
Compurers them. Engng, Vol. 15, No. 2, pp. 73-84, 1991
Printed in Great Britain. All rights reserved

0098-l 354/9 1 $3.00 + 0.00
Copyright 0 1991 Pergamon Press pk

RELATION BETWEEN MILP MODELLING AND LOGICAL
INFERENCE FOR CHEMICAL PROCESS SYNTHESIS

R. RAMAN and I. E. GRWMANN~

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

(Received 30 January 199O;Jina~ revision received 25 June 1990; received for publication I5 October 1990)

Abstract-The objective of this paper is to show that qualitative knowledge in process synthesis that can
be expressed in propositional logic form has an equivalent representation as linear equations and
inequalities. Recent contributions in operations research are reviewed for this purpose including inference
problems that can be formulated as MILP problems that can be solved mostly as relaxed LPs. It will also
be shown how some of these ideas can be applied to chemical process synthesis. Also, comparisons with
production systems are presented, as well as the application of the propositional logic-based approach
to the systematic modelling of integer constraints that commonly arise in synthesis problems. Several
examples are presented to illustrate the ideas.

INTRODUCTION

Researchers in process synthesis currently rely on two
basic approaches, mathematical programming and
artificial intelligence (AI)-to handle problems in this
area. AI techniques rely on qualitative information
(e.g. heuristics) to make design decisions. They do
not require a detailed analysis and therefore are
fast. On the other hand, AI techniques do not
search for optimal solutions since they are concerned
mainly with finding one or several feasible solutions.
Traditionally, most synthesis decisions have been
made based on qualitative considerations. Therefore,
even today, preliminary design is thought to be
ideally suited for qualitative analysis. Siriola et al.
(197 l), Mahalec and Motard (1977) and more re-
cently Douglas (1985), Lien et al. (1987), Beltramini
er UC. (1989) and Stephanapoulos et al. (1987) have
met with certain success in capturing the design
procedure through qualitative approaches.

Mathematical programming approaches, on the
other hand, are starting to receive increased attention
because they have several advantages over the
qualitative approach. For instance, they can capture
interactions between variables very effectively, which
the qualitative approach cannot and this is one of its
major shortcomings. Furthermore, the design model
is more accurate and the search more rigorous, so
that the resulting design is at least optimum within
the specified assumptions and alternatives that are
considered for the search. Mathematical program-
ming techniques, however, can require considerable
computational expense and effort, although this has
become less of a problem with the development of
new algorithms and parallel computing. In this
approach, the initial work was based on NLP

tTo whom all correspondence should he addressed.

techniques (Umeda ei al., 1972), then on MILP
techniques (Papoulias and Grossmann, 1983) and
more recently, has evolved to the use of MINLP
techniques that allows the use of nonlinear systems
with discrete and continuous variables (Grossmann,
1989).

At the start of any design process, one has available
a certain amount of quantitative and qualitative
information. In chemical process synthesis, the
quantitative information may be in the form of
rate equations, models of various process units
and correlations for thermodynamic properties. The
qualitative information is in the form of heuristics
and prior knowledge on decisions that are likely to
yield an acceptable design.

Ideally, one would like to be able to use both the
qualitative and quantitative information available
about the problem at hand in order to obtain an
optimal solution quickly. In order to do that effec-
tively, one must be in a position to process both kinds
of information from within the same framework.
Expressing qualitative knowledge mathematically
would serve as a first step towards integrating the two
forms of knowledge.

The purpose of this paper is to show how one can
express mathematically logical expressions that make
up qualitative knowledge in a systematic manner by
reviewing some important recent contributions in the
area, and by showing the relevance of these ideas in
the domain of chemical process synthesis. Post
(1987) and Cavalier and Soyster (1987) have
shown how propositional logic expressions can be
expressed mathematically as linear constraints
and also how to make inferences from this type
of model. Specifically, logical variables are re-
placed by integer binary variables, and reasoning is
shown to be equivalent to solving a mixed-integer
linear programming (MILP) model which in fact can

CACE ,5,2--A 73

74 R. RAMAN and I. E. &twMANN

be solved as a linear programming problem in many
cases (Hooker, 1988). Uncertain knowledge, such as
heuristics, can also be easily handled.

Aside from illustrating the potential application
of MILP models for logical inference in chemical
process synthesis, this paper will present some com-
parisons with the production systems approach for
handling qualitative information. In addition, it will
be shown that modelling of integer constraints in
mixed-integer programming formulations that arise
in design optimization problems can be performed in
a systematic manner using the logic-based frame-
work. An approach to model constraints that contain
both integer and continuous variables is discussed.
Further extending this line of thought one can
also formalize the modelling of discontinuous and
nondifferentiable functions by using integer variables.
Several examples will be presented to illustrate the
basic concepts.

MOTIVATING EXAMPLE

In order to show how qualitative information can
be expressed in an equivalent mathematical manner
through linear constraints, consider the following
simple example in the synthesis of separation systems
where an important heuristic rule is “Remove the
most plentiful component first”. One can express this
rule for component A in-a multicomponent mixture
as a logical expression by:

PLENTY-OF-A * SEPARATE-A, (1)

where PLENTY-OF-4 and SEPARATE4 are log-
ical variables denoting whether A is the most plentiful
component and whether the component A is to be
separated from the mixture, which is the design
decision. We can associate the binary variable y, with
the logical variable PLENTY-OF-A and the binary
variable yz with the logical variable SEPARATE-A.
Let a value of TRUE for the logical variables corre-
spond to a value of I for the binary.variables and a
value of FALSE for the logical variables correspond
to a value of 0 for the binary variables. Then the
logical relation can be expressed as

YI -YyzGOo, Y,.Yz={O, 1).
In this way, if y, = 1 (PLENTY-OF4 is TRUE),
then the only way that the above inequality can be
satisfied is by letting y2 = 1 (SEPARATE is
TRUE) which is exactly what the logical expression
represents. Therefore, the inequality is a precise rep-
resentation of the logical expression. Also it should be
noted that for the case when the heuristic is allowed
to be violated, the above inequality can be modified
by introducing a nonnegative slack variable, v such
that:

YI -J5GU. (3)

where a penalty can be associated with the violation
of the inequality. Note that if v = 0, the heuristic is

satisfied, while v = 1 implies that the heuristic is
violated.

Since qualitative information is often expressed in
the form of more complex logical relationships than
in this simple example, it is not always trivial to
intuitively develop a corresponding mathematical
representation. The procedure to systematically
convert logical expressions into their equivalent
mathematical representation is discussed in the next
section. The procedure will then be applied to the
modelling of inference problems and to the modelling
of discrete constraints that commonly arise in
synthesis problems.

MATHEMATICAL REPRESENTATION OF LOGICAL
RELATIONSHIPS

In order to obtain an equivalent mathematical
representation for any propositional logic expression,
one must first consider basic logical operators to
determine how each can be transformed into an
equivalent representation in the form of an equation
or inequality. These transformations are then used to
convert general logical expressions into an equivalent
mathematical representation (Cavalier and Soyster,
1987).

The basic unit of propositional logic expression,
which can correspond to a state or to an action, is
called a literal which is a single variable that can
assume either of two values, true or false. Associated
with each literal P, there is another literal NOT P
(1 P) such that either P or (-I P) is always true. A
clause is a set of literals separated by OR operators
and is also called a disjunction. A proposition is any
logical expression and consists of a set of clauses Pi,
i-l,..., r that are related by the logical operators
OR, AND, IMPLICATION.

To each proposition Pi, a binary variable yi is
assigned. Then the negation or complement of
P,(lP,) is given by 1 - yi. The logical value of true
corresponds to the binary value of 1 and false corre-
sponds to the binary value of 0. The basic operators
used in propositional logic and the representation of
their relationships are shown in Table 1. From this
table, it is easy to verify, for instance, that the logical
implication in (1) reduces to the inequality in (2).

With the basic equivalent relations given in Table
1 (e.g. see Williams, 1988), one can systematically
model an arbitrary propositional logic expression
that is given in terms of OR, AND, IMPLICATION
operators, as a set of linear equality and inequality
constraints. One approach is to systematically
convert the logical expression into its equivalent
conjunctive normal form representation which in-
volves the application of pure logical operations. The
conjunctive normal form is a conjunction of clauses,
QlAQZ^-* - A Q, . Hence, for the conjunctive normal
form to be true, each clause Q, must be true indepen-
dent of the others. Also since a clause Qi is just a
disjunction of literals, P, v P2 v * * . v P,, it can be

Relation between MILP modelling and logical inference 75

Logical
relation

LQgical “OR”
Logical “AND”
Implication

Equivalence

Exclusive “OR”
@OR)
Classification

Table 1. Rep-tation of lqical relations with linear inequalities

Rcprcscntation
Logical 88 linear

commcnt.s expression inequalities
P,vP*v-..vP, y,+y*+...+y,>l
P,hP2A...“P, y,51;y,bI;...;y,*I

P, e+ P2 is logically lP,VP* l--Y,+Y*21
equivalent to 7 P, v P2 OrY,-Y*GO

P, -if and only if P2 (~P,vP2)h(~P*VP,) YI-Y2~o;Y2-Y,co
(P,*Pz)hW=DP,) or YI FY2

Exactly one of the variables p, @P&3,- +BP, y,+y2+...+y,=l
is true

Q={J’,.J’,....,P,I
Q is true if any of the variables

Yq=YI+“‘+Yr

inaide the bracketa are true

expressed in the linear mathematical form as the
inequality:

jQ+Yr+-..+Y~,l. (4)

The procedure to convert a logical expression
into its corresponding conjunctive normal form
was formalized by Clocksin and Mellish (1981).
The systematic procedure consists of applying the
following three steps to each logical proposition:

(1)

(2)

(3)

replace the implication by its equivalent dis-
junction:

PI +-Pro 7P,vP,; (5)

move the negation inward by applying DeMor-
gan’s Theorem:

l(P,hPz)*lPIvlPz, (6)

1(P,vP,)01P*/\1P2; (7)

recursively distribute the “OR’ over the
“AND” by using the following equivalence:

(~,~p*)v~,~(p,vp,)~(~2v~~). (8)

Having converted each logical proposition into
its conjunctive normal form representation,
Q,AQz~-.-AQ,, it can then be easily expressed as
a set of linear equality and inequality constraints.

The following example illustrates the procedure for
converting logical expressions into inequalities.

Example I

Consider the proposition

(P,AP,)VP,=-P,VP,. (9)

By removing the implication, the above yields
from (5):

l[(PIAP,)VP,]VP,VP,. (10)

Further, from (6) and (7), moving the negation
inwards leads to the following two steps:

tl(P,hPz)A lP,]VP,VP,, (11)

[(lP,VlP,)hlP3]VP,VPS. (12)

Recursively distributing the “OR” over the “AND”
as in (8) the expression becomes:

(lP,VlP,VP,VP,)A(lP,VP,VP,), (13)

which is the conjunctive normal form of the prop-
osition involving two clauses. Translating each clause
into its equivalent mathematical linear form, the
proposition is then equivalent to the two constraints:

Ys-YY,-YY,<O. (14)

LOGICAL INFERJCNCE

From the above example it can be seen that logical
expressions can be represented by a set of inequalities.
An integer solution that satisfies all the constraints
will then determine a set of values for all the Iiterals
which makes the logical system consistent. This is a
logical inference problem where given a set of n
logical propositions, one would like to prove whether
a certain clause is always true. The problem can be
stated as:

prove P.

s.t. mp,,~*,...,pg), (15)

where P, is the clause to be proved and B is the set
of logical propositions Pi, i = 1,2, . . . , q that must
hold.

Given that all the logical propositions have been
converted to a set of linear inequalities, the inference
problem can be formulated as the following MILP
(Cavalier and Soyster, 1987):

2 = minimize C ciyj,
iel(u)

s.t. AY ta,

YE{O,ll”, (16)

where Ay 2 a is the set of inequalities obtained by
translating B(P, , P2, . . . , P,) into their linear math-
ematical form, and the objective function is obtained
by also converting the clause Pm that is to be proved
into its equivalent mathematical form. Here, I(U)
corresponds to the index set of the binary variables
associated with the clause P,. This clause is always
true if 2 = 1 on minimizing the objective function as
an integer programming problem. If 2 = 0 for the
optimal integer solution, this establishes an instance
where the clause is false. Therefore, in this case, the
clause is not always true.

76 R. RAMAN and I. E. GROSSMANN

In many instances, the optimal integer solution to
problem (16) will be obtained by solving its linear
programming relaxation (Hooker, 1988). Even if no
integer solution is obtained, it may be possible to
reach conclusions from the relaxed LP problem if the
solution is one of the following types (Cavalier and
Soyster, 1987):

1. ZrcI, > 0: The clause is always true even if
Z =,_,, < 1. Since Z is a lower bound to the
solution of the integer programming problem,
this implies that no integer solution with Z = 0
exists. Thus the integer solution will be Z = 1.

2. Zrelaxed = 0, and the solution is fractional and
unique: The clause is always true because there
is no integer solution with Z = 0.

For the case when Zrrlaxed = 0 and the solution is
fractional but it is not unique one cannot reach any
conclusions from the solution of the relaxed LP. The
reason is that there may be other integer valued
solutions to the same problem with Z,,, = 0.

In this way, just by solving the relaxed linear
programming problem in (16), one might lx able to
make inferences. The following example will illustrate
a simple application in process synthesis.

Example 2

Reaction path synthesis involves the selection of a
route for the production of the required products
starting from the available raw materials. All chemi-
cal reactions can be expressed in the form of prop-
ositional logic and can therefore be represented by
linear mathematical relations. The specific example
problem is to investigate the possibility of producing
H,CO, given that certain raw materials are available
and the possible reactions. This example problem was
presented by Mahalec and Motard (1977) who solved
it using the resolution principle.

The chemical reactions are given by:

H,O + CO,+H,CO,,

c + or-Co2 , (17)

assuming that H,O, C and O2 are available.
Expressing the reactions in logical form yields:

H,O A CO2 * H,CO,,

CA02==CO*. (18)

The objective is to prove whether H,C03 can be
formed given that H,O, C, O2 are available. Define
binary variables corresponding to each of C, Or,
CO2 3 H,O and H,CO,. Translating the above
logical expressions into linear inequalities, the infer-
ence problem in (16) becomes the following MILP
problem:

z = mm YH2C03

s.t. yH20 + ,kOz - YH2C03 B lv

Yc+Yol-Yco,d 1,

YHlO = l,

yc= 1,

Yo, = 19

Yc.Yo~,Y~~~.YH~o,YH~C~E{O, l>‘* (19)

The objective involves the minimization of yH2co,
because the objective is to prove H2C03. Solving the
relaxed LP problem yields an integer solution with
Z = 1 and yHrcq = vco, = 1. This solution is then
interpreted as “H,CO, can always be produced from
H,O, C and O2 given the above reactions.”

LOGICAL INFERENCE WITH UNCERTAIN KNOWLEDGE

The problem most often encountered in design and
process synthesis is to select the best flowsheet/design
for producing the required product starting with the
available raw materials. In order to obtain a “good”
design (not necessarily optimal), it must satisfy as
much as possible, the qualitative knowledge about
the system.

The qualitative knowledge available about the
design of a system can be classified as one of the
following two types--hard logical facts or uncertain
heuristics. Hard, logical facts are never violated-for
example, the reaction NaOH + HCl-rNaCl + Hz0
holds from basic chemical principles. Qualitative
knowledge in the form of heuristics on the other hand
are just rules of thumb which may not always hold.
Therefore all the knowledge for synthesizing a design
may not be consistent since the heuristics may contra-
dict one another; for example, a rule that suggests to
use higher temperatures to increase yield may conflict
with a rule that suggests to use lower temperature
to increase selectivity. Resolution of conflicts is an
important part of reasoning. In general, one must
violate a weaker (more uncertain) set of rules in order
to satisfy stronger ones. Therefore, it becomes necess-
ary to model the violation of heuristics, which is done
as follows (Post, 1987):

Clause or V, (20)

where either the clause is true or the clause being
violated (V) is true. Since the clause is also a disjunc-
tion, the conversion of (20) into the mathematical
linear form is simple--the V just adds on to the
constraint. For example,

yields

(21)

1 --y, + 1 -jJ*+y3+y‘$+u 2 1, (22)

where u can also be interpreted as a slack variable
that allows the violation of the inequality. The vari-
able u, which can be treated as a continuous variable,
will take on values of 0, 1 only due to the logical
condition in (20) since the clause itself takes on only
integer values.

Relation between MILP modelling and logical inference 77

In order to discriminate between weak and strong
rules, penalties are associated with the violation vi of
each heuristic rule, i = 1,. . . , m. The penalty Wi is a
nonnegative number which reflects the uncertainty of
the corresponding logical expression. The more un-
certain the rule, the lower the penalty for its violation.
The value of the penalty can be supplied by the
designer based on his/her experience and confidence
in the heuristic rule. This could make the selection
of the penalties w1 somewhat subjective. However,
the penalties can be determined systematically if a
quantitative optimization model is available for the
same problem as discussed in Raman and Grossmann
(1990). The total weighted penalty for the qualitative
model can be associated with the equation:

Note that no violations are assigned to the inequal-
ities BY > b, since these correspond to hard logical
facts that always have to be satisfied. The solution to
(24) will then determine the design that best satisfies
the possibly conflicting qualitative knowledge about
the system.

Example 3

One of the problems most extensively studied
in process synthesis is distillation column sequenc-
ing. Seader and Westerberg (1977) have identified
rules which when followed, often lead to a
good solution. Three of those rules will be used to
demonstrate the concepts discussed above. The
rules are:

z = w=v. (23) 1. Remove most plentiful component first.
In this way, the logical inference problem with 2. Avoid difficult separations.

uncertain knowledge can be formulated as an MILP 3. Separate into equal sized fractions.
problem where the objective is to obtain a solution
that satisfies all the logical relationships (i.e. Z = 0),

Also, the following rule is imposed as a hard con-

and if that is not possible, to obtain a solution with
straint:

the least total penalty for violation of the heuristics. 4. Perform sharp splits.
This leads to the following MILP problem:

min Z = wTv,
Assume that, in rules 1-3, the penalities w, = 2,

w, = 2, w) = 1, have been assigned .to reflect the ex-

s-t. Ay + v 2 a: heuristics, perience of a designer. The following logical ex-

By ab: logical facts,
pressions correspond to the heuristic rules for an
N-component system (ABCD . . .) for which only

Y E{O, l>“, v 3 0. (24) sharp splits are considered:

1. “A” most plentiful (PLENTY-A) *
“B” most plentiful (PLENTY-B) *

Separate A and B (SPLIT-AT_AB)
Separate A and B (SPLIT_AT-AB) OR
Separate B and C (SPLIT_AT-BC)

. . .
2. AB Separation toughest(TOUGH_AB) =-

BC Separation toughest(TOUGH_BC) =-
. . .

3. A forms half of total feed (HALF-A) =-
A and B form half of total feed (HALF_AB) *

4. EOR (SPLIT_AT_AB, SPLIT_AT-BC, . . .)

Don’t separate A and B(-,SPLIT_AT_AB)
Don’t separate B and C(--$PLIT- AT-BC)

Separate A and B(SPLIT_AT-AB)
Separate B and C (SPLIT_AT-BC)

These rules can be converted into their conjunctive normal form and further translated into their
mathematical representation also allowing for the violation of each of these rules. The problem of deciding
on how to split a multicomponent mixture (ABC. . .) becomes an MILP of the form:

Z = min 2(V,, + VIZ + . . .) + 2(v2, + vz2 + . . .> + (v3, + 032 + . . .),

s.t.

PLENTY-A - SPLIT_AT_AB - uI1 < 0,
PLENTY-B - SPLIT_AT_AB - SPLIT-AT-BC - v,* < 0,
. . .
TOUGH_AB + SPLIT_AT-AB - vl, < 1,
TOUGH_BC + SPLIT_AT_BC - v2* < 1,
. . .
HALF-A - SPLIT-AT-AB - v3, < 0,
HALF- AB - SPLIT-AT- BC - ug < 0,
..*
SPLIT-AT-AB + SPLIT-AT-BC + . . . = 1,
SPLIT-AT_AB, SPLIT_AT-BC,. . . E (0, ljN, (25)

vij 2 0 for all i, j,

where SPLIT-AT_AB, SPLIT-AT-BC, . are the design decisions and urJ are the violations of the heuristics.

78 R. -N and I. E. GR~~~MANN

Table 2. Data for Exampk 4 (fivecomponent system-ABCDB)

Compoocot Flow rate Relative volatility

A 1 I .25
B 2 1.0
C 4 0.95
D 2 0.7
E 1 0.45

Table 3. Data for Example 4 (three-component system-ABC)

Component Flow rate Relative volatility

A 1 1.25
B 2 1.0
C 4 0.95

Given the data in Table 2 for the five-component
mixture (ABCDE), the values of the variables
PLENTY- . . . , TOUGH- . . . , HALF_ . . . can be
established a priori. The resulting MILP involves four
binary variables, 13 continuous variables and 13
constraints. The solution, which was obtained as a
relaxed LP (0.22 s, SCICONIC/GAMS on VAX 6320
and 0.36s, ZOOM/GAMS on Microvax II) yields
SPLIT-AT-CD = 1 with no penalty (2 = 0). This
means that no rules are violated when the split is
performed between components C and D. Further,
consider the resulting system ABC. Solving the
problem with the data given in Table 3 yields SPLI-
T_AT_BC = 1. In this case, Z = 2 because there is a
conflict between rules 1 and 2. Rules 1 and 3 override
rule 2, so B and C are split although it is the most
difficult separation because of the presence of rela-
tively large amounts of B and C in the system.

The sequential application of the minimization
of heuristics for this example would determine the
separation sequence that is shown in Fig. I.-However,
in general there is no guarantee that the sequence
corresponds to the one that minimizes violations
over all possible sequences. In order to address this
problem, the formulation in (42) can easily be
extended by considering the initial feed and all the
intermediate mixtures that are shown in Table 4. In
addition logical constraints are added to ensure a
feasible separation sequence.

While considering the synthesis problem, it is
necessary to define the variables as follows:

ASYSTEM(i,j) denotes the existence of the
intermediate (i. j)
given in Table 4,

ABCDE

<

Fig. I. Solution to Example 3.

Table.4. Intermediates (&j) for the initial feed amoisting of ABCDE

Row/cohtmn 1 2 3 4 5

1 ABCDE ABCD ARC AB A

2 BCDE 3 = g :
4 DE D

SPLIT@-, j, k) denotes the existence of a split
at position k (defined in
Table 5) in intermediate (i,j),

PLENTY&j, k) existence of relatively large
quantities of component
k in intermediate (i,j),

TOUGH(i,j, k) existence of a difficult
separation at position k in
intermediate (i,j),

HALF&j, k) all components upto k form
approximately half of the
feed of intermediate (i,j).

The heuristic rules mentioned earlier would now be
in the following form:

ASYSTEM(i,j) A PLENTY(i,j, k)

=S CUT&j, k - 1) v CUT(i, j. k) V&j, k,

ASYSTEM(i,j) A TOUGH(i,j, k)

=z- 1 CUT(i, j, k) V&j, k,

ASYSTEM(i,j) A HALF&j, k)

=S CUT&j. k) Vi,j, k. (26)

The violations associated with each of the three
rules is denoted by v,(i,j, k), u,(i,j, k), us(i,j, k),
resepectively. The weights associated with the three
rules are the same as mentioned earlier. Equations
(26) transforms to the following set of mathematical
constraints:

-ASYSTEM(i,j) - PLENTY(i,j, k) + CUT(i,j, k)

+CUT(I’,j,k - l)+ol(i.j,k)a -1,

-ASYSTEM(i, j) - TOUGH(i,j, k) - CUT(i,j, k)

+ uAi,A k) 2 -2,

-ASYSTEM(i,j) - HALF&j, k) + CUT(i,j, k)

+ u,G,j, k) 2 - 1, V&j, k. (27)

Table 5. Definition of index k in Example 3

k Split at

I

:
AB
BC

4 CD
5 DE

.
N between (N - I)th. Nth compoocnt

Relation between MILP modelling and logical inference 79

The hard logical constraints that are required
to ensure a feasible separation sequence are the
following:

1. If an intermediate exists, it must be split and at
only one position. This is defined by the classifi-
cation relationship:

ASYSTEM(i,j) = {CLJT(i,j, k); Vk} ViJ. (28)

2. One split should be made at each position in
order to separate all the components. This is
expressed as:

EOR[CUT(i,_i, k); Vij] Vk. (2%

3. If the intermediate. (i,j) is split at position k,
then the next two intermediates to exist are
(i, N + 1 - k + i) and (k,j + k - i) where N is
the total number of components in the initial
feed. For example, consider the five-component
system in this example where N = 5. If the
intermediate system ABCD exists (i = 1,j = 2)
and was split at position CD (i.e. the separation
produced the intermediates ABC and D) for
which k = 4 then the new systems to exist would
correspond to (1,3) and (4, 5) which correspond
to ABC and D, respectively, as can be verified
from Table 4. This is expressed as:

CUT(i,j, k) =E- ASYSTEM(i, N + 1 - k + i)

A ASYSTEM(k,j + k - i)

Vi, j, k. (30)

The hard logical constraints in (28-30) are trans-
formed into their mathematical linear form which is:

ASYSTEM(i,j) - c CUT(i,j, k) = 0 Vi,&
t

cc CUT(i,j, k) = 1 Vk,
i j

(31)

ASYSTEM(i, N + 1 -k + i)

- CUT(i,j, k)> 0 Vi,j,k,

ASYSTEM(k,j + k - i)-CUT(i,j, k) 2 0 V&i, k.

The objective function is:

2CCCY,(i,j,k)+2CCCoz(i,i,k)
i j k i i k

+CCCdxo (32)
i j *

The MILP consists of minimizing the objective
function in (32) under the constraints (27), (31) along
with the additional requirements that:

vl(i.j, k), ~(i,j, k), +(Ij, k) Z 0,

ASYSTEM(i,j) E (0, l}“,

CUT(i,j, k) E (0, 13”. (33)

The resulting MILP then involves 70 binary vari-
ables, 234 continuous variables and 275 constraints.

Despite the fact that the MILP does not have the
Horn claue structure, it was solved almost as a
relaxed LP. The branch and bound method had to
examine only two nodes requiring 1.35 s using the
solver SCICONIC/GAMS (Brooke et al., 1988) on a
VAX 6320. Using ZOOM/GAMS on a Microvax II,
18 nodes were examined requiring 73.2 CPU s. The
MILP also leads to the sequence shown in Fig. 1
which has an overall violation of 2 = 2. In this case,
the sequential and simultaneous optimization ap-
proaches lead to the same sequence of separations.
Note that if the penalty of the second heuristic
involving difficult separations were much higher
(% - lo), then the sequential design would lead to
the separation sequence shown in Fig. 2 with Z = 13
while the simultaneous approach would still lead to
the separation sequence of Fig. 1 which has a lower
total penalty (Z = 10). In general, the simultaneous
approach will lead to a sequence that has a smaller
weighted violation of heuristics than the sequential
approach.

COMPARISON BETWEEN MILP APPROACH AND
PRODU<JL1ON SYSTEM APPROACH FOR

QUALITATIVE KNOWLEDGE

Having presented in the previous section an MILP
formulation for qualitative knowledge that includes
heuristics, it is instructive to compare this approach
with the use of production systems (e.g. expert sys-
tems) which have been extensively used in a number
of different areas.

In order to preserve the modular nature of the
inference procedure, production systems require that
rules be written as Horn clauses. Horn clauses are
disjunctions with not more than one nonnegated term
(e.g. A v 1 B v 1C v 1 D). In terms of production
systems rules, a Horn clause is defined as a rule where
there are no OR operators on the right-hand side of
the implication (B v C v D * A). The reason for con-
straining the structure of rules to this form in pro-
duction systems is that when the rule fires, it is
possible to fix the value of the variable on the right
side of the implication if the left side of the impli-
cation is true. This requirement of modularity is one
of the main advantages of the production system in
that it decomposes the solution of an inference
problem. On the other hand, the drawback is that if

Fig. 2. Sequential solution to Example 3 with weights
W, = 2, w* = 10, WJ = 1.

80 R. RAMAN and I. E. GROSSMANN

the rule is not a Horn clause (e.g. A v B =. C v D), the
production system is not able to decide which of
the variables on the right side of the implication
to make true if the left side of the implication
is true. The MILP approach, on the other hand,
imposes no restrictions on the form of the logical
expression.

are performed in production systems, can also be
performed on the MILP model.

Furthermore, with production systems, it is
difficult to systematically model relationships like
“Exclusive OR”, “Classification” and “At most one”
using propositional logic. Although it is simple for an
expression with just two variables, it gets surprisingly
complicated when the number of variables is in-
creased. For example, A EOR El is equivalent to
(A v B) A (1 A v 1 B), while “at most one of A, B” is
equivalent to 1A v -IB. Mathematically, they are
very simple to express as the former is expressed as:

Finally production systems evaluate rules sequen-
tially using forward or backward chaining strategies
(Lien et al., 1987), which makes the ordering of rules
a critical issue. Design engineers try to use this to
their advantage by ordering rules in such a manner as
to control the search. But in case of conflicts, this
approach is not guaranteed to minimize the violation
of heuristics. The MILP approach, on the other hand,
can search the rules simultaneously so it does not
restrict the formulation or ordering of rules (also see
Example 3). The following example illustrates the
comparison between the production system and the
MILP approach.

Example 4

YA+YB= 1,

while the latter is expressed as:

(34)

YA+YBG 1 (35)

and the complexity does not increase when the num-
ber of variables increases.

Consider the following three heuristic rules which
are specified in decreasing order of priority, for a
given system whose components are to be separated
through distillation:

1.

Although it is clear that the MILP approach offers
more flexibility to represent the qualitative knowl-
edge than a production system, the potential limi-
tation is the computational efficiency. Both the
logical inference and the MILP problems are
classified as NP-complete which means that in the
worst case, the solution time would grow exponen-
tially with the problem size. In recent years though,
large subclasses of logical inference problems have
been identified as problems that can be solved as a
relaxed LP in linear time. Chandrasekharan (1984)
has shown how to round off the solution to the
relaxed LP problem to obtain optimal integer sol-
utions if the system is a Horn clause system. Further-
more, Chandru and Hooker (1989) have identified a
structure termed hidden Horn clause system that can
also be solved using Chandrasekharan’s procedure in
linear time. This implies that by just rewriting the
logical expression as Horn clauses, one can greatly
reduce the computational time. Trial runs by Hooker
(1988) also seem to indicate that many of the logical
inference problems can be solved as a relaxed LP even
though they are not Horn clauses. Although at this
point it is not clear whether an MILP-based approach
could effectively replace the current search strategies
used in production systems, the fact that these prob-
lems can often be solved as linear programs would
suggest that this is an avenue worth exploring.

2.

If the component is present in low concen-
tration, then do not remove it first, although it
is easy to separate and it can be removed at the
top of the distillation column.
If the component is easy to separate, then it can
be removed at the top and should be removed
first.

3. If the component is the most volatile, then it is
easy to separate.
It will be assumed that the first rule having the
highest priority has a penalty for violation
W, = 100, the second rule has a penalty of
violation w2 = 10, while the last has wj = 1.

In order to express these rules through a logic
formulation, the following literals are introduced:

P, = low concentration of component,

P2 = most volatile component,

P, = can be removed at the top of the column,

P4 = component is easy to separate,

P, = remove first.

The rules are then expressed as:

Furthermore, many search strategies used by
expert systems can be shown to be specialized forms
of MILP search. Resolution has been shown to be
equivalent to a specialized first rank cutting plane
(Hooker, 1988). Similarly backtracking search is
simply a branch and bound search on the space
of alternatives. So specialized search strategies
depending on the structure of the model, that

PI’ P4: v3, (36)

where VI, V2, V3 are the potential violations of the
three rules. Note that the rules are not consistent with
each other. The first and second rules predict contra-
dictory values for Ps with the same value of P.,.

Assume that one is trying to determine whether a
given component can be removed given that this
component is present in low concentrations
(PI = True) and that it is the most volatile

P,rXP,ftP,- 1P,:Vl,

P4 - P,/lP,: v2,

Relation between MILP modelling and logical inference 81

(Pz = True). If one were to apply forward chaining
and assuming that the rules are processed in the order
that is given, then the first rule that is fired is rule 3
yielding P4 = True since P2 = True is known, The
next rule that would be fired is rule 2 yielding
P3 = Ps = True since P,=True is known. Since at
this stage, all the literals have been determined, the
search would stop. Note, however, that rule 1, which
is the one with highest priority, is actually violated.

Similarly, if one were to apply backward chaining,
the inference engine would first search the right-hand
side of all the rules until it reaches the fhst occurrence
of Ps. which is rule 2. This rule requires that
P_, = True in order for Ps = True. Then it searches the
right-hand side of the rules until it reaches the first
occurrence of P., which is rule 3. This rule requires
that P2 be determined in order to determine Pd. On
further search for P2, the inference engine discovers
that P2 is an input variable and that P2 = True. So
from rule 3, P4 = True and therefore, from rule 2,
P5 = True. Note that, once again, rule 1 has not been
fired and that the solution obtained violates rule 1.

In this way, forward or backward chaining on the
system of rules would both yield the same solution,
P3 =True, P4 =True, P, = True (i.e. remove the
component first). In reaching this solution, the first
and the most important of the rules is violated. In fact
neither approach even fires the first rule.

Consider now the MILP approach. Associating
the binary variables y, , yz, y3, y4, y5 with literals
P, , P2, P3, P.,, Ps, respectively, and converting the
logical expressions into their equivalent mathematical
form, the inference problem yields the following
MILP:

Z=minlOOv,+lO(u,,+u,,)+u,,

Y4 - Ys - %a G 0,

Yz-Y4-U3G01

Y,,Y*,.Y3,_Y4,_Y,E{O, 11,

VI 1 fJ2.a I 0% 9 u3 2 0. (37)

Note that rule 2 must be expressed through two
inequalities and therefore each must be assigned its
own violations, ura, uzb.

Solving the MILP with the input y, = 1,~~ = 1 (i.e.
the component with low concentration and most
volatile) yields, from the relaxed LP, the solution
~Y,=-,Y,=o, y, = 0} which is interpreted as “do not
remove the component first”. This solution only
violated the third and the weakest of the three rules,
and so is a better solution than the one obtained by
simple forward and backward chaining approaches.
The advantage of searching through the rules simul-
taneously, rather than sequentially should now be
obvious.

It should be noted that one important assumption
in the MILP modelling of qualitative knowledge
that has been presented is that it does not involve
any quantitative information. In synthesis appli-
cations, however, it is commonly the case that
some qualitative decisions might be contingent on
the calculated values of variables for the system
to be synthesized. As an example, consider the
case when the separation system in Example 4
is embedded as part of a flowsheet. Clearly,
the relative amounts of the components present
would depend on the operating conditions of the
flowsheet.

As shown in Raman and Grossmann (1990), how-
ever, one can integrate the qualitative MILP model
within a quantitative MINLP optimization model so
as to explicitly model the dependency of certain
qualitative rules on quantitative information. Since
this problem is beyond the scope of this paper, it is
discussed in detail in Raman and Grossmann (1990).
Instead, the next section will consider as an ad-
ditional application, the modelling of integer and
mixed integer constraints.

MODELLING WITH INTEGER VARIABLES

As an additional application of the relationship
between logical expressions and MILPs, consider
the problem of formulating integer or mixed-integer
programming problems for design and synthesis
problems. Here constraints are commonly written
intuitively by modellers. While this may work for
simple cases, this approach can become difficult for
more complex situations. It is therefore desirable to
have a procedure where given the qualitative require-
ments for a mixed-integer formulation, the integer
constraints can be formulated in a systematic
manner. The approach described in the earlier
sections of using propositional logic can be used for
this purpose. The requirements are first expressed
as propositional logic, then converted to their con-
junctive normal form expression and finally trans-
lated to their corresponding linear mathematical
form. The following examples will illustrate this
point.

Example 5

Vaselenak et al. (1986) in their paper on heat
integration in batch processes require a variable zb to
equal 1 if a match exists between hot tank i and cold
tank i in time t and 0 otherwise. There is also a
restriction of only one match between a hot tank and
a cold tank per time period. The existence of heat
exchange by hot tank i in period t is denoted by y; = 1
and that of heat exchange by cold tank j in period t
is denoted by yj = 1. Define the logical variables, Z$,
Y: and Yj, associated with the binary variables z:j, yi
and yf , respectively, where a value of True for the
logical variables correspond to a value of 1 for the
binary variable.

82 R. RAMAN and I. E. Gaasxm~

The restriction of only one match each among all
hot and cold tanks per time period is expressed as
follows:

EOR(Yf; i = 1,2,. . . , NHOT) t = 1,2,3, . . . , T,

EOR(Y,;j = 1,2,. . . , NCOLD) t=l,2,3 ,_._, T.

(38)

The relation betwen Z; and Y:, and Yj is expressed
as follows:

r:/\ Y,!*Z$. (39)

In the conjunctive normal form:

1Y:vlYjvz~. (4w

Hence, in the mathematical linear form, the three
expressions in (38) and (39) become:

MOT

iF, Y:=’ t=l,2 ,_._, T,

NCOLD

,F‘ Yf- 1 t=1,2)..., z-,

~j+~,‘-z;<l Vi,j,t. (41)

Example 6

Consider the problem of deriving an integer cut
that will prevent a certain integer point from being
feasible. These integer cuts are used to generate
second, third best solutions, or as part of the MILP
master problem for an MINLP algorithm (see Kocis
and Grossmann, 1989b). Suppose the integer point in
question is:

Y = {Y,, i E B; yi,j E N}, (42)

where y#, i E B are the set of all binary variables that
have a value of 1, and J,,, j E N are the set of all
variables that have a value of 0. Since the purpose of
the integer cut is to prevent the given combination
values for y, and y,, the integer cut can logically be
expressed as:

l[(i,^, yi> * jE^, l yj)l. (43)

Application of DeMorgan’s Theorem yields:

o,“, 1 yi:.) v ci,“, yj)- (44

Translating the above into the mathematical linear
form:

,$l --Y,)+ c Y/2 1, (45)
IEN

which finally yields the inequality (Balas and
Jeroslow, 1972):

&Yi -/XNY6 WI - I>

where IBI is the cardinality of set B.

(46)

MODELLING WITH INTE4XB AND CONTITWJOUS
VARlA3LJL.S

Another type of constraints that have been difficult
to formulate systematically are the class of con-
straints wherein the satisfaction of a set of constraints
implies that another set of constraints is also valid
[e.g. “f(x) < 0” implies “g(x) >, V’]. These types of
constraints arise when modelling the superstructure
of a flowsheet (see Kocis and -Grossmann, 1989a).
One can associate a binary variable with each of the
inequalities and equalities involved and then the
relation between these is expressed in terms of prop-
ositional logic. The relationships between the various
kinds of inequalities and equalities with the associ-
ated

1.

binary variables is handled as follows:

Associate a binary variable y, with the inequal-
ity f (x) < 0. Then the relationship between y,
and the inequality is:

&Y, +c <f(x) < U1(1 -Y,) (47)

where L,, U, are the upper and lower bounds
for f(x) in the problem considered and c is a
small positive tolerance. So if f (x) < 0, then
y1 = 1 in order to satisfy the inequality. Con-
versely, if f (x) 2 6, then y, = 0.
Associate a binary variable yz with the inequal-
ity g(x) 2 0. Then the relationship between yz
and the inequality is:

Ul -J%)<g(x)< &Y,--6, (48)

where L,, U, are the lower and upper bounds on
the value of g(x) for the problem considered
and 6 is a small small positive tolerance. So if
g(x) 2 0, then y, = 1 in order to satisfy the
above inequality.
Treat h(x) = 0 as “h(x) ,(O AND h(x) 2 0”.
Associate the binary variable z, with h(x) < 0,
the binary variable z, with h(x) 3 0 and the
binary variable y3 with h(x) = 0.

The relationship between the inequalities and the
binary variables associated with them follows from
equations (47) and (48):

L3z, +r<h(x)< U,(l -z,), (49)

L3U -z*)<h(x)< u,z,-Es. (50)

Also, from the definition of the binary variables:

Y,OZ,AZ*. (51)

This is equivalent to the following three inequali-
ties:

z,+z,-y,c 1, (52)

z1 -Y, 30, (53)

z2 -Y3 2 0, WI

where &, U, are the lower and upper bounds on the
value of h(x) and l is a small positive tolerance.

Relation between MILP modelling and logical inference 83

Equations (49) (50) and (52-54) relate the binary
variable y3 with the equality “h(x) = 0”. Note that
when ya = 1, then h(x) =O.

To illustrate the modelling procedure for a specific
relationship, consider the following example.

Example 7

Consider the logical condition, “If f(x) Q 0 and
h(x) = 0, then g(x) 2 0”. Associate binary variables
y, , y,, y, with the expressions f(x) < 0, g(x) Z 0 and
h(x) = 0, respectively. Then the expression can be
written as:

YiAY3=- Y2.

In the linear mathematical form:

(55)

Yl+Y3-Y2c 1. (56)

Also, from equations (47-50) and (52-54), the follow-
ing inequalities relate the algebraic equality and
inequalities with their associated binary variable:

L,Y, +.f Q(x) < U,(l -Y,).

L,z, + E <h(x) < U,(l -z,),

-&(l - ~2) < h(x) c C.&z, - G

z,+z2--z3=s 1,

ZI - Y3 B 0,

2.2 - y, z 0. (57)

Thus the inequalities in (56) and (57) define the
logical relationship for the inequalities and equations.

Example 8

Consider as a final example, the modelling of
nondifferentiable functions using integer variables.
This can be done with the ideas developed so far.
Associate a binary variable with each discontinuity
or point of nondifferentiability and model the
inequalities and inequalities on either side of the
point considered using the approach described in the
previous example.

The idea is illustrated with the following example
on the modelling of the max{O,f(x)) function that
arises in the heat integration model by Duran and
Grossmann (1986):

4 = maxKLf(x)l. (58)

The function is nondifferentiable at f(x) = 0 since:

f(x):
+= 0:

-i
f(x) 2 0,
“f-(x> (0.

Associate the binary variable y, with f(x) 2 0 and
(1 - y,) withf(x) d 0 so that:

f(x) -MY, c 0,

f(x) + L(1 -y,) >, 0. (60)

Furthermore, we wish to impose the conditions
yi=l=z-&=f(x)andy,=O*+=O. Thiscanbe
accomplished with the inequalities:

where L,, U, are the lower and upper bounds on
+ -f(x). respectively, while &, U, are similar
bounds on 4. Since L, = L, = 0, (60) and (61) can be
simplified as

064 c u,y,. (62)

Note that if y, = 1, 4 -f(x) 2 0, and if y, = 0,4 = 0.
In this way (62) represents the max function in (58).

CONCLUSION

In this paper, an MILP approach has been pre-
sented for solving problems in process synthesis
which require reasoning to make inferences from
qualitative knowledge. The work done in this area
has been reviewed and special emphasis placed on
showing its relevance to process synthesis problems.
These ideas have been illustrated with several
examples, including the synthesis of a separation
system. In this example, it was shown that the MILP
approach provides a framework for simultaneously
minimizing the weighted violation of heuristics.

A comparison between the production systems
approach and the MILP approach has also been
made with regard to representation of knowledge and
control strategies. A simple example was presented to
illustrate the fact that forward or backward chaining
search schemes may lead to solutions that yield larger
violation of heuristics when compared to the MILP
approach. Although no firm conclusions can be
drawn from the computational expense for solving
the MILP for general logic structures, systems with
Horn clauses and extended Horn clause systems can
be solved in linear time, as has been proved by
Chandrasekharan (1984) and Hooker (1988).

Finally, the advantage of using propositional logic
to systematically model constraints for integer and
mixed integer programming models in process syn-
thesis has been shown. This concept has also been
applied to handle the modelling of discontinuous and
nondifferentiable functions using integer variables.
The approach presented in this paper should provide
a first step in integrating qualitative and quantitative
knowledge effectively.

Acknowledgements-The authors would like to acknowl-
edge financial support from the Engineering Design Re-
search Center at Carnegie Mellon University and from the
Tennessee Eastman Company.

REFERENCES

Balas E. and R. Jeroslow, Canonical cuts on the unit
hypercube. SIAM J. Appt. Math. 23, 61-79 (1972).

a4 R. RAMAN and I. E. GROSSMANN

Beltramini L. J., C. M. Sheppard and R. L. Motard, Truth process synthesis engineering. Computers &em. Engng 13,
maintenance systems in process synthesis. Paper 31c, 307-315 (1989b).
National AIChE Meetinn. Houston (1989). Lien K.. G. Suzuki and A. W. Westerbera. The role of

Brooke A., D. Kendrick-.and A. h&era& GAMS-A
Users’ Guide. Scientific Press, Palo Alto (1988).

expert systems technology in design. Chem%ngng Sci. 42,
1049 (1987).

Cavalier T. M. and A. L. Soyster, Logical deduction Mahalec‘ V. and R. L. Motard, Procedures for the initial
via linear programming. IMSE Working Paper 87-147, design of chemical processing systems. Computers them.
Department of Industrial and Management Systems Engng 1, 57-68 (1977).
Engineering, Pennsylvania State University (1987). Papoulias S. A. and I. E. Grossmann, A structural optimiz-

Chandrasekharan R., Integer programming problems ation approach in process synthesis. Parts I, II and III.
for which a simple rounding type of algorithm Computers them. Engng 7, 695-734 (1983).
works. Progress in Combinatorial Optimization (W. R. Post S., Reasoning with incomplete and uncertain knowl-
Pulleybank, Ed.), pp. 101-106. Academic Press, Canada edge as an integer linear program. Proc. Avignon 87:
(1984). Expert Systems and their Applications. Avignon, France

Chandru V. and J. N. Hooker, Extended Horn sets in (1987).
uroaositional logic. Working Paner 88-89-39. Graduate Raman R. and I. E. Grossmann. Integration of aualitative
-School of Industrial Admi&tration, Carnegie Mellon knowledge in MINLP optirniz&on ?or process synthesis.
University, Pittsburgh (1989). Paper 26f, A. AIChE Meeting, Chicago (1990).

Clocksin W. F. and C. S. Mellish. Prowamming in Prolog. Seader J. D. and A. W. We&e&erg. A combined heuristic
Springer-Verlag, New York (1981). - - and evolutionary strategy for &&thesis of simple separ-

Douglas J. M., A hierarchical decision procedure of process ation sequences. AIChE Jl 23, 951 (1977).
synthesis. AZChE JC 31, 353-362 (1985). Siirola J. J., G. J. Powers and D. F. Rudd, Synthesis of

D&an M. A. and I. E. Grossmann. Simultaneous ootimiz- systems desinn III. Towards a nrocess con&t venerator.
ation and heat integration of chemical processes. *ArChE I&. Engng &em. Fun&m. 17; 677 (1971). _ -
JI 32, 123-138 (1986). Stephanapoulos G., J. Johnston, T. Kriticos, R.

Grossmann I. E.. MINLP ootirnization strategies and Lakshmanan. M. Mavrovouniotis and C. Siletti.
algorithms for . process synthesis. FOCAPD -Meeting DESIGN-KIT: an object-oriented environment for pro:
Proceedings (J. J. Siirola et al., Eds), pp. 105-132.
Elsevier, Amsterdam (1989).

cess engineering. Computers them. Engng 11, 655674
(1987).

Hooker J. N., Resolution vs cutting plane solution of
inference problems: some computational experience. Ops
Res. Letts 7, 1 (1988).

Kocis G. R. and I. E. Grossmann. A modellineldecom-
position strategy for MINLP optimization o~process
flowsheets. Computers them. Engng 13, 797819 (1989a).

Kocis G. R. and I. E. Grossmann, Computational
experience with DICOPT solving MINLP problems in

Umeda T., A. Hirai and A. Ichikawa, Synthesis of optimal
processing systems by an integrated approach. Chem.
Engng Sci. 27, 7955804 (1972).

Vaselenak J. A., I. E. Grossmann and A. W. Westerberg,
Heat integration in batch processes. 1nd. Engng Chem.
Process Des. Dee. 25, 357 (1986).

Williams H. P., Model Building in Mathemafical Program-
ming. Wiley, Chichester (1988).

