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Abstract-The objective of this paper is to show that qualitative knowledge in process synthesis that can 
be expressed in propositional logic form has an equivalent representation as linear equations and 
inequalities. Recent contributions in operations research are reviewed for this purpose including inference 
problems that can be formulated as MILP problems that can be solved mostly as relaxed LPs. It will also 
be shown how some of these ideas can be applied to chemical process synthesis. Also, comparisons with 
production systems are presented, as well as the application of the propositional logic-based approach 
to the systematic modelling of integer constraints that commonly arise in synthesis problems. Several 
examples are presented to illustrate the ideas. 

INTRODUCTION 

Researchers in process synthesis currently rely on two 
basic approaches, mathematical programming and 
artificial intelligence (AI)-to handle problems in this 
area. AI techniques rely on qualitative information 
(e.g. heuristics) to make design decisions. They do 
not require a detailed analysis and therefore are 
fast. On the other hand, AI techniques do not 
search for optimal solutions since they are concerned 
mainly with finding one or several feasible solutions. 
Traditionally, most synthesis decisions have been 
made based on qualitative considerations. Therefore, 
even today, preliminary design is thought to be 
ideally suited for qualitative analysis. Siriola et al. 
(197 l), Mahalec and Motard (1977) and more re- 
cently Douglas (1985), Lien et al. (1987), Beltramini 
er UC. (1989) and Stephanapoulos et al. (1987) have 
met with certain success in capturing the design 
procedure through qualitative approaches. 

Mathematical programming approaches, on the 
other hand, are starting to receive increased attention 
because they have several advantages over the 
qualitative approach. For instance, they can capture 
interactions between variables very effectively, which 
the qualitative approach cannot and this is one of its 
major shortcomings. Furthermore, the design model 
is more accurate and the search more rigorous, so 
that the resulting design is at least optimum within 
the specified assumptions and alternatives that are 
considered for the search. Mathematical program- 
ming techniques, however, can require considerable 
computational expense and effort, although this has 
become less of a problem with the development of 
new algorithms and parallel computing. In this 
approach, the initial work was based on NLP 
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techniques (Umeda ei al., 1972), then on MILP 
techniques (Papoulias and Grossmann, 1983) and 
more recently, has evolved to the use of MINLP 
techniques that allows the use of nonlinear systems 
with discrete and continuous variables (Grossmann, 
1989). 

At the start of any design process, one has available 
a certain amount of quantitative and qualitative 
information. In chemical process synthesis, the 
quantitative information may be in the form of 
rate equations, models of various process units 
and correlations for thermodynamic properties. The 
qualitative information is in the form of heuristics 
and prior knowledge on decisions that are likely to 
yield an acceptable design. 

Ideally, one would like to be able to use both the 
qualitative and quantitative information available 
about the problem at hand in order to obtain an 
optimal solution quickly. In order to do that effec- 
tively, one must be in a position to process both kinds 
of information from within the same framework. 
Expressing qualitative knowledge mathematically 
would serve as a first step towards integrating the two 
forms of knowledge. 

The purpose of this paper is to show how one can 
express mathematically logical expressions that make 
up qualitative knowledge in a systematic manner by 
reviewing some important recent contributions in the 
area, and by showing the relevance of these ideas in 
the domain of chemical process synthesis. Post 
(1987) and Cavalier and Soyster (1987) have 
shown how propositional logic expressions can be 
expressed mathematically as linear constraints 
and also how to make inferences from this type 
of model. Specifically, logical variables are re- 
placed by integer binary variables, and reasoning is 
shown to be equivalent to solving a mixed-integer 
linear programming (MILP) model which in fact can 
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be solved as a linear programming problem in many 
cases (Hooker, 1988). Uncertain knowledge, such as 
heuristics, can also be easily handled. 

Aside from illustrating the potential application 
of MILP models for logical inference in chemical 
process synthesis, this paper will present some com- 
parisons with the production systems approach for 
handling qualitative information. In addition, it will 
be shown that modelling of integer constraints in 
mixed-integer programming formulations that arise 
in design optimization problems can be performed in 
a systematic manner using the logic-based frame- 
work. An approach to model constraints that contain 
both integer and continuous variables is discussed. 
Further extending this line of thought one can 
also formalize the modelling of discontinuous and 
nondifferentiable functions by using integer variables. 
Several examples will be presented to illustrate the 
basic concepts. 

MOTIVATING EXAMPLE 

In order to show how qualitative information can 
be expressed in an equivalent mathematical manner 
through linear constraints, consider the following 
simple example in the synthesis of separation systems 
where an important heuristic rule is “Remove the 
most plentiful component first”. One can express this 
rule for component A in-a multicomponent mixture 
as a logical expression by: 

PLENTY-OF-A * SEPARATE-A, (1) 

where PLENTY-OF-4 and SEPARATE4 are log- 
ical variables denoting whether A is the most plentiful 
component and whether the component A is to be 
separated from the mixture, which is the design 
decision. We can associate the binary variable y, with 
the logical variable PLENTY-OF-A and the binary 
variable yz with the logical variable SEPARATE-A. 
Let a value of TRUE for the logical variables corre- 
spond to a value of I for the binary.variables and a 
value of FALSE for the logical variables correspond 
to a value of 0 for the binary variables. Then the 
logical relation can be expressed as 

YI -YyzGOo, Y,.Yz={O, 1). 
In this way, if y, = 1 (PLENTY-OF4 is TRUE), 
then the only way that the above inequality can be 
satisfied is by letting y2 = 1 (SEPARATE is 
TRUE) which is exactly what the logical expression 
represents. Therefore, the inequality is a precise rep- 
resentation of the logical expression. Also it should be 
noted that for the case when the heuristic is allowed 
to be violated, the above inequality can be modified 
by introducing a nonnegative slack variable, v such 
that: 

YI -J5GU. (3) 

where a penalty can be associated with the violation 
of the inequality. Note that if v = 0, the heuristic is 

satisfied, while v = 1 implies that the heuristic is 
violated. 

Since qualitative information is often expressed in 
the form of more complex logical relationships than 
in this simple example, it is not always trivial to 
intuitively develop a corresponding mathematical 
representation. The procedure to systematically 
convert logical expressions into their equivalent 
mathematical representation is discussed in the next 
section. The procedure will then be applied to the 
modelling of inference problems and to the modelling 
of discrete constraints that commonly arise in 
synthesis problems. 

MATHEMATICAL REPRESENTATION OF LOGICAL 
RELATIONSHIPS 

In order to obtain an equivalent mathematical 
representation for any propositional logic expression, 
one must first consider basic logical operators to 
determine how each can be transformed into an 
equivalent representation in the form of an equation 
or inequality. These transformations are then used to 
convert general logical expressions into an equivalent 
mathematical representation (Cavalier and Soyster, 
1987). 

The basic unit of propositional logic expression, 
which can correspond to a state or to an action, is 
called a literal which is a single variable that can 
assume either of two values, true or false. Associated 
with each literal P, there is another literal NOT P 
(1 P) such that either P or (-I P) is always true. A 
clause is a set of literals separated by OR operators 
and is also called a disjunction. A proposition is any 
logical expression and consists of a set of clauses Pi, 
i-l,..., r that are related by the logical operators 
OR, AND, IMPLICATION. 

To each proposition Pi, a binary variable yi is 
assigned. Then the negation or complement of 
P,(lP,) is given by 1 - yi. The logical value of true 
corresponds to the binary value of 1 and false corre- 
sponds to the binary value of 0. The basic operators 
used in propositional logic and the representation of 
their relationships are shown in Table 1. From this 
table, it is easy to verify, for instance, that the logical 
implication in (1) reduces to the inequality in (2). 

With the basic equivalent relations given in Table 
1 (e.g. see Williams, 1988), one can systematically 
model an arbitrary propositional logic expression 
that is given in terms of OR, AND, IMPLICATION 
operators, as a set of linear equality and inequality 
constraints. One approach is to systematically 
convert the logical expression into its equivalent 
conjunctive normal form representation which in- 
volves the application of pure logical operations. The 
conjunctive normal form is a conjunction of clauses, 
QlAQZ^-* - A Q, . Hence, for the conjunctive normal 
form to be true, each clause Q, must be true indepen- 
dent of the others. Also since a clause Qi is just a 
disjunction of literals, P, v P2 v * * . v P,, it can be 
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Logical 
relation 

LQgical “OR” 
Logical “AND” 
Implication 

Equivalence 

Exclusive “OR” 
@OR) 
Classification 

Table 1. Rep-tation of lqical relations with linear inequalities 

Rcprcscntation 
Logical 88 linear 

commcnt.s expression inequalities 
P,vP*v-..vP, y,+y*+...+y,>l 
P,hP2A...“P, y,51;y,bI;...;y,*I 

P, e+ P2 is logically lP,VP* l--Y,+Y*21 
equivalent to 7 P, v P2 OrY,-Y*GO 

P, -if and only if P2 (~P,vP2)h(~P*VP,) YI-Y2~o;Y2-Y,co 
(P,*Pz)hW=DP,) or YI FY2 

Exactly one of the variables p, @P&3,- +BP, y,+y2+...+y,=l 
is true 

Q={J’,.J’,....,P,I 
Q is true if any of the variables 

Yq=YI+“‘+Yr 

inaide the bracketa are true 

expressed in the linear mathematical form as the 
inequality: 

jQ+Yr+-..+Y~,l. (4) 

The procedure to convert a logical expression 
into its corresponding conjunctive normal form 
was formalized by Clocksin and Mellish (1981). 
The systematic procedure consists of applying the 
following three steps to each logical proposition: 

(1) 

(2) 

(3) 

replace the implication by its equivalent dis- 
junction: 

PI +-Pro 7P,vP,; (5) 

move the negation inward by applying DeMor- 
gan’s Theorem: 

l(P,hPz)*lPIvlPz, (6) 

1(P,vP,)01P*/\1P2; (7) 

recursively distribute the “OR’ over the 
“AND” by using the following equivalence: 

(~,~p*)v~,~(p,vp,)~(~2v~~). (8) 

Having converted each logical proposition into 
its conjunctive normal form representation, 
Q,AQz~-.-AQ,, it can then be easily expressed as 
a set of linear equality and inequality constraints. 

The following example illustrates the procedure for 
converting logical expressions into inequalities. 

Example I 

Consider the proposition 

(P,AP,)VP,=-P,VP,. (9) 

By removing the implication, the above yields 
from (5): 

l[(PIAP,)VP,]VP,VP,. (10) 

Further, from (6) and (7), moving the negation 
inwards leads to the following two steps: 

tl(P,hPz)A lP,]VP,VP,, (11) 

[(lP,VlP,)hlP3]VP,VPS. (12) 

Recursively distributing the “OR” over the “AND” 
as in (8) the expression becomes: 

(lP,VlP,VP,VP,)A(lP,VP,VP,), (13) 

which is the conjunctive normal form of the prop- 
osition involving two clauses. Translating each clause 
into its equivalent mathematical linear form, the 
proposition is then equivalent to the two constraints: 

Ys-YY,-YY,<O. (14) 

LOGICAL INFERJCNCE 

From the above example it can be seen that logical 
expressions can be represented by a set of inequalities. 
An integer solution that satisfies all the constraints 
will then determine a set of values for all the Iiterals 
which makes the logical system consistent. This is a 
logical inference problem where given a set of n 
logical propositions, one would like to prove whether 
a certain clause is always true. The problem can be 
stated as: 

prove P. 

s.t. mp,,~*,...,pg), (15) 

where P, is the clause to be proved and B is the set 
of logical propositions Pi, i = 1,2, . . . , q that must 
hold. 

Given that all the logical propositions have been 
converted to a set of linear inequalities, the inference 
problem can be formulated as the following MILP 
(Cavalier and Soyster, 1987): 

2 = minimize C ciyj, 
iel(u) 

s.t. AY ta, 

YE{O,ll”, (16) 

where Ay 2 a is the set of inequalities obtained by 
translating B( P, , P2, . . . , P,) into their linear math- 
ematical form, and the objective function is obtained 
by also converting the clause Pm that is to be proved 
into its equivalent mathematical form. Here, I(U) 
corresponds to the index set of the binary variables 
associated with the clause P,. This clause is always 
true if 2 = 1 on minimizing the objective function as 
an integer programming problem. If 2 = 0 for the 
optimal integer solution, this establishes an instance 
where the clause is false. Therefore, in this case, the 
clause is not always true. 
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In many instances, the optimal integer solution to 
problem (16) will be obtained by solving its linear 
programming relaxation (Hooker, 1988). Even if no 
integer solution is obtained, it may be possible to 
reach conclusions from the relaxed LP problem if the 
solution is one of the following types (Cavalier and 
Soyster, 1987): 

1. ZrcI, > 0: The clause is always true even if 
Z =,_,, < 1. Since Z is a lower bound to the 
solution of the integer programming problem, 
this implies that no integer solution with Z = 0 
exists. Thus the integer solution will be Z = 1. 

2. Zrelaxed = 0, and the solution is fractional and 
unique: The clause is always true because there 
is no integer solution with Z = 0. 

For the case when Zrrlaxed = 0 and the solution is 
fractional but it is not unique one cannot reach any 
conclusions from the solution of the relaxed LP. The 
reason is that there may be other integer valued 
solutions to the same problem with Z,,, = 0. 

In this way, just by solving the relaxed linear 
programming problem in (16), one might lx able to 
make inferences. The following example will illustrate 
a simple application in process synthesis. 

Example 2 

Reaction path synthesis involves the selection of a 
route for the production of the required products 
starting from the available raw materials. All chemi- 
cal reactions can be expressed in the form of prop- 
ositional logic and can therefore be represented by 
linear mathematical relations. The specific example 
problem is to investigate the possibility of producing 
H,CO, given that certain raw materials are available 
and the possible reactions. This example problem was 
presented by Mahalec and Motard (1977) who solved 
it using the resolution principle. 

The chemical reactions are given by: 

H,O + CO,+H,CO,, 

c + or-Co2 , (17) 

assuming that H,O, C and O2 are available. 
Expressing the reactions in logical form yields: 

H,O A CO2 * H,CO,, 

CA02==CO*. (18) 

The objective is to prove whether H,C03 can be 
formed given that H,O, C, O2 are available. Define 
binary variables corresponding to each of C, Or, 
CO2 3 H,O and H,CO,. Translating the above 
logical expressions into linear inequalities, the infer- 
ence problem in (16) becomes the following MILP 
problem: 

z = mm YH2C03 

s.t. yH20 + ,kOz - YH2C03 B lv 

Yc+Yol-Yco,d 1, 

YHlO = l, 

yc= 1, 

Yo, = 19 

Yc.Yo~,Y~~~.YH~o,YH~C~E{O, l>‘* (19) 

The objective involves the minimization of yH2co, 
because the objective is to prove H2C03. Solving the 
relaxed LP problem yields an integer solution with 
Z = 1 and yHrcq = vco, = 1. This solution is then 
interpreted as “H,CO, can always be produced from 
H,O, C and O2 given the above reactions.” 

LOGICAL INFERENCE WITH UNCERTAIN KNOWLEDGE 

The problem most often encountered in design and 
process synthesis is to select the best flowsheet/design 
for producing the required product starting with the 
available raw materials. In order to obtain a “good” 
design (not necessarily optimal), it must satisfy as 
much as possible, the qualitative knowledge about 
the system. 

The qualitative knowledge available about the 
design of a system can be classified as one of the 
following two types--hard logical facts or uncertain 
heuristics. Hard, logical facts are never violated-for 
example, the reaction NaOH + HCl-rNaCl + Hz0 
holds from basic chemical principles. Qualitative 
knowledge in the form of heuristics on the other hand 
are just rules of thumb which may not always hold. 
Therefore all the knowledge for synthesizing a design 
may not be consistent since the heuristics may contra- 
dict one another; for example, a rule that suggests to 
use higher temperatures to increase yield may conflict 
with a rule that suggests to use lower temperature 
to increase selectivity. Resolution of conflicts is an 
important part of reasoning. In general, one must 
violate a weaker (more uncertain) set of rules in order 
to satisfy stronger ones. Therefore, it becomes necess- 
ary to model the violation of heuristics, which is done 
as follows (Post, 1987): 

Clause or V, (20) 

where either the clause is true or the clause being 
violated (V) is true. Since the clause is also a disjunc- 
tion, the conversion of (20) into the mathematical 
linear form is simple--the V just adds on to the 
constraint. For example, 

yields 

(21) 

1 --y, + 1 -jJ*+y3+y‘$+u 2 1, (22) 

where u can also be interpreted as a slack variable 
that allows the violation of the inequality. The vari- 
able u, which can be treated as a continuous variable, 
will take on values of 0, 1 only due to the logical 
condition in (20) since the clause itself takes on only 
integer values. 
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In order to discriminate between weak and strong 
rules, penalties are associated with the violation vi of 
each heuristic rule, i = 1,. . . , m. The penalty Wi is a 
nonnegative number which reflects the uncertainty of 
the corresponding logical expression. The more un- 
certain the rule, the lower the penalty for its violation. 
The value of the penalty can be supplied by the 
designer based on his/her experience and confidence 
in the heuristic rule. This could make the selection 
of the penalties w1 somewhat subjective. However, 
the penalties can be determined systematically if a 
quantitative optimization model is available for the 
same problem as discussed in Raman and Grossmann 
(1990). The total weighted penalty for the qualitative 
model can be associated with the equation: 

Note that no violations are assigned to the inequal- 
ities BY > b, since these correspond to hard logical 
facts that always have to be satisfied. The solution to 
(24) will then determine the design that best satisfies 
the possibly conflicting qualitative knowledge about 
the system. 

Example 3 

One of the problems most extensively studied 
in process synthesis is distillation column sequenc- 
ing. Seader and Westerberg (1977) have identified 
rules which when followed, often lead to a 
good solution. Three of those rules will be used to 
demonstrate the concepts discussed above. The 
rules are: 

z = w=v. (23) 1. Remove most plentiful component first. 
In this way, the logical inference problem with 2. Avoid difficult separations. 

uncertain knowledge can be formulated as an MILP 3. Separate into equal sized fractions. 
problem where the objective is to obtain a solution 
that satisfies all the logical relationships (i.e. Z = 0), 

Also, the following rule is imposed as a hard con- 

and if that is not possible, to obtain a solution with 
straint: 

the least total penalty for violation of the heuristics. 4. Perform sharp splits. 
This leads to the following MILP problem: 

min Z = wTv, 
Assume that, in rules 1-3, the penalities w, = 2, 

w, = 2, w) = 1, have been assigned .to reflect the ex- 

s-t. Ay + v 2 a: heuristics, perience of a designer. The following logical ex- 

By ab: logical facts, 
pressions correspond to the heuristic rules for an 
N-component system (ABCD . . .) for which only 

Y E{O, l>“, v 3 0. (24) sharp splits are considered: 

1. “A” most plentiful (PLENTY-A) * 
“B” most plentiful (PLENTY-B) * 

Separate A and B (SPLIT-AT_AB) 
Separate A and B (SPLIT_AT-AB) OR 
Separate B and C (SPLIT_AT-BC) 

. . . 
2. AB Separation toughest(TOUGH_AB) =- 

BC Separation toughest(TOUGH_BC) =- 
. . . 

3. A forms half of total feed (HALF-A) =- 
A and B form half of total feed (HALF_AB) * 

4. EOR (SPLIT_AT_AB, SPLIT_AT-BC, . . .) 

Don’t separate A and B(-,SPLIT_AT_AB) 
Don’t separate B and C(--$PLIT- AT-BC) 

Separate A and B(SPLIT_AT-AB) 
Separate B and C (SPLIT_AT-BC) 

These rules can be converted into their conjunctive normal form and further translated into their 
mathematical representation also allowing for the violation of each of these rules. The problem of deciding 
on how to split a multicomponent mixture (ABC. . .) becomes an MILP of the form: 

Z = min 2(V,, + VIZ + . . .) + 2(v2, + vz2 + . . .> + (v3, + 032 + . . .), 

s.t. 

PLENTY-A - SPLIT_AT_AB - uI1 < 0, 
PLENTY-B - SPLIT_AT_AB - SPLIT-AT-BC - v,* < 0, 
. . . 
TOUGH_AB + SPLIT_AT-AB - vl, < 1, 
TOUGH_BC + SPLIT_AT_BC - v2* < 1, 
. . . 
HALF-A - SPLIT-AT-AB - v3, < 0, 
HALF- AB - SPLIT-AT- BC - ug < 0, 
..* 
SPLIT-AT-AB + SPLIT-AT-BC + . . . = 1, 
SPLIT-AT_AB, SPLIT_AT-BC,. . . E (0, ljN, (25) 

vij 2 0 for all i, j, 

where SPLIT-AT_AB, SPLIT-AT-BC, . are the design decisions and urJ are the violations of the heuristics. 
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Table 2. Data for Exampk 4 (fivecomponent system-ABCDB) 

Compoocot Flow rate Relative volatility 

A 1 I .25 
B 2 1.0 
C 4 0.95 
D 2 0.7 
E 1 0.45 

Table 3. Data for Example 4 (three-component system-ABC) 

Component Flow rate Relative volatility 

A 1 1.25 
B 2 1.0 
C 4 0.95 

Given the data in Table 2 for the five-component 
mixture (ABCDE), the values of the variables 
PLENTY- . . . , TOUGH- . . . , HALF_ . . . can be 
established a priori. The resulting MILP involves four 
binary variables, 13 continuous variables and 13 
constraints. The solution, which was obtained as a 
relaxed LP (0.22 s, SCICONIC/GAMS on VAX 6320 
and 0.36s, ZOOM/GAMS on Microvax II) yields 
SPLIT-AT-CD = 1 with no penalty (2 = 0). This 
means that no rules are violated when the split is 
performed between components C and D. Further, 
consider the resulting system ABC. Solving the 
problem with the data given in Table 3 yields SPLI- 
T_AT_BC = 1. In this case, Z = 2 because there is a 
conflict between rules 1 and 2. Rules 1 and 3 override 
rule 2, so B and C are split although it is the most 
difficult separation because of the presence of rela- 
tively large amounts of B and C in the system. 

The sequential application of the minimization 
of heuristics for this example would determine the 
separation sequence that is shown in Fig. I.-However, 
in general there is no guarantee that the sequence 
corresponds to the one that minimizes violations 
over all possible sequences. In order to address this 
problem, the formulation in (42) can easily be 
extended by considering the initial feed and all the 
intermediate mixtures that are shown in Table 4. In 
addition logical constraints are added to ensure a 
feasible separation sequence. 

While considering the synthesis problem, it is 
necessary to define the variables as follows: 

ASYSTEM(i,j) denotes the existence of the 
intermediate (i. j) 
given in Table 4, 

ABCDE 

< 

Fig. I. Solution to Example 3. 

Table.4. Intermediates (&j) for the initial feed amoisting of ABCDE 

Row/cohtmn 1 2 3 4 5 

1 ABCDE ABCD ARC AB A 

2 BCDE 3 = g : 
4 DE D 

SPLIT@-, j, k) denotes the existence of a split 
at position k (defined in 
Table 5) in intermediate (i,j), 

PLENTY&j, k) existence of relatively large 
quantities of component 
k in intermediate (i,j), 

TOUGH(i,j, k) existence of a difficult 
separation at position k in 
intermediate (i,j), 

HALF&j, k) all components upto k form 
approximately half of the 
feed of intermediate (i,j). 

The heuristic rules mentioned earlier would now be 
in the following form: 

ASYSTEM(i,j) A PLENTY(i,j, k) 

=S CUT&j, k - 1) v CUT(i, j. k) V&j, k, 

ASYSTEM(i,j) A TOUGH(i,j, k) 

=z- 1 CUT(i, j, k) V&j, k, 

ASYSTEM(i,j) A HALF&j, k) 

=S CUT&j. k) Vi,j, k. (26) 

The violations associated with each of the three 
rules is denoted by v,(i,j, k), u,(i,j, k), us(i,j, k), 
resepectively. The weights associated with the three 
rules are the same as mentioned earlier. Equations 
(26) transforms to the following set of mathematical 
constraints: 

-ASYSTEM(i,j) - PLENTY(i,j, k) + CUT(i,j, k) 

+CUT(I’,j,k - l)+ol(i.j,k)a -1, 

-ASYSTEM(i, j) - TOUGH(i,j, k) - CUT(i,j, k) 

+ uAi,A k) 2 -2, 

-ASYSTEM(i,j) - HALF&j, k) + CUT(i,j, k) 

+ u,G,j, k) 2 - 1, V&j, k. (27) 

Table 5. Definition of index k in Example 3 

k Split at 

I 

: 
AB 
BC 

4 CD 
5 DE 

. 
N between (N - I)th. Nth compoocnt 
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The hard logical constraints that are required 
to ensure a feasible separation sequence are the 
following: 

1. If an intermediate exists, it must be split and at 
only one position. This is defined by the classifi- 
cation relationship: 

ASYSTEM(i,j) = {CLJT(i,j, k); Vk} ViJ. (28) 

2. One split should be made at each position in 
order to separate all the components. This is 
expressed as: 

EOR[CUT(i,_i, k); Vij] Vk. (2% 

3. If the intermediate. (i,j) is split at position k, 
then the next two intermediates to exist are 
(i, N + 1 - k + i) and (k,j + k - i) where N is 
the total number of components in the initial 
feed. For example, consider the five-component 
system in this example where N = 5. If the 
intermediate system ABCD exists (i = 1,j = 2) 
and was split at position CD (i.e. the separation 
produced the intermediates ABC and D) for 
which k = 4 then the new systems to exist would 
correspond to (1,3) and (4, 5) which correspond 
to ABC and D, respectively, as can be verified 
from Table 4. This is expressed as: 

CUT(i,j, k) =E- ASYSTEM(i, N + 1 - k + i) 

A ASYSTEM(k,j + k - i) 

Vi, j, k. (30) 

The hard logical constraints in (28-30) are trans- 
formed into their mathematical linear form which is: 

ASYSTEM(i,j) - c CUT(i,j, k) = 0 Vi,& 
t 

cc CUT(i,j, k) = 1 Vk, 
i j 

(31) 

ASYSTEM(i, N + 1 -k + i) 

- CUT(i,j, k)> 0 Vi,j,k, 

ASYSTEM(k,j + k - i)-CUT(i,j, k) 2 0 V&i, k. 

The objective function is: 

2CCCY,(i,j,k)+2CCCoz(i,i,k) 
i j k i i k 

+CCCdxo (32) 
i j * 

The MILP consists of minimizing the objective 
function in (32) under the constraints (27), (31) along 
with the additional requirements that: 

vl(i.j, k), ~(i,j, k), +(Ij, k) Z 0, 

ASYSTEM(i,j) E (0, l}“, 

CUT(i,j, k) E (0, 13”. (33) 

The resulting MILP then involves 70 binary vari- 
ables, 234 continuous variables and 275 constraints. 

Despite the fact that the MILP does not have the 
Horn claue structure, it was solved almost as a 
relaxed LP. The branch and bound method had to 
examine only two nodes requiring 1.35 s using the 
solver SCICONIC/GAMS (Brooke et al., 1988) on a 
VAX 6320. Using ZOOM/GAMS on a Microvax II, 
18 nodes were examined requiring 73.2 CPU s. The 
MILP also leads to the sequence shown in Fig. 1 
which has an overall violation of 2 = 2. In this case, 
the sequential and simultaneous optimization ap- 
proaches lead to the same sequence of separations. 
Note that if the penalty of the second heuristic 
involving difficult separations were much higher 
(% - lo), then the sequential design would lead to 
the separation sequence shown in Fig. 2 with Z = 13 
while the simultaneous approach would still lead to 
the separation sequence of Fig. 1 which has a lower 
total penalty (Z = 10). In general, the simultaneous 
approach will lead to a sequence that has a smaller 
weighted violation of heuristics than the sequential 
approach. 

COMPARISON BETWEEN MILP APPROACH AND 
PRODU<JL1ON SYSTEM APPROACH FOR 

QUALITATIVE KNOWLEDGE 

Having presented in the previous section an MILP 
formulation for qualitative knowledge that includes 
heuristics, it is instructive to compare this approach 
with the use of production systems (e.g. expert sys- 
tems) which have been extensively used in a number 
of different areas. 

In order to preserve the modular nature of the 
inference procedure, production systems require that 
rules be written as Horn clauses. Horn clauses are 
disjunctions with not more than one nonnegated term 
(e.g. A v 1 B v 1C v 1 D). In terms of production 
systems rules, a Horn clause is defined as a rule where 
there are no OR operators on the right-hand side of 
the implication (B v C v D * A). The reason for con- 
straining the structure of rules to this form in pro- 
duction systems is that when the rule fires, it is 
possible to fix the value of the variable on the right 
side of the implication if the left side of the impli- 
cation is true. This requirement of modularity is one 
of the main advantages of the production system in 
that it decomposes the solution of an inference 
problem. On the other hand, the drawback is that if 

Fig. 2. Sequential solution to Example 3 with weights 
W, = 2, w* = 10, WJ = 1. 
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the rule is not a Horn clause (e.g. A v B =. C v D), the 
production system is not able to decide which of 
the variables on the right side of the implication 
to make true if the left side of the implication 
is true. The MILP approach, on the other hand, 
imposes no restrictions on the form of the logical 
expression. 

are performed in production systems, can also be 
performed on the MILP model. 

Furthermore, with production systems, it is 
difficult to systematically model relationships like 
“Exclusive OR”, “Classification” and “At most one” 
using propositional logic. Although it is simple for an 
expression with just two variables, it gets surprisingly 
complicated when the number of variables is in- 
creased. For example, A EOR El is equivalent to 
(A v B) A (1 A v 1 B), while “at most one of A, B” is 
equivalent to 1A v -IB. Mathematically, they are 
very simple to express as the former is expressed as: 

Finally production systems evaluate rules sequen- 
tially using forward or backward chaining strategies 
(Lien et al., 1987), which makes the ordering of rules 
a critical issue. Design engineers try to use this to 
their advantage by ordering rules in such a manner as 
to control the search. But in case of conflicts, this 
approach is not guaranteed to minimize the violation 
of heuristics. The MILP approach, on the other hand, 
can search the rules simultaneously so it does not 
restrict the formulation or ordering of rules (also see 
Example 3). The following example illustrates the 
comparison between the production system and the 
MILP approach. 

Example 4 

YA+YB= 1, 

while the latter is expressed as: 

(34) 

YA+YBG 1 (35) 

and the complexity does not increase when the num- 
ber of variables increases. 

Consider the following three heuristic rules which 
are specified in decreasing order of priority, for a 
given system whose components are to be separated 
through distillation: 

1. 

Although it is clear that the MILP approach offers 
more flexibility to represent the qualitative knowl- 
edge than a production system, the potential limi- 
tation is the computational efficiency. Both the 
logical inference and the MILP problems are 
classified as NP-complete which means that in the 
worst case, the solution time would grow exponen- 
tially with the problem size. In recent years though, 
large subclasses of logical inference problems have 
been identified as problems that can be solved as a 
relaxed LP in linear time. Chandrasekharan (1984) 
has shown how to round off the solution to the 
relaxed LP problem to obtain optimal integer sol- 
utions if the system is a Horn clause system. Further- 
more, Chandru and Hooker (1989) have identified a 
structure termed hidden Horn clause system that can 
also be solved using Chandrasekharan’s procedure in 
linear time. This implies that by just rewriting the 
logical expression as Horn clauses, one can greatly 
reduce the computational time. Trial runs by Hooker 
(1988) also seem to indicate that many of the logical 
inference problems can be solved as a relaxed LP even 
though they are not Horn clauses. Although at this 
point it is not clear whether an MILP-based approach 
could effectively replace the current search strategies 
used in production systems, the fact that these prob- 
lems can often be solved as linear programs would 
suggest that this is an avenue worth exploring. 

2. 

If the component is present in low concen- 
tration, then do not remove it first, although it 
is easy to separate and it can be removed at the 
top of the distillation column. 
If the component is easy to separate, then it can 
be removed at the top and should be removed 
first. 

3. If the component is the most volatile, then it is 
easy to separate. 
It will be assumed that the first rule having the 
highest priority has a penalty for violation 
W, = 100, the second rule has a penalty of 
violation w2 = 10, while the last has wj = 1. 

In order to express these rules through a logic 
formulation, the following literals are introduced: 

P, = low concentration of component, 

P2 = most volatile component, 

P, = can be removed at the top of the column, 

P4 = component is easy to separate, 

P, = remove first. 

The rules are then expressed as: 

Furthermore, many search strategies used by 
expert systems can be shown to be specialized forms 
of MILP search. Resolution has been shown to be 
equivalent to a specialized first rank cutting plane 
(Hooker, 1988). Similarly backtracking search is 
simply a branch and bound search on the space 
of alternatives. So specialized search strategies 
depending on the structure of the model, that 

PI’ P4: v3, (36) 

where VI, V2, V3 are the potential violations of the 
three rules. Note that the rules are not consistent with 
each other. The first and second rules predict contra- 
dictory values for Ps with the same value of P.,. 

Assume that one is trying to determine whether a 
given component can be removed given that this 
component is present in low concentrations 
(PI = True) and that it is the most volatile 

P,rXP,ftP,- 1P,:Vl, 

P4 - P,/lP,: v2, 
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(Pz = True). If one were to apply forward chaining 
and assuming that the rules are processed in the order 
that is given, then the first rule that is fired is rule 3 
yielding P4 = True since P2 = True is known, The 
next rule that would be fired is rule 2 yielding 
P3 = Ps = True since P,=True is known. Since at 
this stage, all the literals have been determined, the 
search would stop. Note, however, that rule 1, which 
is the one with highest priority, is actually violated. 

Similarly, if one were to apply backward chaining, 
the inference engine would first search the right-hand 
side of all the rules until it reaches the fhst occurrence 
of Ps. which is rule 2. This rule requires that 
P_, = True in order for Ps = True. Then it searches the 
right-hand side of the rules until it reaches the first 
occurrence of P., which is rule 3. This rule requires 
that P2 be determined in order to determine Pd. On 
further search for P2, the inference engine discovers 
that P2 is an input variable and that P2 = True. So 
from rule 3, P4 = True and therefore, from rule 2, 
P5 = True. Note that, once again, rule 1 has not been 
fired and that the solution obtained violates rule 1. 

In this way, forward or backward chaining on the 
system of rules would both yield the same solution, 
P3 =True, P4 =True, P, = True (i.e. remove the 
component first). In reaching this solution, the first 
and the most important of the rules is violated. In fact 
neither approach even fires the first rule. 

Consider now the MILP approach. Associating 
the binary variables y, , yz, y3, y4, y5 with literals 
P, , P2, P3, P.,, Ps, respectively, and converting the 
logical expressions into their equivalent mathematical 
form, the inference problem yields the following 
MILP: 

Z=minlOOv,+lO(u,,+u,,)+u,, 

Y4 - Ys - %a G 0, 

Yz-Y4-U3G01 

Y,,Y*,.Y3,_Y4,_Y,E{O, 11, 

VI 1 fJ2.a I 0% 9 u3 2 0. (37) 

Note that rule 2 must be expressed through two 
inequalities and therefore each must be assigned its 
own violations, ura, uzb. 

Solving the MILP with the input y, = 1,~~ = 1 (i.e. 
the component with low concentration and most 
volatile) yields, from the relaxed LP, the solution 
~Y,=-,Y,=o, y, = 0} which is interpreted as “do not 
remove the component first”. This solution only 
violated the third and the weakest of the three rules, 
and so is a better solution than the one obtained by 
simple forward and backward chaining approaches. 
The advantage of searching through the rules simul- 
taneously, rather than sequentially should now be 
obvious. 

It should be noted that one important assumption 
in the MILP modelling of qualitative knowledge 
that has been presented is that it does not involve 
any quantitative information. In synthesis appli- 
cations, however, it is commonly the case that 
some qualitative decisions might be contingent on 
the calculated values of variables for the system 
to be synthesized. As an example, consider the 
case when the separation system in Example 4 
is embedded as part of a flowsheet. Clearly, 
the relative amounts of the components present 
would depend on the operating conditions of the 
flowsheet. 

As shown in Raman and Grossmann (1990), how- 
ever, one can integrate the qualitative MILP model 
within a quantitative MINLP optimization model so 
as to explicitly model the dependency of certain 
qualitative rules on quantitative information. Since 
this problem is beyond the scope of this paper, it is 
discussed in detail in Raman and Grossmann (1990). 
Instead, the next section will consider as an ad- 
ditional application, the modelling of integer and 
mixed integer constraints. 

MODELLING WITH INTEGER VARIABLES 

As an additional application of the relationship 
between logical expressions and MILPs, consider 
the problem of formulating integer or mixed-integer 
programming problems for design and synthesis 
problems. Here constraints are commonly written 
intuitively by modellers. While this may work for 
simple cases, this approach can become difficult for 
more complex situations. It is therefore desirable to 
have a procedure where given the qualitative require- 
ments for a mixed-integer formulation, the integer 
constraints can be formulated in a systematic 
manner. The approach described in the earlier 
sections of using propositional logic can be used for 
this purpose. The requirements are first expressed 
as propositional logic, then converted to their con- 
junctive normal form expression and finally trans- 
lated to their corresponding linear mathematical 
form. The following examples will illustrate this 
point. 

Example 5 

Vaselenak et al. (1986) in their paper on heat 
integration in batch processes require a variable zb to 
equal 1 if a match exists between hot tank i and cold 
tank i in time t and 0 otherwise. There is also a 
restriction of only one match between a hot tank and 
a cold tank per time period. The existence of heat 
exchange by hot tank i in period t is denoted by y; = 1 
and that of heat exchange by cold tank j in period t 
is denoted by yj = 1. Define the logical variables, Z$, 
Y: and Yj, associated with the binary variables z:j, yi 
and yf , respectively, where a value of True for the 
logical variables correspond to a value of 1 for the 
binary variable. 
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The restriction of only one match each among all 
hot and cold tanks per time period is expressed as 
follows: 

EOR(Yf; i = 1,2,. . . , NHOT) t = 1,2,3, . . . , T, 

EOR(Y,;j = 1,2,. . . , NCOLD) t=l,2,3 ,_._, T. 

(38) 

The relation betwen Z; and Y:, and Yj is expressed 
as follows: 

r:/\ Y,!*Z$. (39) 

In the conjunctive normal form: 

1Y:vlYjvz~. (4w 

Hence, in the mathematical linear form, the three 
expressions in (38) and (39) become: 

MOT 

iF, Y:=’ t=l,2 ,_._, T, 

NCOLD 

,F‘ Yf- 1 t=1,2 )..., z-, 

~j+~,‘-z;<l Vi,j,t. (41) 

Example 6 

Consider the problem of deriving an integer cut 
that will prevent a certain integer point from being 
feasible. These integer cuts are used to generate 
second, third best solutions, or as part of the MILP 
master problem for an MINLP algorithm (see Kocis 
and Grossmann, 1989b). Suppose the integer point in 
question is: 

Y = {Y,, i E B; yi,j E N}, (42) 

where y#, i E B are the set of all binary variables that 
have a value of 1, and J,,, j E N are the set of all 
variables that have a value of 0. Since the purpose of 
the integer cut is to prevent the given combination 
values for y, and y,, the integer cut can logically be 
expressed as: 

l[(i,^, yi> * jE^, l yj)l. (43) 

Application of DeMorgan’s Theorem yields: 

o,“, 1 yi:.) v ci,“, yj)- (44 

Translating the above into the mathematical linear 
form: 

,$l --Y,)+ c Y/2 1, (45) 
IEN 

which finally yields the inequality (Balas and 
Jeroslow, 1972): 

&Yi -/XNY6 WI - I> 

where IBI is the cardinality of set B. 

(46) 

MODELLING WITH INTE4XB AND CONTITWJOUS 
VARlA3LJL.S 

Another type of constraints that have been difficult 
to formulate systematically are the class of con- 
straints wherein the satisfaction of a set of constraints 
implies that another set of constraints is also valid 
[e.g. “f(x) < 0” implies “g(x) >, V’]. These types of 
constraints arise when modelling the superstructure 
of a flowsheet (see Kocis and -Grossmann, 1989a). 
One can associate a binary variable with each of the 
inequalities and equalities involved and then the 
relation between these is expressed in terms of prop- 
ositional logic. The relationships between the various 
kinds of inequalities and equalities with the associ- 
ated 

1. 

binary variables is handled as follows: 

Associate a binary variable y, with the inequal- 
ity f (x) < 0. Then the relationship between y, 
and the inequality is: 

&Y, +c <f(x) < U1(1 -Y,) (47) 

where L,, U, are the upper and lower bounds 
for f(x) in the problem considered and c is a 
small positive tolerance. So if f (x) < 0, then 
y1 = 1 in order to satisfy the inequality. Con- 
versely, if f (x) 2 6, then y, = 0. 
Associate a binary variable yz with the inequal- 
ity g(x) 2 0. Then the relationship between yz 
and the inequality is: 

Ul -J%)<g(x)< &Y,--6, (48) 

where L,, U, are the lower and upper bounds on 
the value of g(x) for the problem considered 
and 6 is a small small positive tolerance. So if 
g(x) 2 0, then y, = 1 in order to satisfy the 
above inequality. 
Treat h(x) = 0 as “h(x) ,(O AND h(x) 2 0”. 
Associate the binary variable z, with h(x) < 0, 
the binary variable z, with h(x) 3 0 and the 
binary variable y3 with h(x) = 0. 

The relationship between the inequalities and the 
binary variables associated with them follows from 
equations (47) and (48): 

L3z, +r<h(x)< U,(l -z,), (49) 

L3U -z*)<h(x)< u,z,-Es. (50) 

Also, from the definition of the binary variables: 

Y,OZ,AZ*. (51) 

This is equivalent to the following three inequali- 
ties: 

z,+z,-y,c 1, (52) 

z1 -Y, 30, (53) 

z2 -Y3 2 0, WI 

where &, U, are the lower and upper bounds on the 
value of h(x) and l is a small positive tolerance. 
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Equations (49) (50) and (52-54) relate the binary 
variable y3 with the equality “h(x) = 0”. Note that 
when ya = 1, then h(x) =O. 

To illustrate the modelling procedure for a specific 
relationship, consider the following example. 

Example 7 

Consider the logical condition, “If f(x) Q 0 and 
h(x) = 0, then g(x) 2 0”. Associate binary variables 
y, , y,, y, with the expressions f(x) < 0, g(x) Z 0 and 
h(x) = 0, respectively. Then the expression can be 
written as: 

YiAY3=- Y2. 

In the linear mathematical form: 

(55) 

Yl+Y3-Y2c 1. (56) 

Also, from equations (47-50) and (52-54), the follow- 
ing inequalities relate the algebraic equality and 
inequalities with their associated binary variable: 

L,Y, +.f Q(x) < U,(l -Y,). 

L,z, + E <h(x) < U,(l -z,), 

-&(l - ~2) < h(x) c C.&z, - G 

z,+z2--z3=s 1, 

ZI - Y3 B 0, 

2.2 - y, z 0. (57) 

Thus the inequalities in (56) and (57) define the 
logical relationship for the inequalities and equations. 

Example 8 

Consider as a final example, the modelling of 
nondifferentiable functions using integer variables. 
This can be done with the ideas developed so far. 
Associate a binary variable with each discontinuity 
or point of nondifferentiability and model the 
inequalities and inequalities on either side of the 
point considered using the approach described in the 
previous example. 

The idea is illustrated with the following example 
on the modelling of the max{O,f(x)) function that 
arises in the heat integration model by Duran and 
Grossmann (1986): 

4 = maxKLf(x)l. (58) 

The function is nondifferentiable at f(x) = 0 since: 

f(x): 
+= 0: 

-i 
f(x) 2 0, 
“f-(x> (0. 

Associate the binary variable y, with f(x) 2 0 and 
(1 - y,) withf(x) d 0 so that: 

f(x) -MY, c 0, 

f(x) + L(1 -y,) >, 0. (60) 

Furthermore, we wish to impose the conditions 
yi=l=z-&=f(x)andy,=O*+=O. Thiscanbe 
accomplished with the inequalities: 

where L,, U, are the lower and upper bounds on 
+ -f(x). respectively, while &, U, are similar 
bounds on 4. Since L, = L, = 0, (60) and (61) can be 
simplified as 

064 c u,y,. (62) 

Note that if y, = 1, 4 -f(x) 2 0, and if y, = 0,4 = 0. 
In this way (62) represents the max function in (58). 

CONCLUSION 

In this paper, an MILP approach has been pre- 
sented for solving problems in process synthesis 
which require reasoning to make inferences from 
qualitative knowledge. The work done in this area 
has been reviewed and special emphasis placed on 
showing its relevance to process synthesis problems. 
These ideas have been illustrated with several 
examples, including the synthesis of a separation 
system. In this example, it was shown that the MILP 
approach provides a framework for simultaneously 
minimizing the weighted violation of heuristics. 

A comparison between the production systems 
approach and the MILP approach has also been 
made with regard to representation of knowledge and 
control strategies. A simple example was presented to 
illustrate the fact that forward or backward chaining 
search schemes may lead to solutions that yield larger 
violation of heuristics when compared to the MILP 
approach. Although no firm conclusions can be 
drawn from the computational expense for solving 
the MILP for general logic structures, systems with 
Horn clauses and extended Horn clause systems can 
be solved in linear time, as has been proved by 
Chandrasekharan (1984) and Hooker (1988). 

Finally, the advantage of using propositional logic 
to systematically model constraints for integer and 
mixed integer programming models in process syn- 
thesis has been shown. This concept has also been 
applied to handle the modelling of discontinuous and 
nondifferentiable functions using integer variables. 
The approach presented in this paper should provide 
a first step in integrating qualitative and quantitative 
knowledge effectively. 
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