## **Exercises Mixed-Integer Optimization.**

1. Formulate linear constraints in terms of binary variables for the following case:

If A is true and B is true then C is true or D is true. (inclusive OR)

2. It is proposed to model the condition,

if select item 1 and not item 2, then select item 3 and item 4

with the inequality:

$$y_3 + y_4 \ge 2(y_1 - y_2)$$

where y<sub>i</sub> are binary variables that represent the selection of the corresponding items.

Using propositional logic, derive the inequality (ies) that model the above condition. If you arrive at a different model, determine whether it is better or not, and in what sense than the inequality above.

- 3. Consider the cost function shown in the graph below.
  - (a) Formulate the cost function C as a disjunction.
  - (b) Develop the mixed-integer constraints applying the convex hull to the disjunction.



4. For the Generalized Disjunctive Program given below,

- a) Reformulate it as an MINLP using the convex hull formulation for the disjunction
- b) Reformulate it as a big-M MINLP (M=50)
- c) Solve both reformulations and compare their relaxations.

$$\min Z = c + (x_1 - 3)^2 + (x_2 - 2)^2$$
  
st  

$$\begin{bmatrix} Y_1 \\ x_1^2 + x_2^2 \le 1 \\ c = 2 \end{bmatrix} \lor \begin{bmatrix} Y_2 \\ (x_1 - 4)^2 + (x_2 - 1)^2 \le 1 \\ c = 1 \end{bmatrix} \lor \begin{bmatrix} Y_3 \\ (x_1 - 2)^2 + (x_2 - 4)^2 \le 1 \\ c = 3 \end{bmatrix}$$
  

$$0 \le x_1 \le 8, 0 \le x_2 \le 8, Y_j = true, false, j = 1, 2, 3$$

5. Given the bilinear NLP below, find the global optimal solution using the McCormick convex envelopes and a spatial branch and bound. To obtain good initial lower and upper bounds solve LP's for the bounds of the 4 continuous variables.

$$\begin{array}{l} \min f = x_1 - x_2 - y_1 - x_1y_1 + x_1y_2 + x_2y_1 - x_2y_2 \\ \text{st.} \quad x_1 + 4x_2 \leq 8 \\ \quad 4x_1 + x_2 \leq 12 \\ \quad 3x_1 + 4x_2 \leq 12 \\ \quad 2y_1 + y_2 \leq 8 \\ \quad y_1 + 2y_2 \leq 8 \\ \quad y_1 + y_2 \leq 5 \\ \quad 0 \leq x_1, x_2, y_1, y_2 \leq 10 \end{array}$$

Optional:

Verify your answer with the webinterface of the software package BARON in GAMS. (Use OPTION NLP=BARON;)

- 6. A company is considering to produce a chemical C which can be manufactured with either process II or process III, both of which use as raw material chemical B. B can be purchased from another company or else manufactured with process I which uses A as a raw material. Given the specifications below, formulate an MILP model and solve it with GAMS to decide:
  - a) Which process to build (II and III are exclusive)?
  - b) How to obtain chemical B?
  - c) How much should be produced of product C? The objective is to maximize profit.

Consider the two following cases:

- 1. Maximum demand of C is 10 tons/hr with a selling price of \$1800/ton.
- 2. Maximum demand of C is 15 tons/hr; the selling price for the first 10 ton/hr is \$1800/ton, and \$1500/ton for the excess.

## Data:

## Investment and Operating Costs

|                  | Fixed (\$/hr)                          |                                                 | Variable(\$/ton raw mat) |  |  |
|------------------|----------------------------------------|-------------------------------------------------|--------------------------|--|--|
| Process I        | 1000                                   |                                                 | 250                      |  |  |
| Process II       | 1500                                   |                                                 | 400                      |  |  |
| Process III      | 2000                                   |                                                 | 550                      |  |  |
| Prices: A:<br>B: | \$500/ton<br>\$950/ton                 |                                                 |                          |  |  |
| Conversions:     | Process I<br>Process II<br>Process III | 90% of A to B<br>82% of B to C<br>95% of B to C |                          |  |  |

Maximum supply of A: 16 tons/hr

<u>NOTE</u>: You may want to scale your cost coefficients (e.g. divide them by 100).

7. It is proposed to manufacture a chemical C with a process I that uses raw material B. B can either be purchased or manufactured with either of two processes, II or III, which use chemical A as a raw material. In order to decide the optimal selection of processes and levels of production that maximize profit formulate the MINLP problem and solve with the augmented penalty/outer-approximation/equality-relaxation algorithm in DICOPT++.

Data:

Conversion: Process I C = 0.9BProcess II  $B = \ln(1 + A)$  Maximum capacity: 5 ton prod/hr Process III  $B = 1.2 \ln (1 + A)$ (A, B, C, in ton/hr)

| Prices: | A \$ 1,800/ton                  |           |
|---------|---------------------------------|-----------|
|         | B \$ 7,000/ton                  |           |
|         | C \$13,000/ton (maximum demand: | 1 ton/hr) |

Investment cost

|             | Fixed $(10^3)/hr$ | Variable (10 <sup>3</sup> \$/ton product) |
|-------------|-------------------|-------------------------------------------|
| Process I   | 3.5               | 2                                         |
| Process II  | 1                 | 1                                         |
| Process III | 1.5               | 1.2                                       |

Note: Minimize negative of profit.

7. Seven jobs (tasks) have to be scheduled on two machines. There are no setup times between different tasks. Processing times are known.

Tasks:1, 2 ..7Machines:A, B

Processing Times P<sub>ij</sub>:

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| Α | 2 | 3 | 4 | 3 | 4 | 2 | 5 |
| В | 4 | 4 | 3 | 2 | 4 | 3 | 2 |

Develop an MILP model to minimize the makespan.

8. Seven jobs (tasks) have to be scheduled on two machines, as before, but there are also release and due times,  $R_i$ ,  $D_i$ , that have to be satisfied.

Develop a generic MILP formulation for this problem