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A new continuous-time MILP model for the short-term scheduling of multipurpose batch plants
is presented. The proposed model relies on the state-task network (STN) approach and addresses
the general problem of batch scheduling, accounting for resource (utility) constraints, variable
batch sizes and processing times, various storage policies (UIS, FIS, NIS, ZW), batch mixing/
splitting, and sequence-dependent changeover times. The key features of the proposed model
are the following: (a) a continuous-time representation is used, common for all units; (b)
assignment constraints are expressed using binary variables that are defined only for tasks,
not for units; (c) start times of tasks are eliminated, so that time-matching constraints are used
only for the finish times of tasks; and (d) a new class of valid inequalities that improves the LP
relaxation is added to the MILP formulation. Compared to other general continuous time STN
formulations, the proposed model is faster. Compared to event-driven formulations, it is more
general, as it accounts for resources other than equipment and gives solutions in comparable
computational times. The application of the model is illustrated through four example problems.

1. Introduction

The problem of short-term scheduling of multipurpose
batch plants has received considerable attention during
the past decade. Kondili et al.1 introduced the state-
task network (STN) and proposed a discrete-time MILP
model, where the time horizon is divided into time
periods of equal duration. Because the resulting models
have many binary variables, Shah et al.2 developed a
reformulation and specific techniques to reduce the
computational times for discrete-time STN models.
Pantelides3 proposed the alternative representation and
formulation of the resource-task network (RTN); Schill-
ing and Pantelides4 developed a continuous-time MILP
model, based on the RTN representation, and a novel
branch-and-bound algorithm that branches on both
continuous and discrete variables. Zhang and Sargent5

and Mockus and Reklaitis6 proposed MINLP continu-
ous-time representations for the scheduling of batch and
continuous processes. Ierapetritou and Floudas7 pro-
posed a new MILP formulation based on event points
for the scheduling of batch and continuous multipurpose
plants.

Despite the improved formulations, the specialized
algorithms, and the recent improvements in computer
hardware and optimization software, the short-term
scheduling of STN multipurpose batch plants in con-
tinuous time remains a difficult problem to solve. In an
effort to reduce problem sizes and computational times,
several authors have proposed various approaches dur-
ing the past two years.8-12 In most of these approaches,
however, the authors make specific assumptions that,
on one hand, lead to more compact formulations but,
on the other hand, address only specific cases of the
general short-term scheduling problem. Some of the
most common assumptions that result in significant

reductions in problem size are (a) no batch splitting and
(b) no resource constraints other than those on equip-
ment units. As will be illustrated later, even weaker
assumptions give rise to formulations that cannot
account for all conditions that might arise in a multi-
purpose batch plant.

In this work, we propose a new general state-task
network MILP model for the short-term scheduling of
multipurpose batch plants in continuous time that
accounts for resource constraints other than equipment
(utilities); variable batch sizes and processing times;
various storage policies (UIS, FIS, NIS, ZW), including
shared storage; and sequence-dependent changeover
times and that allows for batch mixing/splitting. The
paper is structured as follows. In section 2, we briefly
discuss the different time representation approaches
proposed in the literature, and we outline the proposed
approach. The problem statement is presented in section
3. The mathematical formulation and its derivation are
described in section 4, and some remarks are presented
in section 5. Four examples are presented in the last
section.

2. Outline of Proposed Approach

Several time representation schemes have been pro-
posed for the scheduling of multipurpose batch plants.
Kondili et al.1 introduced the STN formulation using a
discrete-time representation (Figure 1a), where the time
horizon is divided into H intervals of equal duration,
common for all units, and where the tasks must begin
and finish exactly at a time point. This means that the
discrete-time representation can be used only when the
processing times are constant and, furthermore, that
the duration of the intervals must be equal to the
greatest common factor of the processing times. The
assumption of constant processing times is not always
realistic, and the length of the intervals might be so
small that it either leads to a prohibitive number of
intervals, rendering the resulting model unsolvable, or
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else requires approximations that might compromise the
feasibility and optimality of the solution.

To circumvent the above-cited difficulties, two differ-
ent continuous-time representations were proposed in
which the time horizon is divided into time intervals of
unequal and unknown duration, common for all units.
In continuous-time representation I (Figure 1b), each
task must start and finish exactly at a time point,4-6

whereas in representation II (Figure 1c), each task must
start at a time point but it might not finish at a time
point.8 In both representations, the number of time
points is determined with an iterative procedure, during
which the number of time points is increased by 1 until
there is no improvement in the objective function.
Because the time points are not fixed, constraints that
match a time point with the start (or finish) of a task
are necessary. These constraints are big-M constraints
that result in poor LP relaxations. On the other hand,
the continuous-time representation accounts for variable
processing times and is more realistic than the discrete

representation. It also requires significantly fewer time
intervals and, hence, leads to smaller problems.

An alternative approach is the event-point represen-
tation (Figure 1d) proposed by Ierapetritou and Flou-
das,7 in which the time intervals are not common for
all units. In this approach, the time horizon is divided
into a number of events that is different for each unit,
subject to some sequencing constraints. In the schedule
depicted in Figure 2, the continuous-time approach (II)
requires four common intervals (Figure 2b), whereas the
event-point approach (Figure 2a) requires two events
(k and k + 1), as the maximum number of tasks
assigned to any unit is two. This leads to smaller
formulations that are up to 2 orders of magnitude faster
than other continuous-time formulations, as illustrated
by Ierapetritou and Floudas.7 As shown in Appendix A,
however, event-driven approaches are not as general as
the continuous-time approaches and might, in fact,
eliminate feasible solutions. Furthermore, they cannot
be readily used when utilities need to be taken into
account.

Other assumptions that have led to formulations that
are easier to solve (e.g., Rodrigues et al.9) are (i) no batch
splitting and mixing and (ii) no resource constraints
other than those on equipment. Assumption i is usually
coupled with the assumption of constant batch sizes and
processing times, which, in turn, implies that the
amounts of raw materials and intermediates needed for
the production of one batch of final product can be
calculated given the assignment of units to tasks. This
means that mass balance equations need not be in-
cluded in the formulation. When both assumptions i and
ii are considered, the level of states and resources need
not be monitored; thus, a common time coordinate (time
discretization for all units) is not necessary. This, in
turn, removes the (big-M) time-matching constraints of
continuous-time formulations between grid time points
and task time points (start and finish times). In addi-
tion, assignment binaries are indexed by tasks and unit
time slots (instead of tasks and time periods), and
because the total number of time periods is larger than

Figure 1. Alternative time-domain representations.

Figure 2. Common vs noncommon time points.
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the number of slots for each unit, the number of binary
variables is reduced.

In the proposed MILP model, we use continuous-time
representation I for the tasks that produce at least one
state for which a zero-wait policy is applied and con-
tinuous-time representation II for all other tasks. As
will be shown, this mixed representation does not
compromise feasibility or optimality. To reduce the
number of binary variables, we use the idea of task
decoupling, and we eliminate the binaries for unit
assignment. The first idea was proposed by Ierapetritou
and Floudas,7 while the second is achieved by expressing
the assignment constraints using only task binaries.
Furthermore, we eliminate start times, thus reducing
the number of big-M time-matching constraints. Finally,
we develop a new class of valid inequalities that
significantly tighten the LP relaxation. The result of
these actions is to develop a general continuous-time
MILP model that is computationally effective.

3. Problem Statement

We assume that we are given the following items: (i)
a fixed or variable time horizon; (ii) the available units
and storage tanks, along with their capacities; (iii) the
available utilities and their upper limits; (iv) the
production recipe (mass balance coefficients and utility
requirements); (v) the processing time data; (vi) the
amounts of available raw materials; and (vii) the prices
of raw materials and final products.

The goal is then to determine: (i) the sequence and
timing of tasks taking place in each unit, (ii) the batch
sizes of tasks, (iii) the allocated resources, and (iv) the
amounts of raw materials purchased and final products
sold.

The proposed model can accommodate various objec-
tives, such as the maximization of income or profit (if
tasks incur a cost) or the minimization of the makespan
for a specified demand. For simplicity, we first assume
no changeover times, but later, we discuss how change-
overs can be addressed.

4. Mathematical Formulation

To clarify the derivation of the proposed MILP model,
we first formulate it as a hybrid generalized disjunctive/
mixed-integer programming (GDP/MILP) model (Ra-
man and Grossmann,13 Vecchietti and Grossmann14)
that involves 0-1 and Boolean variables and mixed-
integer constraints as well as disjunctions and implica-
tions.

4.1. Hybrid GDP/MILP Model. To decouple units
from tasks, we use the following rule: If a task i can be
performed in both units j and j′, then two tasks i
(performed in unit j) and i′ (performed in unit j′) are
defined; note that unit-dependent processing times are
also handled by decoupling. The time horizon is divided
into intervals that are common for all units and utilities.
The two main assumptions for utilities are that (a) the
plant has an upper bound on the availability of utilities
that cannot be exceeded at any time and (b) a task
consumes the same amount of utility(ies) throughout
its execution. Time point n occurs at time Tn, and N is
the set of time points. The first time point corresponds
to the start (T1 ) 0) and the last to the end (T|N| ) H)
of the scheduling horizon. The ordering of time points
is enforced trough constraint 3.

For each task i and time point n, three binary
variables (Wsin, Wpin, and Wfin) are defined as follows:

Wsin ) 1 if task i starts at time point n.
Wpin ) 1 if task i is being processed at time point n

(i.e., starts before and finishes after time point n).
Wfin ) 1 if task i finishes at or before time point n.
To derive the assignment constraints, the following

three auxiliary binary variables are defined [I(j) is the
set of tasks that can be performed in equipment unit j]:

Zsjn ) 1 if a task in I(j) is assigned to start in unit j
at time point n.

Zpjn ) 1 if a task in I(j) is being processed in unit j at
time point n (i.e., starts before and finishes after n).

Zfjn ) 1 if a task in I(j) assigned to unit j, finishes at
or before time point n.

Equivalently, Zsjn is equal to 1 if and only if one of
the tasks that can be assigned to unit j is assigned to
start in unit j at time point n. Note that, for any given
time, at most one of these tasks can be assigned to unit
j. This condition is expressed by the following logic
expression in which the binary variables are treated as
Boolean variables:

Similarly, Zfjn is equal to 1 if and only if one task that
can be assigned to unit j finishes processing in j at or
before time point n, which is logically expressed as

Additionally, at most one task can start (finish) at unit
j at any time point n

Also, to enforce the condition that all tasks that start
must finish, we have

The integer expression for binary Zpjn is given by eq
C (see derivation in Appendix B)

The following necessary logic condition is the core for
the proposed assignment constraint: A task can be
assigned to start in unit j at time point n only if there
is no other task being processed in equipment j at time
point n. This condition can be expressed in logic form
as

Tn)1 ) 0 (1)

Tn)|N| ) H (2)

Tn+1 g Tn ∀ n (3)

Zsjn S ∨
i∈I(j)

Wsin ∀j, ∀n (A)

Zfjn S ∨
i∈I(j)

Wfin ∀ j, ∀ n (B)

∑
i∈I(j)

Wsin e 1 ∀ j, ∀ n (4)

∑
i∈I(j)

Wfin e 1 ∀ j, ∀ n (5)

∑
n

Wsin ) ∑
n

Wfin ∀ i (6)

Zpjn ) ∑
n′<n

Zsjn′ - ∑
n′en

Zfjn′ ∀ j, ∀ n (C)

Zsjn w ¬Zpjn (D)
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For the batch size of each task i, we define three
continuous variables that correspond to the batch size
of task i when it starts at time point n (Bsin), when
it is being processed at time point n (Bpin), and when
it finishes at or before time point n (Bfin). At any
time point n, at most one of these variables is non-
zero. For each task i, we also define the start time,
Tsin; the duration, Din; and the finish time, Tfin. The
amount of state s consumed/produced by task i at time
point n is denoted by Bisn

I /Bisn
O and the amount of utility

r needed for task i that starts/finishes at time point n
is denoted by Rirn

I /Rirn
O . Finally, Ssn, SSsn, and Rrn are

the level of state s, the amount of state s sold, and
the level of utility r in use, at time point n, respectively.
In the proposed formulation, the start time of a task i,
Tsin, is always equal to Tn, and hence, it can be
eliminated.

An example of how the variables referring to a task
A vary is given in Figure 3, where a horizon of 10 h is
divided into four intervals. Reactants S1 and S2 are
mixed in a 2/3 proportion to produce products S3 and
S4 in a 1/3 proportion. The batch size of task A is
20 kg, and 10 kg/min of cooling water is required
throughout the processing of A. Task A starts at t ) 2
and finishes at t ) 8, i.e., starts at n ) 2, is being
processed at n ) 3, and finishes at n ) 4. As shown in
Figure 3, the duration of a task is nonzero only at the
time point that the task starts (n ) 2: DA2 ) 6), and
the finish time of a task changes only when a task
starts (n ) 2) and remains unchanged during the
remaining time points (n > 2). Variables Bsin, Bpin, and
Bfin are nonzero only at the time points that the task
starts (n ) 2, BsA2 ) 20), is being processed (n ) 3, BpA3
) 20), and finishes (n ) 4, BfA4 ) 20), respectively.
Similarly, the amount of utility reserved for task A
(made available after task A is completed) is nonzero
at the beginning (end) of the task at n ) 2 (n ) 4). In
the example of Figure 3, 10 kg/min of cooling water is
reserved (“engaged”) for task A at n ) 2 (RA,CW,2

I ) 10)
and becomes available again (“released”) at n ) 4
(RA,CW,4

O ) 10). Finally, the amount of a state con-
sumed/produced by a task is nonzero when the task
starts/finishes.

Regarding the time representation, we use continu-
ous-time representation I for tasks that produce at
least one ZW state; i.e., we require that the produced
states of such a task are immediately transferred to
another unit or to a storage tank. For all other tasks,
we use continuous-time representation II; i.e., we allow
such tasks to finish within a period. For states with
unlimited storage, this is obviously not a restriction
because the storage capacity and the timing of the
transfer is not an issue. However, this is also possible

for FIS and NIS states because we assume that non-
ZW states can be temporarily stored in an equipment
unit. If task A assigned to unit U finishes at t )
TfA (with Tn-1 < TfA < Tn), for example, and the stor-
age tanks for the output states are full, unit U can be
used for storage from t ) TfA until t ) Tn. When the
states are actually transferred, at t ) Tn, mass balance
and storage capacity constraints are enforced, and
hence, feasibility is guaranteed. If a solution where one
unit is utilized as storage is suboptimal, a better
solution can be obtained when additional time points
are postulated, allowing for all tasks performed in this
unit to finish exactly at a time point. The proposed
hybrid time representation, therefore, allows us to find
the same solutions as continuous-time representation
I using fewer time points whenever this is possible.
Because the performance of continuous-time models
depends heavily on the number of time points, the
proposed mixed time representation leads to more
efficient models.

For each state s and time point n, the mass balance
and the storage constraints are

where Cs is the capacity of the storage tank of
state s. The continuous variable SSsn offers the pos-
sibility of removing final products before the end of
the time horizon. This might be necessary if, for
example, there is limited storage capacity for the
final products. If this is not true or if sales can occur
only at the end of the horizon, as is usually the case,
variables SSsn can be fixed to zero for n < |N|. Con-
straint 7 can be modified to account for raw material
purchases.

The total amount of utility r used at time point n is
given by eq 9 and bounded not to exceed the maximum
availability, Rr

MAX, by eq 10

Because the batch size variables, Bsin, Bpin, and Bfin;
the start time Tsin; the duration Din; the finish time Tfin;
the utility requirements Rirn

I /Rirn
O ; and the consump-

tion/production Bisn
I /Bisn

O of state s are defined for a task
i and a time point n, we will first present the constraints

Figure 3. Example of variables Tn, Tsin, Din, Tfin, Rirn
I , Rirn

O , Bisn
I , and Bisn

O .

Ssn + SSsn ) Ssn-1 + ∑
i∈O(s)

Bisn
O - ∑

i∈I(s)

Bisn
I

∀ s, ∀ n > 1 (7)

Ssn eCs ∀ s, ∀ n (8)

Rrn ) Rrn-1 - ∑
i

Rirn-1
O + ∑

i

Rirn
I ∀ r, ∀ n (9)

Rrn e Rr
MAX ∀ r, ∀ n (10)
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for the calculation of those variables in disjunctive form,
where each disjunction is expressed for all (i, n) pairs.
For each (i, n) pair there are three different disjunctive
cases: (a) task i starts (Wsin) at n, (b) task i is being
processed (Wpin) at n, and (c) task i finishes (Wfin) at or
before time point n.

The disjunction in terms of the start of task i at time
point n is given by disjunction E, which is expressed
for all n < |N|, since a task cannot start at the last time
point

As explained in Figure 3, if task i starts at time point
n (Wsin is true), its duration Din, which is a linear
function of Bsin, is nonzero, whereas its finish time
Tfin, changes by Din. The batch size, Bsin, lies within
lower and upper bounds, and it is (a) equal to Bpin+1
if i is being processed at n + 1 and (b) equal to Bfin+1
if i finishes at or before n + 1. The amount of util-
ity r reserved for task i, Rirn

I , and the amount of state
s consumed by task i, Bisn

I , are also nonzero. If Wsin
is false (¬Wsin), the condition that the finish time,
Tfin, remains unchanged is enforced. This condition
is not necessary, but our computational experience
shows that it reduces the size of the branch and bound
tree.

The disjunction in terms of the processing of task i
at time point n is given by eq F. Note that, if a task is
processed at time point n, it needs to start before n and
finish after n, which, in turn, implies that it cannot be
processed in the first and the last time periods.

When task i is being processed at time point n (i.e., Wpin
is true), the finish time, Tfin, remains unchanged, and
the batch size, Bpin, lies within lower and upper bounds
and equals the batch size of the previous and the
next time points. If task i is not processed at n (¬Wpin),
the finish time, Tfin, remains unchanged if i does not
start at n (¬Wsin) and increases if task i starts at n
(Wsin).

The disjunction in terms of the finishing of task i at
or before time point n is given by eq G, which is
expressed for all n > 1, as a task cannot finish at the
start of the scheduling horizon

Here, the batch size Bfin lies within the lower and upper
bounds if task i finishes at or before time point n (Wfin),
and it is equal to the batch size of the previous time
period. The amount of state s produced and the level of
utility r becoming available are also nonzero.

Finally, the proposed model, as most continuous-time
models for the short-term scheduling of batch plants,
appears to be effective when the objective function is
the maximization of income or a profit-/income-related
function

The minimization of makespan (for fixed demand) can
also be accommodated. The problem given by the mixed-
integer constraints 1-11 and C; the logic constraints
A, B, and D; and the disjunctions in E-G corresponds
to a hybrid GDP/MILP model, which will be transformed
into an MILP model, as shown in the next section.

4.2. MILP Model. Using the definitions of the
binaries Wsin, Wpin, Wfin, Zsin, Zpin, and Zfin, we can
transform the logic conditions A, B, and D and the
disjunctions in E-G into mixed-integer constraints. As
explained in Appendix B, the binaries Zsjn, Zpjn, Zfjn,
and Wpin can be expressed through binaries Wsin and
Wfin, which are the only ones used in the mixed-integer
constraints.

Assignment Constraints. The basic assignment con-
straint 12 is derived in Appendix B and follows from
the constraints in A-D. Constraints 13 and 14 enforce
the conditions that no task can finish at t ) 0 or start
at the end of the horizon. Constraints 4-6 are repeated
for completeness.

Duration, Finish Time, and Time-Matching Con-
straints. From the disjunction in E, the duration of a
task is calculated by eq 15 using convex hull reform-
ulation (Balas,15 Raman and Grossmann16) and elimi-
nating variables, while the finish time is expressed with
big-M constraints 16 and 17, which are active only if

(Wsin
Din ) Ri + âiBsin
Tfin ) Tsin + Din

Bi
MIN e Bsin e Bi

MAX

Bsin ) Bpin+1 + Bfin+1

Bisn
I ) FisBsin

Rirn
I ) γir + δirBsin

Bpin ) 0

) ∨ (¬Wsin
Din ) 0
Tfin ) Tfin-1

Bsin ) Bisn
I ) Rirn

I ) 0
)

∀ i, ∀ n < |N| (E)

(Wpin
Tfin ) Tfin-1

Bi
MIN e Bpin e Bi

MAX

Bpin ) Bsin-1 + Bpin-1
Bpin ) Bpin+1 + Bfin+1

Bsin ) Bfin ) Bisn
I ) Bisn

O ) 0
Din ) Rirn

I ) Rirn
O ) 0

) ∨ (¬Wpin
Tfin g Tfin-1
Bpin ) 0 )

∀ i, 1 < n < |N| (F)

(Wfin
Tfin e Tn, i ∉ ZW
Tfin ) Tn, i ∈ ZW
Bi

MIN e Bfin e Bi
MAX

Bfin ) Bsin-1 + Bpin-1

Bisn
O ) FisBfin

Rirn
O ) γir + δirBfin

Bpin ) 0

) ∨ (¬Wfin
Tfin g Tfin-1

)

∀i, ∀n < |N| (G)

max Z ) ∑
s
∑
n

úsSSsn (11)

∑
i∈I(j)

Wsin e 1 ∀ j, ∀ n (4)

∑
i∈I(j)

Wfin e 1 ∀ j, ∀ n (5)

∑
n

Wsin ) ∑
n

Wfin ∀ i (6)

∑
i∈I(j)

∑
n′en

(Wsin′ - Wfin′) e 1 ∀ j, ∀ n (12)

Wfi0 ) 0 ∀ i (13)

Wsin ) 0 ∀ i, n ) |N| (14)

3060 Ind. Eng. Chem. Res., Vol. 42, No. 13, 2003



task i starts at time point n (Wsin ) 1)

As explained in Figure 3 and enforced in the disjunction
in E, the finish time, Tfin, of a task i remains unchanged
until the next occurrence of task i. This condition is
enforced by the big-M constraint in 18. Constraint 19
is used to enforce the conditions that (a) Tfin is always
greater or equal to Tfin-1 and (b) the “step” in the finish
time, Tfin, when a task occurs at time n must be at least
as large as the duration of task i. The latter condition
is not necessary, and it is not derived from disjunction
E, but its addition leads to smaller branch-and-bound
trees and shorter computational times

Because the start time, Tsin, is equal to Tn, variables
Tsin are eliminated (constraint 20). Constraints 21 and
22 are the time-matching constraints for the finish time,
Tfin, of a task and result from disjunction G using the
big-M formulation. Note that, in the general case, a task
i might finish at or before time point n (constraint 21),
but when it produces a material for which a zero-wait
(ZW) storage policy applies, the finish time of task i
should coincide with time point n (effect of constraints
21 and 22)

An example of how variables Tn, Tsin, and Tfin vary for
a task A is given in Figure 4. Note that task A is
assumed to produce a state for which a ZW storage
policy applies, so the finish time must coincide with a
time point. Although integer processing times have been
used, the same principles apply for real constant or
variable processing times. As shown, start and finish
times are defined for seven time points, and the former
are always equal to Tn, so they are eliminated. Because
of constraint 18, TfA2 and TfA3 are equal to 3 (i.e., equal
to TfA1), and TfA6 and TfA7 are equal to 9 (i.e., equal to
TfA5), while constraint 19 is trivially satisfied: TfA4 -
TfA3 ) 7-3 ) 4 g 3 ) DA4 and TfA5 - TfA4 ) 9-7 ) 2 g
2 ) DA5.

Batch Size Constraints. Constraints 23 and 24 impose
minimum and maximum bounds on the batch size of a

task and result from the convex hull reformulation of
disjunctions E-G. Note that the terms multiplied by
Bi

MIN and Bi
MAX in constraint 25 are equal to the

auxiliary binary Wpin (Appendix B). Constraint 26
enforces the requirement that variables Bsin, Bpin, and
Bfin are equal for a given task, and it is also derived
from disjunctions E-G using the convex hull reformula-
tion and eliminating the disaggregated variables

The amount of state s consumed/produced by task i at
time point n is calculated through eq 27/29 and bounded
by eq 28/30, where SI(i) and SO(i) are the set of input
and output states of task i, respectively. Constraints 28
and 30 are not necessary but result in shorter compu-
tational times. The convex hull reformulation was used
for the derivation of constraints 27-30.

Mass Balance/Storage Constraints. As shown above,
constraints 7 and 8 express the mass balance and
capacity constraints for state s at time point n

Utility Constraints. The amount of utility r consumed
by task i that starts at time point n is calculated through
eq 31; the amount of utility r released at the end of task
i is calculated through eq 32. Constraints 31 and 32 are
derived from disjunctions E and G, respectively, using
the convex hull reformulation. The total amount of
utility r consumed by various tasks during period n is
calculated by eq 9 and bounded not to exceed Rr

MAX by
constraint 10

Figure 4. Relationships among variables Tn, Tsin, Tfin, and Din.

Din ) RiWsin + âiBsin ∀ i, ∀ n (15)

Tfin e Tsin + Din + H(1 - Wsin) ∀ i, ∀ n (16)

Tfin g Tsin + Din - H(1 - Wsin) ∀ i, ∀ n (17)

Tfin - Tfin-1 e H‚Wsin ∀ i, ∀ n (18)

Tfin - Tfin-1 g Din ∀ i, ∀ n (19)

Tsin ) Tn ∀ i, ∀ n (20)

Tfin-1 e Tn + H(1 - Wfin) ∀ i, ∀ n (21)

Tfin-1 g Tn - H(1 - Wfin) ∀ i ∈ ZWI, ∀ n (22)

Bi
MINWsin e Bsin e Bi

MAXWsin ∀ i, ∀ n (23)

Bi
MINWfin e Bfin e Bi

MAXWfin ∀ i, ∀ n (24)

Bi
MIN( ∑

n′<n

Wsin′ - ∑
n′en

Wfin′) e Bpin e

Bi
MAX( ∑

n′<n

Wsin′ - ∑
n′en

Wfin′) ∀ i, ∀ n (25)

Bsin-1 + Bpin-1 ) Bpin + Bfin ∀ i, ∀ n (26)

Bisn
I ) FisBsin ∀ i, ∀ n, ∀ s ∈ SI(i) (27)

Bisn
I e Bi

MAXFisWsin ∀ i, ∀ n, ∀ s ∈ SI(i) (28)

Bisn
O ) FisBfin ∀ i, ∀ n, ∀ s ∈ SO(i) (29)

Bisn
O e Bi

MAXFisWfin ∀ i, ∀ n, ∀ s ∈ SO(i) (30)

Ssn + SSsn ) Ssn-1 + ∑
i∈O(s)

Bisn
O - ∑

i∈I(s)

Bisn
I

∀ s, ∀ n > 1 (7)

Ssn e Cs ∀ s, ∀ n (8)

Rirn
I ) γirWsin + δirsBsin ∀ i, ∀ r, ∀ n (31)

Rirn
O ) γirWfin + δirsBfin ∀ i, ∀ r, ∀ n (32)

Rrn ) Rrn-1 - ∑
i

Rirn-1
O + ∑

i

Rirn
I ∀ r, ∀ n (9)

Rrn e Rr
MAX ∀ r, ∀ n (10)
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Objective Function. As in the hybrid GDP/MILP
model, the objective is given by

Constraints 1-33 comprise the MILP model M for the
short-term scheduling of multipurpose batch plants.
This model can be tightened by adding the following
valid inequalities that lead to model M*.

Tightening Constraints. Constraint 12 is sufficient to
enforce feasibility, but it leads to weak relaxations. In
the relaxed solution of this formulation, specifically, the
summation of processing times of tasks that are sched-
uled to a unit j is larger than the time horizon (see
Figure 5a, where the time horizon is divided into three
time periods). Constraint 34 tightens the formulation
by enforcing the condition that the summation of the
durations of the tasks assigned to a specific equipment
unit should be smaller than or equal to the time horizon
(Figure 5b)

However, although this condition is enforced for the
entire time horizon, it is not enforced for each time
period; i.e., the summation of processing times of tasks
assigned to start on equipment unit j at time point n
and finish at time point n + 1 is larger than Tn+1 - Tn
(e.g., the first period of Figure 5b). The result of the
addition of constraints 35 and 36 is that the same
condition is satisfied for each time period (Figure 5c).
Constraint 35 restricts the sum of the processing times
of all tasks staring on unit j after Tn to be less than the
amount of time left (i.e., H - Tn), and constraint 36
restricts the sum of processing times of tasks finishing
in unit j before Tn to be less than Tn.

The addition of constraints 34-36 leads to relaxed
solutions with smaller durations, and this, in turn, leads
to smaller values of the Wsin variables, since Din is
related to Wsin via eq 15 (Figure 6). Moreover, because
of eq 6, the binaries Wfin have also smaller values.
Finally, because the batch sizes of tasks (Bsin, Bpin, and
Bfin) are bounded by Wsin and Wfin, and because the
objective function depends on the amount of final
products produced (i.e., on the batch sizes), the addition
of these constraints results in tighter relaxations.

The proposed model M* consists of constraints 1-36,
and as will be shown in section 6.1.2, it is significantly
faster than model M.

5. Remarks

5.1. Sequence-Dependent Changeover Times.
Sequence-dependent changeovers can be easily incor-
porated within the proposed framework. To allow tem-
porary storage of produced materials in the equipment
unit, in this case, we express constraint 17 only for tasks

in ZWI, but we enforce eq 22 for all tasks. This implies
that the finish time, Tfin, of task i can be greater than
the sum Tsin + Din (i.e., we allow storage of material
from t ) Tsin + Din until t ) Tfin), but it must coincide
with a time point (i.e., produced states have to be
transferred to storage tanks or other units at t ) Tfin),
and thus, the equipment becomes available for cleaning/
setup after Tfin. Assuming that changeovers are shorter
than task processing times, it is sufficient to add
constraint 37, where sii′ is the sequence-dependent setup
time when task i is followed by task i′ in unit j

As explained in section 4.2, the finish time Tfin of task
i remains unchanged, as a result of constraint 18, until
the next batch of task i occurs, and thus, there are three
cases for the last batch of task i performed in unit j
before task i′ starts at Tn ) Tsi′n:

(a) Task i finishes exactly at Tn ) Tsi′n. Task i is
obviously the last task processed in unit j before task
i′, and in this case, Tfin-1 ) Tn ) Tsi′n; clearly, this can
happen only if no changeover time is required (sii′ ) 0).

max Z ) ∑
s
∑
n

úsSSsn (11)

Wsin, Wfin ∈ {0, 1}; Bsin, Bpin, Bfin, SSsn, Ssn, Tn,

Tfin, Din, Bisn
I , Bisn

O , Rirn
I , Rirn

O , Rrn g 0 (33)

∑
i∈I(j)

∑
n

Din e H ∀ j (34)

∑
i∈I(j)

∑
n′gn

Din′ e H - Tn ∀ j, ∀ n (35)

∑
i∈I(j)

∑
n′en

(RiWfin′ + âiBfin′) e Tn ∀ j, ∀ n (36)

Figure 5. Tightening of LP relaxation through constraints 34-
36.

Figure 6. Effect of tightening constraints

Tsi′n g Tfin-1 + sii′

∀ j, ∀ i ∈ I(j), ∀ i′ ∈ I(j)|sii′ > 0, ∀ n > 1 (37)
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If sii′ > 0, constraint 37 is violated, and hence, this
solution is excluded.

(b) Task i finishes at Tn-k, where k g 1, and it is the
last task processed in unit j before task i′ starts at Tn
) Tsi′n. Because task i is not carried out again until time
point n, its finish time remains unchanged, i.e., Tfn-k
) Tfn-1, and thus, constraint 37 is a valid constraint
that correctly enforces the changeover.

(c) Task i finishes at Tn-k (k g 1), but it is not the
last task processed in unit j before task i′. This implies
that there is another task i′′* i performed after i. Hence,
there is task i′′ processed between the end of task i (at
t ) Tfn-k ) Tfn-1) and the start of task i′ at t ) Tsi′n,
and constraint 37 is expressed for the (i′′, i′) pair as well.
Because we have assumed that the setup times are
shorter than the processing times, constraint 37 for the
(i′′,i′) pair is tighter than constraint 37 for the (i′,i) pair,
and the latter is redundant.

Note that no additional variables are needed to model
sequence-dependent changeover times. The requirement
to apply continuous-time representation I for all tasks,
however, results in models that are difficult to solve
because of the increased number of time points.

It should also be mentioned that, if, in addition to
changeover times, one would like to include changeover
costs, this would require the introduction of the new
variable Yii′n that is equal to 1 if task i, finishing at or
before time point n, is followed by task i′, starting at
time point n, where i ∈ I(j) and i′ ∈ I(j) for some unit j.
Variable Yii′n is defined only for pairs of tasks that take
place in the same unit and have a nonzero changeover
cost; it can be treated as a continuous variable because
it will always be equal to 0 or 1 in an integer solution
and is activated through the following constraint (as-
suming that changeover times are shorter than process-
ing times)

The objective function is modified as follows

where κii′ is the changeover cost for the changeover from
task i to task i′.

If variable Yii′n is included, we can also tighten valid
inequalities 34-36 as follows

5.2. Shared Storage Tanks. The proposed model can
also be extended to account for storage tanks shared
among many states, a feature very common in chemical
plants. To do so, we need to treat a shared storage tank
s as a unit j. For each state that can be stored in tank
j [i.e., s ∈ S(j)], we define a new binary variable Vjsn that

is 1 if state s is stored in tank j during period n. If JT
is the set of shared storage tanks and Cj is the capacity
of storage tank j, the following two constraints are added

Constraint 38 ensures that at most one state is stored
in tank j at any time, and constraint 39 ensures that
the inventory of state s at time point n is 0 if binary
Vjsn is 0. In some cases, it is computationally more
efficient to model variables Vjsn as special ordered sets
of type I (SOS1) variables and express constraint 39 as
an equality. Finally, if state s can be stored in more than
one tank, constraint 39 is expressed for variable Ssjn
which denotes the amount of state s at time n stored in
tank j, and constraint 40 is added

where S* is the set of states for which there is no
dedicated storage and JT(s) is the set of storage tanks
in which state s can be stored. It is important to note
that the addition of binary variables Vjsn and constraints
38 and 39 results in an MILP model that is larger and
more difficult to solve.

5.3. Number of Time Points. The choice of number
of intervals is an important issue for all continuous-time
STN/RTN models. A rigorous approach was proposed
by Zhang and Sargent,5 but as the authors indicate, the
bounds on the number of intervals are very loose. In
this work, we use the approach used in practically all
continuous STN models, where we start with a small
number of intervals and we iteratively increase the
number of intervals by one until there is no improve-
ment in the objective function for a fixed number of
iterations (usually 1 or 2).

5.4. Minimization of Makespan. If the objective
is to minimize the makespan, MS, for fixed demand,
the following changes need to be made in the MILP
model M*:

(a) The objective function is

(b) Constraint 41 is added to ensure that the demand
is met

where ds is the demand for state s at the end of the
horizon.

(c) The length of the fixed time horizon, H, is replaced
by the makespan, MS, in constraints 2, 34, and 35. The
parameter H is used in constraints 16-18, 21, and 22
as an overestimate of the makespan.

The model for minimization of makespan consists of
equations 1-10, 11′, 12-36, and 41.

As in all STN models, the computational efficiency of
the proposed model decreases when the objective is the
minimization of the makespan. The minimization of the
makespan for a fixed demand, however, is more common
in short-term scheduling. We are currently working on
the development of a scheduling framework that com-
bines mixed-integer programming and constraint pro-

Yii′n g Wfin-1 + Wsi′n - 1
∀ j, ∀ i ∈ I(j), ∀ i′ ∈ I(j)|κii′ > 0, 1 < n < |N| (38)

max Z ) ∑
s
∑
n

úsSSsn - ∑
1<n<|N|

∑
j

∑
i∈I(j)

∑
i′∈I(j)

κii′Yii′n

(11*)

∑
i∈I(j)

∑
n

Din + ∑
1<n<|N|

∑
i∈I(j)

∑
i′∈I(j)

sii′Yii′n e H ∀ j (34*)

∑
i∈I(j)

∑
n′gn

Din′ + ∑
n′>n

∑
i∈I(j)

∑
i′∈I(j)

sii′Yii′n′ e H - Tn

∀ j, ∀ n (35*)

∑
i∈I(j)

∑
n′en

(RiWfin′ + âiBfin′) + ∑
n′en

∑
i∈I(j)

∑
i′∈I(j)

sii′Yii′n′ e Tn

∀ j, ∀ n (36*)

∑
s∈S(j)

Vjsn e 1 ∀ j ∈ JT, ∀ n (38)

Ssn e CjVjsn ∀ j ∈ JT, ∀ s ∈ S(j), ∀ n (39)

Ssn ) ∑
j∈JT(s)

Ssjn ∀ s ∈ S*, ∀ n (40)

min MS (11′)

∑
n

SSsn g ds ∀ s or ∑
n

SSsn ) ds ∀ s (41)
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gramming (CP) techniques that successfully addresses
the problem of makespan minimization.17 Finally, it
should be noted that the proposed model can be ex-
tended to handle delivery and due dates.18

6. Examples

In this section, we use the proposed model M* to solve
a well-studied example1 of a multipurpose batch plant,
and we perform computational comparisons with the
continuous-time models of Schilling and Pantelides,4
Castro et al.8 and Lee et al.,11 and the event-driven
model of Ierapetritou and Floudas.7 As discussed in
Appendix A, the model of Ierapetritou and Floudas7 is
not as general as the proposed model, but it seems to
be among the most efficient, if not the most efficient,
batch scheduling model. In the comparison reported by
Castro et al.,7 for instance, where the effect of hardware
was eliminated, the Ierapetritou and Floudas model
turns out to be 40-200 times faster than the general
RTN model of Schilling and Pantelides4 and, on average,
twice as fast as the more recent continuous-time RTN
model of Castro et al.8 It also seems to be faster than
the model of Lee et al.11

The example used by Kondili et al.1 is first solved
assuming constant processing times for two time hori-
zons. Then, it is solved assuming variable processing
times that are functions of the batch sizes of the tasks.
The second example illustrates the handling of utility
constraints and storage policies. The third example
(modified from Papageorgiou and Pantelides19) is a
medium-scale process network with all types of storage
policies and utility requirements, solved in a reasonable
computational time. A fourth example with sequence-
dependent setup times and shared storage tanks is
solved to illustrate the generality of the proposed model.
The data for all examples are given in Appendix C. For
the computational comparisons, we used the same
hardware (a Linux workstation at 667 MHz) and
software (GAMS 20.7/CPLEX 7.5) for the proposed
model and the model of Ierapetritou and Floudas.7 The
CPLEX option for emphasis to feasibility, a relative
optimality tolerance equal to 0.01% was used as the
termination criterion, and the default GAMS/CPLEX
options were used in all runs. For all instances, we
solved the MILP model increasing the number of time
points until there was no improvement in the objective
function. The computational statistics refer to the first
time grid that gave the best solution. For the models of

Schilling and Pantelides4 (S&P) and Castro et al.8
(CBM), we have used the results reported in Castro et
al.,8 where the authors eliminate the effect of hardware
differences. While for the model of Lee et al.11 (LPL)
we cite the results of the authors.

6.1. Example 1. 6.1.1. Constant Processing Times.
The state-task network of the first example is depicted
in Figure 7 (modified from Kondili et al.1). The available
units are one heater for heating (H), two reactors (RI
and RII) suitable for reactions R1-R3, and one distil-
lation column suitable for separation (S). Unlimited
dedicated storage is available for raw materials and
final products, and dedicated FIS is available for all
intermediates. Time horizons of 8 and 12 h were used
to solve the corresponding problems.

The Gantt chart of the units and the batch sizes of
the solution found by the proposed model M* for a time
horizon of 8 h and five intervals (six time points) is
shown in Figure 8. The Gantt chart of the optimal
solution for the time horizon of 12 hours is given in
Figure 9.

The model and solution statistics are given in Table
1. Note that, because we have implemented the model
of Ierapetritou and Floudas7 and reproduced their re-
sults, the model and solution statistics of this model are
not the same as the ones reported in the original paper.
Although solution statistics (CPU time and number of
nodes) are expected to be different, the model statistics
(number of variables and constraints) are surprisingly
different. This is probably due to the fixing of some vari-
ables or the elimination of some redundant constraints
that the authors performed in their original work.
Because similar enhancements can be made for all STN/
RTN models, here, we do not fix any variables or
eliminate redundant constraints for any of the models.

When the time horizon is 8 h, the optimal solution of
the proposed model is found when six time points (five
intervals) are used. The optimal solution of the model
of Ierapetritou and Floudas7 is found when six event

Figure 7. State-task network of example 1.

Figure 8. Gantt chart for the optimal solution of the proposed
model for H ) 8 h (six time points).
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points are used. When the time horizon is 12 h, the two
models need the same number of time points (events),
and they find the same solution. Note that the proposed
model needs fewer nodes, but because of its size, it
requires more time.

6.1.2. Variable Processing Times. The previous
example was also solved assuming variable processing
times. The optimal solution for the 8-h time horizon is
$1,498.6 and is found using five time points. The
equipment Gantt chart of the optimal solution is shown

in Figure 10 (where the batch size and duration of each
task are reported). Compared to the optimal solution
with constant processing times (Figure 8), we observe
that, although the batch sizes are smaller, the process-
ing times are longer; this is due to the fact that, for all
tasks, the processing time for the maximum capacity
corresponds to a processing time that is 33% longer than
the constant processing time of Figure 8. The batch of
reaction R1 in reactor RII, for example, has a batch size
equal to 64.812 and a processing time equal to 2.413 h,

Figure 9. Gantt chart for the optimal solution of the proposed model for H ) 12 h (eight time points).

Figure 10. Equipment Gantt chart of example 1 with variable processing times.

Table 1. Model and Solution Statistics of Example 1 for Constant Processing Times

H ) 8 H ) 12

proposed
model M*

Ierapetritou
and Floudas

proposed
model M*

Ierapetritou
and Floudas

time points (events) 5 6 5 6 8 8
binary variables 80 96 60 72 128 96
continuous variables 547 656 211 253 874 337
constraints 1194 1430 463 567 1902 775
LP relaxation 1933.8 2473.8 1933.8 2473.8 3799.4 3799.4
objective ($) 1,760.0 1,917.5 1,760.5 1,917.5 3,638.8 3,638.8
nodes 4 196 0 266 325 465
CPU time (s) 0.19 1.23 0.04 0.9 4.10 2.33

Table 2. Model and Solution Statistics of Example 1 for Variable Processing Times

H ) 8

M* S&P I&F CBM LPL

time points (events) 5 6 5 5 5
binary variables 80 89 60 80 56
continuous variables 547 375 211 226 209
constraints 1194 507 463 297 376
LP relaxation 1730.9 2191.1 1730.9 1804.4 1704.2
objective ($) 1,498.6 1,480.1 1,498.6 1480.1 1480.5
nodes 25 747 44 60 22
CPU time (s) 0.31 117 0.25 0.32 0.66

Table 3. Computational Impact of Tightening Constraints 34-36

constant processing times variable processing times

H ) 8 H ) 12 H ) 8 H ) 12

M M* M M* M M* M M*

time points 6 8 5 7
binary variables 96 128 80 112
continuous variables 656 874 547 765
constraints 1378 1430 1834 1902 1150 1194 1606 1666
LP relaxation 2541.9 2473.8 3813.2 3799.4 1931.6 1730.9 3190.5 3002.5
objective ($) 1917.5 1917.5 3638.8 3638.8 1498.6 1498.6 2610.1 2610.1
nodes 460 196 1272 465 60 23 3437 676
CPU time (s) 2.04 1.23 17.85 2.33 0.34 0.34 23.83 8.06
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whereas in Figure 8, it has a larger batch size (78 kg)
and a shorter processing time (2 h). This is the reason
the optimal solution with variable processing times
($1,498.6) is lower than the one with constant processing
times ($1,917.5). Model and solution statistics are given
in Table 2.

Considering computational efficiency, the proposed
model M* is much faster than the general models of
S&P4, CBM8 and LPL11 and almost as fast as the model
of Ierapetritou and Floudas.7 Regarding the quality of
the solutions, we see that the solutions of all models
are the same (the discrepancy between the objective
values is due to small differences in the data, as
discussed in Castro et al.8 and the note by Ierapetritou
and Floudas20).

The solution statistics of Table 3 demonstrate the
effect of the addition of tightening constraints 34-36.
When constant processing times are used, the effect is
noticeable (especially for the larger problem), but the
computational enhancement becomes even more impor-
tant when variable processing times are used. In the
first case, with the addition of the tightening con-
straints, the gap between the LP relaxation and the
optimal solution is reduced by 8-11%, while for variable
processing times the gap is closed by 32-46%. The
number of nodes is reduced by a factor of 2-5. Note also
that the improvement in computational time and num-
ber of nodes becomes greater as the problem size
increases.

6.2. Example 2. To illustrate the handling of utility
constraints, we consider the state-task network of
Figure 11 (data in Appendix C). There are two types of
reactors available for the process (type I and II) with
different numbers of corresponding units available: two
reactors (RI1 and RI2) of type I but only one reactor
(RII) of type II. Reactions R1 and R2 require a type I
reactor, whereas reactions R3 and R4 require a type II
reactor. Furthermore, reactions R1 and R3 require heat,
provided by steam (HS) produced in limited amounts
in the plant, whereas reactions R2 and R4 are exother-
mic and require cooling water (CW), also available in

limited amounts. For safety reasons and because of
temperature restrictions, the heat integration of the
process is not possible. Utility requirements include a
fixed term as well as a variable term proportional to
the batch size. The minimum batch size for each task
is one-half of the capacity of the unit where it takes
place. Processing times for all tasks are functions of the
batch size. Specifically, the minimum batch size is
processed in 60% of the time needed for the maximum
batch size. There is unlimited storage for the raw
materials and final products and finite capacity for
intermediates I1-I3.

6.2.1. Maximization of Profit. To illustrate how the
availability of such resources can alter the solution of a
problem, we consider two cases. We first solve this
problem assuming that the availability of both steam
and cooling water is 40 kg/min (case 1). The optimal
profit in this case is $5,904.0. The Gantt chart of units
and the plot showing the level of utilization of steam
and cooling water at the optimal solution are given in
Figure 12. Then, we solve the problem assuming that
the availability of utilities is 30 kg/min (case 2), which
yields the solution shown in Figure 12 with a profit of
$5,227.8.

Note that we have plotted the resource consumption
level calculated by the model ,which is not necessarily
equal to the actual consumption level. In Figure 12, for
example, the consumption of cooling water is not
constant throughout the second period, because task R2
finishes before the end of the second period. This
discrepancy occurs because we use the second continu-
ous-time representation for tasks that do not produce
ZW states, allowing for a task to finish within a time
period while the resource consumption is constant
throughout a period (constraints 9, 10, 31, and 32). This
assumption, however, does not compromise feasibility
or optimality. Specifically, if a task finishes before a time
point, the calculated resource consumption for this
period will be an overestimation and is obviously feas-
ible. Moreover, if another solution (that uses the extra
resource amount) was better than the existing one, this
solution would be found if one or more additional time
points are used; if no better solution can be obtained,
this means that the existing overestimated solution
corresponds to the best feasible solution. For the prob-
lem of Figure 12, for instance, no better solution is found
when we re-solve the problem with eight or nine time
points; i.e., the utilization of the extra resource at the
end of the second period does not yield a better solution.

Figure 11. State-task network of example 2.

Figure 12. Solution of example 2 for maximization of profit (case 1).
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In case 1, 100.8 kg of P1 and 72.0 kg of P2 are
produced. As shown in Figure 12, the level of utiliza-
tion of steam during the fifth interval is 40 kg/min, and
the levels of consumption of cooling water during the
first, third, and fourth interval are above 30 kg/min.
Thus, when the maximum availability of steam and
water is 30 kg/min, this solution is not feasible. As
shown in Figure 13 for case 2, to keep the level of
utilization of cold water bellow 30 kg/min during the
first interval, the batch size of task R1 that is per-
formed in reactor RI2 is reduced to 36.7 kg. Similarly,
during the third period, the batch size of reaction R4
(performed in reactor RII) is reduced to 47.7 kg (com-
pared to 72 kg in case 1). Furthermore, to keep the
consumption of steam bellow 30 kg/min, only two
batches of reaction R1 (instead of three) are performed
in reactor RI1, as well as a second batch of R4 rather
than two batches of reaction R3. In the optimal solu-

tion of case 2, 55 kg of P1 and 89.4 kg of P2 are
produced. Note that, if the availability of both utilities
is reduced to 25 kg/min, the optimal profit decreases
to $4,537, and if the utility availability is further
decreased to 20 kg/min, no final products can be
produced. Model and solution statistics for both cases
are given in Table 4.

6.2.2. Minimization of Makespan. Here, the two
above cases are resolved for a fixed demand of 100 kg
of P1 and 80 kg of P2, using the minimization of the
makespan as the objective function. An upper bound on
the makespan of 15 h (H ) 15) is used for constraints
16-18, 21, and 22.

When the availability of resources is 40 kg/min, the
makespan is 8.5 h. The equipment Gantt chart and the
utility consumption graph are shown in Figure 14.
When the availability of resources is reduced to 30
kg/min, the optimal makespan is 9.025 h, and the
equipment Gantt chart and the utility consumption
graph for this case are shown in Figure 15. Comparing
the two Gantt charts, we observe that, in the second
case, several tasks are delayed because of the reduced
utility availability. Model and solution statistics for both
cases are given in Table 4, where it can be seen that
the minimization of the makespan requires greater
computational effort.

6.3. Example 3. In this example, the proposed model
is used for the scheduling of the STN shown in Figure
16, which is a modification of an example of Papageor-

Figure 13. Solution of example 2 for maximization of profit (case 2).

Figure 14. Solution of example 2 for minimization of makespan (case 1).

Table 4. Model and Solution Statistics of Example 2

max profit min makespan

case 1 case 2 case 1 case 2

time points 7 6 8 7
binary variables 84 72 96 84
continuous variables 661 567 753 659
constraints 1335 1146 1528 1339
LP relaxation 8875.4 7685.7 5.077 5.077
objective $5,904.0 $5,227.8 8.5 h 9.025 h
nodes 1173 117 3411 509
CPU time (s) 9.37 1.57 36.7 6.3
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giou and Pantelides19 (data in Appendix C). A time hori-
zon of 12 h is used for profit maximization. The plant
consists of 6 units: unit 1 for tasks T1 and T4, unit 2
for T2, unit 3 for T3, unit 4 for T5 and T6, unit 5 for T7
and T9, and unit 6 for T8 and T10. Unlimited storage
is available for raw materials F1 and F2, intermediates
Int1 and Int2, and final products P1-P3; finite storage
is available for states S3 and S4; no intermediate
storage is available for states S2 and S6; and a zero-
wait policy applies for states S1 and S5. Tasks T2, T7,
T9, and T10 require cooling water (CW); tasks T1, T3,
T5, and T8 require low-pressure steam (LPS); and tasks
T4 and T6 require high-pressure steam (HPS). No heat
integration is possible. The maximum availabilities of
cooling water and low- and high-pressure steam are 25,
40 and 20 kg/min, respectively. Solving the proposed
MILP model M* yields the equipment Gantt chart
shown in Figure 17 and the graph of resource utilization
shown in Figure 18.

The optimal solution is $13,000, and eight intervals
(nine time points) are needed to obtain it. As shown in
the Gantt chart of Figure 17, tasks T1 and T7 are
immediately followed by tasks T2 and T8, respectively,

because they produce states S1 and S5 for which a zero-
wait policy applies. Note that, for task T2, this is not
necessary because S2 can remain in the unit before it
is sent to the next task (NIS), whereas, for the final
product P3 produced by task T10, unlimited storage is

Figure 18. Resource utilization for example 3.

Figure 15. Solution of example 2 for minimization of makespan (case 2).

Figure 16. State-task network of example 3.

Figure 17. Equipment Gantt chart for example 3
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available. The problem consists of 3067 constraints, 180
binary, and 1587 continuous variables. Its LP relaxa-
tion is $19,500, and its optimal solution is $13,000. The
optimal solution was found in 62.8 s and 2107 nodes.

Note that, if continuous-time representation I had
been used, two additional time points would have been
needed to capture the finish of the first batch of T2 at
t ) 3 and the finish of task T10 at t ) 11. The resulting
MILP model would have had 3833 constraints, 220
binary and 1939 continuous variables, and an LP
relaxation of $20,308, and it would have obtained the
optimal solution of Figure 17 ($13,000) in 2373.8 CPU
s. Compared to the proposed mixed time representation,
this is an increase of more than 1 order of magnitude
and illustrates the effectiveness of the proposed time
representation.

When the time horizon is 14 h, the optimal solution,
with an objective value of $16,350, is obtained in 1,-
548.6 CPU s and 60 070 nodes using nine time intervals.
This sharp increase in the computational effort (1548.6
vs 62.8 CPU s) is common in MILP models and implies
that MILP formulations might not be used effectively
for the scheduling of medium-sized plant networks with
utility requirements when more than 10-12 time
intervals are needed. We are currently developing an
MILP/constraint programming hybrid algorithm that
can potentially overcome this barrier.17

6.4. Example 4. Finally, the proposed model was
used for the scheduling of the STN of Figure 19, which
exhibits sequence-dependent setup times, shared stor-
age tanks, and variable processing times (data in
Appendix C). Specifically, there is one common storage
tank T1 for states S11 and S21 and one common storage
tank T2 for states S12 and S22. Tasks T11, T21, T13,
and T23 take place in unit U1, and tasks T12 and T22
are performed in unit U2. The capacities of units U1
and U2 are 5 and 3 tons, respectively. The objective is
to maximize the production over a fixed time horizon of

12 h while meeting a minimum demand of 2 tons for
each product.

The optimal solution with an objective function of
5.019 tons is obtained using nine time points, and the
equipment Gantt chart of the optimal solution is shown
in Figure 20a, where, for each task, we report the
batch size and its duration. For the production of P1,
2.019 tons of raw material F1 are converted into
S11, which is immediately transferred to U2 and
converted into S12, which is stored in T2 from t )
5.0 until t ) 5.3 before it converted into 2.019 tons of
final product P1. For the production of P2, 3 tons of
F2 are converted into S21, which is stored in T1 from t
) 4.058 until t ) 5.3; intermediate S11 is converted
into S22 via T22, and the latter is immediately trans-
ferred to U1 to give final product P2 through T23. In
Figure 20b, we show an alternative solution with the
same objective function and 10 time points, where 3 tons
of raw material F1 are converted into intermediate
S11, which is immediately transferred to unit U2 for
task T12, and intermediate S12 is stored for 0.6 h
(equal to the setup time sT21,T13) in storage tank T2 and
then is converted via task T13 into final product P1.
For the production of P2, 2.019 tons of raw material F2
are converted into S21, which is stored in unit U1 from
t ) 3.862 until t ) 6.7 and in storage tank T1 from t )
6.7 until t ) 7.0, before it is transferred to U2 for task
T22 and finally to unit U1 for task T23. Note that
intermediate S21 could be transferred to storage tank
T2 upon or at any time after the finishing of task T21,
i.e., stored in tank T1 beginning at or any time after t
) 3.862.

The model and solution statistics of the two MILP
models that yield the solutions of Figure 20 are reported
in Table 5. If there were no changeover times and UIS
were available for intermediate states S11, S21, S12,
and S22, the optimal solution of 5.192 would be obtained
with five time points. As seen in Table 5, the computa-
tional cost with no changeover times is significantly
lower.

7. Conclusions

A new general continuous-time MILP formulation for
the short-term scheduling of STN multipurpose batch
plants has been proposed. The proposed formulation is
general as it accounts for batch splitting and mixing,

Figure 19. STN of example 4.

Figure 20. Equipment Gantt chart of example 4.
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variable processing times, different storage policies
(including shared storage tanks), resources other than
equipment units, and sequence-dependent changeover
times and costs. As shown in the examples, the proposed
model is significantly faster than other general STN
models. Compared to event-driven models, it is more
general, and thus, better solutions might be obtained
in comparable computational times.

Acknowledgment

The authors gratefully acknowledge financial support
from the National Science Foundation under Grant ACI-
0121497.

Nomenclature
Indices

n ) time points
i ) tasks
j ) equipment units
r ) resource categories (utilities)
s ) states

Sets

I(j) ) set of tasks that can be scheduled on equipment unit
j

I(s) ) set of tasks that use state s as input
JT ) set of shared storage tanks
JT(s) ) set of shared storage tanks in which state s can be

stored
O(s) ) set of tasks that produce state s
S(j) ) set of states that can be stored in shared storage

tank j
SI(i) ) set of states consumed in task i
SO(i) ) set of states produced from task i
ZWI ) set of tasks that produce at least one ZW state

Parameters

H ) time horizon
Ri ) fixed duration of task i
âi ) variable duration of task i
γir ) fixed amount or utility r required for task i
δir ) variable amount of utility r required for task i
Fis ) mass balance coefficient for the consumption/produc-

tion of state s in task i
C0s ) initial amount of state s
Cs/Cj ) storage capacity for state s/shared tank j
Rr

MAX ) upper bound for utility r
Bi

MIN/Bi
MAX ) lower/upper bounds on the batch size of task

i
ús ) price of state s
ds ) demand of state s at the end of the time horizon
sii′ ) sequence-dependent changeover time when task i is

followed by task i′
κii′ ) sequence-dependent changeover cost when task i is

followed by task i′

Binary Variables

Zsjn ) 1 if a task in I(j) is assigned to start in unit j at time
point n

Zpjn ) 1 if a task in I(j) is being processed in unit j at time
point n

Zfjn ) 1 if a task in I(j) assigned to unit j finishes at or
before time point n

Wsin ) 1 if task i starts at time point n
Wpin ) 1 if task i is being processed at time point n
Wfin ) 1 if task i finishes at or before time point n
Vjsn ) 1 if state s is stored in shared tank j during time

period n

Continuous Variables

MS ) makespan
Tn ) time that corresponds to time point n (i.e., start of

period n; end of period n - 1)
Tsin ) start time of task i that starts at time point n
Tfin ) finish time of task i that starts at time point n
Din ) duration of task i that starts at time point n
Bsin ) batch size of task i that starts at time point n
Bpin ) batch size of task i that is being processed at time

point n
Bfin ) batch size of task i that finishes at or before time

point n
Bisn

I ) amount of state s used as input for task i at time
point n

Bisn
O ) amount of state s produced from task i at or before
time point n

Ssn ) amount of state s available at time point n
SSsn ) sales of state s at point n
Rirn

I ) amount of utility r consumed at time point n by
task i

Rirn
O ) amount of utility r released at or before time point
n by task i

Rrn ) amount of utility r utilized at time point n
Yii′n ) 1 if task i is immediately before task i′ (starting at

time point n)

Appendix A: Limitations of Event-Driven
Models

As mentioned in the main body of the paper, some of
the models proposed in the literature do not account for
all possible configurations. To illustrate the limitations
of event-driven approaches, consider the example of
Figure A1. Raw material A is heated in a heater and
then converted into intermediate IB through reaction
R1 or reaction R2. Intermediate IB is finally purified
into final product B through separation sep. A heater,
two reactors, and a filter are available. Reaction R1 can
take place in reactor 1 and reaction R2 in reactor 2. The
maximum batch sizes and the (constant) task durations
are given in Table A1. Unlimited storage is available
for all states. The time horizon is 6 h. The demand for
final product A is 10 kg at the due date of 6 h. It is easy
to verify that the optimal schedule is the one depicted
in Figure A2, which is actually the only schedule that
can meet both the demand and the due date. Inventory
levels for states hA and IB are also shown in Figure
A2.

Table 5. Model and Solution Statistics of Example 4

changeovers/
shared storage

no changeovers/
UIS

solution
a

solution
b

solution
a

solution
b

time points 9 10 5 6
binary variables 144 160 60 72
continuous variables 705 783 393 471
constraints 1627 1808 825 988
LP relaxation 7.131 7.160 6.000 6.652
objective (tons) 5.019 5.019 5.192 5.192
nodes 3117 23850 19 226
CPU time (s) 62.43 546.40 0.44 1.95

Figure A1. State-task network for the motivating example.
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In event-point approaches, the mass balance equation
for state s at event point n is one of the following form

where STsn is the amount of state s at event point n; Fsi
p

and Fsi
c are mass balance coefficients for the production

and consumption of state s in task i, respectively; Bijn
is the batch size of task i performed in unit j at event
point n; and dsn is the amount of state s sold at event
time n.

The schedule of Figure A2 cannot be represented by
event-based formulations because there is no feasible
numbering of event points that simultaneously satisfies
the mass balance equation and the inventory level of
IB. This important observation is further explained
using Figure A3, where the numbering of event points
for the heater and the two reactors is shown.

Assume that the first event point for the heater is k.
To satisfy eq MB, the event points for reactors 1 and 2
that start at t ) 1 must be numbered as n ) k + 1.
Thus, neglecting dsn, the mass balance equation for state
s ) hA at time point n ) k + 1 reads

which holds true.
The event points for the second and the third batches

of reaction 2 are naturally numbered as k + 2 and k +
3, respectively, and the corresponding mass balance
equations for s ) hA are

which also hold true.
Given this numbering of Figure A3, there is no

numbering for the event point of separation that simul-
taneously satisfies eq MB and the inventory levels of
Figure A2. To prove this, let us first assume that the
separation takes place at event point n ) k + 4. Then,
the mass balance equations for state IB at times t ) 2
and t ) 4 correspond to points n ) k + 2 and n ) k +
4, respectively, and read

both of which are false.
Next, assume that the separation takes place at event

point k + 2, whose start corresponds to time t ) 4
(although, for reactor 2, the start of event k + 2
corresponds to t ) 2), and that the start of event k + 1
corresponds to t ) 1. The mass balance for state IB is

which is also false. Thus, from this example, it is clear
that there is no feasible event numbering that simul-
taneously satisfies the mass balances and inventory
levels of the optimal solution.

To address this problem, Ierapetritou and Floudas21

proposed a modification in which the storage of a state
is treated as an additional task and storage tanks are
treated as units. In addition, for every storage task and
event time, three constraints must be added in the
formulation, two of which are big-M constraints. This
modification introduces O(|S| × |N|) new binary vari-
ables, where |S| is the cardinality of states and |N| the
cardinality of event points, and thus leads to models
whose computational performance can be potentially
expensive.

Another complication caused by the noncommon time
grid is the monitoring of the utility usage level. Con-
sider the case depicted in Figure 2, for example, where
10 kg/h of steam is required by tasks T1, T2, and T3.
If a common grid is used, the calculation of required
steam is straightforward: 10 kg/h is required during
the second time interval (t ) 1 f 2), 20 kg/h is required
during the third interval (t ) 2 f 3), 30 kg/h is required
during the fourth interval (t ) 3 f 4), etc. If the event
point representation is used, then the kth period is
different for each task: it corresponds to t ) 1 f 4 for
T1, t ) 3 f 7 for T2, and t ) 2 f 6 for T3. This gives
rise to two problems: (a) the start and finish of the kth
period are not uniquely defined, and (b) the resource
consumption during the kth period has many different
values. Because of these difficulties, resource constraints
cannot be rigorously incorporated within the proposed
event-driven models, as they have been presented

Although the method of doing so has never been
shown, utility constraints can potentially be addressed
by event-driven models by introducing a new state for
each resource and expressing the corresponding mass
balances and, more importantly, by increasing the

Figure A2. Gantt chart of the optimal (and uniquely feasible)
solution of the motivating example.

Figure A3. Numbering of event points of the motivating example.

Table A1. Data for the Motivating Example

task/unit duration (h) max batch size (kg)

heat/heater 1 10
R1/reactor 1 3 4
R2/reactor 2 1 2
sep/filter 2 10

STsn ) STsn-1 - dsn + ∑
i∈Is

Fsi
p ∑

j∈Ji

Bij,n-1 + ∑
i∈Is

Fsi
c ∑

j∈Ji

Bijn

∀ s ∈ S, n ∈ N (MB)

SThA,k+1 ) SThA,k + Bht,H,k - Brxn1,R1,k+1 -
Brxn2,R2,k+1 w 4 ) 0 + 10 - 4 - 2

n ) k + 2:
SThA,k+2 ) SThA,k+1 - Brxn2,R2,k+2 w 2 ) 4 - 2

n ) k + 3:
SThA,k+3 ) SThA,k+2 - Brxn2,R2,k+3 w 0 ) 2 - 2

n ) k + 2: STIB,k+2 ) STIB,k+1 + Brxn1,R1,k+1 +
Brxn2,R2,k+1 w 2 ) 0 + 4 + 2

n ) k + 4: STIB,k+4 ) STIB,k+3 + Brxn2,R2,k+3 -
Bsep,F,k+4 w 0 ) 4 + 2 - 10

STIB,k+2 ) STIB,k+1 + Brxn1,R1,k+1 + Brxn2,R2,k+1 -
Bsep,F,k+2 w 0 ) 0 + 4 + 2 - 10
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number of events to overcome the two above-mentioned
difficulties. By increasing the number of events, how-
ever, the main advantage of event-driven models,
namely, the small number of events compared to models
with common time partitioning, disappears.

Appendix B: Derivation of Mixed-Integer
Constraints C and 12

Derivation of Equation C. For the derivation of eq
C, consider the two cases depicted in Figure B1, where
we have assumed that k tasks have been assigned to
unit j and start before time n. Obviously, k - 1 of these
tasks will have finished before time n. If the (k - 1)st
task finishes at n* < n, then the following equation
holds true

In the case where no task is being processed in unit j
at time n (Figure B1a), the kth task starts at or after
n* and finishes at or before n

and thus, eq C holds true

In the case where a task is being processed in unit j
at time n (Figure B1b), the kth task starts at or after
n* but does not finish until n

which makes eq C correct again

In a similar way, it can be shown that binary Wpin is
calculated by the following equation

Using eq C*, binary Wpin can be eliminated in disjunc-
tion F.

Derivation of Assignment Constraint 12. Logical
expressions A and B can be converted into integer
equations A* and B*, respectively

Replacing implication D by its equivalent disjunction
and using the definitions of binaries Zsjn, Zpjn, and Zfjn
(eqs A*, B* and C, respectively), we obtain constraint
12, which is the basic assignment constraint

Appendix C: Data for Examples

The data for examples 1-4 are listed in Tables
C1-C11 below.

Table C1. Data for Example 1

A B C HotA IntAB IntBC ImE P1 P2

Cs (kg) 1000 1000 1000 100 200 150 200 1000 1000
C0s (kg) 1000 1000 1000 0 0 0 0 0 0
gs ($/kg) 0 0 0 0 0 0 0 10 10

Table C2. Data for Example 1 (Constant Processing
Times)

BMAX

task
duration

(h) heater reactor I reactor II column

heating 1 100 - - -
reaction 1 2 - 50 80 -
reaction 2 2 - 50 80 -
reaction 3 1 - 50 80 -
separation 2 - - - 200

Figure B1. Alternative cases for binary Zpjn.

∑
n′<n*

Zsjn′ - ∑
n′en*

Zfjn′ ) (k - 1) - (k - 1) ) 0

∑
n*en′<n

Zsjn′ - ∑
n*<n en

Zfjn′ ) 1 - 1 ) 0

Zpjn ) ∑
n′<n

Zsjn′ - ∑
n′en

Zfjn′ ) ( ∑
n′<n*

Zsjn′ - ∑
n′en*

Zfjn′) +

( ∑
n*en′<n

Zsjn′ - ∑
n*<n′en

Zfjn′) ) 0 + 0 ) 0

∑
n*en′<n

Zsjn′ - ∑
n*<n′en

Zfjn′ ) 1 - 0 ) 1

Zpjn ) ∑
n′<n

Zsjn′ - ∑
n′en

Zfjn′ ) ( ∑
n′<n*

Zsjn′ - ∑
n′en*

Zfjn′) +

( ∑
n*en′<n

Zsjn′ - ∑
n*<n′en

Zfjn′) ) 0 + 1 ) 1

Wpjn ) ∑
n′<n

Wsjn′ - ∑
n′en

Wfjn′ ∀ j, ∀ n (C*)

Zsjn ) ∑
i∈I(j)

Wsin ∀ j, ∀ n (A*)

Zfjn ) ∑
i∈I(j)

Wfin ∀ j, ∀ n (B*)

(Zsjn w ¬Zpjn) S

(¬Zsjn ∨ ¬Zpjn) S

[(1 - Zsjn) + (1 - Zpjn) g 1] S

{(1 - Zsjn) + [1 - ( ∑
n′<n

Zsjn′ - ∑
n′en

Zfjn′)] g 1} S

(2 - ∑
n′en

Zsjn′ + ∑
n′en

Zfjn′ g 1) S

[ ∑
n′en

(Zsjn′ - Zfjn′) e 1] S

∑
n′en

( ∑
i∈I(j)

Wsin′ - ∑
i∈I(j)

Wfin′) e 1 S

∑
i∈I(j)

∑
n′en

(Wsin′ - Wfin′) e 1 ∀ j, ∀ n (12)
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Note Added after ASAP

An incorrect image of Figure A2 appeared in the
original version of this article posted ASAP on
05/17/2003. The correct Figure A2 was posted 05/19/
2003.
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batch.
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â 0.8 0.667 0.667 0.6
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T23 0.5 0.3 0.4 0
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