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The goal of this paper is to develop models and methods that use complementary

strengths of Mixed Integer Linear Programming (MILP) and Constraint Programming

(CP) techniques to solve problems that are otherwise intractable if solved using either of

the two methods. The class of problems considered in this paper have the characteristic

that only a subset of the binary variables have non-zero objective function coefficients if

modeled as an MILP. This class of problems is formulated as a hybrid MILP/CP model

that involves some of the MILP constraints, a reduced set of the CP constraints, and equiv-

alence relations between the MILP and the CP variables. An MILP/CP based decomposi-

tion method and an LP/CP-based branch-and-bound algorithm are proposed to solve these

hybrid models. Both these algorithms rely on the same relaxed MILP and feasibility CP

problems. An application example is considered in which the least-cost schedule has to be

derived for processing a set of orders with release and due dates using a set of dissim-

ilar parallel machines. It is shown that this problem can be modeled as an MILP, a CP,

a combined MILP-CP OPL model (Van Hentenryck 1999), and a hybrid MILP/CP model.

The computational performance of these models for several sets shows that the hybrid

MILP/CP model can achieve two to three orders of magnitude reduction in CPU time.

(Integer Programming; Benders-Decomposition; Constraint Programming; MILP/CP Hybrid
Algorithms; Parallel Machine Scheduling )

1. Introduction
Recently, there has been a significant interest in devel-

oping models and methods that combine Mixed Inte-

ger Linear Programming (MILP) (Nemhauser and

Wolsey 1988) and Constraint Programming (CP)

(Marriot and Stuckey 1998) to solve combinatorial

optimization problems. The primary reason for this

interest is that even though these methodologies

can solve similar problems, they have proved to

be successful in solving complementary classes of

problems. MILP methods have been successfully

applied to solve diverse problems, such as network

synthesis, crew scheduling, planning, and capital

budgeting, that can be modeled as optimization prob-

lems. CP methods have proved to be successful

in solving highly constrained discrete optimization

and feasibility problems for scheduling, configura-

tion, and resource allocation. The main objective of

developing integrated models and methods is to use

the complementary strengths of MILP and CP for

solving problems that are otherwise intractable using

either of these two methods alone. In this paper we

propose algorithms that use complementary MILP

and CP models to achieve this goal for a certain class

of optimization problems.

This paper is structured as follows. In the next

section, we present a brief background on MILP

and CP for solving optimization problems. It is fol-

lowed by a literature review on integration of these

techniques. We then describe a class of problems in

which only a subset of the binary variables appears

in the objective function of the MILP formulation.
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We formulate this class of problems as hybrid

MILP/CP models that involve some of the MILP con-

straints, a reduced set of the CP constraints, and

the equivalence relations between the MILP and the

CP variables. We then propose decomposition and

branch-and-bound algorithms to solve these hybrid

models. Both of these algorithms rely on relaxed

MILP and feasibility CP problems. The aim of these

methods is to combine the strength of MILP for prov-

ing optimality by using the LP relaxations, and the

power of CP for finding feasible solutions by using

the specialized propagation algorithms. As an exam-

ple, we consider a scheduling problem that involves

finding a least-cost schedule to process a set of orders

using dissimilar parallel machines subject to release

and due-date constraints. It is shown that this prob-

lem can be modeled as an MILP, CP, or a combined

MILP-CP OPL model (Van Hentenryck 1999). We then

investigate the computational performance of these

alternative models for a number of data sets and

highlight the advantages and disadvantages of these

approaches. This problem is then modeled as a hybrid

MILP/CP model and is solved using the proposed

decomposition algorithm. Computational results are

presented and finally some conclusions are drawn.

2. Background
MILP-based methods were developed over the last

four decades by the Operations Research commu-

nity (Nemhauser and Wolsey 1988). CP-based meth-

ods, on the other hand, are the result of research

by the Artificial Intelligence community in the area

of Logic Programming and Constraint Satisfaction

(Colmerauer 1985, Van Hentenryck 1989, Tsang 1993).

Both these frameworks rely on branching to explore

the search space. The primary difference lies in the

way inference is performed at each node. Linear

Programming (LP)-based branch-and-bound meth-

ods for MILP involve solving LP subproblems that

are generated by dropping some of the constraints

(integrality constraints) to obtain bounds on the

objective-function values and to prove that a set of

constraints is inconsistent. A node is fathomed either

when the objective-function value of the LP relaxation

is worse than the best integer solution obtained so far,

or the LP subproblem is infeasible. Branching is per-

formed whenever the solution obtained by solving

the LP relaxation does not satisfy all the constraints

in the original problem. If the relaxed solution sat-

isfies all the constraints in the original problem and

is better than the best feasible solution found so far,

then the best feasible solution is updated. The search

terminates when it is proved that no better solution

exists than the best feasible solution found.

The effectiveness of MILP methods depends on

the size of the linear-programming subproblems, and

more importantly, on the gap between the objective

for the best feasible solution (optimum) and the objec-

tive function value obtained from the initial LP sub-

problem. There are a number of more sophisticated

algorithms that focus on these aspects and use differ-

ent ways of generating LP subproblems, like Branch

and Cut (Padberg and Rinaldi 1991, Balas et al. 1996),

and Branch and Price (Barnhart et al. 1998). These

algorithms make use of valid inequalities to improve

the performance of the solution algorithms.

CP, on the other hand, uses constraint propaga-

tion as the inference engine. At each node, con-

straint propagation is used to reduce the domains of

all the variables. The domain of a variable can be

continuous, discrete, boolean etc. Constraint propa-

gation can result in empty domains in which case

a node is fathomed. Branching is performed when-

ever the domain of a variable consists of more than

one element (discrete and boolean domains) or the

bounds are not within a certain tolerance (continuous

domains). CP was originally developed to solve fea-

sibility problems. It has now been extended to solve

optimization problems. This is achieved by solving a

feasibility problem in which the objective function of

the problem is rewritten as a constraint that forces

it to be equal to a new variable. The domain of this

new variable gives upper and lower bounds on the

objective-function values. Whenever a feasible solu-

tion is obtained during the search, additional con-

straints that restrict the objective-function values are

imposed throughout the search tree. The search ter-

minates when all the nodes have been fathomed. The

effectiveness of the CP methods depends primarily on

the constraint-propagation algorithms that are used to

reduce the domain of a variable.
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MILP has the advantage that the effect of all the

constraints is evaluated simultaneously and it has a

“Global Perspective” on all the constraints (Rodosek

et al. 1999). CP, on the other hand, evaluates the effect

of constraints sequentially by communicating through

domains of the variables. When problems are loosely

constrained, finding the optimal solution with CP

may prove to be very difficult. However, since MILP

requires solving an LP subproblem at each node of the

search tree, all the constraints must be linear equali-

ties or inequalities. This imposes a severe restriction

on the expressiveness of MILP as a modeling lan-

guage because for some problems, for example the

progressive party problem (Smith et al. 1997), mod-

eling may require a very large number of variables

and constraints. Since CP uses constraint propagation

instead, it imposes no such restriction. Commercial

CP software packages like the ILOG Solver (ILOG

1999d), CHIP (Dincbas et al. 1988), ECLiPSe (Wallace

et al. 1997), and Prolog IV allow a number of dif-

ferent constructs over and above algebraic constructs

(+�−�∗�=�≤�≥) that can be used to write constraints
in a compact manner. However, caution and sound

judgment should be used when exploiting the advan-

tage of having more constructs with which to model

the problem. This is because the success of the CP

solution approach is highly dependent on the prop-

agation mechanism behind constraints written using

these constructs (Heipcke 1999b). Even though more

constructs are available, not all of them have efficient

constraint-propagation engines. For some applica-

tions like sequencing and scheduling, such constraints

have proved to be very efficient because strong prop-

agation algorithms are available. It is interesting to

point out that for constraints that use only alge-

braic constructs and use variables with continuous

and finite domains, linear programming is sometimes

used as the constraint-propagation engine in CP.

3. Literature Review
Recently, a number of papers have compared the per-

formance of CP- and MILP-based approaches for solv-

ing a number of different problems, for example the

modified generalized assignment problem (Darby-

Dowman et al. 1997), the template design problem

(Proll and Smith 1998), the progressive party prob-

lem (Smith et al. 1997), and the change problem

(Heipcke 1999a). Properties of a number of different

problems were considered by Darby-Dowman and

Little (1998), and their effect on the performance of

CP and MILP approaches were presented. As dis-

cussed earlier, these papers showed that MILP is very

efficient when the relaxation is tight and the mod-

els have a structure that can be effectively exploited.

CP works better for highly constrained discrete opti-

mization problems where expressiveness of MILP is a

major limitation.

Most of the recent attempts (Rodosek et al. 1999,

Heipcke 1999b) to integrate CP and MILP use con-

straint propagation along with linear programming in

a single search tree to obtain bounds on the objec-

tive and to reduce the domains of the variables.

In these approaches a complete CP model and at

the least a corresponding partial MILP model are

required. This is because CP is a richer modeling

tool and not all CP constraints may be easily refor-

mulated as MILP constraints. These approaches in

some sense perform redundant computations because

a constraint-propagation problem and a simplex prob-

lem are solved at every node. For some problems

this may be justified because they are intractable for

either of the two methods. Rodosek et al. (1999) pre-

sented a systematic approach for transforming a CP

model into a corresponding MILP model. However,

automatic translation from a CP model to an MILP

model may result in a poor model involving numer-

ous big-M constraints (poor LP relaxations). In this

case, the advantage of performing “Global Reason-

ing” using LP relaxation is essentially lost. If auto-

matic translation is not used, then the user has to

model the problems for both approaches.

Recently, Hooker et al. (1999) argued that a new

modeling paradigm may be required to perform effi-

cient integration of MILP- and CP-based approaches.

The modeling framework is motivated by the Mixed

Logic/Linear modeling framework that was proposed

by Hooker and Osorio (1999). Ottosson et al. (2001)

presented algorithms for solving such models. For a

production-planning problem, they showed that the

computational performance of the proposed method
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vis-a-vis pure MILP and CP approaches was signif-

icantly better. Bockmayr and Kasper (1998) did an

interesting analysis of CP and MILP approaches, and

presented a unifying framework, Branch and Infer, that
can be used to develop various integration strate-

gies. They divide constraints for both MILP and

CP into two different categories, primitive and non-
primitive. Primitive constraints are those for which

there exists a polynomial-time solution algorithm, and

non-primitive constraints are those for which this is

not true. The interesting aspect about this classifica-

tion is that some of the primitive constraints in CP

are non-primitive in MILP and vice versa. They also

discussed how non-primitive constraints can be used

to infer primitive constraints and the use of symbolic

constraints for MILPs. Raman and Grossmann (1993,

1994) earlier modeled discrete/continuous optimiza-

tion problems with disjunctions and symbolic con-

straints in the form of logic propositions. This model,

which they denoted as a Generalized Disjunctive Pro-

gram (GDP), can be converted all or in part into

an MILP. They presented the idea of w-MIP repre-

sentability, which is similar to the idea of primitive

constraints. They showed that it is computationally

efficient to transform w-MIP representable disjunc-

tions into linear constraints, and proposed a hybrid

branch-and-bound algorithm that handles the non

w-MIP representable disjunctions directly.

From the work that has been performed, it is

not clear whether a general integration strategy will

always perform better than either a CP or an MILP

approach by itself. This is especially true for the

cases where one of these methods is a very good

tool to solve the problem at hand. However, it is

usually possible to enhance the performance of one

approach by borrowing some ideas from the other.

For example, Raman and Grossmann (1993) used

logic cuts that were written as logic propositions to

improve the performance of MILP models. Ideas on

edge-finding (Carlier and Pinson 1989, Applegate and

Cook 1991) that were used for guiding the search in

MILPs to solve jobshop problems, were exploited by

Caseau and Laburthe (1994, 1996) and Le Pape (1994)

to develop efficient inference engines for scheduling

algorithms in CP. Furthermore, there are a number of

similarities in some of the underlying ideas of both

approaches. For example, probing and integer pre-

processing in MILP is in some ways similar to con-

straint propagation. Chandru and Hooker (1999) give

an interesting operations-research perspective on con-

sistency methods and logical inference. Also, Hooker

(2000) deals with the subject of MILP and CP integra-

tion in detail.

4. Theory
The algorithms proposed in this section have been

motivated by the work of Bockmayr and Kasper

(1998). These algorithms are based on the premise that

combinatorial problems may sometimes have some

characteristics that are better suited for MILP and oth-

ers that are better handled by CP. For these problems,

pure MILP- and pure CP-based approaches may not

perform well. As discussed earlier, most of the prior

work on integrating the two approaches use at least

one of the models in complete form (usually CP). In

the algorithms that we present the problem is solved

using relaxed MILP and CP feasibility models.

Consider a problem, which when modeled as an

MILP, has the following structure,

(M1): min cT x (1)

s�t� Ax+By+Cv ≤ a (2)

A′x+B′y+C′v ≤ a′ (3)

x ∈ �0�1�n� y ∈ �0�1�m�v ∈�p (4)

This is an optimization problem that has both con-

tinuous (v) and binary (x and y) variables, and

only some of the binary variables (x) have non-zero

objective-function coefficients. The constraint set can

be divided into two subsets. The first set of con-

straints (2) models some aspects of the problem that

can be represented efficiently in the MILP framework

(e.g. assignment constraints) and has a significant

impact on the LP relaxation. The second set of con-

straints (3), on the other hand, is assumed not to affect

the LP relaxation significantly, and is sometimes large

in number because of the limited expressive power of

MILP methods.

The same problem can also be modeled as a

CP. Note that more constructs are available in the
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CP framework to model the problem (e.g. logical

constraints, disjunctions, all-different operator etc;

Marriot and Stuckey 1998). For this reason, the MILP

and CP models of the same problem may have dif-

ferent variable definitions and constraint structures.

However, an equivalence can be established between

the constraints and a complete labeling of variables

can be derived in one framework from the values of

variables in the other one. Let us assume that the

equivalent CP model is

(M2):min f �x̄� (5)

s�t� G�x̄� ȳ� v̄�≤ 0 (6)

x̄� ȳ� v̄ ∈� (7)

where x̄, ȳ, and v̄ are the CP variables. The domain

of these variables (�) can be continuous, discrete,

or boolean. Generally, these variables do not have a

one-to-one correspondence with the MILP variables

(x�y�v), although a mapping between the sets of vari-
ables x and x̄ can be established. This is because these
variables are needed to calculate the objective func-

tion. It may or may not be the case for the variables

(y,v) and (ȳ,v̄). Usually, equivalence can also be estab-
lished between the sets of constraints. Let us con-

sider a class of problems with the above mentioned

MILP and CP model structures. Let us assume that it

is difficult to solve this problem as an MILP because

there are a large number of constraints in the con-

straint set (3) and finding feasible solutions for them

is hard. Let us assume that the broader expressive

power of CP results in the smaller constraint set (6).

Even though the constraint set in CP is much smaller,

it may still not be efficient to solve the problem using

CP because finding an optimal solution and prov-

ing optimality can be difficult for CP (lack of linear-

programming relaxations). Ideally, we would like to

combine the strength of MILP to handle the optimiza-

tion aspect of the problem by using LP relaxation and

the power of CP to find feasible solutions by using

better constraint formulations. To achieve this goal we

present a hybrid model for this class of problems that

can be solved using either a decomposition algorithm

or a branch-and-bound algorithm. The main advan-

tage of the proposed methods is that smaller LP and

CP subproblems are solved.

The hybrid model involves MILP constraints, CP

constraints, and equivalence relations. The objective

function in the hybrid model (M3) is the same as in

the MILP model (M1). The constraints for this prob-

lem include MILP constraints (2), equivalence rela-

tions that relate MILP variables x to CP variables x̄,

and a reduced set of CP constraints that are derived

from the CP constraint set (6) by assuming that the

set of CP variables x̄ is fixed.

(M3):min cT x (8)

s�t� Ax+By+Cv ≤ a (9)

x⇔ x̄ (10)

�G�x̄� ȳ� v̄�≤ 0 (11)

x ∈ �0�1�n� y ∈ �0�1�m�v ∈�p (12)

x̄� ȳ� v̄ ∈� (13)

It should be noted that the hybrid model (M3)

requires at least some variables (x) of the MILP

model (M1) and all the variables (x̄� ȳ� v̄) of the CP

model (M2). The values of the CP variables obtained

using the model (M3) will always satisfy all the con-

straints of the CP model (M2). Furthermore, the opti-

mal solution for the problem at hand is given by the

values of the CP variables (x̄� ȳ� v̄) obtained by solv-

ing the hybrid model (M3) to optimality. It should

be noted that the values of the MILP variables (y,v)

obtained from the model (M3) may not be valid for

the Model (M1) because the model (M3) does not

include the MILP constraint set (3).

An integrated approach is proposed in this work

to solve the hybrid MILP/CP model (M3). The basis

for this integrated approach are a relaxed MILP prob-

lem and a CP feasibility problem (which can in prin-

ciple be also solved with alternative methods), both

of which can be solved efficiently. The relaxed MILP

model is used to obtain a solution that satisfies the

constraint sets (9) and (12) and optimizes the objec-

tive function (8). The solution obtained for the relaxed

MILP is used to derive a partial CP solution by using

the equivalence relation (10). A CP feasibility model

then verifies whether this solution can be extended to

a full-space solution that satisfies the constraints (11)
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and (13) of the model. If the partial solution from the

MILP can be extended, then the full-space solution

obtained will also have the same value of the objec-

tive function. In this paper we present two methods to

search the solution space and obtain the optimal solu-

tion. Both of these ideas are essentially the same and

use the same relaxed MILP and CP feasibility models.

However, the difference lies in the order in which the

CP subproblems are solved.

4.1. MILP/CP-Based Decomposition Method
This algorithm has some similarities to Generalized

Benders Decomposition (Geoffrion 1972). The algo-

rithm is summarized in Figure 1. In this method a

relaxed MILP model of the problem, with (8) as the

objective and (9 and 12) as constraints, is solved to

optimality. Note that integrality constraints on the

variable y can be dropped if that makes the relaxed

MILP problem easier to solve. If there is no solution,

then the original problem is infeasible. Otherwise, val-

ues of x are used to determine values of the equiva-

lent CP variables x̄. A CP feasibility problem then tries

to extend this partial solution to a complete solution

(x̄� ȳ� v̄) that satisfies the constraints (11) and (13). If

there exists a feasible solution, then this solution is

the optimal solution of the problem and the search

is terminated. Otherwise the causes for infeasibility

are inferred as cuts and added to the relaxed MILP

model of the problem. These cuts could be general

“no good” cuts (Hooker et al. 1999). In the context of

the model (M3) these cuts have the following form

for iteration k,

∑
i∈Tk

xi−
∑
i∈Fk

xi ≤ Bk−1Tk = �i�xki = 1�� (14)

F k = �i�xki = 0��Bk = �Tk�

Here, xk = �xk1�x
k
2� � � �� represents the optimal values

of x in iteration k. These general “no good” cuts may

be rather weak. For this reason, whenever possible

stronger cuts (Qkx ≤ qk) that exploit the special struc-
ture of the problem should be used. The problem-

specific cuts should not only cut off the current partial

solution, but also eliminate partial solutions with sim-

ilar characteristics. Cuts are a means of communi-

cation between the relaxed MILP and CP feasibility

models and play a very important role in the success

of these methods. The entire procedure is repeated

until the solution obtained using the relaxed MILP

model can be extended to a full feasible solution, or

the relaxed MILP problem becomes infeasible.

Assuming that the general “no good” cuts (14)

are used we can establish the following convergence

proof for the MILP/CP-based decomposition method.

Theorem 1. If the MILP/CP decomposition method is
applied to solve problem (M3) with the cuts in (14), then
the method converges to the optimal solution or proves
infeasibility in a finite number of iterations.

Proof. The problem (M3) is not unbounded

because the domain of the variable x is bounded. So

the problem can either be fesible or infeasible. Let us

consider each of the cases individually.

Case 1: Problem (M3) is feasible
The relaxed MILP master problem with cuts in (14)

after iteration K is given by

(RMK) min z=cT x
s�t� Ax+By+Cv≤a

∑
i∈Tk

xi−
∑
i∈Fk
xi≤Bk−1 ∀k∈�1�2�����K−1�

T k=�i�xki =1��F k=�i�xki =0��Bk=�Tk�
∀k∈�1�2�����K−1�

x∈�0�1�n�y∈�0�1�m�v∈�p

Let xK be the optimal solution for this relaxed

MILP master problem. The corresponding CP feasi-

bility subproblem is given by,

(CPK) Find ȳ� v̄

s�t� Ḡ�x̄K� ȳ� v̄�≤ 0

ȳ� v̄ ∈�

where (xK ⇔ x̄K). Note that for all iterations k < K,

the relaxed MILP master problems (RMk) are feasible

and the (CPk) subproblems are infeasible. If either of

the two conditions are not satisfied the algorithm ter-

minates before reaching iteration K. Since the master

problem for the first iteration is a relaxation of the
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�

Solve iteration K relaxed MILP
problem (RMK ) to optimality

min cT x

s�t� Ax+By +Cv ≤ a

Qkx ≤ qk ∀k ∈ �1�2� ���� K −1�

x ∈ �0�1�n� y ∈ �0�1�m� v ∈�p

Determine equivalent x̄K

and then try extending this partial
solution using CP feasibility
problem for fixed x̄=x̄K

Find ȳ � v̄

s�t� Ḡ�x̄K � ȳ � v̄ �≤ 0

ȳ � v̄ ∈�

�

�

�

Infeasible

Partial optimal

�

Feasible

No Solution

Infer causes for infeasibility
and generate cuts.
QKx ≤ qK

Set K = K +1.solution (xK )

Feasible

Optimal Solution Found

Infeasible

Figure 1 MILP/CP Decomposition Method

original problem, the MILP problem (RMK) is also a

relaxation of the problem (M3). This because the “no

good” cuts that have been added until iteration K do

not exclude any feasible solution from the original

problem (M3). Furthermore, the domain of successive

relaxation is strictly smaller than the previous one.

Since the domain of x is finite (in the worst case has

2n elements) and is non empty for problem (M3), it

implies that the algorithm will reach a step where the

(CPk) subproblem is feasible. Assume that at iteration

K, the subproblem (CPK) yields a feasible solution

(x̄K� ȳ� v̄). This solution is optimal for problem (M3)

as it belongs to the domain of (M3) and the objective-

function value for this solution equals the optimum
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objective-function value (cT xK) obtained for a relax-

ation of problem (M3). Hence, if there is a feasible

solution to problem (M3), the algorithm will converge

to an optimal solution in a finite number of iterations.

Case 2: Problem (M3) is infeasible
If the problem is infeasible the subproblem (CPk)

will never result in a feasible solution. Furthermore,

the domain of x is finite and with each successive

iteration it shrinks by one integer point. Hence, after

a finite number of steps the master problem becomes

infeasible, proving infeasibility in a finite number of

steps. �

There are two ways in which this method can be

implemented. The easier, but less efficient approach

that was used in this paper, is to solve the relaxed

MILP model from scratch whenever the cuts are

updated. A more efficient approach will be to store

the branch-and-bound tree for the relaxed MILP prob-

lem and update it whenever cuts are added (e.g. see

Quesada and Grossmann 1992).

4.2. LP/CP-Based Branch-and-Bound Method
This algorithm extends the basic branch-and-bound

(B&B) algorithm for mixed integer problems to solve

problems that are represented using the hybrid

MILP/CP model (M3). The idea is in principle

straightforward, although it may be difficult to imple-

ment. In the B&B algorithm, the current best inte-

ger solution is updated whenever an integer solution

with an even better objective-function value is found.

In the proposed algorithm an additional CP feasibil-

ity problem is solved to ensure that the integer solu-

tion obtained for the relaxed MILP problem can be

extended in the full space. It is only in this case that

the current best integer solution for the relaxed MILP

problem is updated. If it cannot be extended, then the

best current integer solution is not updated and cuts

are added to the current and all other open nodes.

The proposed B&B method involves solving a series

of LP subproblems obtained by branching on the inte-

ger variables. An LP subproblem p for the proposed
algorithm has the form

min cT x

s�t� Ax+By+Cv ≤ a
Qx ≤ q Cuts

xLBp ≤ x ≤ xUBp
yLBp ≤ y ≤ yUBp
x ∈�n� y ∈�m�v ∈�p

xLBp � x
UB
p � y

LB
p � y

UB
p ∈ �0�1�

The difference in various LP subproblems is only in

the upper and lower bounds for all the integer vari-

ables. Also, the set of cuts is updated as the search

progresses. The objective-function value for any feasi-

ble solution of the problem in the full space provides

an upper bound (UB) of the objective function. Let

P denote the set of LP subproblems to be solved.

The LP/CP B&B Method can be summarized as

follows:

1. Initialization. UB = 
, P = �p0�. LP subproblem
p0 is generated by using the same lower and upper

bounds on the integer variables as the original prob-

lem, and it does not include any cuts.

2. Check if there are any more problems to be
solved. If P =� then go to step 5; else go to 3.

3. Fathom a Node. Select and remove an LP sub-

problem p from the set P. The criterion for select-

ing an LP is also called a node selection rule. There
are many different rules for selecting an LP, and they

play a key role in the efficiency of the B&B algorithm

(Nemhauser and Wolsey 1988).

Solve LP subproblem p.
• If the LP is infeasible or the optimal value of the

objective function (lower bound) is greater than UB
then go to step 2.

• If any one of the integer variables does not have

integral values then go to step 4.

• If the solution has integral values for all the inte-

ger variables then determine the CP variables x̄ using
the values of LP variables x. For fixed x̄ solve the fol-
lowing CP feasibility problem that tries to extend this

partial solution.

Find v̄� ȳ

s�t� �G�x̄� ȳ� v̄�≤ 0

ȳ� v̄ ∈�

If the CP problem is feasible then update UB; other-
wise, add the cuts in (14) or infer the causes for infea-

sibility to generate tighter cuts and add them to all
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the LP subproblems belonging to set P by updating

the set (Q�q). Go to step 2.

4. Branch on a Variable. Of all the variables that

have been assigned non-integral values, select one

according to some prespecified branching variable selec-
tion rule (Nemhauser and Wolsey 1988). Let us denote
this integer variable by zp. Generate two LP subprob-

lems p1 and p2 and add them to set P. The subproblem
p1 is generated by specifying the floor of the optimal

value of zp as the upper bound for zp, and the sub-

problem p2 is generated by specifying the ceiling of

the optimal value of zp as the lower bound of zp. Go
to step 2.

5. Termination. If UB =
, then the problem does

not have a feasible solution or it is unbounded. Other-

wise, the optimal solution corresponds to the current

value UB.
For the proposed decomposition and B&B meth-

ods to be successful, it is of course very important to

choose suitable relaxed MILP and CP feasibility mod-

els. Furthermore, rather than using the cuts in (14)

inferring strong cuts, Qx ≤ q, as causes for infeasibil-
ity of CP feasibility models can significantly reduce

the number of problems to be solved. These cuts,

however, are non-trivial and should be derived when-

ever possible for each class of problems at hand. It is

also worth emphasizing that the proposed algorithms

do not impose any restriction on the structure of the

equivalence relation in (10). It can even be procedu-

ral. It should be noted that hybrid models similar to

the ones presented in this section can also be solved

using OPL (Van Hentenryck 1999). In OPL, the solu-

tion algorithm for the hybrid model solves an LP sub-

problem involving all the linear constraints, as well as

a constraint-propagation subproblem involving all the

constraints at every node of the search tree. Usually,

all the original CP constraints (6) are needed in the

hybrid MILP-CP OPL model. Furthermore, the equiv-

alence relations (10) must be written in closed form

as equations, inequalities, or symbolic relations.

Even though the algorithms presented in this

section are limited to the MILP models that have only

a subset of binary variables with non-zero coefficients

in the objective function, they can in principle be gen-

eralized for MILP models that have both binary and

continuous variables in the objective function. The

partial solution will then involve both binary and con-

tinuous variables and the CP problem will extend this

partial solution in the full space. However, in such a

case the biggest challenge is to derive effective cuts

that exclude partial solutions that are feasible for the

master problem but can not be extended in the full

space.

5. Scheduling Problem
We consider a specific scheduling problem that falls

into the class of problems considered in this paper

and that is similar to the one considered by Hooker

et al. (1999). This scheduling problem involves find-

ing a least-cost schedule to process a set of orders I
using a set of dissimilar parallel machines M . Pro-

cessing of an order i ∈ I can only begin after the

release date ri and must be completed at the latest by

the due date di. Order i can be processed on any of

the machines. The processing cost and the processing

time of order i ∈ I on machine m ∈M are Cim and pim,
respectively. In this section, we consider three alter-

native strategies to model and solve this particular

problem.

5.1. MILP Model
The scheduling problem described above can be mod-

eled as an MILP. The main decisions involved in

this scheduling problem are assignment of orders on

machines, sequence of orders on each machine, and

start time for all the orders. The binary variable xim is

an assignment variable, and it is equal to one when

order i is assigned to machine m. Binary variable yii′
is the sequencing variable, and it is equal to one when

both i and i′ are assigned to the same machine and

order i′ is processed after order i. The continuous vari-
able tsi denotes the start time of order i. Using these
variables the MILP model for this problem can be

written as

min
∑
i∈I

∑
m∈M

Cimxim (15)

s.t. tsi ≥ ri ∀i ∈ I (16)

tsi ≤ di−
∑
m∈M

pimxim ∀i ∈ I (17)

∑
m∈M

xim = 1 ∀i ∈ I (18)
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∑
i∈I
ximpim ≤max

i
�di�−min

i
�ri� ∀m ∈M (19)

yii′ +yi′i ≥ xim+xi′m−1

∀i� i′ ∈ I� i′ > i�m ∈M (20)

tsi′ ≥ tsi+
∑
m∈M

pimxim−U�1−yii′�
∀i� i′ ∈ I� i′ �= i (21)

yii′ +yi′i ≤ 1 ∀i� i′ ∈ I� i′ > i (22)

yii′ +yi′i+xim+xi′m′ ≤ 2

∀i� i′ ∈ I� i′ > i�m�m′ ∈M�m �=m′ (23)

tsi ≥ 0 (24)

xim ∈ �0�1� ∀i ∈ I�m ∈M (25)

yii′ ∈ �0�1� ∀i� i′ ∈ I� i′ �= i (26)

Objective (15) of this problem is to minimize the pro-

cessing cost of all the orders. Constraints (16) and (17)

ensure that processing of an order i starts after the
release date and is completed before the due date.

An order needs exactly one machine for processing

and this is enforced using assignment constraint (18).

Inequality (19) is a valid cut, and it tightens the LP

relaxation of the problem. It is based on the fact that

the total processing time of all the orders that are

assigned on the same machine should be less than

the difference of the latest due date and the earli-

est release date. Constraint (20) is a logical relation-

ship between assignment and sequencing variables.

The underlying logic behind this constraint is that

if order i and i′ are assigned to machine m then

they must be processed one after the other. Con-

straint (21) is the sequencing constraint in which

U =∑
i∈Imaxm∈M�pim�. It ensures that if the sequenc-

ing variable yii′ is one, then order i
′ is processed after

order i. Constraints (22) and (23) are logical cuts. The

former is based on the logic that either i is processed
before i′ or vice versa. The latter ensures that sequenc-
ing variables are zero if i and i′ are assigned to dif-

ferent machines. Adding both of these constraints

reduces the computational time needed to solve the

MILP very significantly. Other logic cuts were also

tried, but they were not as effective as (22) and (23).

5.2. CP Model
The same scheduling problem can also be modeled

using CP. The CP model, in contrast to an MILP

model, is highly dependent on the CP package used

to model the problem because of the differences in

constructs available in various modeling languages.

In this paper we use ILOG’s OPL modeling lan-

guage (Van Hentenryck 1999). OPL has a set of con-

structs especially designed for scheduling problems

that can be used to develop a compact CP model

for the scheduling problem at hand. We will not go

into the details of the modeling language, but will

describe the constructs that have been used to model

our scheduling problem. The basic OPL modeling

framework involves a set of orders that need to be

completed using a certain set of resources. A num-

ber of different resource types are available to capture

the nature of the problem. For our scheduling prob-

lem the parallel machines are the resources, and they

can be modeled as unary resources in OPL. The defin-

ing attribute of a unary resource is that it can process

only one order at any instance. Each order is associ-

ated with a start date and duration. Using this basic

framework a CP model using OPL constructs can be

written as follows:

min
∑
i∈I
Cizi (27)

s.t. i�start≥ ri ∀i ∈ I (28)

i�start≤ di−pzi ∀i ∈ I (29)

i�duration= pzi ∀i ∈ I (30)

i requires T ∀i ∈ I (31)

activityHasSelectedResource�i�T � tm�

⇔ zi =m ∀i ∈ I�m ∈M (32)

zi ∈M ∀i ∈ I (33)

i�start ∈ � ∀i ∈ I (34)

i�duration ∈ � ∀i ∈ I (35)

Here zi is a variable subscript and represents the

machine selected to process order i. Variable sub-

scripts are powerful modeling constructs and avail-

able in most CP software packages. The variable

subscript zi has been used in the objective func-

tion (27) to calculate the cost of order i (Cizi ) directly.

Constraints (28) and (29) ensure that processing of

order i begins after release date ri and is completed

before the due date di. The start time of the order is
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given by “i�start”. The duration of an order depends

on the machine used to process it. This is enforced in

constraint (30), which uses the variable subscript zi to

calculate processing time of order i. Constraint (31)

uses a special OPL construct “requires”. It enforces

that order i needs a unary resource from the set of

unary resources T . Note that this constraint enforces

the assignment of an order to a specific machine

as well as the sequencing of orders that have been

assigned to the same machine. Constraint (32) uses

another OPL-specific boolean function “activityHas-

SelectedResource()” that returns a value of true or

false. In the context of our scheduling problem this

function returns a value of “true” if order i is pro-

cessed using the unary resource corresponding to

the machine m (tm ∈ T ), and false otherwise. Con-

straint (32) ensures that if order i is processed using

the unary resource tm, then the subscript variable zi is

equal to m. It links the decisions made by the infer-

ence engine behind the construct “requires” and other

constraints in the model.

It can be clearly seen that variable and constraint

definitions in the CP model for the scheduling prob-

lem at hand are very different from the MILP model.

This is primarily because specialized CP constructs

were used to model the problem at hand. However,

there exists a close resemblance in the two model-

ing frameworks. The subscript variable zi in the CP

model is equivalent to the binary variable xim in the

MILP model. The start time of order i has the same

definition in the two models. The sequencing variable

yii′ in the MILP model has no equivalent variable in

CP model. However, the value of this variable can be

obtained from the solution of the CP model. Equiv-

alence can also be drawn between the constraints in

the two frameworks. Constraints (28) and (29) are

equivalent to (16) and (17), respectively. The set of

constraints (30) to (32) play the same role as the

set of constraints (18), (20), and (21). One major dif-

ference between the two models is that the MILP

model is a continuous-time scheduling model. The CP

model, on the other hand, is a discrete-time schedul-

ing model (start time is an integer variable in the OPL

framework).

5.3. Combined MILP-CP OPL Model
Instead of developing pure MILP and CP models, it is

also possible to write a combined model. OPL allows

modeling of a problem using a combined MILP-CP

model in which constraints are expressed in both

forms. Even though the size of the integrated model

is larger, it may still perform better in some cases

because fewer nodes may have to be explored. The

solution algorithm for the integrated model primarily

uses the CP solver. However, at each CP node an extra

LP relaxation, consisting of all the linear constraints

in the combined model, is solved to obtain bounds

for the objective function (Van Hentenryck 1999). The

combined MILP-CP OPL model for the scheduling

problem at hand can be written as:

min
∑
i∈I

∑
m∈M

Cimxim (36)

s.t.

tsi ≥ ri ∀i ∈ I
tsi ≤ di−

∑
m∈M

pimxim ∀i ∈ I
∑
m∈M

xim = 1 ∀i ∈ I
∑
i∈I
ximpim ≤max

i
�di�−min

i
�ri�

∀m ∈M





MILP (37)

i�start≥ ri ∀i ∈ I
i�start≤ di−pzi ∀i ∈ I
i�duration= pzi ∀i ∈ I
i requires T ∀i ∈ I
activityHasSelectedResource�i�T � tm�

⇔ zi =m ∀i ∈ I�m ∈M





CP (38)

xizi = 1 ∀i ∈ I
i�start= tsi ∀i ∈ I
�Ci =

∑
m∈M

Cimxim ∀i ∈ I
�Ci = Cizi ∀i ∈ I





Linking

Constraints

(39)

tsi ≥ 0 (40)

xim ∈ �0�1� ∀i ∈ I�m ∈M (41)

zi ∈M ∀i ∈ I (42)

i�start ∈ � ∀i ∈ I (43)

i�duration ∈ � ∀i ∈ I (44)
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This model is a combination of the pure MILP

and pure CP models that were presented earlier. The

objective function (36) of the problem is the same as in

the MILP model. Constraint set (37) includes all of the

MILP constraints except for constraints (20) to (23).

There is no theoretical restriction for excluding con-

straints (20) to (23) per se. The only reason that these

constraints were dropped is that they are large in

number and do not significantly tighten the LP relax-

ation of the problem. Constraint set (38) includes all

the constraints from the CP model. Finally, constraint

set (39) links MILP variables and CP variables. The

first constraint in (39) links the assignment variables,

the second constraint links the start times, and the

rest are extra constraints that make the propagation

stronger.

5.4. Computational Results
The scheduling problem can be solved using any

one of the three different optimization models that

were presented in the previous section. All the three

models can be implemented in ILOG OPL Studio 2.1

(ILOG 1999b). It uses CPLEX 6.5 (ILOG 1999a) to

solve an MILP, ILOG Solver 4.4 (ILOG 1999d) and

ILOG Scheduler 4.4 (ILOG 1999c) to solve a CP, and

all of them to solve a combined MILP-CP OPL model.

To study the behavior and characteristics of the

three models, we consider several numerical example

problems.

In this section, we consider instances of varying

complexity from the class of scheduling problems

presented in the previous section. The size of the

optimization models for these problems depends on

the number of orders and the number of parallel

machines. We consider problems of five different sizes

in terms of the number of orders and the number of

parallel machines, as shown in Table 1. The param-

eters for these problems are processing costs (Cim),

release dates (ri), due dates (di), and processing times

(pim). For each problem size, we consider two sets of

data. The objective is to demonstrate that the diffi-

culty of solving such a scheduling problem can vary

significantly with data. Therefore, we have a total

of ten instances of the scheduling problem. Details

of these ten problems, five different sizes with two

Table 1 Number of Orders and Machines in Each Problem

Problem Number of Orders Number of Machines

1 3 2
2 7 3
3 12 3
4 15 5
5 20 5

data sets each, are presented in the Online Supple-

ment to this paper (available in the electronic format

at the INFORMS Journal on Computing website at

http://joc.pubs.informs.org/).

The only distinguishing characteristic of the two

data sets for each problem is that the processing times

in the first data set are longer. For this reason, the

problems corresponding to this data set have fewer

feasible schedules and the total cost of processing all

the tasks is higher. The computational results for solv-

ing these problems using the MILP model and the CP

model are presented in Tables 2 and 3, respectively. It

can be clearly seen that for this class of problems the

CP models are smaller in size than the MILP models.

Furthermore, the size of the MILP model increases

much more rapidly in comparison to the CP model.

For all the problem sizes, the first data set is more dif-

ficult to solve for both the MILP and the CP methods.

Also, it took less time to solve the problems using

the CP model in comparison to the MILP model.

However, the computational effort increases rapidly

in both cases. The problem corresponding to the first

Table 2 Computational Results for the MILP Model

Problem Set Constraints Variables Nodes Timea Objective

1 1 32 18 0 0�01 26
1 2 32 18 0 0�03 18
2 1 276 77 38 0�47 60
2 2 276 77 54 0�49 44
3 1 831 192 29446 220�01 101
3 2 831 192 180 1�77 83
4 1 2990 315 8891 180�41 115
4 2 2990 315 3855 61�82 102
5 1 5385 520 80000 20000b 171c

5 2 5385 520 2114 106�28 140

aUsing CPLEX 6.5 single processor version on a dual processor SUN Ultra
60 workstation
bSearch terminated because the tree size exceeded 300 MB
cSuboptimal solution; lower bound at termination= 156.011019
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Table 3 Computational Results for the CP Model

Problem Set Constraints Variables Failures Choice Points Timea Objective

1 1 15 33 3 3 0�00 26
1 2 15 33 15 19 0�02 18
2 1 42 77 12 12 0�04 60
2 2 42 77 172 185 0�14 44
3 1 72 132 4743 4748 3�84 101
3 2 72 132 583 606 0�38 83
4 1 120 165 469918 469938 553�54 115
4 2 120 165 5435 5467 9�28 102
5 1 160 220 55529196 55529254 68853�49b 165c

5 2 160 220 1307486 1307532 2673�87 140

aUsing ILOG Scheduler 4.4 and ILOG Solver 4.4 single processor versions on a dual processor SUN Ultra 60
workstation
bComputational time for finding the suboptimal solution
cSuboptimal Solution

data set of the biggest example (Problem 5) could not

be solved to optimality using any of the two meth-

ods in reasonable computational time. It should be

noted that computational times for MILP model may

be possibly reduced further by using more sophis-

ticated schemes like branch and cut. Similarly, com-

putational times for the CP model may be possibly

reduced by developing special branching schemes for

this example. These strategies are outside the scope of

this paper.

The advantage of the MILP model is that the val-

ues of the assignment variables obtained from the

LP relaxations direct the branch-and-bound search to

obtain the least-cost assignments. However, schedul-

ing the orders on each machine is a more daunting

task. This is because the sequencing constraint (21)

has a big-M form and results in a poor relaxation.

Furthermore, the sequencing variables do not directly

contribute to the objective-function value and the

LP relaxation may or may not direct these variables

towards feasibility. On the other hand, the CP meth-

ods use effective constraint-propagation algorithms

for scheduling that are based on the ideas of edge

finding and task intervals (Caseau and Laburthe 1994,

1996). However, an assignment is chosen using a pre-

defined enumeration strategy by excluding the infea-

sible schedules.

Clearly, there are complementary strengths of the

MILP and the CP methods that may possibly be

combined to tackle more difficult problems. One of

the possible ways is to use the combined MILP-

CP OPL model that was presented in the previous

section. The computational results for solving the set

of ten example problems using the MILP-CP OPL

model are presented in Table 4. Clearly, the MILP-CP

OPL model for all the problems is larger than the cor-

responding CP model. However, it is still smaller than

the corresponding MILP model because the sequenc-

ing variables and constraints were not included in the

combined MILP-CP OPL model. It can be clearly seen

that all the problems could be solved faster using the

combined model. Furthermore, the first data set of the

fifth example problem that was intractable for both

the MILP and CP methods alone could now be solved

to optimality using the combined method.

6. MILP/CP Hybrid Model
The scheduling problem at hand can be posed in the

proposed hybrid MILP/CP modeling framework as

follows,

min
∑
i∈I

∑
m∈M

Cimxim (45)

s.t. tsi ≥ ri ∀i ∈ I (46)

tsi ≤ di−
∑
m∈M

pimxim ∀i ∈ I (47)

∑
m∈M

xim = 1 ∀i ∈ I (48)

∑
i∈I
ximpim ≤max

i
�di�−min

i
�ri� ∀m ∈M (49)
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Table 4 Computational Results for the Combined MILP-CP OPL Model

Problem Set Constraints Variables Failures Choice Points Timea Objective

1 1 38 49 3 3 0�04 26
1 2 38 49 15 19 0�05 18
2 1 94 120 13 13 0�10 60
2 2 94 120 175 188 0�27 44
3 1 159 205 1939 1944 4�21 101
3 2 159 205 693 716 1�12 83
4 1 230 286 43882 43902 91�59 115
4 2 230 286 3057 3090 5�58 102
5 1 305 381 4929656 4929686 13736�06 158
5 2 305 381 80290 80337 170�95 140

aUsing CPLEX 6.5, ILOG Scheduler 4.4, and ILOG Solver 4.4 single processor versions on a dual processor SUN
Ultra 60 workstation

if �xim = 1� then �zi =m� ∀i ∈ I�m ∈M (50)

i�start≥ ri ∀i ∈ I (51)

i�start≤ di−pzi ∀i ∈ I (52)

i�duration= pzi ∀i ∈ I (53)

i requires tzi ∀i ∈ I (54)

tsi ≥ 0 (55)

xim ∈ �0�1� ∀i ∈ I�m ∈M (56)

zi ∈M ∀i ∈ I (57)

i�start ∈ � ∀i ∈ I (58)

i�duration ∈ � ∀i ∈ I (59)

The objective function (45) for the hybrid model

is the same as the objective function (15). Con-

straints (46) through (49) are the MILP constraints (16)

through (19). These constraints are equivalent to con-

straint set (9) of model (M3). Constraint (50) estab-

lishes the equivalence between the MILP variable xim
and the CP variable zi, and it is represented by (10) in
model (M3). It should be noted that there is no need

to write the equivalence relation in closed form as

equations or inequalities. This is in sharp contrast to

the set of equivalence relations (39) used in the MILP-

CP OPL model. Finally, constraints (51) through (54)

are the reduced set of CP constraints derived from the

original CP constraints (28) through (32) by assuming

that the assignment of orders to machines has already

been made. Note that the CP constraint (32) is no

longer needed, and in constraint (54) order i requires

the unary resource corresponding to the machine to

which it has been assigned. These constraints are

equivalent to constraint set (11) of model (M3).

Any one of the two proposed algorithms can be

used to solve this hybrid MILP/CP model for the

scheduling problem at hand. In this section, we use

the decomposition algorithm that was presented in

Figure 1 for solving the hybrid MILP/CP model.

The reason for choosing this method is that it is

easy to implement and is sufficient to test the poten-

tial usefulness of the proposed methodology. Details

of the decomposition algorithm in the context of

the proposed hybrid MILP/CP scheduling model are

presented in Figure 2. In this algorithm, the relaxed

MILP problem assigns a machine to every order. The

CP feasibility problem then attempts to find a feasi-

ble schedule for this assignment. If a feasible schedule

can be obtained, then it is the optimal solution. Oth-

erwise, causes of infeasibilities are inferred as integer

cuts to exclude assignments with similar characteris-

tics. The relaxed MILP problem is resolved to obtain

another assignment. If no other assignment is possi-

ble, then the scheduling problem is infeasible.

Integer cuts used in the decomposition algorithm

are very critical to its efficiency. Instead of using the

integer cuts in (14), the cuts used for the scheduling

problem at hand are based on the idea that if a set of

orders cannot be scheduled on a particular machine,

then it will not be possible to find a feasible sched-

ule for any assignment in which all those orders are

assigned to that machine. Note that a cut is generated
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�

Solve relaxed MILP problem (K )

min
∑
i∈I

∑
m∈M

Cimxim

s.t. (46) to (49), (55) to (56)
∑
i∈Ikm

xim ≤ Bk
m−1

Ikm = �i�xk
im = 1��Bk

m = �Ikm�
∀m ∈M�k = �1�2� ���� K −1�

�

Determine zi using (50) and
extend this partial solution

using a CP feasibility problem
for fixed zi

Find i�start� i�duration

s�t� (51) to (54),(58) to (59)

�

�

�

Partial optimal
solution (xim)

Feasible

Infeasible

No Solution

Identify machines for which a
feasible schedule could not be
obtained. Add an integer cut
for each of these machines to
exclude this assignment from
the feasible set (K = K +1)

Feasible

Optimal Solution Found

Infeasible

Figure 2 MILP/CP Decomposition Method for the Scheduling Problem
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for each machine that could not be scheduled suc-

cessfully. The integer cuts for iteration k, which are

stronger than equation (14), have the following gen-

eral form,
∑
i∈Ikm
xim ≤ Bkm−1 ∀m ∈M (60)

I km = �i�xkim = 1��Bkm = �I km�

Here xkim is the optimal value of xim in iteration k. As

an example consider a case where orders 1, 2, and 3

were assigned to machine A but could not be sched-

uled. The corresponding integer cut is

x1A+x2A+x3A ≤ 2

This cut in essence states that any assignment in

which orders 1, 2, and 3 are all assigned to Machine

A is not allowed. It is worth emphasizing once again

that these constraints cut off more that one possible

overall assignment. Furthermore, it should be noted

that in this scheduling problem parallel machines

do not interact. Therefore, once the assignment has

been specified, a schedule for order processing can

be derived for each machine individually. This means

that a CP feasibility problem for �M � parallel machines
can be decomposed into �M � CP feasibility prob-

lems for a single machine each. The advantage of

decomposing the problem in such a manner is that it

becomes very easy to identify machines for which a

feasible schedule could not be obtained.

The proposed decomposition algorithm was imple-

mented using the scripting language in OPL

Studio 2.1 (ILOG 1999b). In our implementation, the

relaxed MILP is solved from scratch whenever cuts

are added to it. One major iteration of the decom-

position algorithm involves solving a relaxed MILP

problem and �M � CP feasibility problems. The size of

the relaxed MILP problem increases as the search pro-

gresses. The size of the CP feasibility problem for each

machine depends on the number of orders assigned

to that machine, and it varies from one major iter-

ation to another. All ten instances of the scheduling

problem at hand that were presented in the earlier

section can be solved using the decomposition algo-

rithm. The computational results for them are sum-

marized in Table 5.

In this table, the size of the CP subproblems has

not been reported as it varies from one iteration

to another, and only the initial size of the relaxed

MILP problems has been reported. However, the final

number of constraints in the relaxed problem can be

obtained by adding the number of cuts to the ini-

tial number of constraints. The computational time

for solving all the relaxed MILP problems is reported

in the seventh column. Note that the computational

time reported for solving the CP-feasibility problems

is only for the ones that were feasible. This is because

in the current implementation of the OPL scripting

language it is not possible to obtain the computa-

tional time if the CP-feasibility problem is infeasible.

In our experience the computational time for solv-

ing an infeasible CP subproblem was of the same

order of magnitude as solving a feasible CP sub-

problem. The number of CP-feasibility subproblems

solved for a problem is equal to the product of the

number of machines and the number of major iter-

ations required. Recall that a cut is added for every

infeasible CP subproblem. Hence, the number of CP

subproblems for which the computational time was

not included is equal to the total number of cuts.

It can be clearly seen that all the instances of the

scheduling problem at hand can be solved very effi-

ciently using the proposed decomposition algorithm.

For the larger instances of this scheduling problem the

computational times were significantly lower com-

pared to any of the three methods that were presented

in the previous section. Recall that the first data set of

all the five problems was more difficult to solve. This

is because fewer assignments lead to a feasible sched-

ule. Therefore, more iterations are needed and more

integer cuts had to be added. Based on these com-

putational results we can conclude that the proposed

MILP and CP integration strategy can tackle this

scheduling problem much better than either MILP or

CP, and even the MILP-CP OPL solution approach.

Further numerical results for this problem with dif-

ferent data are reported in Harjunkoski et al. (2000).

7. Conclusions
The objective of this paper has been to develop mod-

els and methods that use complementary strengths of
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Table 5 Computational Results for Hybrid MILP-CP Model

MILP Size
Major MILP CP

Problem Set Constraints Variables Iterations Cuts Timea Timeb Objective

1 1 11 9 2 1 0�02 0�00 26
1 2 11 9 1 0 0�01 0�00 18
2 1 24 28 13 16 0�47 0�05 60
2 2 24 28 1 0 0�01 0�01 44
3 1 39 48 31 43 4�01 0�17 101
3 2 39 48 1 0 0�02 0�00 83
4 1 50 90 18 26 2�01 0�24 115
4 2 50 90 1 0 0�02 0�02 102
5 1 65 120 31 60 13�69 0�44 158
5 2 65 120 6 6 0�29 0�12 140

aUsing CPLEX 6.5 single processor version on a dual processor SUN Ultra 60 workstation
bUsing ILOG Scheduler 4.4 and ILOG Solver 4.4 single processor versions on a dual processor SUN Ultra 60
workstation

MILP and CP to solve problems that are otherwise

intractable if solved using either of the two meth-

ods alone. The class of problems considered in this

paper has the characteristic that only a subset of the

binary variables have a non zero objective function

coefficients if modeled as an MILP. This class of prob-

lems can be formulated as a hybrid MILP/CP model

that involves some of the MILP constraints, a reduced

set of CP constraints, and the equivalence relations

between the MILP and the CP variables. To solve

this hybrid model, an MILP/CP based decomposition

method and an LP/CP based branch-and-bound algo-

rithm were proposed. Both of these algorithms rely

on the same relaxed MILP and feasibility CP prob-

lems. The aim of these methods is to combine the

strength of MILP for proving optimality by using the

LP relaxations, and the power of CP for finding fea-

sible solutions for hard discrete optimization prob-

lems by using the specialized propagation algorithms.

It should be noted that the algorithms presented are

fairly general and, if needed, alternative methods for

solving feasibility problems may also be used.

As an application example, a scheduling problem

was considered. The aim of this problem was to find a

least-cost schedule to process a set of orders using dis-

similar parallel machines subject to release and due-

date constraints. It was shown that this problem can

be modeled as an MILP, CP, or a combined MILP-

CP OPL model (Van Hentenryck 1999). The compu-

tational results indicate that the CP model requires

fewer constraints as compared to the MILP model.

However, the computational effort required to solve

the problems using any of the two models increases

rapidly with problem size. The MILP-CP OPL model

was larger in size than the CP model but was smaller

compared to the MILP model. The combined OPL

model could solve most of the problems faster rel-

ative to the MILP and CP models. The scheduling

problem was then modeled as a hybrid MILP/CP

model and solved using the proposed decomposition

algorithm. Computational results indicate that for the

larger instances of the example scheduling problem,

the computational times were significantly smaller

compared to MILP, CP, or combined MILP-CP OPL

methods. The example problem demonstrates that the

proposed methods can be computationally efficient

for solving certain problems. It is acknowledged that

even if a problem falls into the class of problems

considered in this paper, the computational efficiency

of the proposed algorithms depends strongly on the

nature of the relaxed MILP problem, the feasibility CP

problem, and the cuts that are used in the algorithm.
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