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Abstract 

With the increasing size and complexity of process simulation and optimization problems, 
exploitation of the process model becomes increasingly important. While most 
researchers recognize the need to exploit the problem structure, for instance at the linear 
algebra level, this study explores the case when multiple model solvers are required for 
simulation and optimization of the overall process system. While this approach is standard 
for process flowsheeting, we need to consider how we can take advantage of sophisticated 
simultaneous solution and optimization strategies for large-scale optimization. Here we 
discuss both open form and closed form models, and demonstrate that both are needed for 
different types of problems. We then consider an approach where closed form or ’black 
box’ models can be ’opened up’ to achieve simultaneous optimization without disturbing 
the inherent structure of the model’s solver. In addition, several applications, including 
process flowsheets, dynamic optimization, PDE models and process integration are 
highlighted. Finally, we close with some challenges and areas for future work for both 
modeling environments and optimization algorithms. 
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1. Introduction 



 
With increasing complexity and size of chemical 
process models, there remains a constant 
challenge to develop more efficient and robust 
algorithms for simulation and optimization. Here 
model developers and engineers are faced with 
conflicting objectives. First, there is a need to 
develop robust general purpose modeling 
platforms and numerical algorithms that allow 
the rapid development of large process models. 
This paradigm allows a straightforward and 
seamless extension to very efficient optimization 
algorithms as well. And modeling, simulation 
and optimization tools that are built on these 
concepts allow us to conduct large-scale 
optimization studies with the same ease as 
solving the process model itself. Excellent 
illustrations in this conference include the papers 
by Wright (1999), Floudas and Pardalos (1999), 
and Grossmann and Hooker (1999).  
 
On the other hand, increasing complexity of 
these models requires us to consider the 
exploitation of specific model structure and the 
development of specialized solvers for different 
kinds of systems. This approach has its roots in 
the early history of process simulation. For 
instance, equilibrium stage models exploit the 
block tridiagonal structure of the MESH 
equations and related systems. Moreover, further 
solver decompositions like the inside-out 
algorithm must be applied in order to isolate and 
control highly nonlinear characteristics of some 
columns. Moreover, the exploitation of structure 
and specialized solvers is especially acute in the 
solution of PDE-based (Partial Differential 
Equation) models, where spatial and temporal 
discretizations create systems with millions of 
variables and equations. Here the ‘one size fits 
all’ solver paradigm breaks down. Excellent 
illustrations at this conference include the papers 
by Sinclair (1999) and Jensen (1999). However, 
for these systems, the extension of these models 
to optimization and integration with other process 
systems still remains a serious challenge.  
 
This study attempts to bridge between highly 
developed process simulation and optimization 
tools and complex, diverse models that have yet 
to be considered in these environments.  In the 
next section we begin by tracing the evolution of 
different process optimization strategies. In 
particular, we highlight the merits of 
simultaneous optimization strategies, both for 
efficiency and the ability to integrate different 
tasks and subsystems. Following this section, we 
highlight benefits and challenges required for 
optimization applied to process integration. 

Section 4 then discusses the current state of open 
form and closed form systems, i.e., models 
expressed in a declarative, equation oriented 
way, vs. models that are closely coupled and 
exploited by a special purpose solver.  The latter 
case also includes the presence of legacy codes 
and also covers a wide variety of detailed models 
that are not widely considered in process 
flowsheeting or real-time optimization. As will 
be shown in this section, both open and closed 
form paradigms are essential for their respective 
model types. Section 5 develops a tailored 
optimization strategy that extends the benefits of 
simultaneous optimization to a wide variety of 
closed form models. Derived as a variation of the 
Successive Quadratic Programming (SQP) 
algorithm, this approach has been demonstrated 
on a number of different process systems. Further 
challenges for nonlinear programming algorithms 
are discussed in section 6 and section 7 briefly 
summarizes and    concludes the paper.  

2. A hierarchy of optimization approaches 

In a recent lecture at the SIAM Optimization 
Conference, Betts (1999) provided a personal 
summary on the evolution of optimization 
applications in the aerospace industry. The main 
stages of this evolution can be classified through 
the use of surrogate, black box (with exact 
derivatives) and simultaneous optimization 
strategies applied to complex engineering 
models. In the surrogate approach, a simplified 
optimization problem is formed from easily 
obtained information from a detailed model. This 
problem is updated and solved repeatedly as the 
optimization proceeds and there is only a weak 
connection between the detailed model and the 
optimization process. In the black box  approach, 
the detailed model is called repeatedly by the 
optimization algorithm in order to obtain 
accurate function (and gradient) information. 
Finally, the simultaneous optimization strategy 
leads to solution of the optimization problem and 
the complex model at the same time.  
 
As one advances from the surrogate to the 
simultaneous strategies, it is clear that both the 
efficiency of the optimization approach and the 
scale of the application can be increased greatly. 
Also, the interactions between the detailed model 
and the optimization algorithm become much 
tighter, and considerably more effort is required 
to formulate the optimization problem. On the 
other hand, detailed models cannot all be adapted 
to optimization formulations in the same way. 
For some models, the application of simultaneous 



strategies can be difficult and possibly 
counterproductive with current approaches. For 
instance, at Boeing Corporation, orbit trajectory 
optimization is a well established and highly 
efficient simultaneous optimization procedure 
(Betts and Frank, 1994), while more complex and 
detailed structural and fluid flow optimizations 
for aircraft design are currently handled by more 
primitive surrogate methods (Booker et al., 
1998).  
 
Similarly, it is instructive to consider the 
evolution of optimization methods in process 
engineering. The surrogate approach  applies to 
any strategy that forms a simplified model of the 
system, which can be optimized directly. In this 
context we assume that this simplification can be 
obtained quickly and cheaply from the complex 
model (e.g., with perhaps a few function 
evaluations). For these approaches, one can cite 
pattern searches developed in the 60s (Hooke-
Jeeves, Nelder-Mead, EVOP, etc.) and related 
stochastic strategies such as simulated annealing 
and genetic algorithms. Interestingly, many 
process synthesis approaches such as the use of 
residue curve maps, attainable regions and pinch 
curves for heat or mass integration can also be 
viewed as surrogate optimization methods. These 
methods are easy to apply and require little 
interaction between the rigorous, detailed process 
model and the optimization method. As a result, 
these methods are very popular for ’one-shot’ 
optimization studies. On the other hand, their 
limitations arise in dealing with highly 
constrained problems and in large-scale and 
routine applications where efficiency is crucial.  
 
The black box approach using gradient based 
methods is a popular procedure both for 
flowsheet optimization (e.g., ASPEN/Plus, 
ProSim, etc.) as well as the optimization of 
dynamic systems (gProms, ABACUSS). For 
efficient optimization strategies, a crucial 
component is the efficient and accurate 
calculation of derivative information. Nowadays, 
this task can be addressed through the application 
of efficient automatic differentiation (AD) and 
sensitivity strategies. For steady state models, 
AD approaches can be applied directly to the 
source code, so that exact derivatives with 
respect to any number of input variables are 
obtained with only a small multiple of the 
solution cost. AD (Griewank, 1989) has been 
applied to a wide variety of large-scale finite 
element and process models by replicating the 
calculation tree with corresponding derivative 
calculations. Nevertheless, this approach needs to 

be approached carefully to avoid differentiating 
through fixed point loops in internal calculations. 
Similarly, efficient sensitivity calculations have 
been adapted to parallel the solution of DAE 
systems (Feehery et al., 1998; Li et al., 1999). As 
a result, accurate gradients for Newton-type 
convergence and optimization can be obtained, 
often with only a small multiple of the solution 
cost.  
 
Finally, simultaneous methods have seen 
widespread use in real-time optimization of 
petrochemical plants. Often used with ‘open 
form’ or equation based models, this strategy 
requires close collaboration of the modeler and 
the developers and users of the optimization 
strategy. Moreover, to obtain the performance 
benefits of this optimization approach, the 
development, analysis and implementation are 
much more difficult and time consuming than 
with  the previous ones. Perhaps the greatest 
advantage of these approaches is their 
transparency to sophisticated general purpose 
numerical algorithms. Derivatives are calculated 
in an efficient and accurate manner and, in 
principle, the solver has full access to all 
variables, equations and derivative information.  
 
Table 1: Simulation Time Equivalents on   
Evolution of Methods  
 

Surrogate Models 
 
•Friedman and Pinder (1972)    75-150  
•Gaines and Gaddy (1976)    300 
 
Black Box (with derivatives)  
 
•Parker and Hughes (1981)         64 
•Biegler and Hughes (1981)        13 
 
Partially Simultaneous, Black Box  
 
Biegler and Hughes (1982) 
Chen and Stadtherr (1985) 
Kaijaluoto (1984) 
ASPEN+, PRO/II, HYSYS    10-30 
 
Wolbert et al (1994)               3- 10 
 
Simultaneous 
 
•Locke and Westerberg (1983)     < 5 
•Stephenson and Shewchuk (1986)  2 
•RTOPT, NOVA, etc.                ~1  

      
 



Table 1 summarizes the performance 
characteristics for flowsheet optimization using a 
few selected studies as benchmarks. Using a 
process flowsheet with about ten decision 
variables, we see requirements of hundreds (or 
even thousands) of simulation time equivalents 
for surrogate strategies. On the other hand, with 
simultaneous strategies, optimization requires 
virtually the same effort as the solution of the 
process model. Also, we observe reductions of 
over an order of magnitude when passing from 
one strategy to the next. Note that in the case of 
partially simultaneous, black box methods, where 
derivatives are calculated very efficiently 
(Wolbert et al., 1994),  there is some overlap in 
performance with simultaneous strategies.  
 
It is clear from this discussion that simultaneous 
strategies provide clear performance benefits. 
Moreover, these benefits translate into the ability 
to model and solve much larger optimization 
problems. As discussed in the next section, the 
ability to integrate multiple process subsystems 
and multiple design tasks (e.g., economics, 
operability, controllability, safety, energy 
recovery) leads to more important benefits than 
increase in performance alone. 

3. Optimization - A Tool for Integrated Process 
Engineering 

Over the past decade the integration of tools and 
process design environments has become a major 
activity in the process industries. The impacts of 
this integration on standardization of work 
processes and incorporating design and operation 
issues into the supply chain (Ramage, 1998; van 
Schijndel and Pistikopoulos, 1999) are widely 
recognized as key corporate activities. Marquardt 
and Nagl (1998) surveyed the development of 
standards for tool integration and classified these 
as: Presentation integration – integrated tool set 
with common look and feel presented to user; 
Data integration – sharing and managing relations 
among data objects; Control integration – 
notification and activation of tools using e.g., 
message passing and Platform integration – 
execution of integrated suite of tools on 
heterogeneous, distributed computer network. 
Examples of these standards include STEP and 
PDXI  for data integration as well as CAPE-
OPEN for data and control integration. Moreover, 
commercial examples of tool integration include 
VTPLAN (Bayer), Plantelligence (Aspen Tech) 
and SimSight/Simulation Manager 
(SimSci/Bayer). Academic projects in this area 
include efforts to support conceptual, design and 

front end engineering and are exemplified by the 
n-dim (Carnegie Mellon), KBDS/epee 
(Edinburgh), and the IMPROVE and CHEOPS 
(Aachen) systems.  
 
More recently, Marquardt and coworkers (Backx 
et al., 1998; Helbig et al., 1998; Marquardt, 1999) 
demonstrated the importance of optimization tools 
within this integrated framework. Clearly the 
ability to model and optimize over entire systems 
and over multiple attributes leads to far superior 
solutions. Moreover, the integration of 
optimization formulations has been a fruitful 
activity in process systems engineering over the 
past decade. Studies include integration of batch 
process design and scheduling (Birewar and 
Grossmann, 1989; Voudouris and Grossmann, 
1993), design under uncertainty, (Ierapetritou et 
al., 1996; Pistikopoulos, 1997), design and 
dynamic performance (Logsdon and Biegler, 
1993), design, scheduling and dynamic 
performance (Bhatia and Biegler, 1996), 
scheduling and dynamic performance (Mujtaba 
and Macchietto, 1993), interactions of energy, 
separation and reactor subsystems (Balakrishna 
and Biegler, 1996; Duran and Grossmann, 1986), 
interactions of control and design (Luyben and 
Floudas, 1994; Morari and Perkins, 1994; Walsh 
and Perkins, 1994), process design and planning 
(Pinto and Grossmann, 1994; Sahinidis and 
Grossmann, 1991) and safety, design and 
performance (Abel et al., 1998).  
 
To show the quantitative benefits of integration, 
we briefly consider the design, operation and 
scheduling of a small batch process. By 
combining these problem aspects, we hope for 
synergies that lead, for instance, to shorter 
processing times, shorter planning horizons and 
higher quality batches. Two key aspects that aid in 
this case study are the use of simultaneous 
dynamic optimization and a simplified scheduling 
formulation. The former is due to the 
discretization of the differential equations (DAEs) 
and state and control profiles to form a large-scale 
optimization problem. For the latter we consider a 
continuous variable scheduling formulation 
adapted from Birewar and Grossmann (1986) that 
deals with the sequencing of tasks, products and 
equipment using idealized Unlimited Intermediate 
Storage (UIS) and Zero Wait (ZW) transfer 
policies. In both cases, a nonlinear program is 
formulated and the solution directly yields a 
minimum cycle time operating schedule for 
multiple products and stages. The detailed 
integrated formulation is given in Bhatia and 
Biegler (1996).  
 



To demonstrate this approach we consider the 
process example given in Bhatia and Biegler 
(1996), which includes a batch reactor, batch 
distillation and several transfer units. We consider 
the sequencing of three products of varying purity 
with possible manipulations of the temperature 
profile in the reactor and the reflux profile in the 
column. Here optimal dynamic profile cases are 
R1 and C1 for the reactor and column, 
respectively, while best constant profiles are R0 
and C0.  
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Figure 1: Integrated Batch Optimization  
 
To compare formulations, we first consider the 
sequential design where the equipment design, 
operation and schedule are optimized one after 
another. The intermediate case deals with final 
time states fixed by a unit optimization followed 
by simultaneous optimization of design and 
scheduling. Finally, we consider a fully 
simultaneous approach with optimized final 
states. The results of this case study are 
summarized in Figure 1 for the ZW case. Note 
that significant improvements result from the 
integrated formulation. Here we see that there is 
strong improvement due to a variable reflux ratio 
(from C0 to C1) but the greatest improvements are 
simply due to the integration of the design, 
operation and scheduling tasks in the optimization 
problem. The reason for this is apparent from the 
production schedule. The sequential solution still 
has long cycle times and long slack times in the 
ZW schedule. The intermediate solution reduces 
both of these considerably and the fully 
simultaneous approach eliminates the slack times 
altogether and creates a schedule with the shortest 
cycle time. This allows for much greater 
equipment utilization and significantly improves 
the profit. 
 

The message of this example is that key aspects of 
the dynamic operation, equipment design and 
scheduling need to be modeled accurately and 
optimized simultaneously. Without these features, 
even the most detailed unit optimizations (along 
with separately optimized schedules) would 
realize less than half of the benefits of the overall 
optimization, for this example. 
 
Most of the above studies on integrated 
optimization were performed using open form 
models. However, as we shall see next, these 
models are not always appropriate. In the next 
section we contrast the benefits and drawbacks of 
open and closed form models. This sets the stage 
for alternative simultaneous strategies in Section 
5.  

4. Open Form vs. Closed Form Models 

In process engineering, open form models (also 
known as equation oriented or equation based 
models) are characterized by a strategy whereby 
all of the stream and unit equations are 
assembled, solved and optimized as one large 
system.  Additional calls to procedures are kept 
to a minimum, although procedural calls to 
physical property routines are still considered 
essential.  There are several key advantages to 
this approach for process simulation and 
optimization. In particular, performance in 
solving large flowsheets can be accelerated 
considerably, and highly integrated flowsheets 
can be converged and optimized very efficiently. 
These models have been extremely successful in 
the real time optimization of petrochemical 
processes (Perkins, 1998; Marlin and Hrymak, 
1997).  
 
On the other hand, closed form models (also 
known as procedural, modular or black box 
models) are tightly integrated to a special 
purpose solver and the user can only access a 
restricted set of information from the model. As a 
result, optimization algorithms cannot access 
function and gradient information about 
individual model equations and variables; 
frequently the equations are not even represented 
explicitly within the model. Instead, in an 
optimization environment, such models are 
currently solved repeatedly and this leads to 
considerable computational cost. Closed form 
models are prevalent in process simulation, 
design and analysis, especially for detailed 
reaction and fluid flow models. In this section, 
we contrast these two approaches from a number 
of different perspectives.  



 
Declarative vs. Procedural Modeling 
 
The open form approach decouples modeling of 
the process from the solution algorithm. This 
allows a lot of freedom in formulating the model 
and also allows the user to concentrate on the 
proper problem definition for the task at hand. 
Moreover, it is conceptually easier to extend and 
modify declarative models because the solution 
procedure does not need to be modified at the 
same time. This declarative capability is the main 
strength of platforms like ASCEND, SPEEDUP, 
gPROMS and GAMS. Note that this is 
fundamentally different from a specific 
procedural model or even an EXCEL spreadsheet 
where the user is intimately focused on the 
procedure of solving as well as modeling.  
 
This declarative form of modeling offers a 
number of advantages when extending and 
modifying closed form models.  Provided that 
powerful procedures are available for this effort 
(including automatic differentiation of the model 
equations), this modeling strategy greatly 
shortens development time and provides for 
easier maintenance. 
 
Implicit in the declarative approach is that a 
generic solver (usually, Newton-Raphson) will 
be able to solve the derived model.  Moreover, 
this solver will take limited advantage of the 
physics of the model, except in the exploitation 
of sparsity in the linearized equations.  This 
means that a number of specialized closed form 
algorithms that involve nested loops, 
bootstrapping solution strategies and 
interpolation to avoid expensive calculations are 
not straightforward to implement with open form 
modeling. These may be needed to avoid overly 
large systems, improve convergence or minimize 
expensive physical property calls (e.g., the 
inside-out algorithm in RADFRAC).  
 
Newton-like Convergence Behavior 
 
The open form approach allows for a 
simultaneous convergence strategy since the 
most efficient generic solver is Newton’s method.  
Therefore, convergence should be Q-quadratic 
under ideal assumptions (Kantorovich, 1948).  
This means that properly formulated and 
initialized open form models can be solved one 
or two orders of magnitude faster than modular 
models.  For problem formulations of 
comparable size, it is unlikely that an alternative 
approach can beat this performance.  Moreover, 

this approach provides a general, coordinated 
convergence strategy, regardless of problem 
structure.  This is in contrast to flowsheeting 
programs where convergence behavior strongly 
depends on the tear stream selection and unit 
sequencing. 
 
On the other hand, Newton’s method needs to be 
stabilized far from the solution, even with open 
form models.  Here a generic stabilization 
strategy (line search or trust region) will not take 
advantage of specific problem features and the 
only recourse is for the user to reformulate the 
model.  This becomes more serious when the 
problem becomes ill-conditioned or singular at 
isolated points. Under these circumstances, 
Newton’s method has serious difficulties that 
should be tackled most effectively with problem-
specific formulations.  These can be remedied 
easily through additional safeguards in closed 
form approaches. 
 
However, for open form models we need to 
resort to well-known line search and trust region 
strategies for solving nonlinear equations. In 
equation based environments these strategies are 
applied as a single damping factor for a trust 
region or line search.  This can produce a 
‘conservative’ stepsize that severely impacts 
overall convergence of the process system and 
offsets the expected quadratic convergence.  
 
Toy Problem 
 
To illustrate the problem of small stepsizes more 
closely, consider the following equations: 
 

f1 = 2 x1 + x2 - 3 = 0 

f2 = exp(-m(x1-3)2) - 1 = 0 

x10 = 1, x20 = 1 
 
First we consider the simultaneous solution of 
these equations with the above starting point 
using Newton iterations, for various values of m. 
As shown in Figure 2, a stepsize (α) equal to one 
is acceptable (using the Armijo criterion) for m = 
0.5 at the first Newton step. However, for m = 5 

only stepsizes below 1.3 x 10-7 will lead to a 
sufficient decrease in ||f(x)|| along the first 
Newton direction. Figure 1 plots ||f(x)|| for 
various values of m. Note that for m = 2 and 
above, ||f(x)|| decreases only in very small 
regions around the ordinate. This will be true of 
any open form model  that contains f2. The table 
shows the number of MINPACK function 
evaluations to solve this problem. Here a very 



reliable solver (using QR factorizations, trust 
regions and analytic Jacobians) needs to be used.  
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Figure 2: Stepsizes for Toy Problem 
 
In contrast, a procedural solution of this example 
is a trivial. Once x1 is fixed, f1 is solved 
immediately as a linear system. As shown above, 
f2 can be solved using a simpler stabilized 
Newton method (S-N) where only a few 
iterations are needed. Of course, in both 
approaches, f2 can easily be reformulated. But 
even with reformulation, the procedural approach 
offers the advantage of isolating the 
nonlinearities from the rest of the system.  
 
The effect of the "conservative" stepsize has been 
observed on a number of process applications. 
For instance, simultaneous solution of 
countercurrent gas-gas heat exchanger models 
can be very unstable with very small damping 
factors required for convergence. Instead, a 
closed form reformulation of this system leads to 
a much more reliable method.  
 
Open vs. Closed Form Structures 
 
In addition to the advantages of declarative 
models, the open form of the model equations 
allows easy implementation and efficient 
calculation of exact derivative information. The 
ready availability of derivative information has 
led, along with Newton’s method, to fast 
performance for open form approaches.  
Nevertheless, as discussed in the previous 
section, this can also be done in closed form 
using automatic differentiation strategies. 
 

On the other hand, the open form necessarily 
requires the user to consider larger systems 
which are more difficult to set up, analyze, debug 
and get to solve.  In essence, successful users 
model declaratively but debug procedurally by 
breaking down the problem and solving smaller 
problems.  A closed form approach provides a 
natural, object oriented strategy for this analysis.  
As a result, the process solver must give the user 
access to smaller subproblems to accomplish this. 
This can also be done, in principle, with an open 
form approach (e.g., in the ASCEND system), 
but currently a lot more experience is required by 
the user to do this. Here most diagnostics deal 
directly with open form variables and equations, 
rather than diagnostic messages that relate to a 
physical model. 
 
A related problem is the initialization of the open 
form model.  This task requires substantial user 
intervention and often more time and effort than 
in obtaining the solution itself. For future 
development, the open form approach will need 
to be improved, not just with better user 
interfaces, but also with better tools that allow 
more flexible problem decomposition and 
reformulation. 
 
Moreover, the fully open form approach is 
resistant to incorporating legacy codes in closed 
form.  These may involve specialized process 
models or solution algorithms, which are 
essential for a particular application (e.g., CFD 
systems with an iterative solver). This is 
especially difficult for ODE and PDE-based 
models. A closed form approach can incorporate 
these specialized models into a larger process 
model much more readily than open form 
packages can.  Often, these codes must be 
reformulated entirely as declarative models in the 
open form environment.  In future development, 
we need to allow the integration of closed models 
that may provide derivative information, which 
will be used by the solver. An interesting 
development in this direction is the use of foreign 
objects in the gProms environment (Kakhu et al., 
1998).  
 
Finally, the issue of accurate discretization of 
models using differential equations in space must 
be dealt with. For instance, closed form  models 
solve ordinary differential equations with 
automatic step sizes to control error.  That is, the 
integration step size is not known a priori  and 
usually varies from step to step.  In the open 
form approach, it is not at all clear how these 
step sizes are to be chosen prior to discretization. 



In academic studies, accurate discretization and 
error control has been demonstrated for small 
open form models (e.g., Tanartkit and Biegler, 
1997). However, this may be difficult for 
commercial open form codes with many more 
stepsize variables. Currently, stepsize selection is 
done by trial and error by the modeler.  
 
Conditional Models 
 
With procedural approaches, it is straightforward 
to include IF-THEN relations triggered by inputs 
or calculated values.  For instance, with simple 
flash calculations, decisions are based on dew 
and bubble point equations and the proper set of 
equations is then selected and solved.  This 
approach is then embedded within much larger 
systems, which are successfully solved and 
optimized.  The basic hope with closed form 
approaches, is that the solvers are able to ’jump 
over’ these derivative and function 
discontinuities; this is often the case, even though 
it is easy to construct counterexamples.  
 
There are more rigorous ways to deal with 
discontinuities and these are better suited to open 
form approaches.  They are also more expensive 
than simple equation solving, as they involve 
combinatorial elements.  Two examples are 
complementarity relations and integer variables.  
In both cases, the conditional relation must be 
reformulated by an experienced user to form a set 
of conditional equations or inequalities.  The 
resulting model then must be solved with an 
advanced solver (nonlinear complementarity or 
mixed integer nonlinear program (MINLP), 
respectively).   
 
Formulating Optimization Problems 
 
Characteristics of open form modeling allow a 
natural extension of Newton-based solvers to 
nonlinear programming using algorithms like 
Successive Quadratic Programming (SQP), 
although it should be noted that large-scale  
versions of SQP are now required for 
simultaneous convergence. In contrast, much 
smaller optimization problem formulations can 
be considered for the same problem with the 
closed form approach.  
 
Also, by extension, the same open form 
initialization effort required for model solution is 
needed for optimization.  But, because more 
degrees of freedom are involved, the open form 
optimization may converge less reliably than the 
open form simulation problem.  To promote 

convergence, safeguards that are easily built into 
the closed form model are not as straightforward 
in the open form approach.   
 
Finally, the concept of formulating an 
optimization problem through the evaluation of 
procedures is often absent in the open form 
approach.  In the modular approach, the user can 
visualize the optimization problem via a set of 
case studies applied to the (expected smooth) 
process model; these cases are then automated 
with an efficient, gradient-based (or even a direct 
search) optimization algorithm. 
 
With proper safeguards, this automated case 
study approach leads to ’quick and dirty’ 
optimization procedures which are often 
successful and lead to good, if not optimal, 
results.  An open form approach to these 
problems requires complete rethinking of this 
concept and often results in a very different 
declarative model (e.g., MINLP formulation for 
feedtray optimization). In fact, the need to 
incorporate legacy codes and other closed form 
models has motivated several leading NLP 
researchers (Booker et al., 1998; Audet and 
Dennis, 1999; Kelley, 1999) and corporations 
(IBM, Boeing, Sandia Laboratories) to develop 
and analyze derivative free optimization 
methods.  

5. Simultaneous Optimization with Existing, 
Closed-Form Models 

From the previous section it is clear that both 
open and closed form models are required for 
different simulation and optimization 
applications. Still, a commonly held belief is that 
simultaneous gradient-based optimization is not 
possible with closed form models. As a result, 
there is considerable effort to extrapolate the 
open form successes from on-line optimization to 
many other areas of process engineering. As 
mentioned above, this effort will lead to a 
number of benefits in the creation, maintenance 
and efficient solution of many new process 
models. On the other hand, this approach does 
not incorporate legacy models well nor does it 
allow the use of (often essential) specialized 
solvers that exploit the model’s structure.  
 
Can we develop a simultaneous optimization 
approach using closed-form models? This section 
explores a hybrid strategy that allows the direct 
use of existing closed-form models within a 
simultaneous convergence and optimization 
strategy. Here we can also further exploit the 



simultaneous strategy for closed form models 
with Newton-based solvers. Note that such 
models may still be difficult to represent in open 
form. They include complex column models, two 
point boundary value models that involve 
reaction, separation or heat transfer and the 
solution of nonlinear partial differential equations 
(PDEs). For these models we assume that neither 
the equations nor the Jacobian matrix are 
available directly. Instead, we expect to access 
the Newton step and the ‘sensitivity’ of this step 
to input variables. With this information we can 
derive the following optimization algorithm 
based on SQP concepts in the reduced space 
(rSQP).  
 
Derivation of a Tailored rSQP Algorithm 
 
Consider the Nonlinear Programming Problem 
(NLP): 

Min F(x) 
 s.t.        h(x) = 0  (1) 

a ≤ x ≤ b 
 

where x  Rn and h(x): Rn --> Rm. To obtain a 
local optimum we need to find a point that 
satisfies Karush Kuhn Tucker (KKT) conditions. 
The first order KKT conditions can be given by: 
 

g(x*) +  h(x*) λ*= 0  (2) 

h (x*) = 0 
 
where g =  F and h(x*) = 0 is the appropriate 
active constraint set at the solution x*. To satisfy 
these equations (and choose the correct active 
set) we consider an extension of Newton's 
method by solving the QP subproblem at 
iteration k: 
 

Min  g(xk)
T

d + 1/2 dT Q d  (3) 

s.t. h(xk) + A(xk)Td = 0 

a  ≤ xk + d  ≤ b 
 

where A=h, Q = xxL(x, λ) (the second derivative 
matrix of the Lagrange function with respect to 
x) or its approximation and  d is the search 
direction for x. The solution of the QP is given 
by the linear system at iteration k: 
 

 

Q A

A
T

0
 d

λ
 = - g

h
  (4) 

 

(the k subscript is suppressed for brevity). We 
now consider the exploitation of the structure of 
the QP. In many process optimization problems n 
~ m >> (n-m). As a result, the n x n matrix Q can 
either be considered in a large, sparse form or 
approximated in the reduced space. Because 
second derivatives are not available for closed 
form models (or in most commercial packages 
that use open form models), we choose the latter 
option.  
 
Here we develop a simplified decomposition in 
the reduced space using only equality constraints 
and defer the explicit treatment of variable 
bounds until later. To solve the QP in the reduced 
space, let:  

xT = [ yT | zT ], AT 
= [ C | N ] 

 
and select an n x n nonsingular matrix:  

H = [ Y | Z ], where AT 
Z = 0. 

 
Here Z and Y form null and range space bases 
for the linearized equality constraints. We 
similarly partition the search direction into range 
(pY) and null space (pZ) components: d = YpY + 
ZpZ. 
 
The former component deals with the dependent 
variables of the model, while the latter 
component determines the search direction for 
decision variables of the optimization problem. 
With this representation we can write:  
 

H= 

I -C-1N

0 I   H-1= 

I C -1 N

0 I  
(5) 

 
Defining the linear system from the QP as M x = 
f gives: 

Q A

AT 0
 d

λ
 = -  g

h
  (6) 

 
Now defining X = diag [ [ Y | Z ] , I ], we can 
consider the equivalent system XT M X z = XTf  
as: 
 

YTQY YTQZ YTA

ZTQY ZTQZ 0

ATY 0 0

 

pY
pZ
λ

 = -  
YTg

ZTg

h

  (7) 

 
Because pY and pZ are calculated from the last 

two rows, we can ignore the YTQY and YTQZ 
terms and approximate ZTQY pY by wk to get: 



0 0 YTA

0 ZTQZ 0

ATY 0 0

 

pY
pZ
λ

 = -  

YTg

ZTg + wk

h

 
 

(8) 
Note that neglecting these terms does not affect 
the search direction, only the multiplier estimates 
λ. As the search direction converges to zero, 
λ also converges to its correct value. Also we see 
that these assumptions lead to a simple block 
diagonal decomposition for the rSQP strategy.  
 
To relate the range and null space representation 
back to the original variables, we define the 
above system as: M x = f, and define: 

X = diag [ [ Z | Y ]-1 , I ]. 
 
This allows us to write XTM X z = XTf as: 
 

0 0 CT

0 Bk NT

C N 0

 
dy
dz
λ

 = -  

gy
gz + wk

h

 

 

 (9) 

 
where Bk ~ ZTQZ.  Now the C matrix is the 
combined Jacobian of the closed form multiple 
models and is assumed to be nonsingular. If not, 
we assume the closed form solver can be suitably 
modified to yield a nonsingular C. As a result we 
can modify the reduced system to yield: 
 

0 0 I

0 Bk NTC-T

I C-1N 0

 

dy

dz

CTλ

 = -  

gy

gz + wk

C-1h

  

(10) 
 
Note that if the model (h(x) = 0) is solved with a 
Newton-based procedure we may not be able to 
extract gradient information for the model 
equations. In many closed form models the 
Jacobian is not constructed explicitly and 
specialized decompositions are incorporated 
directly within the model (e.g., block tridiagonal 
decomposition in distillation models, 
condensation in collocation models). 
Nevertheless for many of these models, we can 
easily extract the Newton step, py = - C-1 h; the 

model sensitivity matrix, Dz = - C-1 N, which 
reflects the sensitivity of the Newton step to the 
model inputs can also be calculated. As a result, 
the KKT matrix for the QP is equivalent to: 

 

0 0 I

0 Bk -Dz
T

I -Dz 0

 

dy

dz

λ

 = -  
gy

gz + wk
-py

  (11) 

 
and all of the explicit Jacobian information from 
the model disappears. Here the gradient of the 
objective function is usually specified directly by 
the user in terms of dependent and independent 
variables. The correction term wk and the 
reduced Hessian Bk are approximated by reduced 
gradients. Moreover, Dz (the ’sensitivity’ of py  to 
decision variables, z) can be obtained by: 
• calculating h/z within model and solving 

multiple right hand sides for - C-1 N 
• perturbing h(x) with respect to z and solving 

multiple right hand sides  for - C-1 N, or  
• executing an additional Newton step with a 

perturbed value of z.  
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Figure 3:Tailored Process Optimization 
Algorithm 
 
Given the Newton steps and model sensitivity 
matrices for each unit, it is easy to to create py 
and DZ for the entire flowsheet, e.g.,  A” = [ I | 



DZ]. The tailored rSQP algorithm can then be 
represented as in Figure 3. where the necessary 
model matrices are collected and decision 
variables are updated for the entire process. 
QPKWIK (Schmid and Biegler, 1994b) is used to 
solve the reduced space QP problem.  
 
Finally, we see that the actual multipliers λ are 

not calculated; only CTλ is available and this 
precludes the use of conventional line search 
strategies for SQP. Instead we apply a 
’multiplier-free’ line search where the penalty 
parameter is estimated by a lower bound on the 
multipliers. A global and local convergence 
analysis related to this rSQP approach is given in 
Biegler et al. (1997). Examples on the application 
of this tailored approach to closed form models 
can be found in Schmid and Biegler (1994a) and 
Tanartkit and Biegler (1996). The details of 
extending the tailored approach to flowsheet 
optimization and related decomposition strategies 
are given in Alkaya et al. (1999).  
 
Flowsheet Optimization Study 
 
To illustrate this tailored approach we briefly 
summarize the flowsheet optimization study, 
described in Tanartkit and Biegler (1996). The 
process contains several distillation columns as 
well as an exothermic reactor model solved with a 
Newton based collocation routine (with fixed 
stepsizes). Here we compare a “simultaneous” 
closed form approach with the tailored 
optimization approach. In this closed form 
approach, the tear equations are converged 
efficiently as equality constraints in the 
optimization problem. Also, we found that an 
open form approach solved with an rSQP method 
and the same initialization performs about the 
same as the tailored approach.  
 
Five cases were considered where shortcut (i.e., 
split fraction) models are substituted by detailed 
Newton based models for the reactor (using 
COLDAE) and distillation column (using 
UNIDIST) in the process flowsheet: 
 
1.  Product Column (UNIDIST) 
2.  Reactor Model (COLDAE) 
3.  Recycle Column (UNIDIST) 
4.  Both Columns (UNIDIST) 
5.  Reactor and Product Column 
 (UNIDIST and COLDAE) 
 
The performance of the tailored vs. the modular 
approach is shown in Figure 3. In each of these 
cases the tailored approach leads to far better 

performance than in the conventional closed form 
(modular) approach. In the last case where both 
models need to be considered, the tailored 
approach leads to a four-fold increase in 
performance, but without requiring open form 
models to be used.  

0 50 100

CPU Sec. (DEC 5000)

1

2

3

4

5

Modular

Tailored

 
Figure 4. Flowsheet Optimization with the 
Tailored Approach 
 
This approach has also been extended to dynamic 
systems as described in Alkaya et al. (1998). Here 
an optimal control problem for a binary batch 
column model is coupled to a batch reactor. Both 
units are self-contained collocation models and 
coupling these models over time is performed using 
the above decomposition procedure. The 
optimization of this system with the tailored 
approach generally leads to the same performance as 
with open form models. Here finding the optimal 
reflux ratio to maximize product requires about 29 
rSQP iterations.  

6. Further Challenges for Nonlinear 
Programming Algorithms 

The tailored approach represents only a preliminary 
effort to exploit models with closed form structure 
and multiple solvers. In this section we review a 
number of essential research issues for large-scale 
nonlinear programming.  
 
Handling bound constraints 
 
The development of the tailored approach does not 
explicitly deal with bound constraints. These have 
been handled in many process optimization 
applications (for both open form and tailored 
models) by the rSQP subproblem shown in Figure 3. 
For our studies we have relied on a reduced space 
QP algorithm (QPKWIK) to handle inequalities but 
this has clear limitations for larger problems. To 
deal with large-scale decomposition strategies, the 
KKT matrix should be exploitable and should not 
interfere with updating of bound constraints. This 



can be done by exploring both active set and interior 
point (IP) methods.  
 
On problems where (n-m) is large (e.g., optimal 
control problems and multiperiod problems) interior 
point methods have a tremendous performance 
advantage in active set selection (Albuquerque et al., 
1999). Figure 5 compares the number of active set 
iterations with the interior point method. Note that 
the number of IP iterations (six) remains 
independent of (n-m). Solving QP subproblems with 
an IP strategy has yielded significant benefits for 
process applications in process identification, 
multiperiod optimization and model predictive 
control.  
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Figure 5. Comparison on Interior Point (ISQP) 
vs. Active Set (QPSOL, MINOS) iterations when 
(n-m) is large 
 
To increase the usefulness of this approach we are 
currently exploring IP methods to solve the NLP 
problem directly. This further eliminates the 
overhead of solving the QP with an IP approach and 
can lead to an order of magnitude performance 
improvement. This approach has seen much recent 
work (Vanderbei and Shanno, 1999; Byrd, Gilbert 
and Nocedal, 1998; Conn, Gould and Toint, 1999) 
but many open questions still remain. Nevertheless, 
preliminary results show this approach is very 
successful for optimal control problems. For 
instance, with an IP NLP approach, the dynamic 
optimization of an air separation column with 462 
DAEs and over 55,000 variables requires less than 5 
CPU minutes on a DEC Alpha workstation 
(Cervantes et al., 1999).  
 
On the other hand, for problems where (n-m) is 
small, the number of active bounds and the search 
complexity are also small. Therefore the overhead 
associated with IP methods does not compete with 
efficient active set methods (Ternet and Biegler, 
1999). In particular, the application of Schur 
complement methods (Betts and Frank, 1994) has 
the advantage that the KKT matrix can be 
decomposed separately and updates to the active set 

are very cheap. This approach can be applied 
directly to (10) or (11) and appears to be about three 
times faster than QPKWIK (Bartlett, 1999).  
 
Iterative Linear Solvers 
 
Similar concerns in exploiting the structure of the 
KKT matrix arise when dealing with very large 
NLPs arising from PDE applications. Large finite 
element models for fluid flow or structures are also 
solved with Newton-based procedures but are too 
large to attack with direct, sparse linear solvers. 
Instead iterative linear solvers (Preconditioned 
Krylov (PK) methods) are essential and the 
extension to simultaneous SQP methods poses a 
severe challenge. Recently, Biros and Ghattas 
(1999) used the rSQP decomposition and an 
approximated reduced Hessian to precondition the 
full space KKT matrix; the PK solver MINRES was 
used in a parallel environment to solve the KKT 
system. For a 3-D finite element model of the 
Navier-Stokes equations (with 90,000 state 
variables, 1200 decision variables) they obtained 
optimal solutions with less than 200 wallclock secs 
on Cray T3E. This led to an average reduction of 34 
times over rSQP method mentioned above and 
showed excellent scalability of the method on 
parallel processors. Moreover, on problems with few 
decision variables, Ghattas and coworkers have 
applied rSQP concepts to optimize finite element 
models with over 3 million state variables.  
 
In addition to the above research directions, there 
are a number of specific issues related to handling 
increasingly large process optimization problems. 
Here we also need to consider: 
 
Decomposition of large nonlinear systems for 
problems that exhaust the limitations of current 
tools. Included here are the handling of (multiple) 
RTO models for refinery wide optimization and 
multiple plant design models, which may run on 
different platforms, exploit different structure and 
could be developed under different modeling 
environments.  
 
Coupling of multiple design models where mass and 
energy balance models need to be coupled with 
detailed equipment design and costing. Also 
included are important process aspects such as 
operability, controllability and safety, which can be 
hard to formulate for the optimization problem 
(often due to discontinuities in their calculation). 
 
Multiperiod models  reflect life cycle considerations 
for the process and allow the design to consider 
different operating scenarios, consideration of 



uncertainty and evolution of the process over time. 
These models lead to very large bordered block 
diagonal (or almost block diagonal) KKT matrices, 
where each diagonal block could represent the KKT 
matrix of any of the process optimization problems 
discussed thus far.  
 
Most studies that respond to the challenges in 
integration assume that all process models are 
available in an open form environment. In this 
environment, discontinuities and nonsmoothness can 
be overcome, in principle, through additional 
constraints or MINLP formulations. 
 
However, if process models need to remain in closed 
form, can the barriers to optimization be overcome? 
Here we can handle nonsmooth problems through 
reformulation or direct handling with bundle 
methods. More severe problems have prompted 
recent activity in derivative free optimization (DFO) 
methods in the math programming community, even 
to solve MINLP problems (Audet and Dennis, 
1999). Also, convergence properties that link 
gradient based methods and DFO methods for 
unconstrained optimization, have recently been 
analyzed by Kelley (1999). In performance, these 
methods are clearly inferior to gradient based 
methods used with open form models. However, 
their robust application to closed form models could 
avoid the daunting expense of model conversion. 
Given the resurgence of these methods, an open 
question is whether they can be extended rigorously 
to constrained optimization problems with 
simultaneous convergence.  
 
Finally, recent progress in the development of 
powerful methods for global optimization and their  
application to process problems (see Floudas and 
Pardalos, 1999) raises similar questions about their 
applicability to closed form models. It also focuses 
an awareness of the importance of local vs. global 
solutions in practice and better appreciation of the 
capabilities of optimization tools.  

7. Conclusions 

The widespread diversity of process models needs to 
be recognized and their individual structure needs to 
be exploited both for integration and optimization of 
these models. In the case of open form (equation 
based) models, extremely efficient optimization 
algorithms have been developed. Their influence is 
felt in the rapid solution of large-scale process 
optimization models, particularly for real-time 
optimization. Moreover, this capability has led to 
very creative NLP and MINLP problem 
formulations that allow engineers to model and 

exploit a number of difficult process attributes (e.g., 
integration of operability, controllability, safety 
constraints) in an efficient, quantitative manner.  
 
However, more complex models need to be 
considered for process optimization and integration. 
And not all of these models can be represented in an 
open form, to be solved with a single generic solver. 
Difficult nonlinear features need to be isolated, 
particular equation structures need to be exploited 
more efficiently and specialized unit solvers are 
essential for many applications. To deal with these 
kinds of models, we outline a tailored optimization 
approach and illustrate its simultaneous capabilities 
on both flowsheeting and DAE models. This 
approach represents only a preliminary step toward 
exploiting these models. Moreover, a number of 
emerging areas in the optimization community are 
lending new algorithms and fundamental concepts to 
deal with these problems.  
 
Finally, the ability to deal with specialized models is 
important not only for performance but also for the 
challenges posed for the integration of multiple 
process models, process attributes and for corporate-
wide activities including design, control, operation, 
scheduling and planning. Application of 
optimization strategies is a key component of this 
integration and the most benefits are obtained only if 
accurate process models can be considered in the 
overall problem formulation.  
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