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Overview

• Definition of Constraint Satisfaction (CS) and 
Constraint Programming (CP) problems -
Relevance - Applications that can be tackled

• CP Phases: Modeling & Solutions´ Generation

• Generation of Solutions: Search algorithms –
Consistency Enforcing and Constraint Propagation

• Domain-specific building-blocks for scheduling 
problems: Variables, Constraints, Search Algorithms.... 

• Scheduling of a Multistage, Multiproduct Plant 
• Possible extensions to the basic model
• Advantages and disadvantages
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Constraint Satisfaction Problems (CSPs)

A CSP consists of:
• A set of variables X = {x1, x2, ..... xn };
• For each variable xi, a finite set Di of possible values (its 

domain);
• A set of constraints (mathematical and/or symbolic) 

restricting the values that the variables can 
simultaneously take.

• A feasible solution to a CSP is an assignment of a value 
from its domain to every variable, in such a way that 
every constraint is satisfied. In this case, the problem is 
satisfiable.

• If there is no assignment of values to variables from their 
respective domain from which all variables are satisfied, 
then the problem is unsatisfiable. 

Gabriela Henning – PASI – Iguazú Falls – August 2005 3



CSPs and Constraint Programming

• Formally, a constraint Cijk involving the variables xi, xj, xk, ...,
,specifies any subset of the possible combinations of values of 
xi, xj, xk, .. ; i.e Cijk ⊆ Di x Dj x Dk x ... , that the constraint allows.

Example:
Cxy: 2 x = y 

Dx = {1, 2, ..... 10 } 
Dy = {1, 2, ..... 15 }

{ (1, 2), (2, 4), (3, 6), (4, 8), 

(5, 10), (6, 12), (7, 14) }
• The implementation of algorithms able to solve CSPs gives rise to 

Constraint Programming (CP).
• CP is about the formulation of a problem as a CSP and about 

solving it by means of an appropriate solver (general and/or 
domain specific one) . 
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CSPs Relevance

Formal model to express problems. Many combinatorial 
problems can be represented as CSP:

– Academic problems:
• Graph/Map coloring, N-queens, Cryptarithmetic puzzles,..

– Real world problems:
• Scheduling of: multiproduct/multipurpose batch plants, 

flexible manufacturing systems (FMSs), activities in a 
project. 

• Resource allocation: Warehouse location, Timetabling 
Problems (Course timetabling, staff/crew rostering, 

• Vehicle Routing, Air/Train Traffic Control….
Depending on the problem, different types of solutions are 
sought: Just a feasible solution, all feasible solutions, an 
optimal solution, a good quality solution, etc....
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Variety of Application Areas - Different Problems

Map Coloring 
Problem

8 Queens 
Problem

Depot Depot

Customers with time 
windows

Vehicle Routing 
Problem

3 Vehicles having a 
given capacity
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Constraint Programming

It can be seen as a two phases approach: 
• Phase I: Generation of a problem representation ≡ Modeling

It involves:
– Selection of variables
– Choice of variable domains
– Definition of constraints

• Phase II: Generation of a/several problem solution/s
– General methods
– Domain-specific methods
– Hybrid approaches

• Presence of built-ins constructs and methods: Pre-defined 
variables and constraints, as well as constraint solvers, 
constraint propagation algorithms and search methods
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Phase I: Modeling

• Different types of variables:
– Integers
– Reals
– Boolean
– Symbolic (variables range 

over non-numeric domains)
– A combination of the above

• Different types of constraints 
defining a constraint nework:
– Symbolic constraint satisfaction 

problems (e.g., Puzzles, 
qualitative temporal/spacial 
reasoning)

– Boolean constraint satisfaction 
problems (Circuits)

– Constraint satisfaction problems 
on reals 

– Logic Constraints
– ........

Each problem can be formalised as 
a CSP in a number of different ways. 

In general, it is difficult to find which 
representation is better!!

Non-trivial task!
Look for an 
appropriate 

representation
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Phase II: Generation of Solutions

• CP implements systematic search procedures that, by 
fixing the order in which the variables should be chosen, 
and a way to select a value from a variable domain, 
supply a proper assignment of values to the problem 
variables. 

• Search Algorithm = Search Tree + Traversal 
Algorithm

• Strategies
– Backtracking
– Backjumping
– Forward Checking
– MAC – Maintaining Arc Consistency
– Branch & Bound

• Domain Specific Strategies

Most of these 
techniques 
are included 
in commercial 
packages
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Tree Search

• State space: explored as a tree
– Root: empty
– One variable per level
– Successors of a node:

one successor per value of the variable
meaning: variable ← value

4-Queens Problem

• Tree:
– each branch defines 

an assignment
– depth n ≡ number of 

variables
– branching factor d ≡

domain size

X1 = 2

X2 = 4

X3 = 1

X4 = 3

(2,4,1,3)
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Backtrack Search

Strategy:
• Build a partial solution:

– A partial consistent assignment
• Extend consistently the partial solution

– One new assigned variable each time
• If no consistent extension:

– Backtrack: change a previous assignment

X3 = 1

X1 = 2

X2 = 4

Variable Instantiation

X4 = 1

Deadend
Variables:
• Past ∈ partial solution (assigned variables)
• Future ∉ partial solution (unassigned variables)
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Backtrack Search

Depth-first tree traversal (DFS)
At each node:
• check every completely assigned

constraint
• if consistent, continue DFS
• otherwise, prune current

branch
continue DFS

Complexity: O(dn)
Not efficient!!

Gabriela Henning – PASI – Iguazú Falls – August 2005 14



Problems with Backtracking

• It only checks the constraints by considering the current 
variable (the one to be instantiated) and the past ones.

• Trashing: The same failure can be rediscovered an 
exponential number of times

Solutions:
• Check not completely assigned constraints = Consider 

future variables → looakahead
• Non-chronological backtracking → backjumping
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Backjumping

Non-chronological backtracking:
• Jumps to the last decision responsible for the dead-end
• Intermediate decisions are removed

Q3
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Lookahead Algorithms

• Forward checking:
When a value is assigned to the current variable, any value 
in the domain of a future variable which conflicts with this 
assignment is (temporarily) removed from the domain.

Advantage: If the domain of a future variable becomes empty, 
it is known that the current partial solution is inconsistent, 
then:

- another value the current variable is tried, or 
- the algorithm backtracks to the previous variable.

• Maintaing Arc Consistency (MAC): Whenever a new 
subproblem consisting of the future variables is created by a 
variable instantiation, the subproblem (constraint network) is 
made arc consistent.
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Consistency Enforcing 

Arc-Consistency:
• Binary Constraints: Given a constraint Cij between the 

variables xi and xj ; then the directed arc (xi; xj) is arc 
consistent iff for every value a ∈ Di, there is a value b ∈ Dj
such that the assignments xi = a and xj = b satisfy the 
constraint Cij.

X
{1,...., 5}

Y
{1,...., 5}X < Y - 2

Original 
Domains

X
{1, 2}

Y
{1,...., 5}

X < Y - 2
Domains when 

(x,y) is arc-
consistent

X
{1, 2}

Y
{4, 5}

X < Y - 2
Domains when 

(x,y) and (y,x) are 
arc-consistent
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Consistency Enforcing 

• The binary arc-consistency concept can be generalized to 
consider arbitrary constraints → Hyper-arc Consistency.

• Path-Consistency: A binary constraint Cij is path-
consistent relative to xk, iff for every pair (ai; aj) ∈ Cij, 
where ai and aj are from their respective domains, there is 
a value ak ∈ Dk, such that (ai; ak) ∈ Cik and (ak; aj) ∈ Ckj.

• A network is path-consistent iff for every Cij (including 
universal binary relations) and for every k ≠ i, j, Cij is path 
consistent relative to xk .

• Consistency enforcing: Lookahead capabilities, 
reduccion in the domains of the variables, adds constraints 
on pairs of variables → Constraint Propagation!!!!
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Example: Constraint Propagation and Domain Reduction

Variables: x, y
Domains:
Dx = {1, 2, ..... 10 } 
Dy = {1, 2, ..... 15 }

Constraints:

2 x = y

y ≤ 15
(x modulo 2) = 1

Dx 1, 2, 3, 4, 5, 6, 7, 
8, 9,10

Dy 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 

13, 14, 15

2x = y

2, 4, 6, 8, 
10, 12, 14

y ≤ 15

1, 2, 3, 4, 5, 
6, 7

(x modulo 2) = 1

1, 3, 5, 7

2x = y

2, 6, 10, 14
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Domain-specific building-blocks

• Problem Variables: 
- Activities 
- Resources 

• Specific Constraints:
- Resource constraints
- Temporal constraints
- Global constraints 

• Search Algorithms:
- Edge Finding
- Others... (Laborie, “Algorithms for...”, Artificial Intelligence, 143, 151-188, 2003)

• Special Constructs
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Problem Variables: Activities

• An activity ActivityA corresponds to a time interval
[ActivityA.start, ActivityA.end]

• ActivityA.start and ActivityA.end are decision 
variables denoting the start and end time of the activity.

• The duration of an activity may be known in advance or may 
be a decision variable.
ActivityA.duration = ActivityA.end - ActivityA.end

• Different types of activities can be modelled
- Processing/Manufacturing:  Task[j,t]; j Job ; t stage

[ Task[j,t].start, Task[j,t].end ] ; 

- Start-up, Clean-up, Changeover
- Pumping & Product movement, Raw Material Delivery

• Activities use or share resources → Compete for resources
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Problem Variables: Resources

• Different types of resources, demanded by various kinds of 
activities, need to be represented:

Non-Renewable Resources        Reservoir Resources

Renewable Resources
Discrete, Cumulative or 
Sharable Resources
Unary Resources

• A resource constraint defines how a given activity A will 
require and affect the availability of a given resource R. It 
consists of a tuple (A,R,q,TE), where q is the quantity of 
resource R consumed (if q < 0) or produced (if q > 0) by 
activity A and TE is a time extend specifying the time 
interval where the availability of resource R is affected
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Different Types of Resources

• Reservoir resource: It is a multi-capacity resource that can 
be consumed and or produced by activities (e.g. A tank 
containing an intermediate product, a fuel tank, etc.)

• Discrete, cumulative or sharable resource:  represents a 
resource that is used over a certain time interval under the 
following policy: a certain quantity of the resource is 
consumed at the start time of the activity and the same 
amount is released at its end time or earlier. (e.g. Pool of 
workers, steam, cooling water, etc.).

• Unary resource: It is a discrete resource with unit capacity 
(e.g. Machine/processing units that can perform just one 
operation at a given time). It imposes that all the activities 
demanding the same unary resource are totally ordered.
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Resource Constraints

General Form: (A,R,q,TE)
(Ai,Ej,-1,FromStartToEnd): States that activity Ai will require one 

unit of resource Ej between its start 
and end time. Ai can be a processing 
activity demanding an equipment unit 
Ej which is declared as a unary 
resource.

1

Ai
Aj

(DAi,Rk,20,AfterEnd): States that activity DAi will produce 20 
units of resource Rk at its end time. DAi
can be a raw material delivery activity 
aiming at replenishing a resource 
reservoir Rk.5

25
DAi
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Temporal Constraints

• Precedence Relationships:
Example: Multi-stage, multi-product plant 
- j job to be scheduled
- t stage

task[j,t].end <= task[j,t’].start; ∀ t ∈ T, ∀ j ∈ J, 

Ord(t’)= Ord(t)+1

Equivalent to:   task[j,t] precedes task[j,t’]

• Disjunctive constraints on unary resources:
Let task[j1,t]and task[j2,t] be  two activities that require the same 
unary resource (e.g. the same processing unit). Then: 
task[j1,t].end <= task[j2,t].start ∨

task[j2,t].end <= task[j1,t].start; which is equivalent to
task[j1,t] precedes task[j2,t] or vice versa.
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Domain Specific Search Strategies

• Algorithms based on an analysis of activity interactions. 
They consider subsets Ω of activities competing for the same 
resource and perform propagation based on the position of 
activities in Ω

• Disjunctive Constraints
• Edge-finding

• An integral part of commercial constraint-based schedulers

• A fundamental pruning technique for scheduling problems 
associated to renewable resources.

• Informally speaking, an edge finding algorithm considers one resource 
at a time, and identifies pairs (Ω, A) such that task A cannot precede 
(follow) any task from Ω in all feasible schedules, and updates the 
earliest starting time (latest completion time) of task A accordingly.
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Edge-finding

• Let Ω be a subset of activities on a unary resource, 
and A ∉ Ω another activity on the same unary 
resource. 

• Let startmin(X), endmax(X) and durmin(X) respectively 
denote the minimal start time, maximal end time and 
minimal duration over all the activities in the set X. Let 
A.lct be the latest completion time of activity A.

• Most edge-finding techniques can be captured by the 
following rule:

endmax(Ω U A ) - startmin(Ω) < durmin(Ω U A ) ⇒

A.lct ≤ min Ω´⊆ Ω(endmax(Ω´) - durmin(Ω´)) New    
Bound!
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Example of Edge-finding Propagation

6 14

7 15

6 16

2 16

A1, A2, A3 and 
A4 are activities 

on a certain 
unary resource

A1.duration = 3

A2.duration = 3

A3.duration = 3A4.duration = 2

A4.est A4.lst
A4.ect

A4.lct

est = earliest start time
lst = latest start time
ect = earliest 

completion time
lct = latest completion 

time

New A4.lct !!!

If A = A4 and Ω = {A1, A2 A3}, the conditions of the propagation rule are satisfied as 
endmax(Ω U A ) = 16, startmin(Ω) = 6 and durmin(Ω U A ) = 11  (16 – 6 < 11). 

By taking Ω´ = {A1, A2 A3}, a new upper bound on A4.lct can be computed.

A4.lct ≤ 16 – 9 ; A4.lct ≤ 7 !!!!
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Special Constructs

activityHasSelectedResource(activityA,s,u) is a special 
construct provided by the OPL language (ILOG, 2004).

• This construct acts like a predicate that evaluates to true (its value is 
equal to one), when activityA has selected resource u among the 
set of alternative resources s.  

• activityHasSelectedResource(activityA,s,u) is in itself a 
constraint that can be negated.

• Can be employed in higher order constraints as well as in domain-
specific search procedures.

Activities can consume and produce (non-renewable resources) or can 
require and provide (renewable resources) some units of reservoir and 
discrete resources. There are special constructs to express these ideas:

• Example: activityA requires (10) UtilityU. 
Specifies that activityA requires 10 units of UtilityU during its 
execution.
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Scheduling of a Multistage, Multiproduct Plant

e3 e4

e1 e2

e5 e6

Stage 1

Stage 2

Stage 3

j1, j2, j3, j4, j5



CP Model: Scheduling of a Multistage, Multiproduct Plant

enum Jobs...;
enum Equipment...;
enum Stages...;
{Equipment} belongsto[Stages] = ...;
int+ ProcTime[Jobs, Equipment]=...;
scheduleHorizon = 500;

// Variables´ declaration 
//Tasks´ Declaration – Resources declaration
Activity Task[j in Jobs, St in Stages];
Activity makespan(0);
UnaryResource tool[Equipment];
AlternativeResources s(tool);

//Objective Function Definition
minimize

makespan.end
//Basic Constraints
subject to {

Specifies the set of Jobs, units and stages

Sets the equipment units that belong to each stage

Declares the array Processing Time

Declares a Task decision variable for each job j and stage t
Declares a Makespan activity having a null duration
Declares equipment as unary resources

CP model stated in the OPL 
language
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CP Model: Scheduling of a Multistage, Multiproduct Plant

forall(j in Jobs)
Task[j,last(Stages)] precedes makespan;

forall(st in Stages)
forall(j in Jobs)

Task[j,st] requires s;
forall( j in Jobs)                   

forall(St in Stages)
forall(unit in Equipment)

(unit not in belongsto[St]) =>    
not activityHasSelectedResource(Task[j,St],s,tool[unit]);

forall(St in Stages)
forall(unit in belongsto[St])   

forall( j in Jobs)             
activityHasSelectedResource(Task[j,St],s,tool[unit]) =>       
(Task[j,St].duration = ProcTime[j,unit]); 

forall(St in Stages : St<last(Stages))
forall(j in Jobs)

Task[j,St] precedes Task[j,next(St)];                 
};

Makespan is the last activity

Eack task requires one element of the 
set of alternative resources

If the unit does not belong to the stage, the 
special construct activityHasSelectedResource 
is negated

If the special construct activityHasSelected 
Resource evaluates to true, the task is 
assigned the proper duration

Precedence order of the activities within 
each job
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Example Data

Unlimited 
Intermediate 

Storage 
between stages

Jobs = {j1, j2, j3, j4, j5};

Equipment = {e1, e2, e3, e4, e5, e6};

Stages = {st1, st2, st3};

belongsto = #[
st1:{e1,e2},
st2:{e3,e4},
st3:{e5,e6}
]#;

ProcTime=[
[ 20, 28, 75, 80, 37, 36],
[ 33, 31, 71, 70, 35, 33],
[ 41, 35, 68, 75, 40, 34],
[ 42, 30, 73, 78, 32, 30],
[ 30, 33, 70, 74, 33, 35]

];
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Results: UIS Case (Unlimited intermediate storage)

Makespan
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Results for the ZW Case (Zero-Wait)

Forall(St in Stages : St<last(Stages))
forall(j in Jobs)

Task[j,St].end = Task[j,next(St)].start; 

Makespan
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Possible Extensions to the Basic Model

• Several objective functions: different performance measures 

involving earliness, tardiness, a combination of them, number of tardy 
jobs, etc. (Zeballos & Henning, 2003)

• Consideration of sequence-dependent changeover times
(Zeballos & Henning, 2003) 

• Inclusion of topology constraints, forbidden unit-order 
pairs, resource constraints (Zeballos & Henning, 2003)

• Hybrid MIP-CP approaches (Maravelias & Grossmann, 2004; 

Harjunkoski & Grossmann, 2002; Zeballos & Henning, 2003; 

Harjunkoski, Jain & Grossmann, 2002).
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Incorporation of Changeover Times to the Basic Model

enum Jobs...;
enum Equipment...;
enum Stages...;
enum Products...;
{Equipment} belongsto[Stages] = ...;
Products ProductOfJob[1..card(Jobs)] = ...;
Products JobProduct[Jobs];
initialize {

forall(j in Jobs)
JobProduct[j] = ProductOfJob[ord(j)+1];

};
int+ ProcTime[Jobs, Equipment]=...;
int+ TransitionTimeProducts[Products,Products]=...;
scheduleHorizon = 500;

// Variables´ declaration 
//Tasks´ Declaration – Resources declaration
Activity Task[j in Jobs, St in Stages] transitionType JobProduct[j];  
Activity makespan(0);
UnaryResource tool[Equipment] ](TransitionTimeProducts);  
AlternativeResources s(tool);

Specifies the set of Products to be manufactured

Maps a Product into each job

Specifies the state (Product) of each job

Transition times depending on product´s 
sequence are defined (transition matrix).

Tasks are associated to 
a transitionType that 
depends on the state 

(product) of the job

Unary equipment resources are 
associated with a transition matrix
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Incorporation of Changeover Times to the Basic Model

Minimize                   //Objective Function Definition
makespan.end

subject to {              //Basic Constraints
forall(j in Jobs)

Task[j,last(Stages)] precedes makespan;
forall(st in Stages)

forall(j in Jobs)
Task[j,st] requires s;

forall( j in Jobs)                   
forall(St in Stages)

forall(unit in Equipment)
(unit not in belongsto[St]) =>    

not activityHasSelectedResource(Task[j,St],s,tool[unit]);
forall(St in Stages)

forall(unit in belongsto[St])   
forall( j in Jobs)             

activityHasSelectedResource(Task[j,St],s,tool[unit]) =>       
(Task[j,St].duration = ProcTime[j,unit]); 

forall(St in Stages : St<last(Stages))
forall(j in Jobs)

Task[j,St] precedes Task[j,next(St)];                 
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Example Data – Sequence Dependent Changeover Times

Jobs = {j1, j2, j3, j4, j5};

Equipment = {e1, e2, e3, e4, e5, e6};

Stages = {st1, st2, st3};

Products = {P1, P2, P3, P4, P5};

ProductOfJob = [P1, P2, P3, P4, P5];

belongsto = #[
st1:{e1,e2},
st2:{e3,e4},
st3:{e5,e6}
]#;

ProcTime=[
[ 20, 28, 75, 80, 37, 36],
[ 33, 31, 71, 70, 35, 33],
[ 41, 35, 68, 75, 40, 34],
[ 42, 30, 73, 78, 32, 30],
[ 30, 33, 70, 74, 33, 35]

];

TransitionTimeProducts=[
[ 0, 8, 5, 6, 1],
[ 4, 0, 1, 7, 5],
[ 2, 3, 0, 1, 4],
[ 3, 4, 4, 0, 5],
[ 6, 2, 7, 3, 0]

];

Products associated to jobs

When P5 precedes P4, 3 
units of cleaning time 
are demanded 
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Results for the NIS Case + Changeover Times

Makespan
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P5 precedes P4, then
3 units of cleaning 
time are demanded!!

Malespan has increased 
from 266  to 272



Overview

• Definition of Constraint Satisfaction (CS) and 
Constraint Programming (CP) problems -
Relevance - Applications than can be tackled

• CP Phases: Modeling & Solutions´ Generation

• Generation of Solutions: Search algorithms –
Consistency Enforcing and Constraint Propagation

• Domain-specific building-blocks for scheduling 
problems: Variables, Constraints, Search Algorithms... 

• Scheduling of a Multistage, Multiproduct Plant 
• Possible extensions to the basic model
• Advantages and disadvantages
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Evaluation of CP as a technique for tackling 
combinatorial problems

• Which technique should be chosen for a given combinatorial 
problem? (Brailsford et al., 1999)
Possibilities: CP approaches, OR techniques, local search 
heuristics (simulated annealing, tabu search, genetic algorithms).

• There are several reasons why a particular technique may 
be chosen to address a problem. Some of the most 
important ones are:
– Easy of implementation
– Flexibility to handle a variety of constraints that occur in 

practical problems.
– Computational time
– Solution quality

• Unfortunately, the literature contains very few direct 
comparisons of CP with other approaches. Existing 
comparisons are partial and incomplete.
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Evaluation of CP – Easy of implementation and flexibility

• For easy of implementation and flexibility, CP scores 
highly relative to most of the OR techniques.
- Constraints can be formulated in a quite natural and intuitive 

manner.

- Problem-specific constraints can be added without any need 
to revise the whole program. The incorporation of extra 
constraints is not a burden.

- Formulations tend to benefit from the addition of redundant 
constraints

- CP is often the appropriate approach for problems having very 
different variables and constraints, such as those with integer,
logical and choice variables and/or linear, non-linear and 
logical constraints.
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Evaluation of CP – Computational time and solution quality

• CP performance, with respect to solution quality and computation 
time, as well as the one of other OR techniques, tends to be 
problem dependent. 

• A critical factor in the success of a CP approach is the amount of 
propagation that the constraints permit. CP is likely to be 
successful if the nature of the problem is such that a variable 
instantiation triggers the pruning of many values from the domains 
of the other variables. Scheduling and time-tabling belong to this 
category of problems.

• CP performs better on problems that are highly constrained and 
therefore have a small search space. MIP is superior in problems 
with a large search space and no strong constraints.

• While CP relies mainly on constraint propagation to restrict the
size of the search space, the efficiency of branch and bound 
based techniques is highly dependent on the bounding scheme.
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