorithm.12 Other software for data
reconciliation and gross error detection include DATA-
CON (Simulation Sciences Inc.), ROMeo (Simulation
Sciences Inc.), DATREC (Elf Central Research), RECON
(part of RECONSET of ChemPlant Technology sro,
Czech Republic), VALI (Belsim sa), PRODUCTION
BALANCE (Honeywell Industrial Solutions), and RAGE
(Engineers India Limited).41 Implementations have also
been reported with ASPEN Plus using an SQP algo-
rithm42 for the data reconciliation problem.

As a test example characteristic of many data recon-
ciliation problems, we consider a bilinear problem
formulation for a steam metering problem first intro-
duced by Serth and Heenan.43 The constraints consist
of total mass and energy balances with flows and
temperatures measured for each stream. The steam
metering process has 28 redundant measured streams
flowing in and out of 11 nodes as depicted in Figure 6.

Figure 3. Haverly problem.

Figure 4. Audet and Hansen problem.

min
x,u

∑
t

(yt - xt)
TΦ-1(yt - xt)

s.t. ft(x,u) ) 0 (6)

gt(x,u) e 0
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The standard deviation, σ, of the true flow rates was
taken to be 1.0% of the true values of the variables. The
data generated for this model, which contain no gross
errors, were obtained from summing the true values and
its corresponding standard deviation values. The mod-
el’s objective function was calculated using least-squares
residual errors, and the (1-day) model formulated was
extended to run on a multiperiod basis (up to 25 days).

4. Examples Considered

We selected 13 examples to compare the above NLP
solvers for robustness and performance. Eight of these
cases are gasoline blending problems, while five are
based on the steam metering data reconciliation prob-
lem. For the gasoline blending problem, the following
cases were analyzed: (i) 1-day Haverly model formula-
tion (HM); (ii) 1-day Audet and Hansen model formula-
tion (AHM); (iii) 25-day HM; (iv) 25-day AHM; (v) 1-day
industrial model formulation (IHM); (vi) 5-day IHM; (vii)
10-day IHM; (viii) 15-day IHM. For the data reconcili-
ation problem, the following cases were analyzed: (i)
1-day steam metering model formulation (SM); (ii) 5-day
SM; (iii) 10-day SM; (iv) 15-day SM; (v) 25-day SM. All
of these problems are nonconvex and may admit locally
optimal solutions. For these solvers, we apply the
following initialization strategy to obtain good starting
points and attempt to determine globally optimal solu-
tions (Figure 7).

In the phase I analysis, the quality, composition, or
temperature variables are fixed and the bilinear equa-
tions become linear and redundant; these equations are
dropped. The NLP now becomes an LP or QP problem
containing only flow variables. For phase II, the solution
from phase I is used to calculate the quality/composition/
temperature variables. We then apply these values to
the original NLP formulation.

5. Numerical Results and Discussion

Results from IPOPT are obtained from a Dual Pen-
tium III 800 MHz machine running Linux. The other
solvers are obtained from the NEOS Server for Opti-
mization (http://www-neos.mcs.anl.gov) at Argonne Na-
tional Laboratory from a variety of machines. Results
from LANCELOT, KNITRO, and SNOPT are obtained
from a SunOS 5.7 UltraSparc-III 360 MHz running
Linux, results from LOQO are obtained from a Pentium
III 601 MHz running Linux, and results from MINOS
are obtained from an Intel Pentium IV 2.53 GHz
running Linux. Note that although we usually find the
global optimum, these solvers can guarantee only local
solutions. Default options were used for all of the
solvers. These specific options can be found at the URLs
listed with the reference for each method. Tables 1-4
show the CPU times on these machines for illustration;
to get a rough comparison, we also present normalized
CPU times with respect to the machine used for IPOPT.
In addition, other comparisons can be made with
iteration counts, which represent the number of linear
systems equivalent to eq 3 that were solved. Result
tables for these 13 cases are presented below. Here N
represents the number of variables, M is the number of
equality constraints, and S is the number of superbasic
variables at the solution.

In category I, we consider the results for the Haverly
and the Audet and Hansen models. For the Haverly
model, both KNITRO and LANCELOT find local solu-
tions while the other solvers find the global optimum
of 400. For the Audet and Hansen model, KNITRO and
MINOS give different local solutions compared to the
other solvers. These problems have few superbasic
variables, all CPU times are small, and there is no
significant difference in the solution times for these
solvers. Note, however, that solvers that use exact

Figure 5. Honeywell industrial problem.

Figure 6. Steam metering problem.
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second derivatives [especially KNITRO, LOQO, and
IPOPT (exact)] generally require fewer iterations. As a
result, this set of results is meant to be a consistency
check that shows the viability of all of the methods.

Category II extends these models from a 1-day to a
25-day period model. Here, the KNITRO solver exceeds
the maximum iteration default limit of 1000 for the
Haverly model. LANCELOT, MINOS, and KNITRO find
different local solutions for the Audet and Hansen
model. The smallest iteration counts are required by
both LOQO and IPOPT (exact). Again, methods without
exact second derivatives (including the L-BFGS option
in IPOPT) generally require more iterations. Moreover,
we believe that the excessive effort observed with
KNITRO and LANCELOT can be explained by their
trust region conjugate gradient (CG) method, which may
accept a negative curvature direction even if it gives an
insignificant reduction.

Category III considers various multiperiod instances
of an industrial model provided by Honeywell. The
models have 48 qualities, and by extending the model
from 1 to 15 days, the NLP increases from 2003 to
31 743 variables. Most of the solvers have difficulty with

this model beyond the first day. For the first day, the
best solver performance is achieved by IPOPT. For the
5-day case, only MINOS and IPOPT (both options) were
able to solve this problem. Note though that IPOPT
(exact) was significantly more efficient than the other
two methods. Moreover, because the IPOPT (L-BFGS)
method required excessive solution, it was not consid-
ered for the larger problems.

Beyond 5 days, only IPOPT (exact) was able to provide
a solution. Note that, even in this case, a larger CPU
time was required. This problem is difficult for IPOPT
because the redundancies in the constraints also make
the KKT matrix ill-conditioned and expensive to factor-
ize with the sparse solver. We suspect that LOQO and
KNITRO failed for the same reasons. Compared to
MINOS, the longer CPU times for IPOPT are entirely
dependent on the sparse linear solver. MINOS, which
is also run on the fastest computer, has very efficient
strategies to identify redundant constraints and solve
smaller linear systems much more quickly, as long as
these systems are not too large. As a result, it solves

Figure 7. Initialization strategy.

Table 1. Results of Gasoline Blending Models in
Category I

no. of
iterations objective

CPU
(s)

normalized
CPU (s)

HM Day 1 (N ) 13, M ) 8, S ) 8)
LANCELOT 62 100 0.10 0.05
MINOS 15 400 0.04 0.13
SNOPT 36 400 0.02 0.01
KNITRO 38 100 0.14 0.06
LOQO 30 400 0.10 0.08
IPOPT, exact 31 400 0.01 0.01
IPOPT, L-BFGS 199 400 0.08 0.08

AHM Day 1 (N ) 21, M ) 14, S ) 14)
LANCELOT 112 49.2 0.32 0.14
MINOS 29 0.00 0.01 0.03
SNOPT 60 49.2 0.01 <0.01
KNITRO 44 31.6 0.15 0.07
LOQO 28 49.2 0.10 0.08
IPOPT, exact 28 49.2 0.01 0.01
IPOPT, L-BFGS 44 49.2 0.02 0.02

Table 2. Results of Gasoline Blending Models in
Category II

no. of
iterations objective

CPU
(s)

normalized
CPU (s)

HM Day 25 (N ) 325, M ) 200, S ) 200)
LANCELOT 67 1.00 × 104 6.75 3.04
MINOS 801 6.40 × 103 1.21 3.83
SNOPT 739 1.00 × 104 0.59 0.27
KNITRO >1000 a a a
LOQO 31 1.00 × 104 0.44 0.33
IPOPT, exact 47 1.00 × 104 0.24 0.24
IPOPT, L-BFGS 344 1.00 × 104 1.99 1.99

AHM Day 25 (N ) 525, M ) 300, S ) 350)
LANCELOT 149 8.13 × 102 26.8 12.1
MINOS 940 3.75 × 102 2.92 9.23
SNOPT 1473 1.23 × 103 1.47 0.66
KNITRO 316 1.13 × 103 17.5 7.88
LOQO 30 1.23 × 103 0.80 0.60
IPOPT, exact 44 1.23 × 103 0.25 0.25
IPOPT, L-BFGS 76 1.23 × 103 0.98 0.98

a Maximum iterations reached.
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the 1-day and 5-day problems rather quickly. On the
other hand, MINOS requires over 100 times as many
iterations and function evaluations as IPOPT (exact) on
these problems. Future developments for IPOPT are
planned to address inefficiencies with the sparse linear
solver.

Results of the data reconciliation model are given in
Table 4. All of the solvers found the global solution in
all cases. Note that we are minimizing the square of

errors in the flowmeter readings, hence the small values
for the objective function obtained. Here, KNITRO and

Figure 8. Solver performance chart.

Table 3. Results of Gasoline Blending Models in
Category III

no. of
iterations objective

CPU
(s)

normalized
CPU (s)

IHM Day 1 (N ) 2003, M ) 1595, S ) 1449)
LANCELOT 388 6.14 × 101 1.17 × 105 5.28 × 103

MINOS 2238 6.14 × 101 5.24 × 101 1.66 × 102

SNOPT a a a a
KNITRO 37 1.00 × 102 1.58 × 102 7.11 × 101

LOQO b b b b
IPOPT, exact 21 6.14 × 101 2.60 2.60
IPOPT, L-BFGS 52 6.14 × 101 8.89 8.89

IHM Day 5 (N ) 10 134, M ) 8073, S ) 7339)
LANCELOT c c c c
MINOS 8075 1.39 × 105 3.08 × 102 9.74 × 102

SNOPT a a a a
KNITRO a a a a
LOQO b b b b
IPOPT, exact 39 1.39 × 105 1.06 × 103 1.06 × 103

IPOPT. L-BFGS 1000 1.39 × 105 2.91 × 105 2.91 × 105

IHM Day 10 (N ) 20 826, M ) 16 074, S ) 15 206)
LANCELOT c c c c
MINOS a a a a
SNOPT a a a a
KNITRO a a a a
LOQO b b b b
IPOPT, exact 65 2.64 × 104 1.12 × 104 1.12 × 104

IHM Day 15 (N ) 31 743, M ) 25 560, S ) 23 073)
LANCELOT c c c c
MINOS a a a a
SNOPT a a a a
KNITRO a a a a
LOQO b b b b
IPOPT, exact 110 4.15 × 104 7.25 × 104 7.25 × 104

a Solver failure. b Failure due to primal-dual infeasibility.
c Failure due to insufficient memory allocation.

Table 4. Results of the Steam Metering Data
Reconciliation Problem

no. of
iterations objective

CPU
(s)

normalized
CPU (s)

SM Day 1 (N ) 40, M ) 23, S ) 17)
LANCELOT 11 3.53 × 10-5 0.06 0.03
MINOS 41 3.53 × 10-5 0.03 0.09
SNOPT 38 3.53 × 10-5 0.04 0.02
KNITRO 2 3.53 × 10-5 0.06 0.03
LOQO 19 3.53 × 10-5 0.12 0.09
IPOPT, exact 2 3.53 × 10-5 <0.01 <0.01
IPOPT, L-BFGS 3 3.53 × 10-5 <0.01 <0.01

SM Day 5 (N ) 196, M ) 111, S ) 85)
LANCELOT 11 1.77 × 10-4 0.19 0.09
MINOS 176 1.77 × 10-4 0.14 0.44
SNOPT 178 1.77 × 10-4 0.06 0.03
KNITRO 2 1.77 × 10-4 0.06 0.03
LOQO 19 1.77 × 10-4 0.04 0.03
IPOPT, exact 2 1.77 × 10-4 0.02 0.02
IPOPT, L-BFGS 3 1.77 × 10-4 0.02 0.02

SM Day 10 (N ) 391, M ) 221, S ) 170)
LANCELOT 10 3.53 × 10-4 0.30 0.14
MINOS 318 3.53 × 10-4 0.58 1.83
SNOPT 353 3.53 × 10-4 0.23 0.10
KNITRO 2 3.53 × 10-4 0.09 0.04
LOQO 19 3.53 × 10-4 0.68 0.51
IPOPT, exact 2 3.53 × 10-4 0.02 0.02
IPOPT, L-BFGS 3 3.53 × 10-4 0.02 0.02

SM Day 15 (N ) 586, M ) 331, S ) 255)
LANCELOT 9 5.30 × 10-4 0.45 0.20
MINOS 461 5.30 × 10-4 1.55 4.90
SNOPT 528 5.30 × 10-4 0.59 0.27
KNITRO 2 5.30 × 10-4 0.10 0.05
LOQO 19 5.30 × 10-4 1.04 0.78
IPOPT, exact 2 5.30 × 10-4 0.03 0.03
IPOPT, L-BFGS 3 5.30 × 10-4 0.04 0.04

SM Day 25 (N ) 976, M ) 551, S ) 425)
LANCELOT 11 8.83 × 10-4 0.84 0.38
MINOS 793 8.83 × 10-4 6.32 20.0
SNOPT 878 8.83 × 10-4 1.72 0.77
KNITRO 2 8.83 × 10-4 0.15 0.07
LOQO 20 8.83 × 10-4 2.06 1.55
IPOPT, exact 2 8.83 × 10-4 0.05 0.05
IPOPT, L-BFGS 3 8.83 × 10-4 0.05 0.05
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IPOPT require the fewest iterations. Moreover, note
that the solvers SNOPT and MINOS require more
iterations than the solvers that use second derivatives.
Iteration counts for MINOS and SNOPT also increase
significantly with the number of periods (and superbasic
variables). Note that IPOPT (L-BFGS) requires only one
more iteration than IPOPT (exact). This performance
is likely due to the structure of the W(x,λ) matrix, which
is dominated by diagonal terms.

All of these results can be summarized by the Dolan-
Moré plot44 in Figure 8. Here we define tp,s as the
number of iterations required for problem p and solver
s. We also define the performance ratio as Fp,s ) tp,s/mins
{tp,s}. Here we set Fp,s ) ∞ for problems that could not
be solved by a given solver. For each solver, we define
φ(τ) as the number of problems solved with Fp,s e τ. A
plot of these functions with respect to τ leads to the
performance profile in Figure 8. Figure 8 gives a
summarized overview of all of the tabulated results with
the various solver performances. From values at τ ) 1,
we see that IPOPT solves most of the problems with
the fewest iterations. Moreover, as τ increases, IPOPT
remains superior to the other solvers and is able to solve
all of the problems presented.

6. Conclusions and Future Work

Large-scale nonlinear optimization problems have
become an important part of computer-aided process
operations. Many of these applications also have many
degrees of freedom for optimization. For this purpose,
NLP solvers that incorporate second-derivative infor-
mation, exploit the sparsity of the KKT matrix, deal
efficiently with large sets of active constraints, and
handle dependent constraints and negative curvature
are needed. These features are considered in IPOPT, a
novel barrier solver that incorporates a line-search filter
method.

This study compares IPOPT with five popular large-
scale NLP solvers (MINOS, SNOPT, LOQO, KNITRO,
and LANCELOT) on two problem classes in process
operations: blending and data reconciliation. In par-
ticular, the first two solvers are widely used but do not
use second-derivative information. By extending these
problems to multiperiod formulations, NLPs are con-
structed that require several thousand degrees of free-
dom. For all of these cases, IPOPT appears to be well
suited for process problems and outperforms the other
solvers considered in this study, in particular, MINOS
and SNOPT.

Future work will deal with improving problems with
dependent constraints and negative curvature that are
common with these problem classes. Currently, we deal
with these through regularization of the KKT matrix
in order to allow stable pivoting of a singular matrix.
Additional features that include preprocessing to elimi-
nate dependent constraints are currently being consid-
ered.
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