
Dynamic scheduling in multiproduct batch plants

Carlos A. Méndez, Jaime Cerdá *

INTEC (UNL-CONICET), Güemes 3450, 3000 Santa Fe, Argentina

Received 6 February 2003; accepted 7 February 2003

Abstract

This work introduces a novel MILP formulation for reactive scheduling of multiproduct batch plants to optimally generate

updated schedules due to the occurrence of unforeseen events. It can also be used to improve a non-optimal production schedule

before it is executed. The approach is based on a continuous-time problem representation that takes into account the schedule in

progress, the updated information on the batches still to be processed, the present plant state and the time data. To limit the changes

on the current schedule, rescheduling operations involving local reordering and unit reallocation of old batches as well as the

insertion of new batches are just permitted. In contrast to previous contributions, multiple rescheduling operations can be performed

at the same time. The MILP problem formulation is iteratively solved until no further improvement on the current schedule is

obtained. Three large-size example problems were successfully solved with low computational cost.

2003 Elsevier Science Ltd. All rights reserved.

Keywords: Reactive scheduling; Multiproduct batch plants; MILP Optimization model; Unforeseen events

1. Introduction

Most of the work reported so far on scheduling

techniques for multiproduct batch plants (MBP) is

aimed at generating a priori production schedules

assuming that plant parameters and production require-

ments will remain without changes throughout the time

horizon. However, an industrial environment is dynamic

in nature and, therefore, the initial schedule must

usually be updated in midweek because of different

kinds of unexpected events. For instance, changes in

batch processing/setup times, unit breakdown/startup,

late order arrivals, orders cancellations, reprocessing of

batches, delayed raw material shipments, modifications

in order due dates and/or customer priorities and so on.

As a result, the proposed schedule may become ineffi-

cient or even infeasible. So, the ability to rapidly react to

such unforeseen events and periodically re-optimize the

schedule on a daily or hourly basis is a key issue in batch

plant operation. Proper adjustments to the current

schedule may include simultaneous local reordering of

batches at some equipment units, reassignment of

certain batches to alternative equipment items due to

unexpected unit failures and/or simply batch starting

time shifting. Frequently, however, batches to be

processed in the current shift may not be switched to

another unit because required raw materials have

already been sent in advance to the assigned unit

(Musier and Evans, 1990). As a result, a portion of

the schedule should be frozen while the remainder can

be subject to re-optimization.

In the last decade, some new reactive scheduling

methodologies have been reported. Hasebe, Hashimoto,

and Ishikawa (1991) proposed a reordering algorithm

for the scheduling of multiproduct batch plants consist-

ing of parallel production lines with a shared unit. The

algorithm involved two reordering operations, the

insertion of a job and the exchange of two jobs. Because

exchange operations required longer computational

times and produced worse results, the authors finally

applied a reordering algorithm performing just insertion

operations, one at a time. Though simultaneous reor-

dering of jobs generally lead to much better production

sequences, such a rescheduling option was not allowed

mostly because the search space became extremely large

and the algorithm would be computationally very

* Corresponding author. Tel.: �/54-342-599-174/77; fax: �/54-342-

550-944.

E-mail address: jcerda@intec.unl.edu.ar (J. Cerdá).

Computers and Chemical Engineering 27 (2003) 1247�/1259

www.elsevier.com/locate/compchemeng

0098-1354/03/$ - see front matter # 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0098-1354(03)00050-4

mailto:jcerda@intec.unl.edu.ar

expensive. Instead, the authors considered the possibi-

lity of aggregating consecutive jobs of the same type

before assigning them as a block to a new location in the

same processing sequence. Afterwards, the aggregated

job was divided again and the insertion of jobs was

continued until the performance index could no longer

be improved.
Roslöf, Harjunkoski, Björkqvist, Karlsson, and Wes-

terlund (2001) developed an MILP reordering algorithm

to improve a non-optimal schedule or update the

schedule in progress because of unforeseen events. The

approach was applied to improve a manually generated

production schedule for a paper-converting mill produ-

cing papers of different qualities. The example involved

61 jobs to be processed on a single processing unit with

sequence-dependent setup times. Test runs were per-

formed by releasing either one or two jobs at a time. As

expected, the strategy of simultaneously releasing two

jobs led to a stronger decrease of the objective function

than the single-job option but the problem size and the

computational effort both showed much bigger in-

creases.

This paper introduces a novel MILP mathematical
formulation for the MBP reactive scheduling problem

that considers the information about: (i) the current

schedule; (ii) the present plant state; and (iii) the

deviations in plant parameters, order availabilities and

time data from those used for generating the schedule in

progress. The approach is based on a problem repre-

sentation describing the production schedule by specify-

ing the whole set of predecessors for every batch at the
assigned equipment unit (Méndez, Henning, & Cerdá,

2001). It can still be applied if setup times are sequence-

dependent. In contrast to previous contributions, the

proposed approach allows to perform multiple resche-

Nomenclature

Sets

I orders to be scheduled (I�/Inew@ /Iold)

Iold orders belonging to the current schedule (Iold⁄/I , Iold�/IS @ /IA)

Inew new orders to be inserted into the current schedule (Inew⁄/I)

IA subset of old orders that can be reassigned to other processing units during rescheduling (IA ⁄/Iold)

IS orders that can be rearranged in the current processing sequence, i.e. without unit reallocation
(IS ⁄/Iold�/IA)

ISi old orders whose relative locations with regards to an existing order i may change during the

rescheduling process: ISi �/{i ? � /IS /i "/i ?, ji
old�/ji ?

old, ((ri
old�/ni 5/ri ?

old5/ri
old�/ni) or (ri ?

old�/ni ?5/ri
old5/

ri ?
old�/ni ?))}

J processing units
Ji Available units to process order i (Ji ⁄/J)

Ji
available units to reallocate order I � /IA (Ji

#⁄/Ji)

Parameters

di due date of order i � /I

ji
old unit allocated to old order i � /Iold in the current schedule

M a very large number
ptij processing time of order i � /I in unit j

ri
old position of the existing order i � /Iold on the processing sequence of unit ji

old before rescheduling

roi release time of order i � /I

ruj ready time of unit j � /J

sli slack time of order i , sli �/di�/Min{ptij , j � /Ji}

suij setup time of order i � /I in unit j

tii ?j sequence-dependent setup time between orders i � /I and i ? � /I in unit j

ai weighting coefficient for earliness of order i � /I

bi weighting coefficient for tardiness of order i � /I

ni small integer representing the maximum number of closer predecessors and successors that can
change location with order i � /IS on the processing sequence

Variables

Ci completion time for order i

Ei earliness for order i

Ti tardiness for order i

Xii’ binary variable denoting that order i � /I is processed before (Xii ?�/1) or after (Xii ?�/0) order i ? � /I ,

when both were allocated to the same unit

Yij binary variable denoting the allocation of order i � /(Inew@ /IA) to unit j

C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 27 (2003) 1247�/12591248

duling operations at the same time. Among the opera-

tions being considered, it can be mentioned the insertion

of new order arrivals, the reassignment of existing

batches to alternative units due to equipment failures
and the reordering and time-shifting of old batches at

the current processing sequences. To prevent reschedul-

ing actions from disrupting a smooth plant operation,

limited changes in batch sequencing and unit assignment

are just permitted. The goal is to meet all the production

requirements at either maximum customer satisfaction

or minimum total cost by making limited batch reloca-

tions to lower the overall impact on the schedule in
progress. The new reactive scheduling strategy has been

applied to large-scale industrial examples under differ-

ent types of unexpected events with great success.

2. Problem definition

Given:

a) a single-stage multiproduct batch plant with

several units j � /J working in parallel.

b) a set of single-batch orders i � /Iold (excluding

cancelled orders) still to be processed during the

current scheduling horizon.

c) the production schedule in progress, by providing

the assigned unit ji
old and the full set of preceding

batches for any existing batch i � /Iold on the

processing sequence, before performing the resche-

duling process.

d) the present state of the plant including information

on equipment breakdown and anticipated startup

of units coming from maintenance.

e) up-to-date processing times, setup times, release

times and due dates for old batches.
f) new single-batch order arrivals i � /Inew and their

processing/setup times, release times and due

dates.

g) the time at which each available equipment unit

j � /J will be ready to process the next batch i � /I�/

(Iold@ /Inew) on the processing sequence.

h) new equipment unit maintenance periods defined

by their initial/final times.
i) the set of (released) old batches i � /IS ⁄/Iold that

can be locally reordered in the current processing

sequence, i.e. without unit reallocation.

j) the subset of batches i ? � /ISi with which a batch i � /

IS can change its relative location, i.e. switching

from being a predecessor to becoming a successor

or vice versa.

k) the set of (released) old batches i � /IA ⁄/Iold that
can be reassigned to alternative processing equip-

ment items as well as the allowed unit options (j � /

Ji
#⁄/Ji) for each released batch i .

l) the remaining time horizon at the rescheduling

time.

The problem goal is to optimally rescheduling the old

batches and inserting new ones in such a way that all

production requirements be completed in a timely

fashion and every unit-allocation and sequencing con-
straint be satisfied at the minimum of a weighted

summation of batch earliness/tardiness over the batch

set i � /I . In this way, the average inventory level is also

minimized.

The sets of old batches {IS , IA} being released for

reordering and unit reallocation, respectively, the subset

of old batches ISi with which a batch i � /IS can

exchange location and the set of units Ji
to which a

batch i � /IA can be reassigned can be all arbitrarily

chosen by the user. The set ISi is easily defined by

specifying the parameter ni , a small integer giving the

number of closer predecessors or successors with which

a batch i � /IS can switch location in the processing

sequence of the assigned unit ji
old. In fact, one can freeze

the location of an old batch i � /IS by simply making ISi

equal to the empty set and, consequently, ni �/0. If ni �/

1, then the set ISi will just include the direct predecessor

and the direct successor of batch i in the current

processing sequence. Let us assume that ri
old denotes

the current position of the old batch i in the processing

sequence. When ni �/1, then the set ISi will comprise the

old batches located at positions ri
old9/1 in the current

batch sequence of unit ji
old. When ni �/2, then ISi will

include the old batches located at positions ri
old9/1 and

ri
old9/2. In the general case, the set ISi will contain the

batches with positions ri
old9/1, ri

old9/2,. . . ri
old9/ni in the

batch sequence of unit ji
old. Therefore, the set IS

comprises all the batches i � /Iold with ni �/0. The number

of reordering options for batch i rises with ni but at the

same time the problem size and the computational

requirements will both show a stronger increase. The

desired value for ni is the one producing the best trade-
off between those opposite trends. In turn, the set IA ⁄/

Iold just comprises every old batch with a set Ji
#

including unit options other than ji
old.

3. Model assumptions

1) The multiproduct batch plant is operated on an

order-driven basis.

2) Model parameters are all deterministic.

3) Setup times are sequence-dependent.

4) Single-batch orders are just considered. Otherwise, a
batch-sizing procedure should be performed to

transform new product demands into batches of

given sizes before applying the rescheduling algo-

rithm.

C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 27 (2003) 1247�/1259 1249

5) Once the processing of an order starts, it must not

be interrupted.

6) Batch split is not allowed.

7) No resource constraints except equipment are
considered.

4. The mathematical model

4.1. Allocation constraints

4.1.1. For new batches i � /Inew to be scheduled

X

j � Ji

Yij �1 � i � Inew (1:1)

4.1.2. For old batches i � /IA that can be reassigned to

other units j � /Ji
during rescheduling

X

j � J#
i

Yij �1 � i � IA (1:2)

For an existing batch i � /IA , the assigned unit in the

updated schedule (ji
new) may be different from the

current one (ji
old). However, the unit ji

old may also belong

to Ji
#, unless ji

old is no longer available during the

rescheduling horizon. The small sets IA ⁄/Iold and

Ji
#⁄/Ji are both selected by the user.

4.2. Timing constraints

For an old/new batch being first processed at the

assigned unit j after performing the rescheduling pro-

cess, one of the following constraints should be com-
plied depending on the batch set to which it belongs.

Ci]Max[ruj; roi]�ptij�suij � i � IS⁄Iold;

j� jold
i

(2:1)

Ci]
X

j � J#
i

(Max[ruj; roi]�ptij�suij)Yij

� i � IA⁄Iold

(2:2)

Ci]
X

j � Ji

(Max[ruj; roi]�ptij�suij)Yij � i � Inew (2:3)

where ruj is the release time for unit j , i.e. the time at
which unit j can process the next batch after reschedul-

ing. Generally, ruj is the completion time of the batch

being processed in unit j at the rescheduling time.

4.3. Sequencing constraints

4.3.1. For every pair of existing batches i , i ? � /IS ⁄/Iold

that are currently assigned to the same unit ji
old and may

undergo just batch reordering operations

Ci�tii0j�sui0j 5Ci0�pti0j�M(1�Xii0) � i � IS;

i0 � ISi; iB i0; j� jold
i � jold

i0

(3:1)

Ci0 �ti0 ij�suij 5Ci�ptij�MXii0 � i � IS; i0 � ISi;

iB i0; j� jold
i � jold

i0

(3:2)

The notation iB/i ? in Eqs. (3.1) and (3.2) means that

ord(i) is less than ord(i ?) in the set IS .

The set ISi for batch i � /IS is defined by specifying the
value of ni , i.e. the number of closer predecessors or

successors on the processing sequence that can change

location with batch i . If batch i ? � /ISi is currently a

successor of batch i at the processing sequence of unit

jold, it may become a predecessor of i after the

rescheduling process. Nonetheless, an asymmetric set

ISi can also be handled by defining a pair of parameters

(ni
�, ni

�) for each old batch i � /Iold. For instance, if
batch i ? is currently a successor of batch i but ni

��/0,

then the batch i ? does not belong to ISi and should be

still processed after batch i in the new schedule as

required by Eq. (3.3). For frozen old batches i Q/IS , the

sequencing constraints are given by,

Ci�tii0j�sui0j 5Ci0�pti0j � i; i0 � IS; i0QISi ;

j� jold
i � jold

i0 ; (rold
i B rold

i0)
(3:3)

where ri
old and ri ?

old are the positions of the existing orders
i , i ? on the processing sequence of the unit ji

old before

performing rescheduling operations.

4.3.2. For a pair of batches involving an old batch i � /IS

currently assigned to unit ji
old and another old/new batch

that can be allocated to the same unit

Ci�tii0j�sui0j 5Ci0�pti0j�M(1�Xii0)�M(1�Yi0j)

� i � IS; i0 � IA; j� jold
i � J#

i0 (4:1)

Ci0 �ti0 ij�suij 5Ci�ptij�MXii0�M(1�Yi0j)

� i � IS; i0 � IA; j� jold
i � J#

i0

(4:2)

Since Ji ?
is a small set of units to which the old batch i ? � /

IA can be reallocated, then this case applies only if ji
old � /

Ji ?
#. For a new batch i ? � /Inew, it is assumed that the set of

units Ji ? where i ? can be processed also includes the unit

ji
old.

Ci�tii0j�sui0j 5Ci0�pti0j�M(1�Xii0)�M(1�Yi0j)

� i � IS; i0 � Inew; j� jold
i � Ji0 (4:3)

C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 27 (2003) 1247�/12591250

Ci0�ti0ij�suij 5Ci�ptij�MXii0 �M(1�Yi0j)

� i � IS; i0 � Inew; j� jold
i � Ji0

(4:4)

4.3.3. For a pair of old batches i , i ? � /IA that can be

reassigned to the same equipment item during the

rescheduling process

Ci�tii0j�sui0j

5Ci0�pti0j�M(1�Xii0)�M(2�Yij�Yi0j)

� i; i0 � IA; iB i0; j � (J#
i SJ#

i0)

(5:1)

Ci0�ti0ij�suij 5Ci�ptij�M Xii0 �M(2�Yij�Yi0j)

� i; i0 � IA; iB i0; j � (J#
i SJ#

i0) (5:2)

4.3.4. For an existing batch i � /IA and a new batch i ? � /

Inew that can be assigned to the same unit during the

rescheduling process

Ci�tii0j�sui0j

5Ci0�pti0j�M(1�Xii0)�M(2�Yij�Yi0j)

� i � IA; i0 � Inew; j � (J#
i S Ji0)

(6:1)

Ci0�ti0ij�suij 5Ci�ptij�M Xii0 �M(2�Yij�Yi0j)

� i � IA; i0 � Inew; j � (J#
i S Ji0)

(6:2)

4.3.5. For a pair of new batches that can be assigned to

the same unit during the rescheduling process

Ci�tii0j�sui0j

5Ci0�pti0j�M(1�Xii0)�M(2�Yij�Yi0j)

� i; i0 � Inew; iB i0; j � (JiS Ji0)

(7:1)

Ci0�ti0ij�suij 5Ci�ptij�M Xii0 �M(2�Yij�Yi0j)

� i; i0 � Inew; iB i0; j � (JiS Ji0) (7:2)

4.4. Order tardiness

Ti]Ci�di � i � I (8)

4.5. Order earliness

Ei]di�Ci � i � I (9)

4.6. Problem objective function

Min
X

i � I

aiEi�biTi (10)

where ai , bi are weighting coefficients. When every

order can be completed without tardiness, an equivalent

objective function is given by,

Max
X

i � I

Ci (11)

5. An illustrative example

In order to illustrate the proposed MILP reactive
scheduling approach, a small example will be studied

(see Fig. 1). Let us consider a single-stage multiproduct

batch plant with two parallel units. The current schedule

specifies the processing of batches {1, 4, 2} in unit A and

batch {3} in unit B, but rescheduling operations are

required to insert a new single-batch order {5}. Re-

ordering of old batches with just their direct predecessor

or successor are only allowed (ni �/1) for any batch
i � /IS while the new batch {5} can be assigned to any of

the available units. Therefore: IS�/Iold�/{1, 2, 3, 4}

and Inew�/{5}. Moreover, two assignment variables

(Y5A, Y5B) and six sequencing variables

(X14, X24, X15, X25, X35, X45) are to be defined (see Fig.

1). The problem constraint set for this small example is

given below.

5.1. Allocation constraints

Y5A�Y5B�1

5.2. Sequencing constraints between any pair of old

batches

C15C4�pt4A�M(1�X14)

Fig. 1. A small example.

C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 27 (2003) 1247�/1259 1251

C45C1�pt1A�MX14

C15C2�pt2A

C25C4�pt4A�M(1�X24)

C45C2�pt2A�MX24

5.3. Sequencing constraints among old and new batches

C15C5�pt5A�M(1�X15)�M(1�Y5A)

C55C1�pt1A�MX15�M(1�Y5A)

C25C5�pt5A�M(1�X25) �M(1�Y5A)

C55C2�pt2A�MX25�M(1�Y5A)

C35C5�pt5B�M(1�X35)�M(1�Y5B)

C55C3�pt3B�MX35�M(1�Y5B)

C45C5�pt5A�M(1�X45)�M(1�Y5A)

C55C4�pt4A�MX45�M(1�Y5A)

6. Using the MILP rescheduling approach to improving a

non-optimal solution

By embedding preordering rules in the rigorous

mathematical formulation of the batch scheduling
problem, compact models can easily be derived. The

use of MILP compact models represents a suitable

alternative to quickly generate good production sche-

dules for large-scale batch facilities. Preordering rules

are indeed sequencing rules that establish the relative

ordering of batches at every equipment unit beforehand.

Depending on the rule being applied, the batches are

sequenced by increasing processing times (SPT-rule), by
increasing due dates (EDD-rule), by increasing slack-

times (MST-rule) and so on. In this way, the compact

scheduling problem formulation will just include the

allocation variables since the 0�/1 sequencing variables

are no longer required. In other words, the major

difference between the rigorous mathematical formula-

tion and a compact scheduling model is that the

sequencing constraints in the latter case are only
expressed in terms of assignment variables.

If a good production schedule is to be generated from

scratch by solving an MILP compact formulation, then

there is no existing batch (Iold�/¥) and every batch

belongs to the set Inew. Then, the sequencing constraints

in Eqs. (7.1) and (7.2) are just needed. Let us assume

that the batches will be arranged by increasing slack

times (sli) at every equipment unit. In such a case, the
sequencing constraints in Eqs. (7.1) and (7.2) in the

resulting compact formulation will reduce to a single

one with the following form:

Ci�tii0j�sui0j 5Ci0�pti0j�M(2�Yij�Yi0j) � i;

i0 � Inew; j � (JiS Ji0); (sliBsli0)
(7?)

However, compact scheduling models usually gener-

ate good, but non-optimal, solutions since the preorder-

ing rule may exclude the optimal schedule from the
compact feasible region. Nevertheless, the initial sche-

dule provided by the compact schedule model can be

improved through reordering and reassignment opera-

tions by applying the proposed MILP rescheduling

approach. During the rescheduling stage, all batches

belong to the set Iold and, therefore, Inew�/¥. In this

way, efficient production schedules for real-world multi-

product batch facilities can be found with very low
computational cost.

7. The rescheduling algorithm

a) Define the sets Iold and Inew by incorporating the

existing batches still to be processed in Iold and the

new single-batch orders in Inew.

b) Define the set of available units Ji
#/Ji for every old/

new batch i and the time periods during which each

one can be used.

c) Define the production schedule to be updated by

specifying the current assigned unit and the position

ri
old in the processing sequence for every old batch

i � /Iold.

d) Define the small sets ISi and IA by specifying the

parameter ni and the unit option set Ji
for every old

batch i � /Iold.

e) Generate the MILP rescheduling problem formula-

tion based on the sets {IS , ISi , IA , Ji
#, Ji , Iold, Inew}.

f) Solve the MILP rescheduling formulation to find

the best-updated schedule through local reordering

and unit reassignment operations. If the solution

found is an improvement with regards to the one

identified in the previous iteration, go to step (g).
Otherwise, either stop the procedure or enlarge the

sets {ISi , IA , Ji
} by increasing ni or the number of

options in the set Ji
#. In the latter case, go to step

(g).

g) Update the sets {ISi , IA , Ji
} and return to step (e).

h) Each execution of steps (e)�/(f) stands for a major

iteration of the proposed rescheduling algorithm.

8. Results and discussion

8.1. Example 1

The proposed MBP reactive scheduling approach will
be illustrated by tackling three example problems.

Example 1, first introduced by Pinto and Grossmann

(1995) and later studied by Ierapetritou, Hené, and

C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 27 (2003) 1247�/12591252

Table 1

Order data

Order Due date (day) Slack time (day) Processing time (day) Order Due date (day) Slack time (day) Processing time (day)

U1 U2 U3 U4 U1 U2 U3 U4

O1 15 13.806 1.538 1.194 O21 30 26.386 7.317 3.614

O2 30 29.211 1.500 0.789 O22 20 19.136 0.864

O3 22 21.182 1.607 0.818 O23 12 8.376 3.624

O4 25 23.436 1.564 2.143 O24 30 27.333 2.667 4.000

O5 20 19.264 0.736 1.017 O25 17 13.552 5.952 3.448 4.902

O6 30 26.800 5.263 3.200 O26 20 18.243 3.824 1.757

O7 21 17.975 4.865 3.025 3.214 O27 11 7.063 6.410 3.937

O8 26 24.560 1.500 1.440 O28 30 26.765 5.500 3.235

O9 30 28.131 1.869 2.459 O29 25 20.714 4.286

O10 29 27.718 1.282 O30 26 23.846 2.154

O11 30 27.000 3.750 3.000 O31 22 20.637 1.569 1.363

O12 21 15.400 6.796 7.000 5.600 O32 18 15.302 2.698 3.654

O13 30 23.284 11.25 6.716 O33 15 12.853 2.147

O14 25 23.473 2.632 1.527 O34 10 7.342 3.265 2.658

O15 24 21.015 5.000 2.985 O35 10 7.450 3.480 2.550

O16 30 29.217 1.250 0.783 O36 14 11.742 2.258

O17 30 26.964 4.474 3.036 O37 24 21.855 2.145 2.194

O18 30 28.571 1.429 O38 16 14.150 2.365 1.850

O19 13 10.313 3.130 2.687 O39 22 19.970 2.030

O20 19 17.926 2.424 1.074 1.600 O40 23 21.110 1.890

Setup time 0.180 0.175 0.237 0.180 0.175 0.237

C
.A

.
M

én
d

ez,
J

.
C

erd
á

/
C

o
m

p
u

ters
a

n
d

C
h

em
ica

l
E

n
g

in
eerin

g
2

7
(

2
0

0
3

)
1

2
4

7
�

/1
2

5
9

1
2

5
3

Floudas (1999), involves the scheduling of a single-stage

multiproduct batch plant with four parallel units.

Twenty-nine single-batch orders O1�/O29 are to be

processed within a 30-day scheduling horizon. Order

due dates and unit-dependent processing and setup

times are all given in Table 1. The proposed MILP

rescheduling approach has first been applied to improve

the best solution reported by Pinto and Grossmann

(1995) and shown in Fig. 2 (example 1a). Since these

authors applied preordering rules to solve the problem

with a more compact mathematical formulation, one

can expect that the solution reported by them can be

improved through the proposed MILP rescheduling

algorithm. Ierapetritou, Hené, and Floudas (1999)

have also solved Example 1 by using an event-based

approach with preordering rules. To improve the

schedule reported by Pinto and Grossmann (1995), we

will assume that reordering operations with ni �/1 are

just allowed during rescheduling. Therefore, all the

batches belong to the set IS and each batch can only

exchange location with either its direct predecessor or its

direct successor on the processing sequence. A total of

25 reordering operations (rather than one or two

operations at a time) can potentially be performed

simultaneously. By solving the proposed MILP ap-

proach, four re-sequencing operations described in

Fig. 2 are really accomplished to improve the objective

function from 612.80 to 619.26, thus yielding the

production schedule shown in Fig. 3. Another major

iteration of the approach produces an additional

increase of the objective function and, consequently,

an improved schedule (see Fig. 4). A further application

Fig. 2. Production schedule for example 1a reported by Pinto and Grossmann (1995).

Fig. 3. Improved schedule for example 1a after the first rescheduling step.

Fig. 4. Improved schedule for example 1a after the second rescheduling step.

C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 27 (2003) 1247�/12591254

of the rescheduling algorithm does not yield any extra

improvement at all.

The MILP formulation was applied again to example

1 to this time establish a very good solution by optimally

allocating units to the whole set of batches while

assuming that they are sequenced at every unit by

increasing slack times (sli). To do that, the minimum-

slack-time rule (MST) was embedded in the MILP

model. Moreover, all the batches are assumed to belong

to Inew and, consequently, Iold is an empty set. Similarly

to Pinto and Grossmann (1995), order completion times

were maximized to reduce order earliness as much as

possible. In this way, the production schedule shown in

Fig. 5 was found (example 1b). Since the application of

the minimum-slack-time (MST) preordering rule for

batch sequencing does not always lead to the best

schedule, the proposed approach was once more applied

to improve it. This time we assume that all the batches

are included in the set IS and local reordering opera-

tions with ni �/1 for any batch i � /IS are just allowed

during rescheduling. To further reduce the total order

earliness, three re-sequencing operations outlined in Fig.

5 were performed to generate a better schedule shown in

Fig. 6. Another major iteration of the approach to

further improve the updated schedule produces another

increase in the objective function by performing a single

re-sequencing operation as indicated in Fig. 6. The

improved schedule described in Fig. 7 and Table 2

cannot be upgraded through another rescheduling step.

Overall, the objective function increases from 627.08

(initial schedule) to 632.52 (final schedule) by making

four re-sequencing operations. Therefore, any of the

schedules generated by the proposed approach is better

than the one reported by Pinto and Grossmann (1995)

Fig. 5. Initial schedule for example 1b by embedding the MST-rule in the proposed approach.

Fig. 6. Improved schedule for example 1b after the first rescheduling step.

Fig. 7. Improved schedule for example 1b after the second rescheduling step.

C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 27 (2003) 1247�/1259 1255

Table 2

Summary of results for examples 1�/3

Order Due date (day) Completion time (day) Order Due date (day) Completion time (day)

Example 1b (Fig. 7) Example 2 (Fig. 9) Example 3 (Fig. 11) Example 1b (Fig. 7) Example 2 (Fig. 9) Example 3 (Fig. 11)

O1 15 15.000 13.338 O21 30 23.436 25.464 26.370

O2 30 30.000 30.000 31.193 O22 20 19.086 19.264 21.192

O3 22 22.000 22.000 20.863 O23 12 10.675 5.4970

O4 25 25.000 21.850 22.756 O24 30 28.131 28.131 29.037

O5 20 19.822 20.000 19.808 O25 17 14.123 11.603

O6 30 23.916 23.916 26.257 O26 20 17.723 18.554 18.554

O7 21 17.148 14.628 O27 11 9.046 4.5970

O8 26 25.502 25.502 26.695 O28 30 28.974 28.974 30.167

O9 30 30.000 30.000 30.906 O29 25 13.569 11.907

O10 29 28.396 28.396 28.396 O30 26 20.945 23.254

O11 30 26.939 26.939 26.939 O31 22 20.935 20.935

O12 21 21.000 16.871 O32 18 17.326 20.328

O13 30 18.473 13.455 O33 15 9.900

O14 25 23.825 23.825 25.018 O34 10 8.155

O15 24 20.945 16.560 O35 10 7.384

O16 30 30.000 30.000 27.687 O36 14 7.578

O17 30 28.570 28.570 32.341 O37 24 19.191 19.191

O18 30 30.000 30.000 30.000 O38 16 16.000

O19 13 13.000 5.1450 O39 22 18.473 20.814

O20 19 18.222 18.400 18.604 O40 23 23.000 23.000

C
.A

.
M

én
d

ez,
J

.
C

erd
á

/
C

o
m

p
u

ters
a

n
d

C
h

em
ica

l
E

n
g

in
eerin

g
2

7
(

2
0

0
3

)
1

2
4

7
�

/1
2

5
9

1
2

5
6

featuring a value of 612.8. Moreover, the problem size

shows a drastic reduction of almost one-order-of-

magnitude at any iteration not only in the number of

binary and continuous variables but also in the overall

CPU time (see Table 3).

Let now study the effect of adopting values of ni

greater than 1 on the rescheduling problem size, the

CPU requirements and the objective function improve-

ment per iteration. To do that, it was chosen the

production schedule shown in Fig. 5 as the initial

schedule. We will try to improve such an initial solution

by applying the rescheduling algorithm with ni �/2, 3

and 4, respectively. In this way, the allowed number of

simultaneous reordering operations will almost grow by

a factor ni ; i.e. two times, three times and four times,

respectively. Table 4 presents the results of such test

runs after a single major iteration of the algorithm,

including the rescheduling problem size, the objective

function, the CPU time requirement and the number of

explored nodes. In all cases, the same updated schedule

featuring an objective function equal to 632.623 was

found. It represents a slight improvement with regards

to the one provided by the rescheduling algorithm with

ni �/1 after two major iterations; i.e. just a 0.016%

increase. On the other hand, the problem size and the

CPU requirements both show a polynomial growth with

ni . From these results, it should be concluded that the

selection of low values for ni should be favored since it

leads to a similar improvement with much lower

computational cost.

8.2. Example 2

Example 2 assumes that new late single-batch orders

O30�/O40 have arrived before starting the execution of

the production schedule found for Example 1 (Fig. 7).

Due dates and processing times for the new orders are

given in Table 1. In this case, the proposed rescheduling

approach is initially applied to fully optimize batch-unit
allocation and batch sequencing for the new single-batch

orders i � /Inew while just permitting local re-sequencing

operations with ni �/1 for any old order i � /Iold�/IS .

The new schedule found in 67.7s on a Pentium II PC

(400 MHz) with ILOG OPL studio 2.1 (ILOG, 1999),

using the embedded CPLEX mixed-integer optimizer

6.5.2 release, is depicted in Fig. 8. By performing a

second major iteration, but this time allowing re-
sequencing operations with ni �/1 for every old/new

batch i � /IS , a better schedule has been generated (see

Fig. 9 and Table 2). No further improvement was

achieved by executing another major iteration if batch

reordering with ni �/1 is only permitted.

8.3. Example 3

Finally, Example 3 assumes that the best solution for

the 40-order scheduling problem considered in Example

Table 3

Model sizes and computational requirements for examples 1�/3

Example Binary vars, cont. vars, rows Objective function CPU time Nodes

No. 1a*/solution reported by Pinto and Grossmann (1995) (Fig. 2) 441, 875, 1791 612.798 1257.17a 204

No. 1a*/solution reported by Ierapetritou, Hené, and Floudas (1999) 57,172, 559 600.186 0.28a 5

No. 1a*/first rescheduling step (Fig. 3) 25, 29, 157 619.26 0.77b 289

No. 1a*/second rescheduling step (Fig. 4) 25, 29, 157 619.51 0.66b 223

No. 1b*/this approach with an embedded MST-rule (Fig. 5) 57, 29, 559 627.082 49.49b 11941

No. 1b*/first rescheduling step (Fig. 6) 25, 29, 157 631.616 1.21b 592

No. 1b*/second rescheduling step (Fig. 7) 25, 29, 157 632.521 0.77b 363

No. 2*/insert 11 new orders into current schedule (Fig. 8) 147, 40, 479 760.957 67.72b 13238

No. 2*/first rescheduling step (Fig. 9) 36, 40, 212 762.273 16.64b 7207

No. 3*/reschedule due to unit maintenance (Fig. 11) 108, 25, 319 73.735 29.93b 11180

a Seconds on HP 9000-730 with GAMS/OSL.
b Seconds on Pentium II PC (400 MHz) with ILOG/CPLEX.

Table 4

Impact of the parameter ni on the problem size and results for example

1b

ni Binary vars, cont. vars,

rows

Objective func-

tion

CPU

timea

Nodes

1 25, 29, 157 631.616 1.21 592

2 46, 29, 202 632.623 24.80 11922

3 63, 29, 233 632.623 75.58 30565

4 76, 29, 252 632.623 98.54 33412

a Seconds on Pentium II PC (400 MHz) with ILOG/CPLEX.

Fig. 8. Initial schedule for example 2.

C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 27 (2003) 1247�/1259 1257

2 has been partially executed as predicted. However, an

unexpected 3-day maintenance period for unit U3 at

time t�/14.6 days, after processing order no. 7, makes

necessary to perform a rescheduling process over the set

of 25 orders not yet processed (see Fig. 10). The problem

goal is to minimize a weighted combination of order

earliness and tardiness, with higher penalties associated

to tardy orders (ai �/1, bi �/5). During rescheduling, the

batches currently allocated to unit U3 may be reassigned

to other units and sequenced in the best possible way

(set IA) while local re-sequencing operations with ni �/1

are just allowed for the remaining orders (set IS). If

rescheduling is not performed and the orders allocated

to U3 should wait until the equipment unit resumes

operation, then the overall tardiness for such orders will

be as large as 13.55 days. Certainly, any unit different

from U3 is processing a batch at the rescheduling time

t�/14.6 days and consequently its ready time will be

later than 14.6. Through a single major iteration of the

proposed MILP rescheduling approach, the best-up-

dated schedule shown in Fig. 11 and Table 2 was found

in 30 s. In this way, the total tardiness is decreased from

13.55 to 8.84 days while the maximum order tardiness
dropped from 2.71 to 2.34 (see Table 5).

9. Conclusions

Large-scale scheduling packages have usually no real

provision for cheaply correcting the current schedule for

small to middle-size changes, except to make full
rescheduling. This work intends to provide a flexible

MILP systematic tool to efficiently update schedules by

simultaneously making limited reallocation and reorder-

ing operations, while keeping the extent of the schedule

adjustments under user control. The rescheduling tool

can still be used even if sequence-dependent setup times

are to be considered. The proposed MILP based

algorithmic approach should be iteratively applied on
the current schedule until no further improvement is

obtained. Successful solution to three large-size exam-

ples involving from 29 to 40 orders shows that, in any

case, the rescheduling steps requires a very low CPU

time. Such examples dealt with the improvement of an

available non-optimal schedule, the insertion of new

Fig. 9. Improved schedule for example 2 after the first rescheduling step.

Fig. 10. Schedule in progress and rescheduling operations for example

3.

Fig. 11. Improved schedule in progress for example 3.

C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 27 (2003) 1247�/12591258

jobs and the update of a schedule already in progress

because of an unexpected unit maintenance period.

Acknowledgements

The authors acknowledge financial support from
FONCYT under Grant 14-07004, and from ‘Universi-

dad Nacional del Litoral’ under CAI�/Ds 048 and 121.

References

Hasebe, S., Hashimoto, I., & Ishikawa, A. (1991). General reordering

algorithm for scheduling of batch process. Journal of Chemical

Engineering of Japan 24 (4), 483�/489.

Ierapetritou, M. G., Hené, T. S., & Floudas, C. A. (1999). Effective

continuous-time formulation for short-term scheduling. 3 Multiple

intermediate due dates. Industrial and Engineering Chemistry

Research 38 , 3445�/3461.

ILOG OPL studio 2.1 user’s manual (1999). ILOG S.A., France.

Méndez, C. A., Henning, G. P., & Cerdá, J. (2001). A continuous-time

approach to short-term scheduling of resource-constrained multi-

stage batch facilities. Computers and Chemical Engineering 25 ,

701�/711.

Musier, R. F. H., & Evans, L. B. (1990). Batch process management.

Chemical Engineering Progress 87 (6), 66�/77.

Pinto, J. M., & Grossmann, I. E. (1995). A continuous time mixed

integer linear programming model for short term scheduling of

multistage batch plants. Industrial and Engineering Chemistry

Research 34 , 3037�/3051.

Roslöf, J., Harjunkoski, I., Björkqvist, J., Karlsson, S., & Westerlund,

T. (2001). An MILP-based reordering algorithm for complex

industrial scheduling and rescheduling. Computers and Chemical

Engineering 25 , 821�/828.

Table 5

Comparative table of performance measures for examples 1�/3

Performance measure (days) Example 1a, Pinto and Grossmann (1995) Example 1b (Fig. 7) Example 2 (Fig. 9) Example 3 (Fig. 11)

Maximum earliness 14.787 11.527 16.545 4.809

Total earliness 82.202 62.479 132.727 29.535

Average earliness 2.834 2.154 3.318 1.181

Maximum tardiness 2.341

Total tardiness 8.84

Average tardiness 0.3536

C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 27 (2003) 1247�/1259 1259

	Dynamic scheduling in multiproduct batch plants
	Introduction
	Problem definition
	Model assumptions
	The mathematical model
	Allocation constraints
	For new batches iŁInew to be scheduled
	For old batches iŁIA that can be reassigned to other units jŁJiŁ during rescheduling

	Timing constraints
	Sequencing constraints
	For every pair of existing batches i, i’ŁISŁIold that are currently assigned to the same unit jiold and may undergo j
	For a pair of batches involving an old batch iŁIS currently assigned to unit jiold and another oldŁnew batch that c
	For a pair of old batches i, i’ŁIA that can be reassigned to the same equipment item during the rescheduling process
	For an existing batch iŁIA and a new batch i’ŁInew that can be assigned to the same unit during the rescheduling proc
	For a pair of new batches that can be assigned to the same unit during the rescheduling process

	Order tardiness
	Order earliness
	Problem objective function

	An illustrative example
	Allocation constraints
	Sequencing constraints between any pair of old batches
	Sequencing constraints among old and new batches

	Using the MILP rescheduling approach to improving a non-optimal solution
	The rescheduling algorithm
	Results and discussion
	Example 1
	Example 2
	Example 3

	Conclusions
	Acknowledgements
	References

