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Abstract

A constraint satisfaction problem (CSP) requires a value, selected from a given ®nite domain, to be assigned to each

variable in the problem, so that all constraints relating the variables are satis®ed. Many combinatorial problems in

operational research, such as scheduling and timetabling, can be formulated as CSPs. Researchers in arti®cial intelli-

gence (AI) usually adopt a constraint satisfaction approach as their preferred method when tackling such problems.

However, constraint satisfaction approaches are not widely known amongst operational researchers. The aim of this

paper is to introduce constraint satisfaction to the operational researcher. We start by de®ning CSPs, and describing the

basic techniques for solving them. We then show how various combinatorial optimization problems are solved using a

constraint satisfaction approach. Based on computational experience in the literature, constraint satisfaction ap-

proaches are compared with well-known operational research (OR) techniques such as integer programming, branch

and bound, and simulated annealing. Ó 1999 Elsevier Science B.V. All rights reserved.

Keywords: Constraint satisfaction; Combinatorial optimization; Integer programming; Local search

1. Introduction

A (®nite domain) constraint satisfaction prob-
lem (CSP) can be expressed in the following form.
Given a set of variables, together with a ®nite set
of possible values that can be assigned to each
variable, and a list of constraints, ®nd values of the
variables that satisfy every constraint. Many
problems in operational research (OR) fall within

this general framework. As an example, consider a
timetabling problem in which examinations are to
be assigned to various periods. In addition to the
obvious constraints that any examination involv-
ing the same student must be assigned to di�erent
periods, there may be additional constraints due to
room sizes, requirements for students not to have
examinations in contiguous periods, etc. Another
example occurs in production scheduling. Jobs are
to be processed on machines that can handle only
one job at a time, so that each job is completed by
a given deadline. Further examples arise from the
observation that an optimization problem can be
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expressed as a sequence of CSPs. By setting a
threshold value on the objective function value, an
`objective' constraint can be added. Successive
adjustments to the threshold value according to
whether there are values of the variables that sat-
isfy all constraints, allow the optimal value of the
objective function value to be obtained.

Constraint satisfaction problems are combina-
torial in nature. For many categories of CSPs, an
e�cient algorithm is unlikely to exist (these prob-
lems are NP-complete). Thus, an algorithm that
guarantees to ®nd a solution that satis®es all
constraints, assuming that such a solution exists, is
enumerative and therefore has an exponential time
requirement in the worst case. In practice, it may
be su�cient to ®nd a solution at reasonable com-
putational expense, that satis®es most of the con-
straints, especially if the problem contains `soft'
constraints or an `objective' constraint. If all or as
many constraints as possible are satis®ed, we refer
to the solution as exact; otherwise, it is approxi-
mate. (When referring to an optimization problem,
an approximate solution is one in which all con-
straints are satis®ed, but the optimal value of the
objective function is not necessarily attained.)

A variety of approaches can be used to tackle
CSPs. Integer programming techniques (cutting
plane methods and branch and bound) can be
applied to ®nd an exact solution. On the other
hand, there are various approaches that provide an
approximate solution, including local search
methods (simulated annealing, threshold accept-
ing, tabu search and genetic algorithms) and neu-
ral networks. However, there is a special-purpose
technique that is widely used for solving CSPs; it
uses tree search combined with backtracking and
consistency checking.

By constraint programming (CP), we mean the
computer implementation of an algorithm for
solving CSPs. It is possible to implement these
algorithms in a conventional logic programming
language such as PROLOG. Unfortunately, the
fundamental logical solution procedure that these
languages use is ine�cient since the constraints are
not actively used in the search for a solution.
Therefore, modi®cations of logic programming
languages have been developed which allow con-
straints to be expressed and solved; for example,

CHIP (Constraint Handling in PROLOG). This
approach is called constraint logic programming
(CLP). However, it is also possible to implement
constraint programming algorithms in general-
purpose programming languages, or specialist de-
clarative languages. For example, the constraint
programming tool ILOGLOG SOLVEROLVER is a library of
routines written in C++. Thus, CLP is just one
possible CP approach, although the terms are
sometimes used synonymously (and confusingly)
in the literature.

The study of CSPs has largely been undertaken
within the arti®cial intelligence (AI) community.
The pioneering work was undertaken in the early
1970s by Montanari (1974), Waltz (1972) and
Mackworth (1977). In those early days, the power
of available computers was often insu�cient to
allow practical problems to be solved. During the
last decade, advances in computer technology have
contributed to a signi®cant growth in research in
the area of constraint satisfaction. Speci®cally,
various enhancements to the algorithms for solv-
ing CSPs have been incorporated in software sys-
tems. Such systems are used to obtain solutions of
many practical OR (and other) problems. The
launch in 1996 of a new journal, Constraints,
whose aim is to provide a common forum for the
many disciplines interested in constraint satisfac-
tion and optimization, indicates the growth of in-
terest in this area.

In spite of the widespread use of constraint
satisfaction techniques by researchers in AI, these
approaches appear to be relatively unknown by
operational researchers. This paper aims to pro-
vide a partial remedy by introducing operational
researchers to the area of ®nite domain constraint
satisfaction. We introduce the main approach
(constraint programming) for solving CSPs, and
discuss modelling considerations. A variety of
application areas are given, and a comparison of
constraint satisfaction techniques with some of the
other approaches mentioned above is given.

The remaining sections of this paper are or-
ganized as follows. In Section 2, a formal de®ni-
tion of CSPs is given. Sections 3 and 4 describe
tests for consistency checking, and specify the
search procedures that are used in constraint
programming algorithms. Sections 5 and 6 are
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concerned with issues likely to a�ect the time re-
quired to solve a CSP; problem formulation, and
the search strategy which is de®ned by variable
and value ordering. Section 7 describes various
applications of constraint satisfaction for solving
combinatorial optimization problems. An evalua-
tion of constraint programming as a technique is
given in Section 8. Lastly, some concluding re-
marks are contained in Section 9.

2. Constraint satisfaction problems

2.1. Problem de®nition

A CSP consists of:
· a set of variables X � fx1; . . . ; xng;
· for each variable xi, a ®nite set Di of possible

values (its domain);
· a set of constraints restricting the values that the

variables can simultaneously take.
Note that the values need not be a set of consec-
utive integers (although often they are); they need
not even be numeric. For problems with domains
that are not ®nite, such as problems containing
continuous variables, the solution techniques that
we describe in this paper require modi®cation.

A feasible solution to a CSP is an assignment of
a value from its domain to every variable, in such a
way that every constraint is satis®ed. In this case,
the problem is satis®able. On the other hand, if
there is no assignment of values to variables from
their respective domains for which all constraints
are satis®ed, then the problem is unsatis®able. We
may want to ®nd:
· just one solution, with no preference as to which

one;
· all solutions;
· an optimal, or at least a good, solution, given

some objective function de®ned in terms of
some or all of the variables.
Although algorithms for solving CSPs are

aimed at simply ®nding a feasible solution, they
can be adapted to ®nding an optimal solution. For
instance, an objective variable can be created to
represent the objective function, an initial solution
is found, and then a new (objective) constraint is
introduced specifying that the value of the objec-

tive variable must be better than in the initial so-
lution. This is done repeatedly, tightening the
constraint on the objective variable as each solu-
tion is found, until the problem becomes unsatis-
®able: the last solution found is then an optimal
solution. The number of iterations, and therefore
the computation time, depends on the quality of
the initial solution. A common practice is to apply
a heuristic method for generating an initial solu-
tion.

2.2. Constraints

The constraints of a CSP are usually repre-
sented by an expression involving the a�ected
variables, e.g. x1 6� x2, 2x1 � 10x2 � x3 and
x1x2 < x3.

Formally, a constraint Cijk... between the vari-
ables xi; xj; xk; . . . is any subset of the possible
combinations of values of xi; xj; xk; . . ., i.e.
Cijk... � Di � Dj � Dk � � � �. The subset speci®es the
combinations of values which the constraint al-
lows.

For example, if variable x has the domain
f1; 2; 3g and variable y has the domain f1; 2g then
any subset of f�1; 1�; �1; 2�; �2; 1�; �2; 2�; �3; 1�;
�3; 2�g is a valid constraint between x and y. The
constraint x � y is equivalent to the subset f(1,1),
(2,2)g.

Although the constraints of real problems are
not represented this way in practice, the de®nition
does emphasize that constraints need not corres-
pond to simple expressions, and, in particular, they
need not be linear inequalities or equations (al-
though they can be).

A constraint can a�ect any number of variables
from 1 to n, where n is the number of variables in
the problem. The number of a�ected variables is
the arity of the constraint.

2.3. Example

Cryptarithmetic puzzles, like the following, can
be expressed as CSPs. Each letter in the following
sum stands for a di�erent digit: ®nd their values.
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D O N A L D

�G E R A L D

±±±±±±±±±±±±±±±±

� R O B E R T

The variables are the letters D, O, N, A, L, G, E,
R, B, T and their domains are the set of digits
f0; . . . ; 9g (except that D, G and R cannot be 0).
The constraints are:
· the ten variables must all be assigned a di�erent

value;
· the sum given must work out:

100000 �D� 10000 �O� 1000 �N

� 100 �A� 10 � L�D

� 100000 �G� 10000 � E� 1000 �R

� 100 �A� 10 � L�D

� 100000 �R� 10000 �O� 1000 � B

� 100 � E� 10 �R� T:

There are alternative ways of formulating this
problem, which are better from the point of view
of ®nding a solution. This will be discussed later.

3. Arc consistency

If all the constraints of a CSP are binary, i.e.
they a�ect two variables, then the variables and
constraints can be represented in a constraint
graph: the nodes of the graph represent the vari-
ables and there is an edge joining two nodes if and
only if there is a constraint between the corre-
sponding variables.

If there is a binary constraint Cij between the
variables xi and xj, then the directed arc �xi; xj� is
arc consistent if for every value a 2 Di, there is a
value b 2 Dj such that the assignments xi � a and
xj � b satisfy the constraint Cij. Any value a 2 Di

for which this is not true, i.e. no such value b ex-
ists, can safely be removed from Di, since it cannot
be part of any consistent solution: removing all
such values makes the arc �xi; xj� arc consistent.
The value b 2 Dj is a supporting value for a 2 Di;
therefore, we delete any value a 2 Di unless it has
at least one supporting value in the domain of
every variable xk for which there is a binary con-
straint Cik.

Fig. 1(a) shows the original domains of x and y.
In (b), �x; y� has been made arc consistent; in (c),
both �x; y� and �y; x� have been made arc consis-
tent.

If every arc in a binary CSP is made arc con-
sistent, then the whole problem is said to be arc
consistent. Making the problem arc consistent is
often done as a pre-processing stage: reducing the
sizes of some domains should make the problem
easier to solve.

A number of algorithms for making a CSP arc
consistent have been proposed: a worst-case time
complexity O�d2c� can be achieved, where d is the
maximum domain size and c the number of binary
constraints; this can be reduced to O�dc� for many
classes of constraint (Van Hentenryck et al.,
1992a). Generalized arc consistency is an extension
to constraints of higher arity: in general, it is too
time-consuming to achieve generalized arc consis-
tency, but for some types of constraint, specialized
algorithms can achieve it reasonably e�ciently.
For instance, ReÂgin (1994) presents such an algo-
rithm for the `all-di�erent' constraint.

In some simple cases, the result of making a
problem arc consistent is that every value left in
the variable domains is part of a feasible solution
to the CSP. In general this is not true, and a

Fig. 1. Creating arc consistency: (a) Original domains; (b)

Domains when (x, y) arc consistent; (c) Domains when (x, y)

and (y, x) arc consistent.
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problem which is arc consistent and has at least
one value remaining in every domain may still not
have a feasible solution. Constraint programming
algorithms usually employ a search procedure that
enumerates assignments of values to variables.
When the search ®xes the value of a variable,
constraint propagation is applied to restrict the
domains of other variables whose values are not
currently ®xed.

4. Search algorithms

Most algorithms for solving CSPs search sys-
tematically through the possible assignments of
values to variables. Such algorithms are guaran-
teed to ®nd a solution, if one exists, or to prove
that the problem is unsatis®able.

This paper is not intended to provide a com-
prehensive survey of constraint satisfaction algo-
rithms. However, we present three systematic
search algorithms. The ®rst, a simple backtracking
algorithm, is not used in practice, because in most
cases it is very ine�cient, but it is presented here
for comparison with the more sophisticated algo-
rithms. The second, forward checking, is proposed
by Haralick and Elliott (1980), and the third,
MAC (maintaining arc consistency), is developed
by Sabin and Freuder (1994).

In all three algorithms, a search tree, similar to
that used in a branch and bound algorithm, can be
used to represent the current state of the search.
Each node of the tree corresponds to a partial
solution in which the values of some variables are
determined; these are termed the past variables.
The values of future variables remain to be de-
cided. The branches of the tree correspond to the
di�erent possible values of some variable. By
choosing a branch of the tree to search next, the
algorithms instantiate a variable (i.e. they assign a
value to the variable). A deadend is detected if the
domain of a future variable becomes empty. The
di�erences between the algorithms lie in their
treatment of the future variables.

In the backtracking algorithm, the current
variable is assigned a value from its domain. This
assignment is then checked against the current
partial solution; if any of the constraints between

this variable and the past variables is violated, the
assignment is abandoned and another value for the
current variable is chosen. If all values for the
current variable have been tried, the algorithm
backtracks to the previous variable and assigns it a
new value. If a complete solution is found, i.e. a
value has been assigned to every variable, the al-
gorithm terminates if only one solution is required,
or continues to ®nd new solutions. If there are no
solutions, the algorithm terminates when all pos-
sibilities have been considered.

4.1. Forward checking

The backtracking algorithm only checks the
constraints between the current variable and the
past variables. On the other hand, forward
checking and MAC are lookahead algorithms that
check the constraints between the current and past
variables and the future variables. In the forward
checking algorithm, when a value is assigned to the
current variable, any value in the domain of a
future variable which con¯icts with this assign-
ment is (temporarily) removed from the domain.
The advantage of this is that if the domain of a
future variable becomes empty, it is known im-
mediately that the current partial solution is in-
consistent, and as before, either another value for
the current variable is tried or the algorithm
backtracks to the previous variable; the state of the
domains of future variables, as they were before
the assignment which led to failure, is restored.
With simple backtracking, this failure would not
have been detected until the future variable was
considered, and it would then be discovered that
none of its values are consistent with the current
partial solution. Forward checking, therefore, al-
lows branches of the search tree that will lead to
failure to be pruned earlier than with simple
backtracking.

The forward checking algorithm is illustrated in
Fig. 2 using the 6-queens problem. The n-queens
problem requires placing n queens on an n� n
chessboard in such a way that no queen can take
any other: no two queens can be on the same row,
the same column or the same diagonal of the
board. The colours of the squares are irrelevant in
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this problem, and are not shown. This problem has
received a great deal of attention in CSP research,
although it is in many ways not representative of
the kind of problem met in practice. However, it
has the merit that the state of the search at any
point can be compactly represented, so that the
progress of the search algorithms is easily shown.

As a CSP, this problem can be formulated using
n variables, v1; . . . ; vn, corresponding to the rows of
the chessboard, and each variable has domain
f1; . . . ; ng representing the column in which the
queen is placed.

The full search tree built by forward checking
for the 6-queens problem is shown in Fig. 2. The

state of the problems after each variable instant-
iation is shown using a chessboard representation:
a Q on a particular square should be taken as
meaning that the variable for that row has been
assigned the value corresponding to that column.
If we start by placing a queen in the ®rst column of
the ®rst row, then none of the other queens can be
placed in the same column or on the same diago-
nal, and the values corresponding to the squares
attacked by this queen can be removed from the
domains of the variables for the queens in rows 2±
6. Squares with crosses denote values removed
from the domains of the variable corresponding to
that row by the current or a previous assignment.

Fig. 2. Search tree for 6-queens using forward checking.
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If a whole row of crosses occurs, then this means
that a future variable has no remaining values, and
the algorithm backtracks to a variable which still
has an untried value. Such a deadend is marked in
Fig. 2 by a cross below the board where an empty
domain is encountered, and the solution eventually
found is marked by a tick.

Note that whenever a new variable is consid-
ered, all its remaining values are guaranteed to be
consistent with the past assignments, so that
checking an assignment for consistency with the
current partial solution is no longer necessary.
Forward checking does more work than simple
backtracking when each assignment is added to
the current partial solution, in order to reduce the
size of the search tree and thereby reduce the
overall amount of work done.

4.2. MAC

The MAC algorithm does still more work in
looking ahead when an assignment is made.
Whenever a new subproblem consisting of the fu-
ture variables is created by a variable instantiation,
the subproblem is made arc consistent. As well as
checking the values of future variables against the
current assignment, as forward checking does,
MAC checks the future variables against each
other. Thus, for each future variable, every value
which is not supported in the domain of some
other future variable is deleted, as well as those
values which are not supported by the current
assignment. This removes further values from the
domains of future variables, and as with forward
checking, the hope is that in doing additional work
at the time of the assignment, there will be an
overall saving in computation time.

Fig. 3 shows the e�ect of MAC on 6-queens. As
before, squares marked with a cross are those
which are eliminated by a previous assignment, or
are inconsistent with the current assignment.
Numbered squares are those which are eliminated
in the course of making the subproblem arc con-
sistent. The numbering indicates a possible order
in which this can be done, since once some values
are eliminated, this can trigger further deletions.
The squares marked ``1'' are those which have no

support once the values inconsistent with the cur-
rent assignment are deleted. Squares marked ``2''
are those whose only supporting values were
squares marked ``1'' and so on. For instance, in the
leftmost board in Fig. 3, forward checking after
the assignment of v2 � 3 leaves v3 with domain
f5,6g; since the value 6 for v4 is compatible with
neither of these, it is eliminated. Similarly, v6 � 4 is
inconsistent with both of the possible values for v4

remaining after forward checking (even before one
of these values is deleted). Once 2 is the only
possible value for v4, any value in the domain of
any future variable which is inconsistent with this
is also eliminated and the square is marked ``2''.
Finally, v5 has domain f4g, so that the last re-
maining value for v6 is eliminated as inconsistent
with v5 � 4, and it has been proved that no solu-
tion can be found from the ®rst two assignments.

Note that the chain of inferences leading to an
empty domain is not necessarily unique; if the al-
gorithm continued, it would eliminate all the re-
maining values for all future variables, and the
situation when the domain of some variable ®rst
becomes empty depends on the order in which
values are deleted. On the other hand, if the sub-
problem can be made arc consistent without de-
leting all values, the resulting state does not
depend on the order in which variables are con-
sidered.

The rightmost branch in Fig. 3 shows that there
is only one possible solution following the ®rst two
assignments, and again reduces the amount of
searching along this branch compared with Fig. 2.

The MAC algorithm interleaves constraint
propagation and search. Re-establishing arc con-
sistency after each variable instantiation can be
done e�ciently using an incremental arc consis-
tency algorithm (Van Hentenryck et al., 1992a),
rather than starting from scratch. Sometimes more
elaborate consistency checks are also undertaken.
An algorithm of this kind is generally used in
constraint programming software.

5. Formulating problems

Although there may be an obvious way to
formulate a problem as a CSP, there is often a
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choice of more than one formulation, with a little
more thought.

Since arc consistency is a property associated
with binary constraints, arc consistency algorithms
can only be used to reduce the domains of vari-
ables involved in constraints which either are bi-
nary, or have all but two variables instantiated, so
that the constraints have e�ectively become bina-
ry. Similarly, forward checking can only use those
constraints in which exactly one variable remains
to be instantiated when pruning the domains of the

future variables. For these reasons, high arity
constraints (i.e. constraints involving a large
number of variables) are undesirable, and should if
possible be avoided, except in cases where an e�-
cient generalized arc consistency algorithm exists.

As an example, the cryptarithmetic puzzle given
in Section 2.3 has a constraint involving all ten
variables, which is not of much use for constraint
propagation. The problem can be reformulated by
adding extra variables C1;C2; . . . ;C5; each with
domain f0; 1g, representing the quantities carried

Fig. 3. Search tree for 6-queens using MAC.
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from one column to the next as the addition is
done. The constraint representing the sum can
then be rewritten as

2 �D � 10 � C1� T;

2 � L� C1 � 10 � C2�R;

2 �A� C2 � 10 � C3� E;

N�R� C3 � 10 � C4� B;

O� E� C4 � 10 � C5�O;

D�G� C5 � R;

where each of these six constraints contains at
most ®ve variables. This considerably speeds up
the process of ®nding a solution.

Another technique is to incorporate redundant
constraints that are implied by those already in the
problem, but having fewer variables. An example
occurs in the following problem: a number of cars
requiring di�erent options are to be assembled on
a production line. Capacity constraints at the
workstations on the production line prescribe
constraints of the form ``at most r cars out of any s
consecutive cars can require option j''. It is re-
quired to sequence the cars so that these con-
straints are satis®ed. If too few cars requiring a
particular option are used in one part of the se-
quence, than all the remaining cars requiring the
option have to be ®tted into the remainder with the
result that the capacity constraints are violated.
Hence, for each option, new constraints can be
derived, that any sub-sequence of a certain length
must contain at least a speci®ed number of cars
requiring that option. This car sequencing problem
is discussed in more detail in Section 7.3.

Another consideration in formulating problems
is that a few variables with large domains are in
general preferable to many variables with small
domains. In the former case, the initial size of the
search space (i.e. before any pruning is done),
which is given by the total number of possible in-
stantiations of the variables, is much smaller, and
hence usually the problem can be solved more
quickly. In particular, zero±one variables are not
desirable and should be avoided if possible.

As an example, the n-queens problem described
earlier can alternatively be formulated using n2

variables xij, where

xij �
1 if there is a queen in row i; column j;

0 otherwise:

�
The search space in this formulation is much larger
than before: 2n2

, as opposed to nn. In addition, the
new formulation requires a new set of constraints
to represent the fact that there must be exactly one
queen on each row:

Xn

j�1

xij � 1; i � 1; . . . ; n:

Previously, this constraint is satis®ed automati-
cally: the domain of each variable represents the
squares on the corresponding row, and in any
solution exactly one value is assigned to the vari-
able, i.e. exactly one square in the row is occupied.

Sometimes, a formulation with n variables,
each with m values, can be transformed into m
variables each with n values; if m is smaller than n
this reduces the size of the search space. For in-
stance, Dincbas et al. (1988a) use a reformulation
to reduce the search space size from 472 to 724.

In many problems, if solutions exist, there are
classes of equivalent solutions. For instance, in
timetabling problems, it may be possible to inter-
change the allocations to the time slots and still
have a feasible solution; in rostering problems, a
group of sta� may have the same skills and the
same availability, and therefore be interchangeable
in the roster. Such symmetries in the problem may
cause di�culties for a search algorithm: if the
problem turns out to be unsatis®able, or the al-
gorithm is exploring a branch of the search tree
which does not lead to a solution, then all sym-
metrical assignments will be explored in turn. This
is a waste of e�ort, because if one such assignment
is infeasible, then they all are. Such symmetries
should be avoided, if possible, by including addi-
tional constraints in the formulation which allow
only one solution from each class of equivalent
solutions (Puget, 1993).

6. Variable and value ordering heuristics

The order in which variables are considered for
instantiation has a dramatic e�ect on the time
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taken to solve a CSP, as does the order in which
each variable's values are considered. There are
general principles which are commonly used in
selecting the variable and value ordering, and a
few speci®c heuristics.

The variable ordering may be either a static
ordering, in which the order of the variables is
speci®ed before the search begins, and is not
changed thereafter, or a dynamic ordering, in
which the choice of next variable to be considered
at any point depends on the current state of the
search.

Dynamic ordering is not feasible for all tree
search algorithms: for instance, with simple back-
tracking there is no extra information available
during the search that could be used to make a
di�erent choice of ordering from the initial or-
dering. However, with forward checking and
MAC, the current state includes the domains of
the variables as they have been pruned by the
current set of instantiations, and so it is possible to
base the choice of next variable on this informa-
tion. A common heuristic is to choose next the
variable with smallest current domain. This is of-
ten explained as an implementation of the `fail-
®rst' principle (Haralick and Elliott, 1980) or as
choosing the most constrained variable. As a tie-
breaker, the most constraining variable can be
chosen, for instance the one which constrains the
largest number of future variables (in the absence
of more speci®c information: for instance, on
which constraints are likely to be di�cult to sat-
isfy).

Changing the value ordering produces a rear-
rangement of the branches emanating from each
node of the search tree. This is an advantage if it
ensures that a branch which leads to a solution is
searched earlier than branches which lead to
deadends, provided that only one solution is re-
quired. If all solutions are required, or if the whole
tree has to be searched because there are no solu-
tions, then the order in which the branches are
searched is immaterial. A good general principle is
to choose a value which seems most likely to lead
to a solution (if we can detect such a value), i.e. a
`succeed-®rst' principle. There are no cheap, gen-
erally applicable, dynamic heuristics implementing
this principle, but in particular cases, problem-

speci®c information may allow a heuristic to be
devised.

7. Applications of constraint satisfaction

In this section, we present several types of OR
problems, and describe how they can be tackled
using constraint satisfaction approaches. Some of
the studies that we review consider `standard'
models for which a variety of approaches have been
adopted in the literature. Other work is of the `case
study' type for which some of the constraints are
usually speci®c to the particular practical problem
under consideration. All of the problems consid-
ered are known to be NP-complete (feasibility
problems) or NP-hard (optimization problems).

7.1. Location

A well-known problem in OR involves the lo-
cation of facilities, such as warehouses, to supply
demand to customers. A set f1; . . . ;mg of potential
facility locations is given, and a ®xed cost fi is
incurred if a facility is established at location i
(i � 1; . . . ;m). There is a set of customers
f1; . . . ; ng, and the cost of supplying customer j
(j � 1; . . . ; n) from a facility at location i is cij. The
location problem is to choose a subset of the po-
tential locations at which to establish facilities, and
then to assign each customer to one of these fa-
cilities, so that the total cost is minimized.

A standard zero±one programming formula-
tion of this problem is as follows. By de®ning
variables

yi �
1 if a facility is established at location i;

0 otherwise;

�

xij �
1 if customer j is supplied from a facility

established at location i;

0 otherwise;

8><>:
we obtain the formulation

minimize
Xm

i�1

Xn

j�1

cijxij �
Xm

i�1

fiyi
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subject toXm

i�1

xij � 1; j � 1; . . . ; n;

yi ÿ xij P 0; i � 1; . . . ;m; j � 1; . . . ; n;

xij 2 f0; 1g; i � 1; . . . ;m; j � 1; . . . ; n;

yi 2 f0; 1g; i � 1; . . . ;m:

The equality constraints ensure that all customers
are supplied from one of the facilities, while the
inequality constraints prevent customers from be-
ing assigned to any location where a facility is not
established. In this uncapacitated model, there is
no limitation on the number of customers assigned
to any facility that is established. Thus, when the
facility locations are chosen, it is straightforward
to assign each customer to a facility with the
smallest supply cost.

Optimal solutions of large instances of the un-
capacitated facility location problem can be ob-
tained using branch and bound algorithms. The
algorithm of Erlenkotter (1978) is widely regarded
as being one of the most e�cient.

Van Hentenryck and Carillon (1988) evaluate a
constraint satisfaction approach. They use the
variables yi, as de®ned above, zj which is the lo-
cation of the facility that supplies customer j,
where zj 2 f1; . . . ;mg, and vj which is the supply
cost for customer j, where vj 2 fc1j; . . . ; cmjg. The
constraints are

vj � czj;j; j � 1; . . . ; n;

yi � 0) zj 6� i; i � 1; . . . ;m; j � 1; . . . ; n;Xm

i�1

fiyi �
Xn

j�1

vj6C;

where C de®nes an upper bound on the objective
function value.

For the ®rst set of constraints, arc consistency is
useful to restrict the domain of vj when the domain
of zj changes, and vice versa. Similarly, after ®xing
yi � 0, arc consistency in the second constraint
allows the value i to be removed from the domains
of z1; . . . ; zn. In an attempt to detect a deadend, the
left-hand side of the third constraint is replaced by
a lower bound in which each of the future vari-
ables vj is replaced by the smallest value in its
domain.

The computational evaluation of the constraint
satisfaction approach appears to be strictly limit-
ed. Van Hentenryck and Carillon report that a
problem with 21 potential facility locations and 80
customers is solved in 90 seconds on a SUN 3/160,
and that the computation time is comparable to
that required by a simple branch and bound al-
gorithm with rather weak lower bounds. However,
we conclude that a more sophisticated branch and
bound algorithm such as that of Erlenkotter,
where the lower bounds are computed quickly and
are very e�ective in restricting the search, is far
more e�cient than this constraint satisfaction ap-
proach.

7.2. Scheduling

There are many problems arising in production
industries that require jobs to be scheduled on
machines. One of the most general and challenging
is the job shop scheduling problem in which n jobs
are to be scheduled on m machines. Each job j
( j � 1; . . . ; n) comprises a set Oj of operations that
must be executed in a speci®ed order. The machine
on which any operation o must be performed is mo

and the corresponding processing time is po. Since
machine capacity constraints prevent any machine
from processing more than one operation at the
same time, a sequence of operations must be
speci®ed for each machine. A common objective is
to ®nd a schedule that minimizes the makespan,
which is the completion time of the last job.

The job shop problem is notoriously di�cult to
solve. For example, there is an instance of Law-
rence (1984) with 15 jobs and 10 machines that has
not been solved with the currently available
branch and bound algorithms. These algorithms
su�er from the disadvantage that they employ
lower bounds that are too weak to be e�ective in
restricting the search. Local search heuristics
(simulated annealing, tabu search and genetic al-
gorithms) are successful in generating near-opti-
mal solutions at moderate computational expense.
Vaessens et al. (1996) review these heuristics and
give a comparison of computational results.

Constraint satisfaction approaches often use
start time variables so, where so is the time that the
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processing of operation o starts. Clearly,
so 2 f0; 1; . . . ;Cg, where C is an upper bound
on the maximum completion time. If o 2 Oj, let
pred(o) and succ(o) denote the set of operations on
job j that are predecessors and successors of o,
respectively. Then the domain of so can be re-
stricted so that so 2 f

P
o02pred�o� po0 ; . . . ;C ÿ po ÿP

o02succ�o� po0 g. If O denotes the set of all opera-
tions, then the constraints are

so � po6 so0 ; o; o0 2 Oj; o0 2 succ�o�;
j � 1; . . . ; n;

so � po6C; o 2 O;

so � po6 so0 or so0 � po0 6 so; o; o0 2 O;

o 6� o0; mo � mo0 :

The ®rst set of constraints ensures that no opera-
tion on a job can start before all previous opera-
tions on that job are completed. The limit on the
maximum completion time is enforced by the
second set. The third set arises through the ca-
pacity of the machines: for two operations o and o0

that require the same machine, either o is pro-
cessed before o0, or o0 is processed before o.

Using this formulation, Nuijten and Aarts
(1996) derive procedures for establishing arc con-
sistency. For any operation o, let esto denote its
earliest start time, which is the smallest value in the
domain of so. Similarly, we de®ne lsto to be the
latest start time, which is the largest value in the
domain of so. From the ®rst constraint, operation
o must complete no later than time lsto0 and op-
eration o0 can start no earlier than esto � po.
Therefore, all values larger than lsto0 ÿ po are re-
moved from the domain of so, and all values
smaller than esto � po are removed from the do-
main of so0 . Now suppose that mo � mo0 , so that the
third constraint applies. If o is scheduled before o0,
then so6 lsto0 ÿ po; if o is scheduled after o0, then
so P esto0 � po0 . Therefore, if lsto0 ÿ po � 16 esto0

�po0 ÿ 1, then all values in flsto0 ÿ po � 1; . . . ;
esto0 � po0 ÿ 1g are deleted from the domain of so.
An analogous update is made to the domain of so0 .

In addition to achieving arc consistency, further
constraint propagation is often useful. For exam-
ple, Thuriot et al. (1994) propose a method for
testing whether one operation must be scheduled
before another operation that requires the same

machine. Let Ok � O denote the set of operations
that requires some machine k, and let o; o0 2 Ok. A
lower bound on the amount of processing of op-
eration o, where o 2 Ok, in any interval �t1; t2� is
given by

W �o; t1; t2� � min fpo; t2 ÿ t1;

maxfesto � po ÿ t1; 0g;
maxft2 ÿ lsto; 0gg:

By considering the amount of processing in the
interval �esto; lsto0 � po0 �, we deduce that if

esto � po � po0 �
X

o2Oknfo;o0g
W �o; esto; lsto0 � po0 �

> lsto0 � po0 ;

then operation o cannot precede o0. In this case, all
values larger than lsto ÿ po0 are removed from the
domain of so0 , and all values smaller than esto0 � po0

are removed from the domain of so. Another use-
ful constraint propagation device arises from the
work of Carlier and Pinson (1989) on the devel-
opment of a branch and bound algorithm. Let S be
a set of operations requiring the same machine,
and let o 62 S be another operation requiring this
machine. If

esto � po �
X
o02S

po0 > max
o02S
flsto0 � po0 g;

then o cannot be scheduled before all operations in
S. Therefore, all values smaller than
mino02Sfesto0 � po0 g are removed from the domain
of so. Symmetric arguments are used to obtain a
further restriction on the domain of so when o
cannot be scheduled after all operations in S. Tests
of this type are often referred to as edge ®nding.

The usefulness of the constraint propagation
methods described above is dependent on the
availability of an e�cient implementation. Bap-
tiste and Le Pape (1995) review the methods and
their implementations, and conclude that superior
results are obtained by algorithms that employ
edge ®nding methods.

Although there are various studies on con-
straint satisfaction for the job shop, the most
thorough is undertaken by Nuijten and Aarts
(1996). Their algorithm uses edge ®nding con-
straint propagation. They obtain lower and upper
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bounds on the minimum makespan for 40 test
problems of Lawrence (1984) and 3 test problems
of Fisher and Thompson (1963) as follows. To ®nd
a lower bound, they use a bisection search to ®nd
the smallest value of C for which the problem is
unsatis®able, where zero and the sum of all pro-
cessing times are initial lower and upper bounds
on the makespan. The check for unsatis®ability is
only performed through constraint propagation at
the root node, with no variable instantiation. To
®nd an upper bound, they perform a series of it-
erations with decreasing values of C, where C is set
to be the minimum makespan found thus far less
some decrement, and the decrement decreases in
successive iterations. They adopt randomization in
the selection of the operation start time to be in-
stantiated next, and they restart the search after a
speci®ed number of backtracks. For 31 of the 43
test problems, an optimal solution is obtained, and
the lower bound is exact for 23 of these 31 prob-
lems. The makespan found by the algorithm de-
viates by less than 1% from the best known lower
bound for 35 test problems and by less than 3% for
40 test problems. Typical computation times are
1500 seconds on a SPARC-station ELC (for each
of 5 independent runs) for problems with 15 jobs
and 10 machines, and 2500 seconds for problems
with 15 jobs and 15 machines.

Baptiste and Le Pape (1995) con®rm the e�ec-
tiveness of the edge ®nding approach of Nuijten
and Aarts (1996) through an implementation in
ILOGLOG SCHEDULECHEDULE, an add-on to ILOGLOG SOLVEROLVER.
Baptiste et al. (1995) further improve this ap-
proach. Speci®cally, they include the randomiza-
tion and restart devices of Nuijten and Aarts in
their heuristic algorithm for ®nding an upper
bound. Moreover, at a restart, a pair of operations
that are sequenced in adjacent positions on the
same machine in the previous schedule are con-
strained to be sequenced in the same order with a
certain probability, where this probability de-
creases at each restart. The algorithm is tested on
13 of the harder instances that are considered by
Nuijten and Aarts. The makespan found by the
algorithm deviates by less than 1% from the best
known lower bound for 11 test problems; devia-
tions are 1.54% and 5.84% for the two other
problems. Typical computation times are 500 sec-

onds on a RS6000 workstation (for each of 5 in-
dependent runs) for problems with 15 jobs and 10
machines, and 750 seconds for problems with 15
jobs and 15 machines. Baptiste et al. also use
constraint satisfaction to obtain optimal solutions,
where their heuristic algorithm is employed to
obtain an initial upper bound. Results with this
optimization algorithm are encouraging.

Cheng and Smith (1997) use an alternative
formulation in which variables indicate the order
between each pair of operations that require the
same machine. This type of formulation is also
used in several branch and bound algorithms. By
limiting the amount of backtracking, they are able
to obtain reasonable quality solutions to a selec-
tion of the test problems of Lawrence (1984) and
Fisher and Thompson (1963) in under 10 seconds
on a SPARC 10. They do not perform tests with
longer run times, so it is impossible to assess
whether their approach can compete in terms of
solution quality with that of Baptiste et al. (1995).

7.3. Car sequencing

The car sequencing problem is one of the clas-
sical problems in the CSP literature, although it is
not widely known in the OR community. The
problem arises in the car production industry.
After the basic model has been manufactured,
various options (for example air-conditioning,
metallic paint, ABS brakes, etc.) are added. Dif-
ferent versions of the car require di�erent combi-
nations of options. The cars are placed on a
moving assembly line and pass through a number
of workstation areas, where these options are in-
stalled. Depending on the total time the cars spend
within each workstation area, and the set-up and
installation times for each option, there are limi-
tations on the rates at which the workstations can
handle cars. These are expressed in the form of a
ratio: ``at most r out of every s consecutive cars
can require this option''. Given a set of N cars,
each requiring a known set of options, the problem
is to sequence the cars on the assembly line so that
no workstation capacity is exceeded.

In reality, many other constraints in addition to
the ratio capacity constraints are imposed. Some
of these are described by David and Chew (1995).
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These include grouping constraints, where it is de-
sirable to group together cars requiring a partic-
ular process (for example painting, since the spray
guns need to be purged each time the colour is
changed). There may be calendar constraints on the
start and end dates for particular vehicles, and
just-in-time constraints that require production of
each version of the vehicle to be distributed evenly
over time, to reduce stocks. These clearly make the
real-life problem more complex. Moreover, certain
constraints may con¯ict with each other; the
grouping and capacity constraints may require
that some cars are simultaneously grouped to-
gether and spaced apart! In this case, a distinction
is made between hard constraints (which must not
be violated) and soft constraints, which are desir-
able but not essential. A weight is added according
to the degree of preference for each soft constraint,
and the problem then becomes one of optimizing
over the preferences.

Consider the basic problem with the simple
ratio constraints. If there are m options, let the
workstation capacity for option j be such that at
most rj of every sj cars can require option j
(j � 1; . . . ;m). We divide the set of N cars up into n
classes such that all the cars in a given class require
the same set of options. Let ai denote the number
of cars in class i (i � 1; . . . ; n), where

Pn
i�1 ai � N .

For each class i and each option j, the data of the
problem can be represented by constants dij, where
dij � 1 if class i needs option j, dij � 0 otherwise.

A zero±one programming formulation of this
problem is obtained by de®ning variables

xik �
1 if the car in position k in the

sequence is in class i;

0 otherwise:

8><>:
The constraints of the problem are

XN

k�1

xik � ai; i � 1; . . . ; n;

Xn

i�1

Xsjÿ1

l�0

dijxi;k�l6 rj; j � 1; . . . ;m;

k � 1; . . . ;N ÿ sj � 1;

xik 2 f0; 1g; i � 1; . . . ; n; k � 1; . . . ;N :

The ®rst set of constraints ensures that every car
must appear somewhere in the sequence, and the
second set prevents the workstation capacities
from being exceeded. We may choose an arbitrary
objective function since in this case we merely wish
to ®nd a feasible solution.

Dincbas et al. (1988b) use a constraint satis-
faction approach that is based on the following
formulation. As before, the set of N cars is parti-
tioned into n classes according to their options,
variables yk are used to represent the class of the
car assigned to position k in the sequence, where
yk 2 f1; . . . ; ng, and variables zjk are used to rep-
resent whether the car in position k requires option
j, where zjk 2 f0; 1g. The constraints are

yk � i and dij � 1) zjk � 1;

i � 1; . . . ; n; j � 1; . . . ;m; k � 1; . . . ;N ;

jfkjyk � igj � ai; i � 1; . . . ; n;Xsjÿ1

l�0

zj;k�l6 rj; j � 1; . . . ;m;

k � 1; . . . ;N ÿ sj � 1:

The ®rst set of constraints links variables yk and
zjk, the second set ensures that exactly ai cars are of
class i, and the third set comprises the ratio ca-
pacity constraints.

An alternative formulation has a variable for
each car, each with domain f1; . . . ;Ng represent-
ing that car's position in the sequence; this is a
kind of `dual' formulation, where the variables
become the values and vice versa. It has the dis-
advantage that many symmetrical solutions would
be possible, and moreover the size of the search
space would be NN as opposed to nN in the ®rst
formulation. However, as pointed out by Smith
(1996), this dual formulation highlights the fact
that in some CSP formulations the fail-®rst heu-
ristic for variable ordering and succeed-®rst heu-
ristic for value ordering, which are described in
Section 6, may not necessarily be best.

Dincbas et al. (1988b) suggest introducing im-
plied constraints, as described in Section 5.
Clearly, if too few cars requiring a particular op-
tion are placed in one part of the sequence, so that
all the remaining cars requiring that option have to
be placed in the rest of the sequence, it will not be

570 S.C. Brailsford et al. / European Journal of Operational Research 119 (1999) 557±581



possible to satisfy the capacity constraints. Thus,
for each option, we can derive additional con-
straints which state that any subsequence of a
certain length must contain at least a speci®ed
number of cars requiring that option.

Smith (1996) discusses the choice of heuristics
for variable and value ordering. She argues that in
this problem, and indeed in any problem where
any possible solution is a permutation of a ®xed set
of values, it is better to assign the di�cult cars ®rst.
The `di�culty factor' should take into account
both the option utilization and the total number of
cars requiring that option: a `1 out of 5' option
may appear harder to satisfy than a `1 out of 2',
but if more than half the cars require the latter
option, the problem would of course be infeasible.

Computational results for sets of about 100
randomly generated problems with between 5 and
200 cars and workstation utilization of 70±80% are
reported by Van Hentenryck et al. (1992b). For
less than 50 cars, the problems are solved in a few
seconds on a Sun 3/160; for 100 cars, the solution
time is less than a minute, but this rises to about
5 minutes for 200 cars. The di�erences in utiliza-
tion do not greatly a�ect the solution time. They
®nd empirically that the average solution time in-
creases quadratically with the problem size. Smith
(1996) compares di�erent ordering heuristics for
20 problems involving 200 cars, and obtains so-
lutions in just a few seconds for every feasible
problem with at least one of the heuristics, al-
though there is no overall winner.

David and Chew (1995) deal with a practical
problem at Renault involving 7500 cars, each of
which has 50±100 characteristics, incorporating
both soft and hard constraints. They adopt a hy-
brid approach using simulated annealing in addi-
tion to CLP, and obtain good solutions in about
2 hours on a Sun Sparcstation II.

ReÂgin and Puget (1997) introduce a generalized
arc consistency algorithm for the sequencing con-
straints found in this problem, and report good
results on a set of di�cult 100-car problems.

7.4. Cutting stock

A cutting stock problem requires material to be
cut into smaller pieces according to customer re-

quirements, so that the waste is minimized. An
example of a one-dimensional problem involves
the cutting of metal rods. Cutting large wooden
boards to produce the parts that are required for
items of furniture is an example of a two-dimen-
sional problem.

Consider a (two-dimensional) cutting stock
problem in which m di�erent shaped pieces are to
be cut from stock, and the demand for piece i
(i � 1; . . . ;m) is di units. There are n di�erent cut-
ting patterns, and cutting pattern j (j � 1; . . . ; n)
yields qij units of piece i for i � 1; . . . ;m. A total of
p cutting patterns are to be selected. The cost as-
sociated with cutting pattern j is cj.

To obtain an integer programming formulation
of this problem, we de®ne variables xj to be the
number of times cutting pattern j is used. This
yields the formulation

minimize
Xn

j�1

cjxj

subject toXn

j�1

qijxj P di; i � 1; . . . ;m;

Xn

j�1

xj � p;

xj 2 f0; 1; . . . ; pg; j � 1; . . . ; n:

Note that this formulation exhibits a close resem-
blance with set covering.

For many practical problems, the number of
cutting patterns is too large to allow all possibili-
ties to be generated. This di�culty can be over-
come by using a column generation approach.
Alternatively, there is a wide variety of heuristics
that can be employed to generate a selection of
cutting patterns. Thus, research has not focused on
developing e�cient algorithms for solving the
above set covering formulation. Nevertheless, al-
gorithms for solving pure set covering problems
are successful in solving large instances, and sev-
eral of these approaches could be adapted for the
formulation given above.

Dincbas et al. (1988a) propose a constraint
satisfaction approach. They use variables zk to
represent the cutting pattern for the kth unit of
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stock (k � 1; . . . ; p), where zk 2 f1; . . . ; ng, vk to be
the cost of cutting the kth unit of stock, where
vk 2 fc1; . . . ; cng, and uik to be the number of units
of piece i (i � 1; . . . ;m) obtained from cutting the
kth unit of stock, where uik 2 fqi1; . . . ; qing. The
constraints are:

vk � czk ; k � 1; . . . ; p;Xp

k�1

uik P di; i � 1; . . . ;m;

uik � qi;zk ; i � 1; . . . ;m; k � 1; . . . ; p;Xp

k�1

vk 6C;

where C de®nes an upper bound on the objective
function value.

Arc consistency in the ®rst set of constraints
restricts the domain of vk when the domain of zk

changes, and vice versa. A similar observation
applies to uik and zk in the third set. To eliminate
many of the symmetric solutions that result from
interchanging zk and zl for k 6� l, the additional
constraints vk 6 vk�1 for k � 1; . . . ; p ÿ 1 are im-
posed. Another feature of the approach used by
Dincbas et al. (1988a) is a dichotomous search
procedure. Rather than instantiating variables in
the normal way, the median value of the current
domain of some variable is computed, and then
the search partitions the solutions according to
whether the value of the variable is less than or
equal to the median, or is greater than the median.

Dincbas et al. (1988a) give computational re-
sults for a problem with 72 cutting patterns from
which 4 are to be selected, and 6 di�erent shaped
pieces are to be cut, thus giving n� 72, p� 4 and
m� 6. Under the standard method of instantiating
variables the problem is solved in 105 seconds on a
VAX785. However, use of the dichotomous search
allows the solution time to be reduced to 3 sec-
onds.

Proll and Smith (1998) consider a template
design problem, which can be viewed as a variant
of the cutting stock problem. A template is es-
sentially a cutting pattern, and each template has a
given of slots to which any selection of pieces can
be assigned. The objective is to minimize the

number of di�erent templates used, subject to
constraints which limit the amount of under and
over production relative to the demand. Proll and
Smith propose a CSP formulation which includes
variables yij that represent the number of units of
piece i in template j. Computational results are
provided for three problems, the largest of which
has 40 template slots and 50 pieces, where at most
4 templates are used.

7.5. Vehicle routing

In the classical vehicle routing problem, there
are n customers to be supplied from a single depot.
Customer i (i � 1; . . . ; n) has a requirement of qi,
and each vehicle has a capacity Q (although in
some variants of the problem capacities vary ac-
cording to the vehicle). There is a cost cij and a
time tij for travelling between each pair of cus-
tomers i and j (i � 0; 1; . . . ; n, j � 0; 1; . . . ; n,
i 6� j), where the depot is regarded as customer 0.
It is required to ®nd tours for the vehicles, where
each tour starts and ends at the depot, so that each
customer is visited once, the vehicle capacity con-
straints are satis®ed, and the total cost is mini-
mized. In a common variant of this basic model,
there is a time window within which the delivery
must take place.

Branch and bound algorithms for the vehicle
routing problem have met with only limited suc-
cess: obtaining optimal solutions for instances with
more than 50 customers often requires excessive
computation time. However, simulated annealing
and tabu search algorithms are successful in gen-
erating solutions of very good quality. A review of
these algorithms is given by Gendreau et al. (1997).

Christodoulou et al. (1994) propose a con-
straint satisfaction approach that is based on a
standard zero-one programming formulation with
variables

xij �
1 if a vehicle travels directly from

customer i to customer j;

0 otherwise:

8>><>>:
The constraints are:
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Xn

j�0

xij � 1; i � 1; . . . ; n;

Xn

i�0

xij � 1; j � 1; . . . ; n;

Xn

j�1

x0j ÿ
Xn

i�1

xi0 � 0;

subtour elimination constraints;

vehicle capacity constraints:

The ®rst two sets of constraints ensure that a ve-
hicle travels from and travels to each customer.
The third constraint forces all vehicles that leave
the depot to return to the depot. The subtour
elimination constraints prevent a solution in which
the vehicle makes a subtour that does not include
the depot (for example, the subtour de®ned by
xij � 1, xjk � 1 and xki � 1 for three distinct cus-
tomers i, j and k). For the problem with time
windows, additional variables representing the
arrival time at each customer and the corre-
sponding departure time are introduced. Each of
these variables must lie within the time window for
that customer.

After ®xing xij � 1, arc consistency for the im-
plied constraints xij � xik 6 1 and xhj � xij6 1,
where h 6� i and j 6� k, assigns the values xik � 0
and xhj � 0. Similarly, if setting xhk � 1 would
create a subtour or would cause the vehicle ca-
pacity constraint to be violated, then the value
xhk � 0 is assigned.

The computational results obtained by Christ-
odoulou et al. indicate that, without time win-
dows, constraint satisfaction is inferior to other
approaches. With the introduction of time win-
dows, the domains of many of the xij variables are
reduced to a single value of zero, and the time
required to solve the problem is signi®cantly re-
duced. The authors claim that problems with up to
50 customers can either be solved optimally, or a
near-optimal solution is obtained. Since the precise
characteristics of their test problems are not given,
it is di�cult to assess the signi®cance of their re-
sults.

Shaw (1998) proposes a hybrid approach for
vehicle routing in which local search is combined
with constraint satisfaction techniques. More pre-

cisely, he considers a large neigbourhood in which
several customers are removed from the current
solution, where a heuristic selects the customers
for removal, and are then reinserted. To ®nd op-
timal or good reinsertions, a constraint satisfac-
tion approach is used. Computational results for a
variety of test problems, some having time win-
dows, indicate that this hybrid approach is nearly
competitive with the best available local search
heuristics that are based on tabu search.

7.6. Timetabling

Timetabling problems arise in many forms,
most usually in an educational context, and basi-
cally involve resource allocation. As a simple ex-
ample of examination timetabling, we have a set of
students, a set of examinations, a set of rooms and
a set of available time periods, together with a list
specifying the students who take each of the ex-
aminations. The objective is to allocate a room
and a time to each examination, subject to various
constraints. For example, clashes must be avoided
by scheduling every pair of examinations to be
taken by the same student at di�erent times. Ca-
pacities of the rooms cannot be exceeded. More-
over, if two examinations are taken by the same set
of students, they must be separated in time, in
order to allow the students su�cient preparation
time in between.

The most basic timetabling problem, which re-
quires classes or examinations to be assigned to a
minimum number of periods subject to the no-
clash constraints, is NP-hard (Karp, 1972); it is
reducible to graph colouring, and indeed this is the
approach most frequently used to solve it. The
computational study of Johnson et al. (1991)
shows that optimal solutions cannot be obtained
using reasonable computational resources for in-
stances of the graph colouring problem with as few
as 90 vertices. Although good quality solutions can
be obtained with simulated annealing at large
computational expense, heuristics with more
modest computational requirements tend to gen-
erate solutions that are far from the optimum. For
practical timetabling problems, heuristics are only
moderately successful, because of the di�culty of
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incorporating all the relevant factors appropriately
into a single cost function. Another di�culty
common to all solution approaches is that prob-
lems are often very sensitive to small changes in
the data.

Nuijten et al. (1994) consider the examination
timetabling problem as a special case of the re-
source constrained project scheduling problem.
They apply the consistency checking techniques
and randomization procedures that are developed
for the constraint satisfaction approach to job
shop scheduling (see Section 7.2), for a practical
problem of examination timetabling at the
Eindhoven University of Technology. The vari-
ables are the start times of all the operations, i.e.
the examinations. The problem involves separa-
tion constraints, which ensure that particular
examinations are su�ciently spaced in time, and
no-clash constraints. Since students taking an ex-
amination need not all be assigned to the same
room, the models only consider the overall avail-
able capacity of all the examination rooms.

Nuijten et al. (1994) consider two practical
problems, involving 275 and 651 examinations
respectively, with varying capacities, separation
and no-clash constraints. They use two models: the
®rst checks full arc-consistency only, whereas the
second model transforms the separation con-
straints into capacity constraints in order to apply
extensive consistency-checking techniques of the
type described in Section 7.2. For each model, they
also try a modi®ed operation selection procedure,
which gives preference to those examinations that
are most di�cult to assign. The second model
outperforms the ®rst for both problems, but in-
terestingly the modi®ed operation selection pro-
cedure improves the performance of the ®rst model
but not that of the second. Nuijten et al. conclude
that anything less than full arc consistency
checking degrades performance.

The problem of timetabling school lessons or
university lectures is similar to examination time-
tabling but more complicated. Practical problems
have many constraints other than the simple no-
clash and capacity constraints described above.
Lajos (1995) describes the problem of timetabling
for the University of Leeds, where there are 1000
so-called `o�erings' (essentially, courses) compris-

ing about 2500 classes per week. Additional con-
straints include:
· modular option groups, where some clashes are

allowed since students chose a subset of options
from a given set;

· time constraints (e.g., certain classes are con-
strained to a particular day because they are
taught by external lecturers);

· smoothness constraints, i.e. reducing the maxi-
mum number of classes that can take place si-
multaneously in order to smooth out room
utilization;

· spreading constraints, so that classes belonging
to the same course are timetabled on separate
days.

This problem is a good candidate for solution by
constraint programming methods. Optimization is
not always required; a feasible timetable is often
the main objective, since the qualitative factors can
usually be expressed as constraints. Constraint
programming has the great advantage that its de-
clarative nature allows the constraints to be ex-
pressed in a natural way, and lookahead
algorithms are particularly e�ective for this prob-
lem in reducing the size of the search space.
Nuijten et al. (1994) apply the extensive consis-
tency-checking techniques described above for a
school timetabling problem, with good results, and
in this case too the modi®ed operation selection
procedure improves performance even further.
Menezes and Barahona (1994) discuss the inter-
action between value and variable ordering heu-
ristics and lookahead schemes for a timetabling
problem at the New University of Lisbon.

A natural formulation is to represent each
class as a variable whose domain is the set of
available time periods. This is the formulation
used by Lajos (1995) but others are possible; for
example, blocking classes together and de®ning
the variables to be the starting time of each block.
This approach uses fewer variables, which in
general is advantageous, but it greatly increases
the complexity of the constraints. Lajos uses a
fail-®rst variable-ordering heuristic, timetabling
the most di�cult o�erings ®rst, with some manual
adjustment to deal with infeasibilities, and a
random number generator for value ordering,
which eliminates the need for spreading con-
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straints and greatly improves performance. The
program is written in PROLOG and solves typi-
cal instances of the problem in about 5 minutes
on a Sun 10/20.

7.7. Rostering

Crew rostering problems are well known in OR,
and have received considerable attention in the air
and rail transport industries. Usually, the general
problem of allocating sta� to duties is divided into
two distinct problems: the scheduling stage and the
rostering stage. The scheduling stage involves de-
signing trips (sometimes called tours of duty or
rotations) where, in the case of airlines, all the
timetabled ¯ights are grouped into short se-
quences, which may occupy one or more days. For
example, one such trip might be London ! Paris,
Paris ! Rome, Rome ! London. This can be
formulated as a set-partitioning problem and
solved using a branch and bound algorithm;
however, there are many extra constraints gov-
erning the feasibility of a trip with respect to legal
or trade union requirements on health and safety.
Because of the huge problem size, heuristic meth-
ods have been developed, although in recent years
advances in computer technology have enabled
optimization techniques such as column genera-
tion to be applied.

The rostering stage consists of combining the
tours of duty into rosters (known in the airline
industry as lines of work) for the given planning
period, which is usually one month. These rosters
are then allocated to individual sta� members or
crews. In addition to further mandatory con-
straints on rosters, for example on the total num-
ber of rest days that a crew must have each month,
there are also soft constraints expressing the
preferences of the individual crews for the di�erent
rosters. Ryan (1992) formulates this problem as a
generalized set-partitioning problem, where the
variables are

xij �
1 if crew i is assigned to roster j;

0 otherwise:

�
Because of the vast numbers of alternative rosters,
real-life problems may potentially have hundreds

of millions of variables. In fact, the main objective
with practical problems may simply be to ®nd a
(legally) feasible roster, but other objective func-
tions can be constructed which weight the soft
constraints and minimize the deviation from the
ideal.

Constraint programming has been used for the
crew scheduling problem (see Guerinik and Van
Caneghem, 1995) as well as the rostering problem.
Caprara et al. (1998) solve a rostering problem for
the Italian Railway Company, essentially adopting
a CLP approach, but combined with an OR
method, in that their system uses a lower bound
obtained by a Lagrangian procedure. The railway
company requires rosters in the form of cyclic se-
quences of duties representing a monthly working
plan for a set of crews. The number of crews re-
quired for each roster is equal to the number of
days in that roster. The principal objective is to
®nd a feasible set of rosters minimizing the total
number of crews required. A secondary objective is
to minimize the total number of rest days between
two duties in the same week, a technically allow-
able but undesirable feature in a roster.

The variables in the model of Caprara et al. are
the duties, and the values they take represent the
roster in which the duty is placed and its position
in that roster. Additional variables associated
with duties represented the preceding and suc-
ceeding duties and are used to express the con-
straints. The rosters are constructed sequentially
on a succeed-®rst basis. This leads to a partial
solution. The lower bound is then used to evaluate
the number of remaining weeks to an optimal
solution, and in turn this allows the di�culty of
each constraint to be evaluated. This provides a
heuristic for making the remaining assignments on
a fail-®rst basis.

Caprara et al. implement their system on a
Pentium 100 MHz and use the CLP language
ECLiPSe; the lower bound procedure is written in
C and linked to the CLP program. The computa-
tional results contrast the combined approach with
a pure OR approach and are comparable in terms
of quality and performance, although the CLP
method is much quicker to develop and can more
easily be modi®ed to incorporate di�erent con-
straints.
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8. Evaluation of constraint satisfaction

In this section, we evaluate CP as a technique
for solving CSPs, and compare it with OR meth-
ods. Two general comparative papers, written
from an AI standpoint, are those of Van Hen-
tenryck (1995) and Simonis (1996). The former
considers various techniques for solving combi-
natorial search problems, such as branch and
bound, branch and cut, and local search, and
compares them with CP. However, this paper is
descriptive rather than analytical. Simonis con-
siders di�erent application areas, and attempts to
identify reasons for the failure of CP in some
problems and to determine the critical issues in-
volved. He stresses the important di�erence be-
tween end-user application development (for a
client's day-to-day operational use) and theoreti-
cal studies to test a solver on one particular in-
stance of a problem. Simonis concludes that there
are four areas where CP is most successful;
scheduling, allocation, transportation and roster-
ing. One of the practical reasons for this success is
the ease with which additional problem-speci®c
constraints can be added without any need to re-
vise the whole program. Another reason cited is
the incorporation of search strategies based on
OR methods!

In many cases, the evidence on which Van
Hentenryck and Simonis base their conclusions is
quite weak. Thus, we provide our own evaluation
of CP in the following subsections.

8.1. Criteria for evaluation

There are various reasons why a particular
technique may be chosen for a problem, including:
· ease of implementation;
· ¯exibility to handle a variety of constraints that

occur in practical problems;
· computation time;
· solution quality.

Solution quality becomes important when the
technique is not guaranteed to ®nd a `best' solu-
tion. For optimization problems, solution quality
is the ability to generate a solution with a near-
optimal objective function value, whereas for

feasibility problems, it is the ability to ®nd a so-
lution in which most of the constraints are satis-
®ed.

In practice, the interesting question is, ``which
technique should be chosen for a given combina-
torial problem?'' Obviously, CP is one possible
technique. If a best solution is required, then an
enumerative method such as branch and bound is
also a candidate. The branch and bound algorithm
may be a general solver for integer or mixed-inte-
ger programming problems, or a special-purpose
algorithm with bounds and pruning devices de-
veloped for a speci®c problem. If the aim is to ®nd
an approximate solution, then the competitors of
CP are special-purpose heuristics, and local search
methods such as simulated annealing, tabu search
and genetic algorithms.

For ease of implementation and ¯exibility, CP
scores highly relative to most of the OR techniques
that are mentioned above. Thus, it remains to
compare CP and OR techniques in terms of com-
putation time and solution quality. However, this
task is quite di�cult. The literature contains very
few direct comparisons of CP with other ap-
proaches, and some of those that exist are open to
criticism. For example, the range of instances in
some comparisons is too small to form meaningful
conclusions, and the OR techniques with which CP
is compared are not always the best available.
Many authors simply present solutions of prob-
lems using CP, and are naturally mainly interested
in emphasizing the bene®ts of this technique.
Moreover, when optimization problems are con-
sidered, it is not always clear whether the pre-
sented solutions are claimed to be optimal.

8.2. Comparison with integer programming and
branch and bound

For many of the highly structured combinato-
rial problems, such as the uncapacitated facility
location problem considered in Section 7.1, tight
lower bounds (for minimization problems) can be
generated at low computational expense. In such
cases, special-purpose branch and bound algo-
rithms are successful in solving quite large problem
instances due to the ability of the lower bounds to
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prune the search tree, and consequently CP ap-
proaches ®nd it di�cult to compete.

On the other hand, some problems such as job
shop scheduling have resisted attempts to develop
a tight lower bounding scheme. For such prob-
lems, we would expect CP approaches to be, at the
very least, competitive with branch and bound.
Results of Baptiste et al. (1995) for optimal solu-
tions of job shop problems con®rm the competi-
tiveness of a CP approach.

Puget (1995) suggests that a critical factor in the
success of a CP approach is the amount of prop-
agation that the constraints permit; if the nature of
a problem is such that a variable instantiation
triggers the pruning of many values from the do-
mains of other variables, then CP is likely to be
successful. He argues that scheduling and timeta-
bling problems are good candidates for CP.

As a general problem solver, CP should be
compared with integer programming (IP) or mixed
integer programming (MIP). IP and MIP ap-
proaches su�er from the disadvantage that the
constraints must be linear, whereas the non-lin-
earities that are permitted in a CSP sometimes
allow the variables to be chosen in a way that al-
lows a more structured search for an optimal so-
lution. Van Hentenryck and Carillon (1988)
emphasize the potential for CP in problems with a
relatively small number of `key' variables that ef-
fectively specify the solution (such as the variables
yi in the uncapacitated facility location problem
described in Section 7.1). Instantiation of a key
variable increases the potential for constraint
propagation, whereas in an IP model the key
variables are swamped numerically by the other
variables. Little and Darby-Dowman (1995) em-
phasize the di�culty of comparisons when the
performance of both techniques is highly variable
and sensitive to data or problem size, but argue
that an advantage of CP is that problem-speci®c
features can be easily represented in a high-level
language, whereas in IP they often hugely increase
the size of the model.

The progressive party problem (Smith et al.,
1996), where guests are to be assigned to groups
for n successive time periods in such a way that no
pair of people ever meets more than once, is a
problem where CP succeeds very easily in ®nding a

(feasible) solution, whereas IP does not. For this
problem, capacity constraints on the size of the
groups are very e�ective in propagating the results
of assignments to the domains of other variables.
Another reason for the lack of success of IP is the
large number of `all-di�erent' constraints, leading
to enormous formulations with many zero-one
variables, whereas these constraints can be very
compactly expressed using a CSP formulation.
However, this problem is primarily of theoretical
interest as a benchmark problem for CP solvers,
and has few practical applications!

Rodosek et al. (to appear) present some em-
pirical results for ®ve speci®c problems (the pro-
gressive party problem, a generalized assignment
problem, a packing problem, a set-partitioning
problem, and a logical problem to show that it is
not possible to put 10 pigeons into 9 pigeon-holes).
They use the CP solver ECLiPSe and the MIP
solver CPLEX. All of these problems involve all-
di�erent constraints and capacity constraints; the
results show that MIP tends to outperform CP if
the capacity limits are all equal, whereas CP is
better if the capacities are di�erent (as in the pro-
gressive party problem). Rodosek et al. present a
hybrid approach, integrating CP and MIP, which
gives better results than either individual method.
However, it is not clear to what extent general
conclusions can be drawn from this limited study.

Darby-Dowman and Little (1998) compare the
performance of IP and CP on four problems; a
golf scheduling problem that is similar to the
progressive party problem, a crew scheduling
problem (see Section 7.7), a production scheduling
problem that requires jobs to be assigned to un-
related parallel machines, and an integer trans-
portation problem in which the total supply at
each source must be sent to a single destination.
They conclude that, in general, CP performs better
on problems that are highly constrained and
therefore have a small search space, whereas IP is
superior in problems with a large search space and
no strong constraints. IP has the advantage of
being able to detect global infeasibility. Darby-
Dowman and Little argue that the linear relax-
ation is often of little help in zero±one problems,
unless the problem has a particular structure, such
as a coe�cient matrix that is almost totally uni-
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modular. In IP, model size is a key factor in per-
formance, whereas in CP, the size of the search
space is more important. The performance of CP
can be greatly improved by the introduction of
additional constraints (for example, symmetry
constraints) and by the use of problem-speci®c
information. However, this is not always
straightforward in IP. Darby-Dowman and Little
also discuss the potential for hybrid methods, but
point out the di�culties of integrating two meth-
ods which use incompatible model and tree search
structures.

The problem of compatibility is further dis-
cussed by Bockmayr and Kasper (1998), who
propose a common framework for CP and IP
called branch and infer. This involves extending IP
by the introduction of symbolic constraints. Their
hybrid method is superior to IP for instances of the
uncapacitated facility location problem (see Sec-
tion 7.1).

Proll and Smith (1998) present a comparison of
IP and CP for a template design problem which
has similarities to the cutting stock problem (see
Section 7.4). Column generation, which is gener-
ally the method of choice for solving cutting stock
problems, is not actually used in this study, al-
though the IP approach bears a slight resemblance
to it, since a population of potential templates
(cutting patterns) is generated sequentially. Cer-
tainly, the IP solutions are not of such a high
quality as the CP solutions. This problem clearly
illustrates the advantages of being able to use non-
linear constraints, and incorporate `human prob-
lem-solving ingenuity' in the solution strategy.
However, for large instances, sophisticated re®ne-
ments of the CP approach are required. The fact
that CP solutions can easily be improved still
further by employing a simple goal programming
model to optimize the actual production quantities
using speci®ed templates, supports the hypothesis
that using OR methods in conjunction with CP
may well represent the most fruitful approach.

The car sequencing problem does not appear to
have received much attention in the OR commu-
nity. It is clear that the naive use of integer pro-
gramming is unsuccessful in solving it. For
example, the IP formulation of Section 7.3 does
not succeed in ®nding a solution for a small test

instance of the problem (with 25 cars, 5 options
and 12 classes, giving 300 zero±one variables) in
less than 5 minutes (on an IBM 486 DX PC), even
after the addition of cuts based on the problem
data. However, special-purpose algorithms have
been developed for other sequencing problems for
which IP is equally unsuccessful, and for this rea-
son direct comparisons between IP techniques and
CP may not be fair. Heuristic methods seem to be
required for practical instances of the problem, but
the pure problem may turn out to be amenable to
an analytic approach.

Several of the papers mentioned here appear in
a recent issue of the INFORMS Journal on Com-
puting (10 (3), (1998)), which contains a cluster of
articles on connections between the IP and CP
approaches. These articles are introduced by Wil-
liams and Wilson (1998), who also present a brief
summary of the two approaches and the links
between them.

8.3. Comparison with local search heuristics

In its pure form, the CP approach is intended to
search for a `best' solution. To be used as a method
for ®nding an approximate solution, modi®cations
are necessary to ensure that the solution space is
searched adequately. For example, the random-
ization and restart devices proposed by Nuijten
and Aarts (1996) are introduced so that the search
is diversi®ed. It is unlikely that pure CP can
compete with state-of-the-art implementations of
local search methods.

Simulated annealing is compared with CP by
Crabtree (1995) for a resource constrained sched-
uling problem, and by David and Chew (1995) for
the car sequencing problem. In general, simulated
annealing might intuitively be expected to perform
better for problems with many solutions, whereas
CP would be preferred for tightly constrained
problems. However, Crabtree ®nds that in practice
the reverse is true for the precedence constraints
on the tasks; this suggests that further research is
required. David and Chew describe some advan-
tages of simulated annealing over CP; simulated
annealing can deal with very large practical
problems, it is possible to control the computation
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time, it can handle `soft' constraints, and it works
blindly (heuristics for variable and value selection
do not have to be found).

Vaessens et al. (1996) compare a variety of local
search heuristics, and the CP approach of Nuijten
and Aarts, for job shop scheduling. Since many
computational studies are performed using the
same set of test problems, solutions can be com-
pared in terms of quality. Moreover, by applying
normalizing coe�cients to account for the speeds
of the computers on which the tests are performed,
the relative computation times for the di�erent
methods can be estimated. Clever implementations
of tabu search, such as that of Nowicki and
Smutnicki (1996), tend to generate the best quality
solutions with relatively small computation times.
However, the CP approach of Nuijten and Aarts
gives better quality solutions than most of the
simulated annealing methods and all of the genetic
algorithms, although its computation times are
larger. The improved CP approach of Baptiste et
al. (1995) appears to be at least as good in terms of
solution quality as all simulated annealing, tabu
search and genetic algorithms, with the exception
of Nowicki and Smutnicki's method, although CP
is computationally expensive.

9. Concluding remarks

Our discussion in Section 8 shows that CP
compares favourably with OR techniques in terms
of ease of implementation and the ¯exibility to add
new constraints. Its performance with respect to
solution quality and computation time tends to be
problem dependent. For a CP approach to work
well, there should be a signi®cant amount of con-
straint propagation: each variable that is instanti-
ated should allow a reduction in the domains of
other variables.

CP and branch and bound are both tree search
techniques. While CP relies mainly on constraint
propagation to restrict the size of the search tree,
the e�ciency of a branch and bound is highly
dependent on the bounding scheme that is used. If
the lower bounds (for minimization problems) re-
quire a signi®cant amount of computation time
and are not strong enough to allow very much

pruning of the branch and bound search tree, then
it is likely that CP would be more e�cient. On the
other hand, the availability of tight lower bounds,
especially if their computational requirements are
low, would suggest that a branch and bound al-
gorithm is likely to outperform CP.

CP is unlikely to be competitive with the best
local search methods, such as simulated annealing,
tabu search and genetic algorithms, if it is used in a
pure form, since large regions of the solution space
are often unexplored. However, if ideas from local
search are incorporated, such as the randomiza-
tion and restart procedures of Nuijten and Aarts
(1996), then CP becomes a serious competitor to
local search for obtaining approximate solutions.

Although CP is still relatively in its infancy,
whereas OR methods are often well developed and
sophisticated, there are problems for which CP is
competitive. Since further improvements to CP
methodology are anticipated, we feel that the op-
erational researcher should be aware of CP as a
technique for tackling combinatorial optimization
problems. Moreover, there is an increasing belief
that hybrid methods often perform better than
pure methods. A closer collaboration between the
domains of AI and OR would bene®t the devel-
opment of algorithms in both disciplines. For ex-
ample, CP algorithms could be improved by
incorporating bounding schemes that are obtained
using OR techniques. Similarly, if CP is to be used
as a technique for obtaining approximate solu-
tions, then ideas from local search should be in-
corporated. On the other hand, branch and bound
algorithms may bene®t from constraint propaga-
tion techniques to help prune the search trees, and,
as observed by Shaw (1998), constraint satisfaction
approaches can be employed to help search large
neighbourhoods in local search heuristics.
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