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An enhanced continuous-time formulation is presented for the short-term scheduling of
multipurpose batch plants with intermediate due dates. The proposed formulation is based on
the continuous-time formulation introduced by Ierapetritou and Floudas (Ind. Eng. Chem. Res.
1998, 37, 4341 and 4360) and incorporates and elaborates on several features that include (i)
various storage policies (UIS, FIS, NIS, and ZW), (ii) resource constraints, (iii) variable batch
sizes and processing times, (iv) batch mixing and splitting, and (v) sequence-dependent
changeover times. The key features of the proposed formulation include a continuous-time
representation utilizing a necessary number of event points of unknown location corresponding
to the activation of a task. Also, tasks are allowed to continue over several event points, enabling
resource quantities to be correctly determined at the beginning of each resource utilization.
Several examples are presented to illustrate the effectiveness of the proposed formulation, and
comparisons with other approaches are provided.

1. Introduction
The problem of short-term scheduling for multiprod-

uct/multipurpose batch plants has received a consider-
able amount of attention during the last two decades.
Extensive reviews were written by Reklaitis1 and Pan-
telides2 and more recently by Floudas and Lin.3,4 Most
of the proposed approaches can be classified into two
main groups based on time representation: discrete-
time models and continuous-time models.

Early attempts relied on the discrete-time approach,
in which the time horizon is discretized into a number
of time intervals of equal duration and events such as
the beginning and ending of a task are associated with
the boundaries of these time intervals (Kondili et al.5).
Specific solution techniques were developed to exploit
the characteristics of the short-term scheduling problem
in order to reduce the model size and improve the com-
putational efficiency exhibited by the resulting smaller
models (Shah et al.6). The main advantage of the dis-
crete-time approach is that it provides a reference grid
of time for all operations competing for shared resources,
allowing the various constraints involved in the problem
to be formulated in a relatively straightforward and
simple manner. The main limitations of these discrete-
time models are that (i) they correspond to an approx-
imation of the time horizon and (ii) they result in an
unnecessary increase in the number of binary variables
and, consequently, in the overall size of the model.

To address the inherent limitations of the discrete-
time models, methods based on continuous-time repre-
sentations have been developed. All continuous-time
approaches can be classified into two categories based
on the type of process considered: sequential processes
and general network-represented processes. The major
difference between these two types of processes is that
sequential processes are order- or batch-oriented and
do not require the explicit consideration of mass bal-

ances. General network-represented processes corre-
spond to the more general case in which batches can
merge and/or split and material balances must be taken
into account explicitly. Kondili et al.5 proposed the
general framework of the state-task network (STN) for
the ambiguity-free representation of such processes.
Pantelides2 extended the STN to the resource-task
network (RTN) framework, which describes processing
equipment, storage, material transfer, and utilities as
resources in a unified way.

One of the first methods used to formulate continu-
ous-time models for the scheduling of single or multiple
stage sequential processes is based on the concept of
time slots. These time slots represent the sequence of
the processing of the specified products at each stage
where the product assignment to each slot and its
associated processing times are variables to be deter-
mined. At each stage in the process, there can be single
or multiple parallel units, and when multiple units are
involved, time slots are defined for each unit. Research
contributions following this direction include those
presented by Pinto and Grossmann,7-10 Karimi and
McDonald,11 and Lamba and Karimi.12,13

Because of the batch- or order-oriented characteristics
of sequential processes, it is possible to define continu-
ous variables directly to represent the timings of the
batches without the use of time slots. This alternate
direction has also been pursued to formulate continuous-
time scheduling models for sequential processes and,
when compared to slot-based formulations, can be more
accurate and lead to better solutions. Models utilizing
continuous variables for task timings are presented by
Cerdá et al.,14 Méndez and Cerdá,15,16 Méndez et al.,17,18

and Lee et al.19

For general network-represented processes, two types
of approaches have been developed to formulate con-
tinuous-time scheduling models: global event-based
models and unit-specific event-based models. Global
event-based models use a set of events or time slots that
are common for all tasks and all units, while unit-
specific event-based models define events on a unit basis,
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allowing tasks corresponding to the same event point
but in different units to take place at different times.
The latter is considered the most general and most
rigorous representation of time used in short-term
scheduling models. The earliest efforts utilizing global
event-based models were presented by Zhang and Sar-
gent,20,21 Mockus and Reklaitis,22-24 and Schilling and
Pantelides.25 Recent developments include the work
presented by Castro et al.,26,27 Majozi and Zhu,28 Lee et
al.,29 Wang and Guignard,30 and Maravelias and Gross-
mann.31 Most of these formulations have been based on
either the STN or RTN process representations.

Unit-specific event-based models have been developed
by Ierapetritou and Floudas,32-34 Ierapetritou et al.,35

and Lin and Floudas.36 They proposed a novel continu-
ous-time formulation for short-term scheduling of batch,
semicontinuous, and continuous processes. This formu-
lation introduces the original concept of event points,
which are a sequence of time instances located along
the time axis of a unit, each representing the beginning
of a task or the utilization of the unit. The location of
the event points is different for each unit, allowing
different tasks to start at different times in each unit
for the same event point. The timings of tasks are then
accounted for through special sequencing constraints.
Because of the heterogeneous locations of the event
points for different units, as well as the definition of an
event as only the starting of a task (where, in global
event-based models, events correspond to the start or
finish of a task), for the same scheduling problem, the
number of event points required in the unit-specific
event-based formulation is smaller than that of a global
event-based model. This results in a substantial reduc-
tion of the number of binary variables.

In this work, we propose an enhanced STN mixed-
integer linear programming model for the short-term
scheduling of multiproduct/multipurpose batch plants.
The proposed approach extends the work of Ierapetritou
and Floudas32 and Lin and Floudas36 to account for re-
source constraints, various storage policies (UIS, FIS,
NIS, and ZW), variable batch sizes and processing times,
batch mixing and splitting, and sequence-dependent
changeover times. The rest of the paper is organized as
follows. In section 2, the problem statement is present-
ed, and in section 3, the mathematical formulation is
described. Next, in section 4, the proposed approach is
tested with example problems that appeared in the lit-
erature including both network-represented and sequen-
tial processes. Finally, in section 5, results and compari-
sons are provided.

2. Problem Statement
The short-term scheduling problem of multipurpose

batch chemical processes is defined as follows. Given (i)
the production recipe (i.e., the processing times for each
task at the suitable units and the amount of the mater-
ials required for the production of each product), (ii) the
available equipment and their capacity limits, (iii) the
material storage policy, (iv) the required utilities and
their availabilities, (v) initial raw materials and orders of
final products (amounts and time), and (vi) time horizon
under consideration, determine (i) the optimal sequence
of tasks taking place in each unit, (ii) the amount of
material being processed at each time in each unit, and
(iii) the processing time of each task in each unit so as
to optimize a performance criterion, for example, to min-
imize the makespan or to maximize the overall profit.

3. Mathematical Formulation
The proposed formulation requires the indices, sets,

parameters, and variables given in the Nomenclature
section.

On the basis of this notation, the mathematical model
for the short-term scheduling of batch plants with mixed
storage policy and resource constraints involves the
following constraints:

Allocation Constraints.

These constraints express the requirement that, for each
unit j and at each event point n, only one of the tasks
that can be performed in this unit (i.e., i ∈ Ij) should
take place.

Constraints (2) relate the continuous variable, w(i,n),
to the binary variables, ws(i,n) and wf(i,n) so that w(i,n)
will take on a value of 1 if task i is activated at event
point n. Thus, if task i has started at or before event
point n but not finished before event point n, w(i,n) )
1, but if task i has started and finished before event
point n, then w(i,n) ) 0. In this way, tasks can occur
over several event points instead of starting and finish-
ing at the same event point.

Constraints (3) express that each processing task i must
both start and finish during the time horizon. If
∑n∈Nws(i,n) ) 1, then the task starts once in the horizon
so ∑n∈Nwf(i,n) ) 1 and, subsequently, the task must
finish once in the horizon.

Constraints (4) express that processing task i cannot
start at event point n if it has started at an earlier event
point n′ and has not finished by event point n. Thus, if
task i has started and finished before n, then ws(i,n) e
1, while if task i has started but not finished before n,
then ws(i,n) e 0 and task i cannot start at event point n.

Constraints (5) express that processing task i cannot
finish at event point n unless is has started at an earlier
event point n′ and has not finished by event point n.
Thus, if task i has started but has not finished before
event point n, then wf(i,n) e 1, while if task i has started
and has finished before event point n, then wf(i,n) e 0
and task i cannot finish at event point n.

Capacity Constraints: Processing Tasks.

∑
i∈Ij

w(i,n) e 1, ∀ j ∈ J, n ∈ N (1)

w(i,n) ) ∑
n′en

ws(i,n′) - ∑
n′<n

wf(i,n′), ∀ i ∈ I, n ∈ N

(2)

∑
n∈N

ws(i,n) ) ∑
n∈N

wf(i,n), ∀ i ∈ I (3)

ws(i,n) e 1 - ∑
n′<n

ws(i,n′) +

∑
n′<n

wf(i,n′), ∀ i ∈ I, n ∈ N (4)

wf(i,n) e ∑
n′en

ws(i,n′) - ∑
n′<n

wf(i,n′), ∀ i ∈ I, n ∈ N

(5)

capij
minw(i,n) e B(i,j,n) e capij

maxw(i,n),
∀ i ∈ I, j ∈ Ji, n ∈ N (6)
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These constraints express the requirement for the batch
size of a task i processing at a unit j, B(i,j,n), to be
greater than the minimum amount of material, capij

min,
and less than the maximum amount of material,
capij

max, that can be processed by task i in unit j. If
w(i,n) ) 1, then the constraints (6) correspond to lower
and upper bounds on the batch sizes, B(i,j,n). If w(i,n)
) 0, then all of the B(i,j,n) variables become zero.

Capacity Constraints: Storage Tasks.

These constraints represent the maximum available
storage capacity for each storage task ist at each event
point n. They simply represent an upper bound on the
amount of material of state s that can be stored through
storage task ist.

Batch-Size Matching Constraints: Processing
Tasks.

These constraints represent the relationship between
the batch size of task i in unit j at two consecutive event
points n - 1 and n. These constraints are required
because tasks can extend over several event points, and
the batch sizes at these consecutive event points must
be consistent. For instance, if a task is active and
finishes at n - 1, then the batch sizes at event points n
and n - 1 are not related. However, if a task is active
and does not finish at n - 1, meaning that the process-
ing task extends to the next event point n, then we write
B(i,j,n) e B(i,j,n-1) and B(i,j,n) g B(i,j,n-1) so that
there is the same amount of material present at both
event points.

Constraints (10)-(12) relate the variables B(i,j,n) and
Bs(i,j,n), where Bs(i,j,n) is the amount of material
starting processing at event point n. If task i starts in
unit j at event point n, then they force Bs(i,j,n) ) B(i,j,n),
and if task i does not start in unit j at event point n,
then they force Bs(i,j,n) ) 0.

Similar to the previous set of constraints, constraints
(13)-(15) relate the variables B(i,j,n) and Bf(i,j,n), where
Bf(i,j,n) is the amount of material finishing processing
at event point n. If task i finishes in unit j at event point

n, then they force Bf(i,j,n) ) B(i,j,n), and if task i does
not finish in unit j at event point n, then they force
Bf(i,j,n) ) 0.

Batch-Size Matching Constraints: Utility Tasks.

where γiu and δiu are the constant and variable terms
of the amount of utility u consumed by task i in unit j
at event point n. These constraints represent the
amount of utility required by the unit to process B(i,j,n)
of material while performing task i. Thus, the amount
of utility u required, BU(i,u,n), depends on the batch
size of the task, B(i,u,n). If w(i,n) ) 1, then BU(i,u,n)
equals the sum of the two terms, and if w(i,n) ) 0, then
BU(i,u,n) equals zero.

where BU(i,u,n) is the amount of utility u consumed by
task i at event point n and But(u,n) is the amount of
utility u available at event point n. Thus, constraints
(17) express the mass balance on the utilities, requiring
that the amount of utility at event point n is equal to
the amount of utility at event point n - 1.

Constraints (18) express the requirement that the
amount of utility u at the first event point, including
the amount available, But(u,n), and the amount con-
sumed, ∑i∈IuBU(i,u,n), must be equal to the original
amount of utility u available, avu.

Material Balances.

According to these constraints, the amount of material
of state s at event point n is equal to that at event point
n - 1 increased by any amounts produced or stored at
event point n - 1, decreased by any amounts consumed
or stored at event point n, and decreased by the amount
required by the market at event point n, D(s,n).

Constraints (20) and (21) represent the material balance
on state s at the first and last event points, respectively.
The amount of state s at the first event point is equal to
the initial amount, STO(s), decreased by any amounts

BU(i,u,n) ) γiuw(i,n) + δiuB(i,j,n),
∀u ∈ U, i ∈ Iu, j ∈ Ji, n ∈ N (16)

∑
i∈Iu

BU(i,u,n) + But(u,n) ) ∑
i∈Iu

BU(i,u,n-1) +

But(u,n-1), ∀ u ∈ U, n ∈ N, n > 1 (17)

∑
i∈Iu

BU(i,u,n) + But(u,n) ) avu,

∀ u ∈ U, n ∈ N, n ) 1 (18)

ST(s,n) ) ST(s,n-1) - D(s,n) + ∑
i∈Is

p

Fis∑
j∈Ji

Bf(i,j,n-1) -

∑
i∈Is

c

Fis∑
j∈Ji

Bs(i,j,n) + ∑
ist∈Is

st

Bst(i
st,n-1) - ∑

ist∈Is
st

Bst(i
st,n),

∀ s ∈ S, n ∈ N, n > 1 (19)

ST(s,n) ) STO(s) - ∑
i∈Is

c

Fis∑
j∈Ji

Bs(i,j,n) - ∑
ist∈Is

st

Bst(i
st,n),

∀ s ∈ S, n ∈ N, n ) 1 (20)

STF(s) ) ST(s,n) - D(s,n) + ∑
i∈Is

p

Fis∑
j∈Ji

Bf(i,j,n) +

∑
ist∈Is

st

Bst(i
st,n), ∀ s ∈ S, n ∈ N, n ) 1 (21)

Bst(i
st,n) e caps

st, ∀ist ∈ Is
st, n ∈ N (7)

B(i,j,n) e B(i,j,n-1) + capij
max[1 - w(i,n-1) +

wf(i,n-1)], ∀ i ∈ I, j ∈ Ji, n ∈ N, n > 1 (8)

B(i,j,n) g B(i,j,n-1) - capij
max[1 - w(i,n-1) +

wf(i,n-1)], ∀ i ∈ I, j ∈ Ji, n ∈ N, n > 1 (9)

Bs(i,j,n) e B(i,j,n), ∀ i ∈ I, j ∈ Ji, n ∈ N (10)

Bs(i,j,n) e capij
maxws(i,n), ∀ i ∈ I, j ∈ Ji, n ∈ N (11)

Bs(i,j,n) g B(i,j,n) - capij
max[1 - ws(i,n)],

∀ i ∈ I, j ∈ Ji, n ∈ N (12)

Bf(i,j,n) e B(i,j,n), ∀ i ∈ I, j ∈ Ji, n ∈ N (13)

Bf(i,j,n) e capij
maxwf(i,n), ∀ i ∈ I, j ∈ Ji, n ∈ N (14)

Bf(i,j,n) g B(i,j,n) - capij
max[1 - wf(i,n)],

∀ i ∈ I, j ∈ Ji, n ∈ N (15)
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consumed or stored in the first event point. The total
amount of state s at the end of the last event point,
STF(s), is equal to the amount at the beginning of the
last event point, ST(s,n), increased by any amounts pro-
duced or stored at the last event point and decreased by
the amount required by the market at the last event
point.

Duration Constraints: Processing Tasks.

These constraints represent the relationship between
the starting and finishing times of task i in unit j at
event point n. Because tasks can extend over multiple
event points, the finishing time is not assigned from the
starting time but must be greater than or equal to the
starting time.

Constraints (23) also represent the relationship between
the starting and finishing times of task i in unit j at
event point n. If task i does not take place at event point
n, then along with constraint (22) the finishing time is
set equal to the starting time. However, if task i does
take place at event point n, then the constraint is
relaxed.

Constraints (24) relate the starting time of task i in unit
j at event point n to the finishing time of the same task
in the same unit at the previous event point, n - 1.
These constraints are relaxed unless task i is active and
does not finish processing at event point n - 1. In this
case, task i must extend to the following event point, n,
so that this constraint, Ts(i,j,n) e Tf(i,j,n-1), along with
the sequencing constraint (29), Ts(i,j,n) g Tf(i,j,n-1),
results in the two times being equal.

Constraints (25) and (26) relate the starting time of task
i in unit j at event point n with its finishing time at a
later event point n′. If task i starts at event point n and
finishes at event point n′, then the two constraints force
Tf(i,j,n′) ) Ts(i,j,n) + Rij + âijBs(i,j,n). However, if task
i finishes at event point n′′ where n e n′′ < n′ or does
not finish at event point n′, then the constraints are
relaxed. Note that constraint (26) is only valid for tasks
i, which are not in the set Ips, meaning that they cannot
both process and store material. Thus, the processing
time is not fixed for tasks that can both process and
store material.

Duration Constraints: Storage Tasks.

These constraints relate the starting and finishing times
of a storage task (ist) so that the finishing time must
always be greater than or equal to the starting time.

Duration Constraints: Utility Tasks.

These constraints relate the starting and finishing times
of changes in the amount of utility u so that the
finishing time must always be greater than or equal to
the starting time.

Sequence Constraints: Same Task in the Same
Unit.

These sequence constraints state that task i starting
at event point n should start after the end of the same
task performed at the same unit j that has finished at
the previous event point, n - 1.

Sequence Constraints: Different Tasks in the
Same Unit.

The constraints (30) are written for tasks i and i′ that
are performed in the same unit j at event points n and
n - 1, respectively. If both tasks take place in the same
unit, they should be, at most, consecutive. Thus, if task
i′ occurs at event point n - 1, then the starting time of
the following task must be greater than the finishing
time of that task [i.e., Ts(i,j,n) g Tf(i′,j,n-1)]. However,
if task i′ does not occur at event point n - 1, then the
constraint is relaxed and the two times are not related.

Sequence Constraints: Different Tasks in Dif-
ferent Units.

These constraints relate tasks i and i′ that are per-
formed in different units j and j′ but take place
consecutively according to the production recipe. Note
that if task i′ finishes in unit j′ at event point n - 1,
then we have Ts(i,j,n) g Tf(i′,j′,n-1) and hence task i in
unit j has to start after the end of task i′ in unit j′.
Otherwise, the constraint is relaxed and the two times
are not related.

Sequence Constraints: No-Wait Condition (ZW
Policy).

These constraints are written for different tasks i and
i′ that take place consecutively with the “zero-wait” (ZW)
condition because of storage restrictions on the inter-
mediate material. Combined with constraint (31), these
constraints enforce that task i in unit j at event point n

Tf(i,j,n) g Ts(i,j,n), ∀ i ∈ I, j ∈ Ji, n ∈ N (22)

Tf(i,j,n) e Ts(i,j,n) + Hw(i,n), ∀ i ∈ I, j ∈ Ji, n ∈ N
(23)

Ts(i,j,n) e Tf(i,j,n-1) + H[1 - w(i,n-1) +
wf(i,n-1)], ∀ i ∈ I, j ∈ Ji, n ∈ N, n > 1 (24)

Tf(i,j,n′) - Ts(i,j,n) g Rijws(i,n) + âijB
s(i,j,n) -

H[1 - ws(i,n)] - H[1 - wf(i,n′)] - H[ ∑
nen′′<n′

wf(i,n′′)],

∀ i ∈ I, j ∈ Ji, n ∈ N, n′ ∈ N, n e n′ (25)

Tf(i,j,n′) - Ts(i,j,n) e Rijws(i,n) + âijB
s(i,j,n) +

H[1 - ws(i,n)] + H[1 - wf(i,n′)] + H[ ∑
nen′′<n′

wf(i,n′′)],

∀ i ∉ Ips, j ∈ Ji, n ∈ N, n′ ∈ N, n e n′ (26)

Tst
f (ist,n) g Tst

s (ist,n), ∀ ist ∈ Is
st, n ∈ N (27)

Tut
f (u,n) g Tut

s (u,n), ∀ u ∈ U, n ∈ N (28)

Ts(i,j,n) g Tf(i,j,n-1), ∀ i ∈ I, j ∈ Ji, n ∈ N, n > 1
(29)

Ts(i,j,n) g Tf(i′,j,n-1) - H[1 - w(i′,n-1)],
∀ j ∈ J, i ∈ Ij, i′ ∈ Ij, i * i′, n ∈ N, n > 1 (30)

Ts(i,j,n) g Tf(i′,j′,n-1) - H[1 - wf(i′,n-1)],
∀ s ∈ S, i ∈ Is

c, i′ ∈ Is
p, j ∈ Ji, j′ ∈ Ji′,
j * j′, n ∈ N, n > 1 (31)

Ts(i,j,n) e Tf(i′,j′,n-1) + H[2 - wf(i′,n-1) -
ws(i,n)], ∀ s ∈ Sz, Sf, Sn, i ∈ Is

c, i′ ∈ Is
p, j ∈ Ji,

j′ ∈ Ji′, j * j′, n ∈ N, n > 1 (32)
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starts immediately after the end of task i′ in unit j′ at
event point n - 1 if both tasks are activated.

Sequence Constraints: Storage Tasks.

These constraints relate the starting time of a process-
ing task i at an event point n to the finishing time of a
storage task (ist) at the previous event point, n - 1. Note
that the constraint (34) is only written for states s with
finite intermediate storage (FIS). Thus, if task i starts
at event point n and consumes a state s that requires
FIS, then we have Ts(i,j,n) ) Tst

f (ist,n-1) for all storage
tasks ist for state s. However, if task i does not start at
event point n or storage task ist for state s does require
FIS, then the timing between the tasks is not enforced.
In this way, the timing of the storage tasks for states
with FIS and the consecutive processing task that
consumes the FIS state are related.

Constraints (35) and (36) relate the starting time of a
storage task ist at an event point n to the processing
task i′ at the previous event point, n - 1. Similar to
constraints (33) and (34), these constraints enforce the
timing for a processing task that produces a FIS state
and a storage task that stores the same FIS. Thus, if
the processing task i′ produces a FIS state s at event
point n - 1, meaning that task i′ finishes at n - 1, then
we have Tst

s (ist,n) ) Tf(i′,j′,n-1). If task i′ does not
finish at n - 1, the timing with the storage task at the
next event point n is not enforced. In this way, the
timing of a processing task that produces a FIS state
and the consecutive storage task for the FIS state are
related.

Constraints (37) relate the starting and finishing time
of a storage task ist at two consecutive event points.
They ensure that, along with constraints (33)-(36), the
timing for the storage of FIS states will be enforced so
that storage limitations are not violated.

Sequence Constraints: Utility Related Tasks.

These constraints relate the finishing time of a process-
ing task i that utilizes utility u at an event point n - 1
to the starting time of the usage of utility u at the next
event point. If task i that uses utility u is activated and

does not finish processing at event point n - 1, then
the starting time of the utility usage at the next event
point, Tut

s (u,n), is forced to equal the finishing time of
the processing task i at the current event point,
Tf(i,j,n-1). Thus, the timing of the usage of a utility is
related to the processing times of the tasks that utilize
that utility.

Constraints (40) and (41) relate the starting time of the
usage of utility u at event point n to the processing task
i that utilizes utility u at the current event point. If task
i that uses utility u is activated at event point n, then
the starting time of task i, Ts(i,j,n), and the starting time
of the usage of utility u at the current event point,
Tut

s (u,n), are forced to be equal. However, if task i that
uses utility u is not activated at event point n, then the
constraints are relaxed.

Constraints (42) relate the starting and finishing time
of the usage of utility u at two consecutive event points.
They ensure that, along with constraints (38)-(41), the
timing for the changes in the utility level will be
consistent and the amounts of utilities used can be
monitored exactly and specified limits enforced.

Order Satisfaction Constraints. The order satis-
faction constraints provided here are written for prob-
lems involving network-represented processes. Note
that these constraints can easily be modified for the case
of sequential process problems. This is done by relating
orders to units in the same manner as orders are related
to tasks below.

These constraints ensure each order k is met exactly
once. Thus, each order is processed by only one task i
and is delivered at exactly one event point n.

Constraints (44) relate the delivery of an order k
through task i to the activation of task i at event point n.

Constraints (45) relate the amount of a state s delivered
at event point n, D(s,n), to the amount of that state due
through order k. Thus, if state s has two orders associ-
ated with it, k1 and k2, of amounts amk1 and amk2,
respectively, and orders k1 and k2 are both delivered at
event point n, then the delivery of state s at event point
n is represented as D(s,n) ) amk1 + amk2 and the
amount of the state delivered will be equal to the
amount ordered.

Ts(i,j,n) g Tst
f (ist,n-1),

∀ s ∈ S, i ∈ Is
c, j ∈ Ji, ist ∈ Is

st, n ∈ N, n > 1 (33)

Ts(i,j,n) e Tst
f (ist,n-1) + H[1 - ws(i,n)],

∀ s ∈ Sf, i ∈ Is
c, j ∈ Ji, ist ∈ Is

st, n ∈ N, n > 1 (34)

Tst
s (ist,n) g Tf(i′,j′,n-1) - H[1 - wf(i′,n-1)],

∀ s ∈ S, i′ ∈ Is
p, j′ ∈ Ji′, ist ∈ Is

st, n ∈ N, n > 1 (35)

Tst
s (ist,n) e Tf(i′,j′,n-1) + H[1 - wf(i′,n-1)],

∀ s ∈ Sf, i′ ∈ Is
p, j′ ∈ Ji′, ist ∈ Is

st, n ∈ N, n > 1 (36)

Tst
s (ist,n) ) Tst

f (ist,n-1), ∀ ist ∈ Is
st, n ∈ N, n > 1 (37)

Tf(i,j,n-1) g Tut
s (u,n) - H[1 - w(i,n-1) +

wf(i,n-1)], ∀ u ∈ U, i ∈ Iu, j ∈ Ji, n ∈ N, n > 1 (38)

Tf(i,j,n-1) e Tut
s (u,n) + H[1 - w(i,n-1)],

∀ u ∈ U, i ∈ Iu, j ∈ Ji, n ∈ N, n > 1 (39)

Tut
s (u,n) g Ts(i,j,n) - H[1 - w(i,n)],

∀ u ∈ U, i ∈ Iu, j ∈ Ji, n ∈ N (40)

Tut
s (u,n) e Ts(i,j,n) + H[1 - w(i,n)],

∀ u ∈ U, i ∈ Iu, j ∈ Ji, n ∈ N (41)

Tut
s (u,n) ) Tut

f (u,n-1), ∀ u ∈ U, n ∈ N, n > 1 (42)

∑
i∈Ik

∑
n∈N

y(k,i,n) ) 1, ∀ k ∈ K (43)

wf(i,n) ) ∑
k∈Ki

y(k,i,n), ∀ i ∈ I, n ∈ N (44)

D(s,n) ) ∑
k∈Ks

∑
i∈Ik

amky(k,i,n), ∀ s ∈ Sp, n∈ N (45)
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Constraints (46) and (47) relate the time that order k
is due to the actual time that order k is delivered. Thus,
if order k is delivered through task i at event point n,
then y(k,i,n) ) 1 and wf(i, n) ) 1 and the constraints
yield that Tf(k,i,n) ) duek or that the finishing time of
order k associated with the production of state s is equal
to the actual time that order k is due. In this way, the
delivery time of order k is set equal to the time that
order k is due. Note that these constraints can be
relaxed with slack variables if the delivery time of an
order cannot be met.

Bound Constraints.

These constraints represent bounds on several of the
continuous variables. The starting and finishing times
of processing tasks and changes in the utility level must
all be within the time horizon. The starting time for the
changes in utilities at the first event point is set to zero.
The initial amounts of all nonraw material states are
set to zero, the intermediate amounts of all ZW, NIS,
and FIS states are set to zero, and the amounts of all
nonproduct deliveries are set to zero. Also, the continu-
ous variable representing the activation of task i in unit
j at event point n, w(i,n), must fall between 0 and 1.

Objective Function. There are several different
objective functions that can be employed with a general
short-term scheduling problem. Three of the most
common types are reviewed below.

The objective function represents the maximization of
the value of the final products.

The objective function represents the minimization of
the makespan, MS, of the process for a fixed demand
for each state s, dems, contained in the set of final
products, Sp.

The objective function represents the minimization of
the total earliness of all orders where the bilinear term,
which is a product of a continuous and a binary variable,
can be replaced with a continuous variable and sup-
porting constraints using a Glover transformation.37,38

3.1. Remarks. 3.1.1. Number of Event Points. In
this formulation, the number of event points is deter-
mined using the same approach as that proposed by
Ierapetritou and Floudas.32 First, the problem is solved
with a small number of event points to obtain a solution.
Then, the number of event points is increased by one
and the problem resolved to obtain a better solution.
This is repeated until an additional increase in the
number of event points does not result in any improve-
ment in the objective function.

3.1.2. Sequence-Dependent Setup Times. Se-
quence-dependent setup times can be easily incorpo-
rated within the proposed model. A parameter, τii′, is
introduced to represent the sequence-dependent setup
time when task i is followed by task i′, where both tasks
are suitable in unit j. Then, the sequencing constraint
for different tasks in the same unit, constraint (30),
must be modified as follows.

3.1.3. Shared Storage Tanks. The proposed formu-
lation can also account for storage tanks shared by
several states. The specification of which states s are
linked to each storage task ist, each of which is associ-
ated with a specific storage unit, must be modified to
reflect the current storage situation. As a result, the set
Is

st is modified so that multiple states are linked to each
storage task.

3.1.4. Tightening Constraints. Following the tight-
ening constraints suggested by Maravelias and Gross-
mann,31 similar constraints are introduced to tighten
the relaxed solution of the proposed enhanced formula-
tion. Specifically, constraints (55) tighten the formula-
tion by enforcing the condition that the summation of
the processing times of the tasks assigned to a specific
unit j should be less than or equal to the time horizon.

Furthermore, this condition is also enforced for each
unit j at each event point n as follows.

Tf(i,j,n) e duek + H[2 - y(k,i,n) - wf(i,n)],
∀ s ∈ S, k ∈ Ks, i ∈ Ik, j ∈ Ji, n ∈ N (46)

Tf(i,j,n) g duek - H[2 - y(k,i,n) - wf(i,n)],
∀ s ∈ S, k ∈ Ks, i ∈ Ik, j ∈ Ji, n ∈ N (47)

Tf(i,j,n) e H, ∀ i ∈ I, j ∈ Ji, n ∈ N

Ts(i,j,n) e H, ∀ i ∈ I, j ∈ Ji, n ∈ N

Tut
f (u,n) e H, ∀ u ∈ U, n ∈ N

Tut
s (u,n) e H, ∀ u ∈ U, n ∈ N

Tut
s (u,n) ) 0, ∀ u ∈ U, n ∈ N, n ) 1

STO(s) ) 0, ∀ s ∉ Sr

STO(s) e STs
0, ∀ s ∈ Sr

ST(s,n) ) 0, ∀ s ∈ Sz, Sf, Sn, n ∈ N

ST(s,n) e STs
max, ∀ s ∈ S, n ∈ N

D(s,n) ) 0, ∀ s ∉ Sp, n ∈ N

0 e w(i,n) e 1, ∀ i ∈ I, n ∈ N (48)

Maximization of Sales

Max ∑
s∈Sp

prices[∑
n∈N

D(s,n) + STF(s)] (49)

Minimization of Makespan

Min MS (50)

s.t. MS g tf(i,j,n), ∀ i ∈ I, j ∈ Ji, n ∈ N (51)

STF(s) ) dems, ∀ s ∈ Sp (52)

Minimization of Order Earliness

Min ∑
k∈K

duek - [∑
i∈Ik

∑
j∈Ji

∑
n∈N

tf(i,j,n) y(k,i,n)] (53)

ts(i′,j,n) g tf(i,j,n-1) + τii′ - H[1 - wf(i,n-1) -
ws(i′,n)], ∀ j ∈ J, i ∈ Ij, i′ ∈ Ij, i * i′,

n ∈ N, n > 1 (54)

∑
i∈Ij

∑
n∈N

Rijws(i,n) + âijB
s(i,j,n) e H, ∀ j ∈ J (55)
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where tts(j,n) and ttf(j,n) are the starting and finishing
times, respectively, of the task active in unit j at event
point n. They are defined as follows.

Thus, constraints (56) enforce the condition that the
summation of the processing times of all tasks starting
in unit j at event points n or greater must be less than
or equal to the amount of time remaining. Likewise,
constraints (57) enforce the condition that the summa-
tion of the processing time of all tasks finishing in unit
j before event point n must be less than or equal to the
amount of time that has passed up to the beginning of
event point n. Note that constraints (57) are only active
if a task finishes at the previous event point, n - 1;
otherwise, ttf(j,n) will not have an exact value, and the
constraint is relaxed.

The addition of constraints (55)-(59) leads to relaxed
solutions with smaller sums of processing times, or
smaller durations. This then leads to fewer activated
binary variables, ws(i,n) and wf(i,n). Moreover, the
continuous variables including the batch sizes [Bs(i,j,n),
Bf(i,j,n), and B(i,j,n)] and the amounts of states [ST(s,n)
and STF(s)] are all bounded by the binary variables.
Finally, because these continuous variables appear in
the objective function, the addition of these constraints
results in tighter relaxations.

3.1.5. Sequential Processes. Single and multiple
stage sequential processes are batch- or order-oriented
and thus do not need to include tasks or states or any
of the constraints involving states. The model described
in the previous section can be applied to sequential pro-
cesses with a few modifications. For instance, there are
no defined tasks, states, batch sizes, or material amounts,
and all material balances and capacity constraints are
unnecessary. Thus, the basic constraints (1)-(5), (22)-
(26), (29)-(32), and part of (48) all apply. The order
satisfaction constraints (43)-(47) need to be modified
as previously detailed. If storage constraints are to be
considered, then constraints (27) and (33)-(37) need to
be included, and if resource constraints are to be
considered, then constraints (28) and (38)-(42) should
also be included. Furthermore, all of the binary and
continuous variables and their participating constraints
should be modified similarly to the order satisfaction
constraints to reflect a dependence on orders associated
with units instead of tasks associated with units.

3.1.6. Summary of Important Enhancements of
the Proposed Formulation. The proposed formula-
tion, although based on the novel concept of unit-specif-
ic event points developed by Floudas and co-work-
ers,32,33,35,36 extends their formulation to take into
account constraints on resources other than equipment
items, such as utilities, and also considers various stor-
age policies such as unlimited intermediate storage (UIS),
FIS, no intermediate storage (NIS), and ZW conditions.
In the proposed model, tasks are allowed to continue
over several consecutive event points in order to accur-
ately monitor the utilization of resources and the storage
of states so that specified limits are enforced. As a re-
sult, two sets of binary variables are employed, one that
indicates whether a task starts at each event point,
ws(i,n), and another that indicates whether a task ends
at each event point, wf(i,n). A continuous variable, w(i,n),
is also employed to indicate if a task is active at each
event point. In addition, new tasks are defined for the
storage of states and the utilization of resources. The
sequence and timing of these new tasks and the pro-
cessing tasks are then related so that the timing for
changes in resource levels and the amounts of states
will be consistent and specified limits on both can be
enforced. For instance, constraints (16)-(18) define the
amount of a utility used to undertake a task and keep
track of the amount of utility available at each event
point, while constraints (28) and (38)-(42) relate the
duration and timing of a utility to the timing of the pro-
cessing tasks that utilize that utility. Furthermore,
constraints (7) and (19)-(21) govern the batch size of a
storage task and relate the storage task to processing
tasks through material balances, while constraints (27)
and (33)-(37) relate the duration and timing of the
storage task to the timing of the processing tasks that
produce or consume the state being stored through the
storage task. Note that, in addition to the above-men-
tioned constraints, there are several other sets of con-
straints that differ from those defined in the original
models of Floudas and co-workers.32,33,35,36 For instance,
the allocation constraints are expanded to constraints
(1)-(5) in order to relate the above-mentioned binary
and continuous variables so that no tasks overlap, no
tasks are assigned to the same event point in the same
unit, and all tasks that start processing must finish pro-
cessing. Also, constraints (8)-(15) are added to relate
the batch sizes for tasks that start and finish at the
same or consecutive event points so that tasks that ex-
tend over more than one event point have consistent
batch sizes at each event point. Moreover, the duration
constraints for a processing task have been expanded
into constraints (22)-(26) to allow tasks to extend over
several event points so that the finishing time is related
to a starting time from a previous event point. Similarly,
order satifaction constraints were added to allow orders to
be due at intermediate due dates. Constraints (43)-(47)
force an order for a state to be met by a certain due date
and in a certain amount. Finally, the tightening con-
straints (55)-(59) were added, as discussed above, to
improve the relaxed linear programming (LP) solution.

Thus, the proposed continuous-time formulation for
the short-term scheduling of multipurpose batch plants
with resource constraints, mixed storage policy, inter-
mediate due dates, and sequence-dependent setup times
consists of constraints (1)-(48) where constraint (30)
is replaced with constraint (54), one of the objective

∑
i∈Ij

∑
n′gn

Rijws(i,n′) + âijB
s(i,j,n′) e H - tts(j,n),

∀ j ∈ J, n ∈ N (56)

∑
i∈Ij

∑
n′<n

Rijws(i,n′) + âijB
s(i,j,n′) e ttf(j,n-1) +

H[1 - ∑
i∈Ij

wf(i,n-1)], ∀ j ∈ J, n ∈ N, n > 1 (57)

tts(j,n) e ts(i,j,n) + H[1 - ws(i,n)],
∀ j ∈ J, i ∈ Ij, n ∈ N

g ts(i,j,n) - H[1 - ws(i,n)],
∀ j ∈ J, i ∈ Ij, n ∈ N (58)

ttf(j,n) e tf(i,j,n) + H[1 - wf(i,n)],
∀ j ∈ J, i ∈ Ij, n ∈ N

g tf(i,j,n) - H[1 - wf(i,n)],
∀ j ∈ J, i ∈ Ij, n ∈ N (59)
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functions found in constraints (49), (50)-(52), and (53),
and the tightenting constraints (55)-(59).

4. Computational Studies
In this section, four example problems are presented

and the effectiveness of the proposed approach is illus-
trated. Both general network-represented and sequen-
tial processes are considered. Comparisons with previ-
ously published approaches are also provided. All exam-
ples are implemented with GAMS 2.5039 and are solved
using CPLEX 8.1 with a 3.00 GHz Linux workstation.
The default GAMS/CPLEX options are used in all runs
with the exception that the CPLEX option for feasibility
is activated and a relative optimality tolerance equal
to 0.01% was used as the termination criterion.

4.1. Example 1: Resource Constraints and Vari-
able Batch Sizes and Processing Times. The first
example comes from Maravelias and Grossmann31 and
involves the STN given in Figure 1. This example
includes resource constraints and variable batch sizes,
processing times, and utility requirements. The corre-
sponding data for the example can be found in appendix
B. There are two types of reactors available for the
process (types I and II) with two reactors of type I (R1
and R2) and one reactor of type II (R3). There are four
reactions that can take place. Reactions T1 and T2
require a type I reactor, whereas reactions T3 and T4
require a type II reactor. In addition, reactions T1 and
T3 are endothermic and require heat, provided by steam
(HS) available in limited amounts, and reactions T2 and
T4 are exothermic and require cooling water (CW), also
available in limited amounts. Each reactor allows vari-
able batch sizes, where the minimum batch size is half
of the capacity of the reactor. The utility requirements
and processing times include a fixed term as well as a
variable term that is proportional to the batch size. The
processing times are set so that the minimum batch size
is processed in 60% of the time needed for the maximum
batch size. Also, there is unlimited storage for the raw
materials and final products and finite storage for the
intermediates.

To demonstrate the effect of resource availability on
the short-term schedule of the process, we will consider
two different cases. First, we assume that the availabil-
ity of both HS and CW is 40 kg/min (case 1). Next, we
assume that the availability of the utilities is 30 kg/
min (case 2). We will also consider two different objec-
tive functions, the maximization of sales and the
minimization of the makespan.

For both objective functions and both utility avail-
ability cases, the corresponding optimal production
schedule and resource utilization levels are provided.
Note that the optimal production schedules allow tasks
to extend over more than one event point, so the Gantt
charts provided show each event point at which a task

is active. Thus, the same task extending over two
adjacent event points appears as two separate tasks,
each with the same batch size. Also, resource utilization
levels are determined at each event point and thus do
not necessarily reflect the actual utility consumption
levels. This discrepancy occurs because of the definition
of an event point as the beginning of the initialization
of a task or as the beginning of the utilization of a unit.
Thus, utility consumption levels are not calculated at
the ends of tasks when the renewable utilities become
available again. Although this method of utility record
keeping is not exact, it does not allow for any infeasible
or suboptimal solutions. In fact, the calculated utility
consumption level is really an overestimation of the
actual utility consumption level, and thus is obviously
feasible. Furthermore, if another solution exists that is
better than the current solution, the addition of one or
more event points will yield the better solution; however,
if a better solution does not exist, then the current
overestimated solution corresponds to the optimal fea-
sible solution.

4.1.1. Maximization of Sales. For case 1, using the
objective function given in constraint (49) and a time
horizon of 8 h, the optimal value of the sales is $6499.31.
The production schedule and utility utilization levels
are shown in Figure 2. For case 2, the optimal value of
the sales is $5600.00 and the production schedule and
resource utilization levels are shown in Figure 3.

For the maximization of sales with utility levels at
40 kg/min (i.e., case 1), note that the consumption level
for both the HS and CW utilities goes above the 30 kg/
min level, meaning that the solution for case 1 is not
feasible for case 2. Thus, to keep the level of heating
utility below 30 kg/min in case 2, the batch sizes of
reaction task T1 in reactors R1 and R2 are smaller than
those in case 1 and reaction task T3 in reactor R3 occurs
after task T1 finishes, so that they are both not using
the heating utility at the same time. Notice that this
results in reaction task T3 occurring only once in case
2 instead of twice as in case 1, but it allows reaction
task T4 to occur twice instead of only once as in case 1.
Also, to keep the level of the CW utility below 30 kg/
min for case 2, the batch sizes of reaction task T2 in
reactor R1 and reaction task T4 in reactor R3 are both
smaller than they were in case 1.

4.1.2. Minimization of the Makespan. When the
minimization of the makespan, as given in constraints
(50)-(52), is used as the objective function, the two cases
given above are solved for a fixed demand of 100 kg of
P1 and 80 kg of P2. For case 1, the minimum value of
the makespan is 8.50 h and the production schedule and
resource utilization levels are shown in Figure 4. For
case 2, the minimum value of the makespan is 8.90 h
and the production schedule and resource utilization
levels are shown in Figure 5.

Figure 1. STN for example 1.
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For the minimization of the makespan, there is a fixed
demand for the two products, so production in both cases
1 and 2 remains the same. However, in case 2, the order
in which the final products are processed in reactor R3
is changed from that of case 1 to accommodate the lower
level of utilities. Also, some of the reaction tasks are
delayed or the batch sizes changed as a result of the
final product processing sequence changes. Model and
solution statistics for both objective functions and both
cases are given in Table 1.

Note that the values shown in Table 1 for the number
of binary variables used in the model solution reflect
the number of truly unknown binary variables (e.g., task
T1 in reactors R1 and R2 cannot take place at the first
event point, and hence the associated binary variables
are fixed to zero.)

To test the effectiveness of the proposed formulation,
we performed a computational comparison for this
example with the model from Maravelias and Gross-
mann.31 Although this example was solved in their
original paper, the objective function values and produc-
tion schedules are inconsistent with the data reported
in their appendix. Their objective function is reported
to be the maximization of profit, while the value of the
objective function is the maximization of sales. Also, the
reported production schedules or resource utilization
levels are inconsistent with the data given in their
appendix for both cases with both objective functions,
making each reported schedule inaccurate. Further-
more, the values of the objective function for the
maximization of profit for both cases of the utility level
and for the minimization of the makespan for the second
case of the utility level are not optimal for the data
reported in their appendix. The reported objectives for
these problems are each suboptimal for the data pro-
vided (see the footnote in Table 2).

We re-solved both cases with both objective functions
using the data presented in this paper and employing
the model M* presented in Maravelias and Grossmann31

consisting of constraints (1)-(36). The model and solu-
tion statistics for their model can be seen in Table 2.
Note that extra constraints are added to model M* to
account for the additional features specified in other

Figure 2. Schedule for example 1 for maximization of sales (case 1).

Figure 3. Schedule for example 1 for maximization of sales (case 2).

Table 1. Model and Solution Statistics for Example 1
(Proposed Formulation)

max sales min makespan

case 1 case 2 case 1 case 2

event points 6 5 6 6
binary variables 57 45 57 57
continuous variables 453 380 453 453
constraints 1528 1238 1568 1568
LP relaxation 10981.82 7200.00 7.00 7.00
objective $6499.31 $5600.00 8.50 h 8.90 h
nodes 1246 143 42 141
CPU time (s) 5.35 0.51 0.58 0.94
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problems. Constraint (37) is added to model M* for the
case of sequence-dependent setup times, constraints
(38)-(40) are added to model M* for the case of shared
storage tanks, and constraints (11′) and (41) are added
to model M* when the objective function is the mini-
mization of the makespan.

Compared to the proposed formulation, the model M*
of Maravelias and Grossmann31 always takes one more
event point to determine the same objective function
value. It also involves more binary and continuous
variables but fewer constraints. However, note that the
original paper reported using more constraints than we
employed here (see the footnote in Table 2). It is possible
that additional constraints were introduced that were
not included in their manuscript. Although the differ-
ence in computational complexity is negligible for the
two models when the maximization of sales is the
objective function, it becomes much more apparent when
we consider the minimization of the makespan as the
objective. The model M* of Maravelias and Grossmann31

takes over 10 times as many nodes to solve the first case
and over 2 times as many nodes to solve the second case.
This indicates that the consideration of unit-specific
variable event points, which employ a smaller number
of time points and thus fewer binary and continuous
variables, may be better suited for short-term scheduling
problems involving the minimization of the makespan.

4.2. Example 2: Resource Constraints, Mixed
Storage Policies, and Variable Batch Sizes and
Processing Times. The second example also comes
from Maravelias and Grossmann31 and involves the
STN given in Figure 6. This example includes resource
constraints, mixed storage policies and variable batch
sizes, processing times, and utility requirements. The
plant consists of 6 units involving 10 processing tasks
and 14 states. UIS is available for raw materials F1 and
F2, intermediates I1 and I2, and final products P1-P3
and WS. FIS is available for states S3 and S4, while
NIS is available for states S2 and S6 and a ZW policy
applies for states S1 and S5. There are three different
renewable utilities: CW, low-pressure steam (LPS), and
high-pressure steam (HPS). Tasks T2, T7, T9, and T10
require CW; tasks T1, T3, T5, and T8 require LPS; and
tasks T4 and T6 require HPS. The maximum availabili-
ties of CW, LPS, and HPS are 25, 40, and 20 kg/min,
respectively. The corresponding data for the example
can be found in appendix B. The objective function is
the maximization of sales, and time horizons of 12 and
14 h are considered.

For a time horizon of 12 h, the optimal sales are
$13 000 and eight event points are required. The
production schedule and resource utilization levels can
be seen in Figure 7. The problem involves 3318 con-
straints, 110 binary variables, and 1077 continuous

Figure 4. Schedule for example 1 for minimization of the makespan (case 1).

Figure 5. Schedule for example 1 for minimization of the makespan (case 2).
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variables. Its optimal solution was found in 222 nodes
and 1.71 s. For a time horizon of 14 h, the optimal sales
are $16 350 and eight event points are required. The
production schedule and resource utilization levels can
be seen in Figure 8. The problem involves 3354 con-
straints, 109 binary variables, and 1077 continuous
variables. Its optimal solution was found in 2869 nodes
and 15.65 s. Note that in both cases the limiting
resource is CW, as can be seen from the resource
utilization levels. In both schedules, tasks T2 and T7
occurring at the same time require the maximum
amount of CW available.

Example 2 was also solved with the model M* of
Maravelias and Grossmann31 to compare the two for-
mulations. Although this example was solved in their
original paper, we have re-solved it here in order to
compare the models using the same computational tools.
The model and solution statistics using both models can
be seen in Table 3. For the time horizon of 12 h using
nine time points, the model involved 2396 constraints,
180 binary variables, and 1408 continuous variables.
The same optimal solution of $13 000 was found in
23 235 nodes and 64.92 s. For the time horizon of 14 h
using 10 time points, the model involved 2663 con-
straints, 200 binary variables, and 1564 constraints. The
same optimal solution of $16 350 was found in 22 625

nodes and 112.66 s. Note that for both time horizons
the model M* of Maravelias and Grossmann31 takes at
least one more time point and thus involves more binary
and continuous variables. Also, the time horizon of 12
h took over 100 times more nodes to solve, while the
time horizon of 14 h took over 10 times more nodes to
solve. This indicates that when a larger number of time
points are considered in a problem, the proposed model
performs better computationally than the model of
Maravelias and Grossmann,31 even when the objective
is the maximization of sales.

4.3. Example 3: Sequence-Dependent Setup
Times, Shared Storage Tanks, and Variable Batch
Sizes and Processing Times. The third example
comes from Maravelias and Grossmann31 and involves
sequence-dependent setup times, shared storage tanks,
and variable batch sizes and processing times. The STN
is given in Figure 9. The process consists of two units
undertaking six tasks involving eight states. There is
one common storage tank, TU1, for states S11 and S12
and one common storage tank, TU2, for states S21 and
S22. Tasks T11, T21, T13, and T23 are suitable in unit
U1, while tasks T21 and T22 are suitable in unit U2.
The corresponding data for the example can be found
in appendix B. The objective is to maximize sales over
a fixed time horizon of 12 h while meeting a minimum
demand of 2 tons for each product.

Because of the lack of resource considerations, the
simpler model outlined in Lin and Floudas36 can be used
to model this example. Note that the existence con-
straints and unit size constraints are not necessary. To
correctly model the shared storage considerations, the
set Is

st was modified as described in section 3.1.3. Also,
constraint (54) was included to account for sequence-
dependent setup times. The optimal solution obtained
was 8.96 tons using six event points. The process
schedule is given in Figure 10. Note that if a state is
not immediately transferred from one processing task
to another, then it is stored in the appropriate storage
unit using a storage task until it is processed. The
problem involves 697 constraints, 36 binary, and 305
continuous variables. Its optimal solution was found in
287 nodes and 0.30 s. Note that if the problem is solved
with the same number of event points with UIS for all
states and without sequence-dependent setup times, it
involves 299 equations, 24 binary, and 209 continuous
variables and arrives at a solution of 9.51 after 176
nodes and 0.08 s. However, if we increase the event
points to seven, the problem involves 351 equations, 30
binary variables, and 241 continuous variables and
arrives at a solution of 10.11 after 942 nodes and 0.43
s. Thus, it can be concluded that the consideration of
shared storage tanks and sequence-dependent setup
times does not significantly increase the computational
complexity of this problem. The number of event points

Table 2. Model and Solution Statistics for Example 1
(Maravelias and Grossmann31 Formulation)a

max sales min makespan

case 1 case 2 case 1 case 2

event points 7 6 7 7
binary variables 84 72 84 84
continuous

variables
661 567 661 661

constraintsb 1145 (1335) 981 (1146) 1146 (1528) 1146 (1339)
LP relaxation 9081.31 7505.84 5.61 5.66
objective $6499.31 $5600.00 8.50 h 8.90 h
nodes 1030 288 2318 1987
CPU time (s) 2.60 0.69 6.21 5.96

a For the maximization of profit with case 1 in example 2 of
Maravelias and Grossmann,31 the optimal objective function is
reported to be $5904.00 instead of $6499.31, the timing of task
R3 in unit RII in their Figure 12 is inconsistent for the given batch
size of 40, and the utility levels for task R3 are too high. For the
maximization of profit with case 2, the optimal objective function
is reported to be $5227.80 instead of $5600.00, the timing of task
R4 in unit RII in their Figure 13 is inconsistent for the given batch
size of 47.7, and the type of utility and the utility level for tasks
R3 and R4 are reversed while the utility level for task R3 is too
high. For the minimization of the makespan with case 1, the utility
level for task R3 is too high. For the minimization of the makespan
with case 2, the optimal objective function is reported to be 9.025
instead of 8.90, the material balances in their Figure 15 are not
satisfied for the first task R1 in unit RI1 and the second task R2
in unit RI2, thus the timings and utility levels for these tasks are
inconsistent with the reported batch sizes and the utility level of
task R3 is too large. b Numbers in parentheses represent values
reported by Maravelias and Grossmann.31

Figure 6. STN for example 2.
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and thus the number of variables and constraints are
seen to have a much more dramatic effect.

Example 3 was also solved with the model of Marav-
elias and Grossmann31 to compare the two formulations
when considering sequence-dependent setup times and
shared storage tasks. This example was solved in their
original paper, but the reported production schedule
does not match the data given in their appendix and
the objective function value is suboptimal for the
reported data; thus, we have re-solved the problem here
in order to compare the models using the same data.

To achieve the same optimal objective function as the
proposed formulation, we must utilize 12 time points
with the model M* of Maravelias and Grossmann.31 The
problem involves 1888 constraints, 192 binary, and 975
continuous variables, and the optimal solution of 8.96
was found in 1 814 291 nodes and 11 638.24 s. Thus,
the proposed formulation utilizes significantly fewer
time points and thus fewer variables and, as a result,
outperforms the model of Maravelias and Grossmann.31

The model and solution statistics using both models can
be seen in Table 4.

Figure 7. Schedule for example 2 with a time horizon of 12 h.

Figure 8. Schedule for example 2 with a time horizon of 14 h.
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4.4. Example 4: Sequential Process with Order-
Dependent Processing Times. The fourth example
is taken from Pinto and Grossmann10 and involves a
sequential process containing one stage with four paral-
lel extruders of unequal capacity and with processing
times depending on the order being processed. A total
of 12 orders are due at specific times over a 30-day
period. The corresponding processing rate and due date
data for the example can be found in appendix B. The
problem objective is to meet all orders while minimizing
earliness, as seen in constraint (53).

The optimal processing schedule is given in Figure
11 with an objective function value of 1.026. The
problem was modeled with the formulation of Ierapet-
ritou and Floudas32 using only the allocation, duration,
and same task in the same unit and different tasks in
the same unit sequencing constraints along with the
order satisfaction constraints outlined in (43)-(47) and
the objective given in constraint (53).

Suppose now that, because of limited manpower, there
is a hard constraint on the number of extruders that can
operate at the same time. We will consider the case
where three extruders may operate simultaneously (case
1) and the case where only two extruders may operate
simultaneously (case 2). For both cases, we employ the

model outlined in section 3.1.5, again using the order
satisfaction constraints and the objective function to
minimize the earliness of the orders. For case 1 with
three extruders, the optimal objective function value is
1.895 and the production schedule can be seen in Figure
12. For case 2, the optimal objective function value is
7.909 and the production schedule can be seen in Figure
13. Model and solution statistics for all three cases can
be seen in Table 5.

It can be seen from Table 5 that consideration of
resource constraints in the form of limited manpower
increases the computational complexity of the problem.
Resource considerations require a more complicated
model involving more variables and constraints. For
instance, resource considerations require an event point
for every time the resource level changes or, in this case,
for each order. However, a problem without resources
only requires as many event points as the maximum
number of sequential tasks. For this example, the
simpler problem without resource considerations only
requires four event points while the more complicated
problem with resource constraints requires 12 event

Table 3. Model and Solution Statistics for Example 2

proposed
formulation

Maravelias and
Grossmann31 formulationa

12 h 14 h 12 h 14 h

event points 8 8 9 10
binary variables 110 110 180 200
continuous

variables
1077 1077 1408 1564

constraints 3318 3354 2396 2663
LP relaxation 19000 19000 18423.5 22186.7
objective $13000 $16350 $13000 $16350
nodesb 222 2869 23235 (2107) 22625 (60070)
CPU time (s) 1.71 15.65 64.92 112.66

a The reported number of nodes and CPU seconds for both time
horizons are different from those found by our application of model
M* of Maravelias and Grossmann.31 For a time horizon of 12 h,
they reported 2107 nodes while our application of model M* took
23 235 nodes. For a time horizon of 14 h, they reported 60 070
nodes while our application of model M* took 22 625 nodes.
b Numbers in parentheses represent values reported by Maravelias
and Grossmann.31

Figure 9. STN for example 3.

Figure 10. Schedule for example 3.

Table 4. Model and Solution Statistics for Example 3

Lin and
Floudas36

formulation

Maravelias and
Grossmann31

formulationa

event points 6 12
binary variables 36 192
continuous variables 305 975
constraints 697 1888
LP relaxation 12.00 13.19
objective 8.96 8.96
nodes 287 1 814 291
CPU time (s) 0.30 11 638.24
a For the maximization of production in example 4 of Maravelias

and Grossmann,31 the optimal objective function value is reported
to be 5.019 instead of 8.096 and the reported schedules in their
Figure 20 reflect data that is entirely different from that reported
in their appendix. For instance, tasks T12 and T23 clearly vary
in processing time between the two schedules even though they
both do not have a variable term of processing time. Also, in Table
C9 in their appendix, the fifth column heading should be “S21”
instead of “S12” and the units of mass should be tons instead of
kilograms. In Table C10 in their appendix, the first two entries
in the last two columns should be unit U1 because there is no
unit U3 and the minimum and maximum batch sizes for these
entries should be 2.0 and 5.0, respectively, instead of 1.2 and 3.0.
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points, resulting in many more binary variables and
thus a much more complex problem.

To test the effectiveness of the proposed formulation
when used with sequential processes, we performed a
computational comparison for this example with the
model from Pinto and Grossmann.10 Although this
example was solved in their original paper, the objective
function used was the maximization of starting times
instead of the minimization of tardiness. So, we re-solv-
ed our model using the maximization of the starting
times as the objective. Pinto and Grossmann10 report
optimal objectives of 269.10, 268.24, and 264.98 for the
three cases of no resources, resources limited to three
extruders, and resources limited to two extruders. Our
optimal objective function values with the same objec-
tive were 269.10, 268.82, and 265.74, respectively. Thus,
the proposed model found improved schedules with a
better objective function value for the case where
resources are limited to three extruders and the case
where resources are limited to two extruders. This is
not unexpected, however, because of the fact that the

model used by Pinto and Grossmann10 employs the con-
cept of time slots and all slot-based formulations restrict
the time representations and hence they can result, by
definition, in suboptimal solutions. Note that model and
solution statistics found in Table 5 for this problem
using an objective function of minimization of order
earliness are comparable to the model and solution
statistics determined using an objective of maximization
of starting times. We do not make a comparison with
the model and solution statistics presented by Pinto and
Grossmann10 because the authors do not report inte-
grality gaps or other optimality criterion used; thus, a
direct comparison would not be meaningful.
5. Conclusions

In this paper, an enhanced continuous-time formula-
tion is presented for the short-term scheduling of multi-
purpose batch plants with intermediate due dates. The
proposed formulation incorporates several features in-
cluding various storage policies (UIS, FIS, NIS, and ZW),
resource constraints, variable batch sizes and processing
times, batch mixing and splitting, and sequence-de-
pendent changeover times. The key features of the
proposed formulation include a continuous-time repre-
sentation utilizing a necessary number of event points
of unknown location corresponding to the activation of
a task. Also, tasks are allowed to continue over several
event points enabling resource quantities to be correctly
determined at the beginning of each resource utilization.
Four examples are presented to illustrate the effective-
ness of the proposed formulation. The computational
results are compared with those in the literature, and
it is shown that the proposed formulation is significantly

Figure 11. Schedule for example 4 without limited manpower.

Figure 12. Schedule for example 4 with three extruders (case 1).

Figure 13. Schedule for example 4 with two extruders (case 2).

Table 5. Model and Solution Statistics for Example 4

four extruders
simultaneously

three extruders
simultaneously

two extruders
simultaneously

event points 4 12 12
binary variables 150 458 446
continuous

variables
513 2137 2137

constraints 1389 10 382 10 381
LP relaxation 0 0 0
objective 1.026 1.895 7.909
nodes 7 1374 42 193
CPU time (s) 0.07 6.53 178.85
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faster than other general resource-constrained models,
especially for problems requiring many time points.
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Appendix A: Advantages of Unit-Specific
Event-Driven Models

In this appendix, we discuss the advantages of unit-
specific event-driven models over models employing a
continuous-time representation that is common for all
units. We will consider the motivating example from the
appendix of Maravelias and Grossmann31 and compare
the results from the two types of models. The STN for
the motivating example can be seen in Figure 14 and
involves four tasks processing four states. Each of the
tasks is suitable in one of four different units. The
maximum batch sizes for each unit and the fixed
processing times for each task are given in Table 6.
Unlimited storage is available for all states, and the
time horizon of interest is 6 h. The demand for product
B is 10 kg, and the due date is 6 h. We will choose the
maximization of production as our objective function.

To model this example using an event-driven formula-
tion, we will employ the model of Lin and Floudas36

without the existence and unit size constraints. Note
that this formulation utilizes storage tasks with dedica-
ted storage units in order to store states between proces-
sing tasks. To model this example using a continuous-
time formulation common to all units, we will employ
the model of Maravelias and Grossmann31 without the
consideration of resource constraints.

The solution from the event-driven model is given in
Figure 15, while the schedule from the continuous-time
formulation common to all units can be seen in Figure
16. Note that the event-driven solution contains an extra
storage unit that has a suitable storage task. This stor-
age task allows state IB to be stored in the storage unit
until task sep is ready to process it into the final product
B. In this manner, we can limit the amount of intermedi-
ate stored, prevent it from being stored at all, or allow
an unlimited amount to be stored in the storage tank.
Also, note that the introduction of a storage task and a
storage unit does not, in this case, cause the solution to
require any more event points. The model and solution

Figure 14. STN for the motivating example.

Figure 15. Production schedule for motivating example with the Lin and Floudas36 model.

Figure 16. Production schedule for the motivating example with the Maravelias and Grossmann31 model.

Table 6. Data for the Motivating Example

task unit duration (h) capmax (kg)

heat heater 1 10
R1 reactor 1 3 4
R2 reactor 2 1 2
sep filter 2 10

Table 7. Model and Solution Statistics for the
Motivating Example

Lin and
Floudas36

formulation

Maravelias and
Grossmann31

formulation

event points 5 6
binary variables 25 48
continuous variables 129 296
constraints 217 584
LP relaxation 10.0 10.0
objective 10.0 10.0
nodes 2 34
CPU time (s) 0.01 0.04
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statistics from both formulations can be found in Table
7.

It can be seen from the model and solution statistics
in Table 7 that, for this example using the above two
models, the continuous-time formulation common to all
units requires more binary and continuous variables,
more constraints, and many more nodes to solve. Most
importantly, the solution requires an additional time
point, which holds true for almost any problem modeled
with the two different formulations. This is because the
common-time representation requires a time point for
the start and end of each task, whereas event-driven
formulations only require a time point for the start of a
task. This means there will be an extra time point to
account for the ending of the last task in the common-
time representation. Moreover, the number of time
points is directly related to the computational complex-
ity of a problem, as already discussed. Hence, the
continuous-time formulation with timing common to all
units will most likely always require more time points
and take longer to solve. From this, we can deduce that
unit-specific event-driven models, even when they take
into account storage considerations, will require less
time points and thus be less computationally demanding
than a continuous-time formulation with timing com-
mon to all units.

Note that the above argument can also be extended
to the case of resource constraints. The model presented
in this work, including resource constraints and storage
considerations, will usually require one less time point
and be less computationally demanding than the con-
tinuous-time model presented by Maravelias and Gross-
mann.31

Appendix B: Data for Examples

See Tables 8-16.

Nomenclature

Indices

i ) processing tasks
ist ) storage tasks
j ) units
k ) orders
n ) event points representing the beginning of a task
s ) states
u ) utilities

Sets

I ) processing tasks
Is

st ) storage tasks for state s
Ij ) tasks that can be performed in unit j
Ik ) tasks that process order k
Ips ) tasks that are processing or storing
Is

p ) tasks that produce state s

Table 12. Data for Example 2a

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

unit U1 U2 U3 U1 U4 U4 U5 U6 U5 U6
capmax 5 8 6 5 8 8 3 4 3 4
R 2 1 1 2 2 2 4 2 2 3
utility LPS CW LPS HPS LPS HPS CW LPS CW CW
γ 3 4 4 3 8 4 5 5 5 3
δ 2 2 3 2 4 3 4 3 3 3

a capmax in kg, R in h, γ in kg/min, and δ in kg/min per kg of
batch.

Table 13. Data for Example 3

F1 F2 S11 S21 S12 S22 P1 P2

STs
max (tons) 100 100 5 in T1 5 in T1 3 in T2 3 in T2 100 100

STs
0 (tons) 100 100 0 0 0 0 0 0

prices (103 $/ton) 1 1

Table 14. Data for Example 3a

T11 T21 T12 T22 T13 T23

unit U1 U1 U2 U2 U1 U1
capmax 5 5 3 3 5 5
capmin 2 2 1.2 1.2 2 2
R 1 0.5 0.5 0.75 0.75 0.5
â 0.8 0.667 0.667 0.6

a capmax/capmin in tons, R in h, and â in h/tons of batch.

Table 15. Setup Times for Example 3 (h)

T11 T21 T12 T22 T13 T23

T11 0 0.2 0.1 0.5
T21 0.3 0 0.6 0.4
T12 0 0.3
T22 0.2 0
T13 0.2 0.6 0 0.5
T23 0.5 0.3 0.4 0

Table 16. Data for Example 4

processing time (days)

order due date (days) j1 j2 j3 j4

1 15 1.538 1.194
2 30 1.500 0.789
3 22 1.607 0.818
4 25 1.564 2.143
5 20 0.736 1.017
6 30 5.263 3.200
7 21 4.865 3.025 3.214
8 26 1.500 1.440
9 30 1.869 2.459
10 29 1.282
11 30 3.750 3.000
12 21 6.796 7.000 5.600
transition 0.180 0.175 0.00 0.237

Table 8. Data for Example 1

F1 F2 I1 I2 I3 P1 P2

STs
max (kg) 1000 1000 200 100 500 1000 1000

STs
0 (kg) 400 400 0 0 0 0 0

prices ($/kg) 0 0 0 0 0 30 40

Table 9. Data for Example 1a

T1 T2 T3 T4

capmin capmax R â R â R â R â

R1 40 80 0.5 0.025 0.75 0.0375
R2 25 50 0.5 0.04 0.75 0.06
R3 40 80 0.25 0.0125 0.5 0.025

a capmin/capmax in kg, R in h, and â in h/kg.

Table 10. Data for Example 1a

T1 T2 T3 T4

γiHS δiHS γiCW δiCW γiHS δiHS γiCW δiCW

R1 6 0.25 4 0.3
R2 4 0.25 3 0.3
R3 8 0.2 4 0.5

a γ in kg/min and δ in kg/min per kg of batch.

Table 11. Data for Example 2

F1 F2 S1 S2 S3 S4 S5 S6 INT1 INT2 P1 P2 P3

STs
max (kg) ∞ ∞ 0 0 15 40 0 0 ∞ ∞ ∞ ∞ ∞

STs
0 (kg) 100 100 0 0 0 10 0 0 0 0 0 0 0

prices ($/kg) 1 1 1
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Is
c ) tasks that consume state s

Iu ) tasks that consume utility u
J ) units
Ji ) units that are suitable for performing task i
K ) orders
Ki ) orders that are processed by task i
Ks ) orders that produce state s
N ) event points within the time horizon
S ) states
Sf ) states with finite intermediate storage
Sn ) states with no intermediate storage
Sp ) states that are final products
Sr ) states that are raw materials
Sz ) states with zero-wait constraint
U ) utilities

Parameters

Rij ) constant term of processing time of task i in unit j
âij ) variable term of processing time of task i in unit j
δiu ) variable term of consumption of utility u by task i
γiu ) constant term of consumption of utility u by task i
Fis ) proportion of state s produced, consumed by task i
τii′ ) sequence-dependent setup time between tasks i and

i′
amk ) amount of order k
avu ) maximum availability of utility u
capij

max ) maximum capacity for task i in unit j
capij

min ) minimum capacity for task i in unit j
caps

st ) capacity of storage for state s
dems ) demand of state s
duek ) due date of order k
H ) time horizon
prices ) price of state s
STs

0 ) initial available amount of state s
STs

max ) maximum amount of state s

Continuous Variables

B(i,j,n) ) amount of material undertaking task i in unit j
at event point n

Bs(i,j,n) ) amount of material starting processing at event
point n

Bf(i,j,n) ) amount of material finishing processing at event
point n

BU(i,u,n) ) amount of utility u consumed by task i at event
point n

But(u,n) ) remaining level of utility u at event point n
Bst(ist,n) ) amount of material stored by storage task ist at

event point n
D(s,n) ) amount of state s delivered at event point n
MS ) makespan
ST(s,n) ) amount of state s at event point n
STF(s) ) final amount of state s at the end of the time

horizon
STO(s) ) initial amount of state s at the beginning of the

time horizon
Ts(i,j,n) ) time at which task i starts in unit j at event

point n
Tf(i,j,n) ) time at which task i finishes in unit j at event

point n
Tst

s (ist,n) ) time at which storage task ist starts at event
point n

Tst
f (ist,n) ) time at which storage task ist finishes at event
point n

Tut
s (u,n) ) starting time of a change in utility u at event
point n

Tut
f (u,n) ) finishing time of a change in utility u at event
point n

tts(j,n) ) starting time of the active task in unit j at event
point n

ttf(j,n) ) finishing time of the active task in unit j at event
point n

w(i,n) ) task i is activated at event point n

Binary Variables

ws(i,n) ) beginning of task i at event point n
wf(i,n) ) ending of task i at event point n
y(k,i,n) ) delivery of order k through task i at event point

n
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