
Probing the Performance Limits of the
Escherichia coli Metabolic Network
Subject to Gene Additions or Deletions

Anthony P. Burgard, Costas D. Maranas*

Department of Chemical Engineering, The Pennsylvania State University,
University Park, Pennsylvania 16802; telephone: (814) 863-9958; fax: (814)
865-7846; e-mail: costas@psu.edu

Received 30 May 2000; accepted 3 January 2001

Abstract: An optimization-based procedure for studying
the response of metabolic networks after gene knockouts
or additions is introduced and applied to a linear flux
balance analysis (FBA) Escherichia coli model. Both the
gene addition problem of optimally selecting which for-
eign genes to recombine into E. coli, as well as the gene
deletion problem of removing a given number of existing
ones, are formulated as mixed-integer optimization
problems using binary 0–1 variables. The developed
modeling and optimization framework is tested by inves-
tigating the effect of gene deletions on biomass produc-
tion and addressing the maximum theoretical production
of the 20 amino acids for aerobic growth on glucose and
acetate substrates. In the gene deletion study, the small-
est gene set necessary to achieve maximum biomass
production in E. coli is determined for aerobic growth on
glucose. The subsequent gene knockout analysis indi-
cates that biomass production decreases monotonically,
rendering the metabolic network incapable of growth af-
ter only 18 gene deletions. In the gene addition study, the
E. coli flux balance model is augmented with 3,400 non-
E. coli reactions from the KEGG database to form a mul-
tispecies model. This model is referred to as the Univer-
sal model. This study reveals that the maximum theoret-
ical production of six amino acids could be improved by
the addition of only one or two genes to the native amino
acid production pathway of E. coli, even though the
model could choose from 3,400 foreign reaction candi-
dates. Specifically, manipulation of the arginine produc-
tion pathway showed the most promise with 8.75% and
9.05% predicted increases with the addition of genes for
growth on glucose and acetate, respectively. The mecha-
nism of all suggested enhancements is either by: 1) im-
proving the energy efficiency and/or 2) increasing the
carbon conversion efficiency of the production route.
© 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 74: 364–375,
2001.
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BACKGROUND AND OBJECTIVES

Metabolic pathway engineering has attracted significant in-
terest in recent years, catalyzed by the rapidly increasing

number of sequenced microbial genomes. Altogether, as of
April 2001, over 45 microbial genomes have been com-
pletely sequenced (TIGR microbial database; website http://
www.tigr.org) and bioinformatic tools have allowed the
functional assignment of 45–80% of their coding regions
(Pennisi, 1997). This newly acquired information can be
used in conjunction with recent microbial mathematical
models to construct algorithmic techniques for maximizing
metabolic objectives through systematic gene recombina-
tion. In addition, as the prediction capability of metabolic
models continues to improve, the effect of multiple gene
deletions on network robustness and organism survivability
can be studied with increasing confidence.

In general, mathematical models of cellular metabolism
fall into two distinct categories, ones that incorporate kinetic
and regulatory information and others that include only the
stoichiometry of the reaction pathways. The first class of
models matches cellular behavior at an original steady state
and then employs kinetic and regulatory relations to exam-
ine how the cell behaves away from this steady state in the
presence of small perturbations brought about by environ-
mental changes or enzyme engineering. Metabolic control
analysis (MCA) (Kacser and Burns, 1973; Heinrich and
Rapoport, 1974), introduced in the 1970s, enabled the sys-
tematic evaluation and description of many metabolic fac-
tors governing the control of flux such as enzyme activities
and effector concentrations. For example, the application of
an MCA based (log)linear kinetic model developed by
Hatzimanikatis and Bailey (1997), along with the metabolic
optimization framework introduced by Hatzimanikatis et al.
(1996a), pointed out experimentally verified ways for en-
hancing ethanol production in metabolically engineeredE.
coli cells (Hatzimanikatis et al., 1998). Alternatively, syn-
ergetic or S-system representation models based on the Bio-
chemical Systems Theory formalism introduced by Sav-
ageau in the late 1960s (Savageau, 1969a,b, 1970) cast each
metabolite concentration balance as two competing power-
law functions describing aggregation and consumption.
Upon a logarithmic transformation, this provided the frame-
work for steady state enzyme level optimization through
linear programming (Voit, 1992; Regan et al., 1993; Torres
et al., 1996). The quantitative effect of uncertainty or im-
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precision in S-system parameters, likely to occur at condi-
tions away from the nominal steady state, was investigated
by Petkov and Maranas (1997). Nonlinear kinetic models
(e.g., Michaelis-Menten) have been used in place of the
linear MCA or S-system models whenever detailed kinetic
expressions for each reaction step are known. Both linear
and nonlinear kinetic modeling approaches lend themselves
well to optimization strategies for exploring possible
changes in enzymes activities and/or regulatory structure
that optimize a given metabolic objective (Hatzimanikatis et
al., 1996a,b).

The second class of models, on the other hand, utilizes
only the stoichiometric mass balances of the metabolic net-
work to generate the broadest set of flux distributions po-
tentially available to the cell. By requiring only the stoichi-
ometry of biochemical pathways and cellular composition
information, flux balance analysis (FBA) can be used to
construct stoichiometric boundaries for the metabolic flux
distributions in the absence of detailed kinetic and thermo-
dynamic data. However, this versatility comes at the ex-
pense of perhaps unknowingly crossing kinetic or regula-
tory flux barriers. Therefore, FBA predictions must be
treated as upper bounds to the performance of the metabolic
network. Flux balance models have been widely used to
successfully study many metabolic networks including
penicillin production byPenicillium chrysogenum(Jor-
gensen et al., 1995; Henriksen et al., 1996), growth ofCo-
rynebacterium melassecolaon glucose and fructose (Pons et
al., 1996), by-product secretion byE. coli under various
oxygenation rates (Varma et al., 1993a), acetate secretion
from E. coli under ATP maximization conditions (Majewski
and Domach, 1990; Delgado and Liao, 1997), and to im-
prove large-scale cultivation of mammalian cells (Xie and
Wang, 1994a,b, 1996a,b,c, 1997). In addition, the analysis
of metabolic flux boundaries has provided valuable physi-
ological insight through the determination of maximum
theoretical yields (Varma et al., 1993b) and the identifica-
tion of key principle nodes controlling flux split ratios
around branch points (Vallino and Stephanopoulos,
1994a,b).

The utility of flux balance models coupled with the ex-
plosion of newly available genetic data motivates the need
for a systematic procedure utilizing FBA to determine the
most desirable recombinatory choices to undertake. Until
now, recombinant DNA technology has been used to add
straightforward conversion pathways which produce new
and desirable cellular functions. For instance,E. coli strains
producing biotin (Sabatie et al., 1991) and indigo (Ensley,
1985) were designed by introducing foreign genes obtained
directly from the biotin and indigo production pathways of
Bacillus sphaericusandPseudomonas putida, respectively.
Other success stories include enhancingE. coli’s ability to
overexpress heterologous proteins (Aristidou et al., 1994;
Chou et al., 1994; Dedhia et al., 1994) and engineering
microorganisms to biodegrade pollutants such as heavy
metals (Wang et al., 1997), phosphates (Keasling et al.,

1998; Van Dien and Keasling, 1998), and trichloroethylene
(Winter et al., 1989). It is the objective of this study to
utilize FBA and mixed-integer programming tools to select
the mathematically optimal genes for recombination intoE.
coli from a metabolic database encompassing many genes
from multiple species. The resulting pathways need not lie
directly on main production pathways, as they may enhance
production indirectly by either redirecting metabolic fluxes
into the production pathways or by increasing the energy
efficiency of the present pathways.

The recent upsurge of sequenced genomes has also
brought significant attention to the question of which genes
are crucial for supporting cellular life. FBA modeling pro-
vides a useful tool to help elucidate this question. Although
FBA models cannot simulate the regulatory structure alter-
ations associated with gene deletions, these models can cap-
ture whether sufficient network connectivity exists to pro-
duce metabolites critical to cellular survival. In fact, a recent
FBA model proposed by Edwards and Palsson (2000a) was
able to qualitatively predict the growth patterns of 86% of
the mutantE. coli strains examined. This model was also
used to identify some of the essential gene products of cen-
tral metabolism for aerobic and anaerobicE. coli growth on
glucose (Edwards and Palsson, 2000b). Determining the
maximum number of tolerable gene deletions in a given
metabolic system, however, requires a discrete optimization
strategy in which multiple gene deletions can be simulta-
neously examined. A related approach utilizing discrete op-
timization to identify all alternate optima in linear metabolic
models has been proposed by Lee et al. (2000).

In this work, we examine how stoichiometric boundaries
of cellular performance expand or contract in the presence
of multiple gene additions or deletions. A FBA model of the
cellular metabolism ofE. coli is constructed incorporating
the reaction pathways provided by Pramanik and Keasling
(1997), along with modifications suggested by Karp et al.
(1999) based on more recent data. The modifications are
either small molecule corrections based on more recent
metabolic information or the removal of certain pathways
now known to be absent from theE. coli genotype. A stoi-
chiometric matrix as suggested by Schilling (1999) contain-
ing all metabolic reactions from the Kyoto Encyclopedia of
Genes and Genomes (KEGG, 1999, website http://
www.genome.ad.jp/kegg/) is compiled and incorporated
into the model. We refer to this multispecies stoichiometric
matrix as the Universal stoichiometric matrix. A short dis-
cussion of FBA will be presented next, followed by the gene
addition and deletion formulations and their application to
biomass and amino acid production inE. coli.

FLUX BALANCE ANALYSIS

FBA requires only the stoichiometry of biochemical path-
ways and cellular composition information to identify
boundaries for the flux distributions available to the cell.
Although microorganisms have evolved highly complex
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control structures which eventually collapse these available
boundaries into single points, FBA models are still valuable
in setting upper bounds for performance targets and in iden-
tifying “ideal” flux distributions. The underlying principle
of FBA is mass balances on the metabolites of interest. For
a metabolic network comprised ofN metabolites andM
metabolic reactions, we have:

(
j=1

M

Sijnj = bi, ; i (1)

whereSij is the stoichiometric coefficient of metabolitei in
reactionj, vj represents the flux of reactionj, and bi quan-
tifies the network’s uptake (if negative) or secretion (if posi-
tive) of metabolitei. For all internal metabolites, bi is zero.
Reversible reactions are defined simply as two irreversible
reactions in opposite directions, constraining all fluxes to
non-negative values.

Typically, the resulting flux balance system of equations
is underdetermined as the number of reactions exceeds the
number of metabolites and additional information is re-
quired to solve for the reaction fluxes. Several researchers
have measured external fluxes to add as constraints to their
underdetermined models, rendering them completely deter-
mined or overdetermined (Jorgensen et al., 1995; Vallino
and Stephanopoulos, 1993; Papoutsakis and Meyer,
1985a,b; Pons et al., 1996). However, additional assump-
tions such as removing reaction pathways are often needed
before external flux measurements can completely define a
system and neglecting potentially active pathways to render
a system completely defined may cause large changes in
calculated fluxes (Pramanik and Keasling, 1997). A popular
technique for investigating metabolic flux distributions is
linear optimization (Varma and Palsson, 1994). The key
conjecture is that the cell is capable of spanning all flux
combinations allowable by the stoichiometric constraints
and thus achieving any flux distributions that maximize a
given metabolic objective (e.g., biomass production). The
linear programming model for maximizing biomass produc-
tion is:

Maximize Z = nbiomass (2)

(
j=1

M

Sijnj = bi, ; i

bi ∈ ℜ, ; i

nj ∈ ℜ+, ; j

where vbiomass is a flux drain comprised of all necessary
components of biomass in their appropriate biological ratios
(Neidhardt, 1997). Other objective functions such as maxi-
mizing metabolite production (Varma et al., 1993b), maxi-
mizing biomass production for a given metabolite produc-
tion (Varma et al., 1993b), and maximizing ATP production
have also been investigated (Majewski and Domach, 1990;
Ramakrishna et al., 2001).

Escherichia coli Stoichiometric Models

Microbial stoichiometric models incorporate collections of
reactions known to occur in the studied species for simu-
lating metabolism. The complete sequencing of theE. coli
genome (Blattner et al., 1997) makes it a model organism
for the study presented in this article because extensive
knowledge regarding its biochemical pathways is readily
available. Varma and Palsson (1993) proposed the first de-
tailed FBAE. coli model capable of predicting experimental
observations. The stoichiometric matrix included 95 revers-
ible reactions utilizing 107 metabolites for simulating glu-
cose catabolism and macromolecule biosynthesis. This
model was used to investigate by-product secretion ofE.
coli at increasingly anaerobic conditions (Varma et al.,
1993a) and was able to predict the right sequence of by-
product secretion consistent with experimental findings:
first, acetate at slightly anaerobic conditions, then formate,
and finally ethanol at highly anaerobic conditions. Building
on the previous model, Pramanik and Keasling (1997) in-
troduced a model that incorporated 126 reversible reactions
(including 12 reversible transport reactions) and 174 irre-
versible reactions, as well as 289 metabolites. Pramanik and
Keasling (1997) correlated the macromolecule composition
of E. coli as a function of growth rate and verified their
model with experimental data. The model successfully pre-
dicted several levels of genetic control such as the glycox-
ylate shunt closing for growth on glucose and the PEP car-
boxykinase flux tending toward oxaloacetate. Furthermore,
the glycoxylate shunt was active during growth on acetate,
while the flux through PEP carboxykinase was toward phos-
phoenolpyruvate.

The stoichiometricE. coli model used in this study em-
ploys 178 irreversible, 111 reversible, and 12 transport re-
actions compiled largely from the model published by Pra-
manik and Keasling (1997). The modifications to the Pra-
manik and Keasling stoichiometric matrix are given in
Table I. They are primarily small molecule corrections (e.g.,
ATP in place of GTP for succinate thiokinase) or the re-
moval of reactions now known to be absent fromE. coli
based on more recent data (Karp et al., 1999). Note that
similar changes were also independently included in the
most recently publishedE. coli model of Edwards and Pals-
son (2000a). The metabolic network is fueled by transport
reactions allowing an unconstrained supply of ammonia,
hydrogen sulfate, and phosphate, along with a constrained
supply of glucose or acetate to enter the system. Oxygen
uptake is unconstrained to simulate aerobic conditions. Un-
constrained secretion routes for lactate, formate, ethanol,
glyceraldehyde, succinate, and carbon dioxide by-products
are provided by the transport reaction fluxes. The Universal
model is constructed by incorporating 3,400 cellular reac-
tions from the Kyoto Encyclopedia of Genes and Genomes
into the modified Keasling stoichiometric model. The Uni-
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versal stoichiometric matrix contains all reactions known to
occur inE. coli, as well as a number of reactions from other
organisms.

MATHEMATICAL MODELING OF GENE
DELETIONS/ADDITIONS

Practically every metabolic reaction is regulated to some
extent by one or more enzymes, produced by the translation
of one or more genes. As a result, the removal of certain
genes from microbial DNA sequences can be fatal or have
little if any effect, depending on the role of the enzymes
coded for by these genes. Conversely, the addition of certain
genes through recombinant DNA technology can have ei-
ther no effect or produce novel desirable cellular function-
alities. Given a stoichiometric model ofE. coli metabolism
and the Universal stoichiometric matrix encompassing re-
actions occurring in multiple species, the goal of this section
is to formulate a mathematical model that 1) captures cel-
lular robustness in the presence of multiple gene deletions,
and 2) identifies additional genes from the Universal dataset
having the most profound effect on improving a given meta-
bolic objective.

First, defineK 4 { k} 4 {1,…,M,…,T} as the set of all
possible genes whereM represents the number ofE. coli
genes andT represents the total number of genes in the
dataset. This set can be partitioned into two subsetsE and
NE where subsetE represents genes present inE. coli and
subsetNE represents genes present only in non-E. coli spe-
cies:

E = $k ? 1 # k # M% (3)

NE= $k ? M + 1 # k # T% (4)

Subsequently, let binary variableyk describe the presence or
absence of each genek:

yk = H0 if gene k is not expressed in host organism
1 if gene k is present and functional

(5)

The selection of the optimal gene choices for deletion or
insertion from DNA recombination can be determined by
appropriately constraining the number of nonzero elements
in y. The case of removing a given number of genes,d, from
E. coli can be investigated by including the following con-
straint:

(
k∈E

~1 − yk! $ d (6)

This ensures that no more than (M − d) genes are available
to the metabolic network. Similarly, the effect of introduc-
ing any number of additional genes,h, can be investigated
by utilizing:

yk = 1, ; k ∈ E (7)

(
k∈NE

yk # h (8)

Equation (7) allows allE. coli genes to be present and
functional if necessary, while Eq. (8) sets an upper limit to
the number of allowable additions. The optimal genes se-
lected by the model are obtained by determining which
elements ofNEare equal to one. In addition, since multiple
genes often correspond to a single reaction and occasionally
multiple reactions are catalyzed by an enzyme coded for by

Table I. Modifications to the Pramanik and Keasling model.*

Enzymes Reactions

Reactions assumed irreversible
Phosphofructokinase Fructose-1,6-bisphosphate→ Fructose-6-phosphate + PI
Citrate synthase Acetyl-CoA + Oxaloacetate→ CoA + Citrate
2-Ketoglutarate dehydrogenase 2-Ketoglutarate + NAD + CoA→ Succinyl-CoA + CO2 + NADH
PRSCAIM synthetase RCAIM + ATP + Aspartate→ ADP + Pi + PRSCAIM
Glycerol kinase Glycerol + ATP→ Glycerol-3-phosphate + ADP

Reactions removed from model
Unknown pathway 58-methylthioadenosine→ Adenosine + Methionine
Cystathionase Homocysteine + Adenosine↔ s-Adenosyl-homocystine
Sulfotransferase Adenosine-3,5-diphosphate + sulfite↔ 3-Phosphoadenylylsulfate

Reactions modified
Fructose-1,6-bisphosphate aldolase Fructose-1,6-bisphosphate→ Fructose-6-phosphate + Pi
Isocitrate dehydrogenase Isocitrate + NADP↔ CO2 + NADPH + 2-Ketoglutarate
Succinate thiokinase Succinyl-CoA + ADP + PI↔ ATP + CoA + Succinate
Prephenate dehydrogenase Prephenate + NAD→ CO2 + NADH + para-Hydroxy phenyl pyruvate
Hol dehydrogenase Histidinol + 3 NAD → 3 NADH + Histidine
RCAIM synthetase AIR + CO2 + ATP→ 5-p-Ribosyl-4-carboxy-5-aminoimidazole + ADP + Pi
GTP cyclohydrolase GTP→ D6RP5P + Formate + Ppi
3,4-Dihydroxy-2-Butanone-4-phosphate synthase Ribulose-5-phosphate→ DB4P + Formate
H2Neopterin triphosphate pyrophosphatase AHTD→ PPi + Pi + DHP

CoA synthase
OIVAL + METTHF + NADPH + ALA + CTP + 4 ATP + CYS→
THF + NADP + AMP + 2 PPi + 2 ADP + CO2 + CoA + CDP

*Modifications based on information by Karp et al. (1999).
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a single gene, the binary parameterajk is defined to describe
which enzymes are coded for by which genes:

ajk = H0 if gene k has no direct effect on reaction j
1 if gene k codes for an enzyme catalyzing

reaction j (9)

Parameterajk establishes links between genetic functional
assignments and reactions. In order for a fluxvj to take on
a nonzero value, at least one gene must code for an enzyme

catalyzing this reaction (ajk 4 1) and this gene must be
present and functional in the host organism (yk 4 1). Given
that at least one gene must code for every enzyme, we have:

(
k

ajk yk 5
= 0 if no gene coding for the

enzyme of reactionj is functional
$ 1 if at least one gene coding for the

enzyme of reactionj is functional
(10)

Table II. Genes selected for removal by knockout study

Enzymes Genes Reactions

3,5-ADP phosphatase APe 35ADP → AMP + Pi
Acetate kinase ackA AC + ATP→ ACTP + ADP
CDP kinase ndka CDP + ATP→ CTP + ADP
CMP kinase ndkb CMP + ATP → CDP + ADP
F0F1-ATPase unc ADP + Pi + Hext → ATP
Formate THF ligase FTLc THF + FORMATE + ATP→ ADP + Pi + FTHF
Fumarase fumAB FUM→ MAL
Glyceraldehyde kinase GKd GLAL + ATP → ADP + T3P1
Glycine cleavage system gcvHTP GLY + THF + NAD→ METTHF + NADH + CO2 + NH3
Malate dehydrogenase mdh MAL + NAD→ NADH + OA
Methenyl THF cyclohydrolase foIDf METHF → FTHF
Methylene THF dehydrogenase foIDg METTHF + NADP → METHF + NADPH
NADH dehydrogenase I ndh NADH + Q→ NAD + QH2 + 4 Hext

PEP synthase pps PYR + ATP→ PEP + AMP + Pi
Phosphatidate phosphatase dgkA DGR + Pi→ PA
Phosphotransacetylase pta ACTP + COA→ ACCOA + Pi
Pyrophosphatase ppa PPi→ 2 Pi
Succinate dehydrogenase sdhABCD SUCC + FAD→ FADH2 + FUM
Succinate thiokinase sucCD SUCCOA + GDP + Pi→ GTP + COA + SUCC

a,bSame gene responsible for two intracellular reactions.
f,gSame gene responsible for two intracellular reactions.
c,d,eNo gene has been assigned to these intracellular reactions.

Figure 1. Gene knockouts at various biomass production levels for growth on glucose.a,b,f,gSame gene responsible for two intracellular reactions.c,d,eNo
gene has been assigned to these intracellular reactions.
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This implies that the following constraint:

# nj # Vj
maxS(

k

ajk ykD (11)

ensures thatnj 4 0 if there exists not active genek capable
of supporting reactionj. In this case,(k ajk yk 4 0, which in
turn forces the value ofnj to zero. Alternatively, if at least
one such gene is functional, then(k ajk yk $ 1, allowingnj

to assume any value between zero and an upper boundVmax
j .

These upper bounds are set by maximizing the given fluxnj

subject to the stoichiometric constraints. These problems
are solved using CPLEX 6.6 accessed via the commercial
software package GAMS. Problems with up to 3700 binary
variables were solved on an IBM RS6000-270 workstation.

GENE KNOCKOUT STUDY

In this study we explore what is the smallest gene set ca-
pable of maximizing biomass production on glucose sub-
strate (uptake basis: 10 mmol) and what is the maximum
number of gene deletions from this gene set that still main-
tains a specified level of biomass production. First, we
maximized the biomass production flux,vbiomass. The solu-
tion yields the maximum theoretical level of biomass pro-
duction (vmax

biomass4 1.25 g biomass/gDW? h) achievable by

the metabolic network within the stoichiometric constraints.
Next, the minimum number of genes that maintains a speci-
fied target level of biomass productionvtarget

biomass(as a per-
centage of the maximum) is determined. The new objective
function minimizes the total number of functionalE. coli
genes available to the cell subject to the constraint of setting
biomass productionvbiomassgreater than or equal tovtarget

biomass.
This problem is formulated as:

Minimize Z = (
k∈E

yk (12)

subject to (
j=1

M

Sij nj = bi, ; i

0 # nj # Vj
maxS(

k

ajk ykD
nbiomass$ nbiomass

t arget

nj ∈ ℜ+, ; j
bi ∈ ℜ, ; i
yk ∈ $0,1%, ; k ∈ E

where the nonzero elements ofyk define the minimum gene
set capable of attaining the target growth rate. The smallest
gene set}100%, capable of sustaining the maximum theo-
retical growth rate is obtained by settingvtarget

biomass 4
100%? vmax

biomass. The model predicts that 202 nontransport
intracellular reactions out of 400 available reactions (111 ×

Table III. Model predictions of maximum theoretical yields of amino acids for growth on glucose and acetate.

Maximum theoretical yield
(mmol/per 10 mmol glucose)

Maximum theoretical yield
(mmol/per 10 mmol acetate)

Palsson ’93
Modified

keasling ’97
Universal

model % Increase Palsson ’93
Modified

keasling ’97
Univeral
model % Increase

Alanine 20.00 20.00 20.00 — 3.93 5.29 5.29 —
Arginine 7.74 9.26 10.07 8.75% 1.51 2.43 2.65 9.05%
Asparagine 15.60 18.18 19.23 5.77% 3.24 4.66 4.91 5.45%
Aspartate 18.20 20.00 20.00 — 3.82 5.29 5.29 —
Cysteine 9.75 11.49 11.90 3.57% 1.81 3.29 3.42 3.80%
Glutamate 10.00 13.33 13.33 — 2.68 3.65 3.65 —
Glutamine 10.00 13.33 13.33 — 2.50 3.46 3.46 —
Glycine 20.00 35.33 35.33 — 3.94 9.00 9.00 —
Histidine 7.30 9.77 9.80 0.23% 1.37 2.43 2.54 4.53%
Isoleucine 7.34 8.00 8.07 0.91% 1.44 2.13 2.13 —
Leucine 6.67 8.00 8.00 — 1.59 2.18 2.18 —
Lysine 7.84 8.45 8.45 — 1.55 2.18 2.18 —
Methionine 5.74 7.04 7.19 2.16% 1.11 1.81 1.85 2.46%
Phenylalanine 5.29 5.76 5.76 — 1.00 1.47 1.47 —
Proline 10.00 10.91 10.91 — 2.10 2.90 2.90 —
Serine 20.00 23.04 23.04 — 3.94 5.87 5.87 —
Threonine 12.30 15.00 15.00 — 2.50 3.91 3.91 —
Tryptophan 4.14 4.67 4.73 1.28% 0.76 1.17 1.19 1.32%
Tyrosine 5.48 6.03 6.03 — 1.03 1.54 1.54 —
Valine 10.00 10.00 10.00 — 1.96 2.67 2.67 —

Palsson ’93:E. coli model proposed by Varma et al. (1993b).
Modified Keasling ’97: Modified Palsson and Keasling (1997)E. coli model as described in text.
Universal Model: Modified Palsson and Keasling (1997)E. coli model augmented with non-E. coli reactions compiled by the Kyoto Encyclopedia of

Genes and Genomes.
% Increase: Between the modified Palsson and Keasling (1997) model and the Universal model.
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2 reversible reactions + 178 irreversible reactions) are re-
quired to sustainvmax

biomass. These reactions include the gly-
colytic reactions, the pentose phosphate pathway, the TCA
cycle, the respiratory reactions, and all other anabolic and
catabolic routes necessary for optimal growth.

Given}100%, the next goal is to determine which of these
genes could be knocked out while still allowing the meta-
bolic network to sustain specified suboptimal growth rates.
This is accomplished by settingvtarget

biomassequal to various
percentages ofvmax

biomassand constraining the intracellular re-
action fluxes outside of}100% to zero. It must be noted that
this assumption prevents the model from activating any
genes outside of the}100% set and the significance of this
assumption will be discussed in the following section. The
number of allowable gene knockouts for various biomass
production levels are given in Figure 1, while the selected
gene removals are presented in Table II. As expected, as the
biomass production demands on the network are lessened
the model tolerates more gene knockouts. However, the
range of allowable knockouts is rather small. Specifically,
the model tolerates at most nine gene deletions with a bio-
mass requirement of 90%? vmax

biomass, while 18 gene removals
render the network incapable of biomass formation. Thus
the subset containing all elements of}100% minus the 18
gene knockouts (194 genes) describes the smallest subset of
}100% capable of sustainingE. coli cellular growth for the
employed FBA model. Additionally, it must be noted that
all subsets include the seven experimentally verified essen-
tial gene products of central metabolism identified by thein
silico gene deletion study ofE. coli conducted by Edwards
and Palsson (2000b).

DISCUSSION OF THE GENE DELETION STUDY

Investigation of the specific gene knockouts provides inter-
esting insight into the effect of various energy generation
pathways. The suggested gene deletions imply that the en-
ergetic status of the network is improved as the required
biomass production demands on the cell are reduced. This is
demonstrated by the fact that as the biomass requirements
are lessened, the optimization formulation sequentially
eliminates pathways responsible for the formation of en-
ergy. One such observation involves the gradual degrada-
tion of the TCA cycle. When the model is constrained to
produce only 80% of the optimal level of biomass, the net-
work no longer utilizes the succinate dehydrogenase enzyme
to produce FADH2. Further reducing the biomass production
requirement to 70% enables the removal of the fumAB, mdh,
and sucCD genes foregoing the formation of one GTP and one
NADH per unit reaction flux. The next major energy forma-
tion pathway to be eliminated occurs at a biomass production
level of 20%. At this point, the energetic state of the cell is
such that it no longer requires the formation of ATP from the
cellular proton gradient. Finally, at the lowest biomass produc-
tion levels, the cell no longer requires the oxidation of NADH
to force protons across the cellular membrane.

This study provides insight into the dependence of cel-
lular growth on various energy generation pathways and
provides an estimate of the minimum number of metabolic
genes capable of enabling cellular growth. The prediction of
194 genes is lower than the theoretical estimation of 256 by
Mushegian and Koonin (1996), obtained by investigating
the complete genomes ofHaemophilus influenzaeandMy-

Table IV. Model selections of enzymatic reactions that will enhance the theoretical amino acid production capabilities ofEscherichia coli.

Amino acid Substrate EC# Enzyme Reaction catalyzed

Arginine Glucose: 2.7.1.90 6-Phosphofructokinase (pyrophosphate) Fructose-6-P + PPI→ Fructose-1,6-Bisphosphate + Pi
2.7.2.2 Carbamate kinase ATP + NH3 + CO2→ ADP + Carbamoyl Phosphate

Acetate: 2.7.2.2 Carbamate kinase ATP + NH3 + CO2→ ADP + Carbamoyl Phosphate
2.7.2.12 Acetate kinase (pyrophosphate) Acetate + PPi→ Pi + Acetyl-Phosphate

Asparagine
Glucose/
Acetate: 6.3.1.4

Aspartate—ammonia ligase (ADP-
forming) ATP + NH3 + L-Aspartate→ Pi + ADP + L-Asparagine

Cysteine
Glucose/
Acetate: 2.7.7.5 Sulfate adenylyltransferase (ADP) Sulfate + ADP→ Pi + Adenylyl-Sulfate

Histidine Glucose: 1.4.1.10 Glycine dehydrogenase NAD + glycine→ glyoxylate + NADH + NH3
2.7.1.90 6-Phosphofructokinase (pyrophosphate) Fructose-6-P + PPi→ Fructose-1,6-Bisphosphate + Pi

Acetate: 1.4.1.10 Glycine dehydrogenase NAD + glycine→ glyoxylate + NADH + NH3

4.1.1.38
Phosphoenolpyruvate carboxykinase
(pyrophosphate) PPi + Oxaloacetate→ CO2 + Pi + PEP

Isoleucine Glucose: many
Methionine Glucose: 2.7.7.5 Sulfate adenylyltransferase (ADP) Sulfate + ADP→ Pi + Adenylyl-Sulfate

Acetate: 1.4.1.10 Glycine dehydrogenase NAD + glycine→ glyoxylate + NADH + NH3
2.7.7.5 Sulfate adenylyltransferase (ADP) Sulfate + ADP→ Pi + Adenylyl-Sulfate
2.7.9.1 Pyruvate, phosphate dikinase Pyruvate + Pi + ATP→ AMP + PPi + PEP

4.1.1.38
Phosphoenolpyruvate carboxykinase
(pyrophosphate) PPi + Oxaloacetate→ CO2 + Pi + PEP

Tryptophan Glucose: 2.7.1.90 6-Phosphofructokinase (pyrophosphate) Fructose-6-P + Ppi→ Fructose-1,6-Bisphosphate + Pi
2.7.9.1 Pyruvate, phosphate dikinase Pyruvate + Pi + ATP→ AMP + PPi + PEP

Acetate: 2.7.9.1 Pyruvate, phosphate dikinase Pyruvate + Pi + ATP→ AMP + PPi + PEP

4.1.1.38
Phosphoenolpyruvate carboxykinase
(pyrophosphate) PPi + Oxaloacetate→ CO2 + Pi + PEP
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coplasma genitaliumand assuming genes preserved across
large phylogenetic distances are most likely essential. This
was expected, considering the inability of this reaction-
based framework to account for genes associated with trans-
lation, transcription, replication, and repair and the lumping
of pathways by the stoichiometric model. A more practical
comparison involves considering the number of metabolic
genes included in the minimal gene set estimation. In this
case, the predicted set of 194 metabolic genes overestimates
the 94 metabolic genes included in the minimal gene set
proposed by Mushegian and Koonin (1996). This overesti-
mation arises in part because the effect of activating meta-
bolic genes outside of the original optimal gene set was not
investigated. Work underway shows that this lowers the
minimal gene set estimation by opening additional meta-
bolic routes. Furthermore, this study only allowed glucose
to enter the network as organic fuel and limited metabolic
capacity can be compensated for by a proportionately greater
dependence on the importation of nucleosides, amino acids,
and other metabolites (Hutchison et al., 1999). The problem of
identifying the mathematically minimum number of metabolic
reactions capable of supporting growth on a multiorganic sub-
strate based on the more recentE. coli model of Edwards and
Palsson (2000a) is addressed in an upcoming article.(Maranas
group website: http://fenske/Faculty/CMaranas/index.html).

AMINO ACID PRODUCTION
OPTIMIZATION STUDIES

In this section, we identify mathematically optimal reaction
pathways to recombine into theE. coli metabolic network to
optimize amino acid formation for growth on glucose and
acetate. We explored the theoretically optimal formation of
all 20 amino acids. Each optimization run was performed
for two cases: 1) including only the reactions present inE.
coli, and 2) allowing the model to select all reactions from
the Universal stoichiometric matrix. The problem of maxi-
mizing the amino acid production is formulated by substi-
tuting amino acid accumulation,baa, in place ofvbiomassin
Eq. [2], while the problem of maximizing the amino acid
formationbUNV

aa of the Universal network is formulated as:

Maximize Z = baa
UNV (13)

subject to (
j=1

M

Sij nj = bi, ; i

yk = 1, ; k ∈ E

0 # nj # Vj
maxS(

k

ajk ykD
nj ∈ ℜ+, ; j
bi ∈ ℜ, ; i
yk ∈ $0,1%, ; k ∈ E ∪ NE

Note that this formulation allows the selection of any num-
ber of reactions from the multispecies reaction list. Reac-
tions chosen by the model but absent inE. coli (i.e., all
nonzeroyk elements ofNE) provide routes for manipulating
the cellular metabolism through recombinant DNA technol-
ogy. The theoretical amino acid production capabilities of

the E. coli metabolic network, with and without the addi-
tional reactions from the Universal matrix, are shown in
Table III for growth on glucose and acetate. It must be noted
that it is the structural pathway changes predicted by the
model that are more meaningful than the exact numerical
values because these are theoretical maximum yield calcu-
lations. Predictions by the Varma and Palsson (1993) model
are shown for comparison. As expected, the maximum pro-
duction capabilities by the Varma and Palsson (1993) model
are slightly below the predictions of the more complex em-
ployed model due to the additional metabolic routes avail-
able for production.

The results show that improvements to seven amino acid
production pathways ofE. coli are theoretically attainable
with the addition of genes from various organisms. Manipu-
lation of the arginine pathway shows the most promise, with
8.75% and 9.05% increases with additional genes for
growth on glucose and acetate, respectively. The optimal
recombinant asparagine pathway shows 5.77% and 5.45%
increases over currentE. coligrowth on glucose and acetate,
while cysteine production can be raised 3.57% and 3.80%,
respectively. The histidine production pathway is revealed
as another encouraging target for DNA recombination with
0.23% and 4.53% improvements available as well. The iso-
leucine, methionine, and tryptophan formation pathways offer
the final three genetic objectives for enhancing production.

The enzymes responsible for introducing these various
improvements to theE. coli amino acid production path-
ways are shown in Table IV. In most cases, the addition of
only one or two genes to the original amino acid production
pathway results in an increased maximum theoretical yield,
even though the complete list of 3,400 reactions was avail-
able for selection. For example, introducing foreign genes
coding for carbamate kinase and the pyrophosphate-
dependent version of 6-phosphofructokinase further opti-
mizes arginine production for growth on glucose, while
adding carbamate kinase and another gene coding for ac-
etate kinase renders the arginine production pathway on
acetate stoichiometrically optimal. Expressing the genes
coding for aspartate-ammonia ligase and sulfate adenylyl-
transferase inE. coli results in the increase mentioned above
in asparagine and cysteine production, respectively. Only
the production of isoleucine on glucose and acetate sub-
strates and the production of methionine on acetate require
over two additional enzymes to reach optimality according
to the model.

DISCUSSION OF THE GENE ADDITION STUDY

Careful examination of these amino acid pathways reveals
how these additional enzymes improve the energetic effi-
ciency of the original routes. The original and Universal
arginine production pathways for growth on glucose are
shown in Figure 2. The two pathways differ in only two
reactions—the pyrophosphate-dependent analog of 6-phos-
phofructokinase in the Universal model replaces the ATP-
dependent version present inE. coli, and carbamate kinase
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in the Universal model replaces carbamoyl phosphate syn-
thetase from the originalE. coli model. The first improve-
ment to energy utilization occurs because the Universal
model 6-phosphofructokinase uses pyrophosphate formed
from argininosuccinate synthase reaction instead of ATP to
transfer a phosphate group to fructose-6-phosphate in the
third step in glycolysis. TheE. coli model, which sends this
pyrophosphate through pyrophosphatase for hydrolytic
cleavage, in effect wastes the energy from this energy-rich
phosphoanhydride bond. By recapturing this otherwise
wasted energy, the pyrophosphate version of 6-phospho-
fructokinase requires one less ATP phosphoanhydride bond
per arginine molecule produced.

The second form of cellular energy savings is realized by
the replacement of carbamoyl phosphate synthetase. The
native carbamoyl phosphate synthetase creates one mole of
carbamoyl phosphate from carbon dioxide at the expense of
two ATP phosphoanhydride bonds. This reaction also re-
quires an amino group of one glutamine molecule, which
subsequently forms glutamate. Reforming glutamine from
glutamate requires yet another ATP; thus, each unit flux
through carbamoyl phosphate synthetase requires three
ATP. Carbamate kinase, incorporated in the Universal
model, forms carbamoyl phosphate from carbon dioxide

and ammonia at the expense of only one ATP. Therefore,
carbamate kinase requires two less ATP bonds per unit flux
of carbamoyl phosphate formed. Overall, the additional
genes used by the Universal model save the original path-
way three net ATP bonds, increasing arginine production by
8.75%. A similar analysis can be performed on native and
Universal arginine production routes from acetate substrate
depicted in Figure 3.

The E. coli asparagine production pathway is shown in
Figure 4 for two modes of glucose entry into the metabolic
network—glucokinase and the phosphotransferase system.
Interestingly, theE. coli model prefers glucokinase to the
more common phosphotransferase system for glucose entry
during optimal asparagine production. Although glucoki-
nase is known to play a minor role in glucose metabolism
under normal conditions, replacement of the phosphotrans-
ferase system by this reaction increases asparginine produc-
tion from 1.560 mol/mol glucose to 1.818 mol/mol glucose.
Glucose entry via the phosphotransferase system requires
substantial flux through phosphoenolpyruvate (PEP) syn-

Figure 2. Optimal E. coli and Universal* arginine production pathways
for growth on glucose. The utilization of carbamate kinase and the pyro-
phosphate-dependent analog of 6-phosphofructokinase by the Universal
arginine production pathway preserves a net of three ATP phosphoanhy-
dride bonds. *Values in figure underlined.

Figure 3. Optimal E. coli and Universal* arginine production pathways
for growth on acetate. The incorporation of carbamate kinase and the
pyrophosphate-dependent analog of acetate kinase by the Universal path-
way saves three ATP phosphoanhydride bonds. *Values in figure under-
lined.
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thase to regenerate PEP from pyruvate carrying the net ex-
pense of one ADP phosphoanhydride bond. Thus, either
overexpressing glucokinase inE. coli or adding a more
active recombinant glucokinase enzyme may improve as-
paragine production. Figure 5 illustrates the optimal Uni-
versal route for asparagine production on glucose. By
choosing the ADP-forming aspartate-ammonia ligase en-
zyme over the AMP-forming version present inE. coli, the
energy efficiency of this pathway is improved. Presently, no
pathways for the conservation of the pyrophosphate bond
energy have been identified inE. coli; thus, the formation of
AMP uses the equivalent of two ATP phosphoanhydride
bonds. In contrast, by forming ADP, the Universal pathway
requires the breakage of only one phosphoanhydride bond
per unit flux. In fact, the energy efficiency of the Universal
model is such that the formation of asparagine does not
require ATP formation from the transmembrane proton gra-
dient. This gradient is used solely to transport inorganic
phosphate into the cell. This mechanism improves aspara-
gine production 5.77% for growth on glucose and 5.45% for
growth on acetate.

The optimal histidine production pathways of theE. coli
and Universal models for growth on acetate are shown in
Figure 6. Again, the Universal model selects a reaction to
conserve the phosphoanhydride bond energy of pyrophos-
phate generated in this case by both ATP phosphoribosyl-

transferase and phosphoribosyl-ATP pyrophosphatase.
Thus, the Universal model is at least two ATP more effi-
cient than theE. coli model per histidine molecule pro-
duced. In addition, the addition of glycine dehydrogenase to
the E. coli model improves the carbon conversion of the
native histidine pathway. Under optimal histidine produc-
tion conditions in nativeE. coli, intracellular glycine is con-
verted to carbon dioxide and ammonia by the glycine cleav-
age system. In this process, only one of glycine’s carbons is
conserved by its transfer to tetrahydrofolate. The Universal
model, on the other hand, conserves both carbons by con-
verting glycine to glyoxylate, which subsequently is
pumped back into the glyoxylate shunt. Both mechanisms
improve the maximum theoretical yield of histidine 4.53%.

CONCLUSIONS

The proposed optimization framework provided the quan-
titative means to study metabolic network performance lim-
its in response to gene deletions or additions. Metabolic
network performance relates to either robustness in the face
of gene deletions or flux enhancements through foreign
gene recombination from an ever-expanding database of
available genes. Although complete gene–enzyme relation-
ships are not currently available, the formulation enables the

Figure 4. Optimal asparagine production pathway for two modes of glu-
cose utilization: glucokinase* and the phosphotransferase system. *Values
in figure underlined.

Figure 5. Optimal Universal asparagine production pathway for growth
on glucose. The Universal pathway conserves the equivalent of one ATP
bond by using an ADP-forming aspartate-ammonia ligase instead of an
AMP-forming version as in Figure 4.
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incorporation of this information as it becomes available.
The gene knockout analysis revealed that theE. coli meta-
bolic network optimized for growth could endure an in-
creasing amount of gene knockouts as its growth demands
are lowered. Furthermore, the network could theoretically
tolerate at most 18 gene deletions before biomass produc-
tion is no longer possible. The gene addition studies re-
vealed that adding additional options to theE. coli genotype
by DNA recombination provided improvements to the
maximum theoretical productions of seven amino acids.
These improvements occur by one of two mechanisms: 1)
by improving energy efficiency, or 2) by increasing the
carbon conversion efficiency of the production route.

The reliance of flux balance analysis strictly on stoichi-
ometric characteristics is its greatest strength, but can also
be its most prominent weakness. The flux distributions
within the cell are ultimately uniquely determined by the
regulatory mechanisms within the cell, the kinetic charac-
teristics of cellular enzymes, and the expression of these
enzymes. Assuming cells operate in a stoichiometrically
optimal fashion yields a wider boundary of metabolic flux
distributions than may be available to the cell. Currently, we
are incorporating regulatory information into flux balance
models with the use of logic constraints. These constraints
will ensure that up or down movements in metabolite con-
centrations are consistent with up or down shifts in reaction
flux values. A more tightly constrained model will give
additional insight on how overproducing cellular products

affects overall metabolic regulation. As the accuracy of
metabolic models improves and the amount of information
available for FBA grows, the framework introduced in this
article can be used to suggest promising gene addition and/
or deletion candidate.

We thank Dr. Vassily Hatzimanikatis for useful discussions.
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