
Constraint Programming
Techniques for Batch

Scheduling

Gabriela P. Henning

INTEC (Universidad Nacional del Litoral – CONICET)
Santa Fe – Argentina

August 2005

E-mail: ghenning@intec.unl.edu.ar
Gabriela Henning – PASI – Iguazú Falls – August 2005

Overview

• Definition of Constraint Satisfaction (CS) and
Constraint Programming (CP) problems -
Relevance - Applications that can be tackled

• CP Phases: Modeling & Solutions´ Generation

• Generation of Solutions: Search algorithms –
Consistency Enforcing and Constraint Propagation

• Domain-specific building-blocks for scheduling
problems: Variables, Constraints, Search Algorithms....

• Scheduling of a Multistage, Multiproduct Plant
• Possible extensions to the basic model
• Advantages and disadvantages

Gabriela Henning – PASI – Iguazú Falls – August 2005 2

Constraint Satisfaction Problems (CSPs)

A CSP consists of:
• A set of variables X = {x1, x2, xn };
• For each variable xi, a finite set Di of possible values (its

domain);
• A set of constraints (mathematical and/or symbolic)

restricting the values that the variables can
simultaneously take.

• A feasible solution to a CSP is an assignment of a value
from its domain to every variable, in such a way that
every constraint is satisfied. In this case, the problem is
satisfiable.

• If there is no assignment of values to variables from their
respective domain from which all variables are satisfied,
then the problem is unsatisfiable.

Gabriela Henning – PASI – Iguazú Falls – August 2005 3

CSPs and Constraint Programming

• Formally, a constraint Cijk involving the variables xi, xj, xk, ...,
,specifies any subset of the possible combinations of values of
xi, xj, xk, .. ; i.e Cijk ⊆ Di x Dj x Dk x ... , that the constraint allows.

Example:
Cxy: 2 x = y

Dx = {1, 2, 10 }
Dy = {1, 2, 15 }

{ (1, 2), (2, 4), (3, 6), (4, 8),

(5, 10), (6, 12), (7, 14) }
• The implementation of algorithms able to solve CSPs gives rise to

Constraint Programming (CP).
• CP is about the formulation of a problem as a CSP and about

solving it by means of an appropriate solver (general and/or
domain specific one) .

Gabriela Henning – PASI – Iguazú Falls – August 2005 4

CSPs Relevance

Formal model to express problems. Many combinatorial
problems can be represented as CSP:

– Academic problems:
• Graph/Map coloring, N-queens, Cryptarithmetic puzzles,..

– Real world problems:
• Scheduling of: multiproduct/multipurpose batch plants,

flexible manufacturing systems (FMSs), activities in a
project.

• Resource allocation: Warehouse location, Timetabling
Problems (Course timetabling, staff/crew rostering,

• Vehicle Routing, Air/Train Traffic Control….
Depending on the problem, different types of solutions are
sought: Just a feasible solution, all feasible solutions, an
optimal solution, a good quality solution, etc....

Gabriela Henning – PASI – Iguazú Falls – August 2005 5

Variety of Application Areas - Different Problems

Map Coloring
Problem

8 Queens
Problem

Depot Depot

Customers with time
windows

Vehicle Routing
Problem

3 Vehicles having a
given capacity

Gabriela Henning – PASI – Iguazú Falls – August 2005 6

Overview

• Definition of Constraint Satisfaction (CS) and
Constraint Programming (CP) problems -
Relevance - Applications than can be tackled

• CP Phases: Modeling & Solutions´ Generation

• Generation of Solutions: Search algorithms –
Consistency Enforcing and Constraint Propagation

• Domain-specific building-blocks for scheduling
problems: Variables, Constraints, Search Algorithms....

• Scheduling of a Multistage, Multiproduct Plant
• Possible extensions to the basic model
• Advantages and disadvantages

Gabriela Henning – PASI – Iguazú Falls – August 2005 7

Constraint Programming

It can be seen as a two phases approach:
• Phase I: Generation of a problem representation ≡ Modeling

It involves:
– Selection of variables
– Choice of variable domains
– Definition of constraints

• Phase II: Generation of a/several problem solution/s
– General methods
– Domain-specific methods
– Hybrid approaches

• Presence of built-ins constructs and methods: Pre-defined
variables and constraints, as well as constraint solvers,
constraint propagation algorithms and search methods

Gabriela Henning – PASI – Iguazú Falls – August 2005 8

Phase I: Modeling

• Different types of variables:
– Integers
– Reals
– Boolean
– Symbolic (variables range

over non-numeric domains)
– A combination of the above

• Different types of constraints
defining a constraint nework:
– Symbolic constraint satisfaction

problems (e.g., Puzzles,
qualitative temporal/spacial
reasoning)

– Boolean constraint satisfaction
problems (Circuits)

– Constraint satisfaction problems
on reals

– Logic Constraints
–

Each problem can be formalised as
a CSP in a number of different ways.

In general, it is difficult to find which
representation is better!!

Non-trivial task!
Look for an
appropriate

representation

Gabriela Henning – PASI – Iguazú Falls – August 2005 9

Phase II: Generation of Solutions

• CP implements systematic search procedures that, by
fixing the order in which the variables should be chosen,
and a way to select a value from a variable domain,
supply a proper assignment of values to the problem
variables.

• Search Algorithm = Search Tree + Traversal
Algorithm

• Strategies
– Backtracking
– Backjumping
– Forward Checking
– MAC – Maintaining Arc Consistency
– Branch & Bound

• Domain Specific Strategies

Most of these
techniques
are included
in commercial
packages

Gabriela Henning – PASI – Iguazú Falls – August 2005 10

Overview

• Definition of Constraint Satisfaction (CS) and
Constraint Programming (CP) problems -
Relevance - Applications than can be tackled

• CP Phases: Modeling & Solutions´ Generation

• Generation of Solutions: Search algorithms –
Consistency Enforcing and Constraint Propagation

• Domain-specific building-blocks for scheduling
problems: Variables, Constraints, Search Algorithms....

• Scheduling of a Multistage, Multiproduct Plant
• Possible extensions to the basic model
• Advantages and disadvantages

Gabriela Henning – PASI – Iguazú Falls – August 2005 11

Tree Search

• State space: explored as a tree
– Root: empty
– One variable per level
– Successors of a node:

one successor per value of the variable
meaning: variable ← value

4-Queens Problem

• Tree:
– each branch defines

an assignment
– depth n ≡ number of

variables
– branching factor d ≡

domain size

X1 = 2

X2 = 4

X3 = 1

X4 = 3

(2,4,1,3)

Gabriela Henning – PASI – Iguazú Falls – August 2005 12

Backtrack Search

Strategy:
• Build a partial solution:

– A partial consistent assignment
• Extend consistently the partial solution

– One new assigned variable each time
• If no consistent extension:

– Backtrack: change a previous assignment

X3 = 1

X1 = 2

X2 = 4

Variable Instantiation

X4 = 1

Deadend
Variables:
• Past ∈ partial solution (assigned variables)
• Future ∉ partial solution (unassigned variables)

Gabriela Henning – PASI – Iguazú Falls – August 2005 13

Backtrack Search

Depth-first tree traversal (DFS)
At each node:
• check every completely assigned

constraint
• if consistent, continue DFS
• otherwise, prune current

branch
continue DFS

Complexity: O(dn)
Not efficient!!

Gabriela Henning – PASI – Iguazú Falls – August 2005 14

Problems with Backtracking

• It only checks the constraints by considering the current
variable (the one to be instantiated) and the past ones.

• Trashing: The same failure can be rediscovered an
exponential number of times

Solutions:
• Check not completely assigned constraints = Consider

future variables → looakahead
• Non-chronological backtracking → backjumping

Gabriela Henning – PASI – Iguazú Falls – August 2005 15

Backjumping

Non-chronological backtracking:
• Jumps to the last decision responsible for the dead-end
• Intermediate decisions are removed

Q3

Gabriela Henning – PASI – Iguazú Falls – August 2005 16

Lookahead Algorithms

• Forward checking:
When a value is assigned to the current variable, any value
in the domain of a future variable which conflicts with this
assignment is (temporarily) removed from the domain.

Advantage: If the domain of a future variable becomes empty,
it is known that the current partial solution is inconsistent,
then:

- another value the current variable is tried, or
- the algorithm backtracks to the previous variable.

• Maintaing Arc Consistency (MAC): Whenever a new
subproblem consisting of the future variables is created by a
variable instantiation, the subproblem (constraint network) is
made arc consistent.

Gabriela Henning – PASI – Iguazú Falls – August 2005 17

Consistency Enforcing

Arc-Consistency:
• Binary Constraints: Given a constraint Cij between the

variables xi and xj ; then the directed arc (xi; xj) is arc
consistent iff for every value a ∈ Di, there is a value b ∈ Dj
such that the assignments xi = a and xj = b satisfy the
constraint Cij.

X
{1,...., 5}

Y
{1,...., 5}X < Y - 2

Original
Domains

X
{1, 2}

Y
{1,...., 5}

X < Y - 2
Domains when

(x,y) is arc-
consistent

X
{1, 2}

Y
{4, 5}

X < Y - 2
Domains when

(x,y) and (y,x) are
arc-consistent

Gabriela Henning – PASI – Iguazú Falls – August 2005 18

Consistency Enforcing

• The binary arc-consistency concept can be generalized to
consider arbitrary constraints → Hyper-arc Consistency.

• Path-Consistency: A binary constraint Cij is path-
consistent relative to xk, iff for every pair (ai; aj) ∈ Cij,
where ai and aj are from their respective domains, there is
a value ak ∈ Dk, such that (ai; ak) ∈ Cik and (ak; aj) ∈ Ckj.

• A network is path-consistent iff for every Cij (including
universal binary relations) and for every k ≠ i, j, Cij is path
consistent relative to xk .

• Consistency enforcing: Lookahead capabilities,
reduccion in the domains of the variables, adds constraints
on pairs of variables → Constraint Propagation!!!!

Gabriela Henning – PASI – Iguazú Falls – August 2005 19

Example: Constraint Propagation and Domain Reduction

Variables: x, y
Domains:
Dx = {1, 2, 10 }
Dy = {1, 2, 15 }

Constraints:

2 x = y

y ≤ 15
(x modulo 2) = 1

Dx 1, 2, 3, 4, 5, 6, 7,
8, 9,10

Dy 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12,

13, 14, 15

2x = y

2, 4, 6, 8,
10, 12, 14

y ≤ 15

1, 2, 3, 4, 5,
6, 7

(x modulo 2) = 1

1, 3, 5, 7

2x = y

2, 6, 10, 14

Gabriela Henning – PASI – Iguazú Falls – August 2005 20

Overview

• Definition of Constraint Satisfaction (CS) and
Constraint Programming (CP) problems -
Relevance - Applications than can be tackled

• CP Phases: Modeling & Solutions´ Generation

• Generation of Solutions: Search algorithms –
Consistency Enforcing and Constraint Propagation

• Domain-specific building-blocks for scheduling
problems: Variables, Constraints, Search Algorithms....

• Scheduling of a Multistage, Multiproduct Plant
• Possible extensions to the basic model
• Advantages and disadvantages

Gabriela Henning – PASI – Iguazú Falls – August 2005 21

Domain-specific building-blocks

• Problem Variables:
- Activities
- Resources

• Specific Constraints:
- Resource constraints
- Temporal constraints
- Global constraints

• Search Algorithms:
- Edge Finding
- Others... (Laborie, “Algorithms for...”, Artificial Intelligence, 143, 151-188, 2003)

• Special Constructs
Gabriela Henning – PASI – Iguazú Falls – August 2005 22

Problem Variables: Activities

• An activity ActivityA corresponds to a time interval
[ActivityA.start, ActivityA.end]

• ActivityA.start and ActivityA.end are decision
variables denoting the start and end time of the activity.

• The duration of an activity may be known in advance or may
be a decision variable.
ActivityA.duration = ActivityA.end - ActivityA.end

• Different types of activities can be modelled
- Processing/Manufacturing: Task[j,t]; j Job ; t stage

[Task[j,t].start, Task[j,t].end] ;

- Start-up, Clean-up, Changeover
- Pumping & Product movement, Raw Material Delivery

• Activities use or share resources → Compete for resources
Gabriela Henning – PASI – Iguazú Falls – August 2005 23

Problem Variables: Resources

• Different types of resources, demanded by various kinds of
activities, need to be represented:

Non-Renewable Resources Reservoir Resources

Renewable Resources
Discrete, Cumulative or
Sharable Resources
Unary Resources

• A resource constraint defines how a given activity A will
require and affect the availability of a given resource R. It
consists of a tuple (A,R,q,TE), where q is the quantity of
resource R consumed (if q < 0) or produced (if q > 0) by
activity A and TE is a time extend specifying the time
interval where the availability of resource R is affected

Gabriela Henning – PASI – Iguazú Falls – August 2005 24

Different Types of Resources

• Reservoir resource: It is a multi-capacity resource that can
be consumed and or produced by activities (e.g. A tank
containing an intermediate product, a fuel tank, etc.)

• Discrete, cumulative or sharable resource: represents a
resource that is used over a certain time interval under the
following policy: a certain quantity of the resource is
consumed at the start time of the activity and the same
amount is released at its end time or earlier. (e.g. Pool of
workers, steam, cooling water, etc.).

• Unary resource: It is a discrete resource with unit capacity
(e.g. Machine/processing units that can perform just one
operation at a given time). It imposes that all the activities
demanding the same unary resource are totally ordered.

Gabriela Henning – PASI – Iguazú Falls – August 2005 25

Domain-specific building-blocks

• Problem Variables:
- Activities
- Resources

• Specific Constraints:
- Resource constraints
- Temporal constraints
- Global constraints

• Search Algorithms:
- Edge Finding
- Others... (Laborie, “Algorithms for...”, Artificial Intelligence, 143, 151-188, 2003)

• Special Constructs
Gabriela Henning – PASI – Iguazú Falls – August 2005 26

Resource Constraints

General Form: (A,R,q,TE)
(Ai,Ej,-1,FromStartToEnd): States that activity Ai will require one

unit of resource Ej between its start
and end time. Ai can be a processing
activity demanding an equipment unit
Ej which is declared as a unary
resource.

1

Ai
Aj

(DAi,Rk,20,AfterEnd): States that activity DAi will produce 20
units of resource Rk at its end time. DAi
can be a raw material delivery activity
aiming at replenishing a resource
reservoir Rk.5

25
DAi

Gabriela Henning – PASI – Iguazú Falls – August 2005 27

Temporal Constraints

• Precedence Relationships:
Example: Multi-stage, multi-product plant
- j job to be scheduled
- t stage

task[j,t].end <= task[j,t’].start; ∀ t ∈ T, ∀ j ∈ J,

Ord(t’)= Ord(t)+1

Equivalent to: task[j,t] precedes task[j,t’]

• Disjunctive constraints on unary resources:
Let task[j1,t]and task[j2,t] be two activities that require the same
unary resource (e.g. the same processing unit). Then:
task[j1,t].end <= task[j2,t].start ∨

task[j2,t].end <= task[j1,t].start; which is equivalent to
task[j1,t] precedes task[j2,t] or vice versa.

Gabriela Henning – PASI – Iguazú Falls – August 2005 28

Domain-specific building-blocks

• Problem Variables:
- Activities
- Resources

• Specific Constraints:
- Resource constraints
- Temporal constraints
- Global constraints

• Search Algorithms:
- Edge Finding
- Others... (Laborie, “Algorithms for...”, Artificial Intelligence, 143, 151-188, 2003)

• Special Constructs
Gabriela Henning – PASI – Iguazú Falls – August 2005 29

Domain Specific Search Strategies

• Algorithms based on an analysis of activity interactions.
They consider subsets Ω of activities competing for the same
resource and perform propagation based on the position of
activities in Ω

• Disjunctive Constraints
• Edge-finding

• An integral part of commercial constraint-based schedulers

• A fundamental pruning technique for scheduling problems
associated to renewable resources.

• Informally speaking, an edge finding algorithm considers one resource
at a time, and identifies pairs (Ω, A) such that task A cannot precede
(follow) any task from Ω in all feasible schedules, and updates the
earliest starting time (latest completion time) of task A accordingly.

Gabriela Henning – PASI – Iguazú Falls – August 2005 30

Edge-finding

• Let Ω be a subset of activities on a unary resource,
and A ∉ Ω another activity on the same unary
resource.

• Let startmin(X), endmax(X) and durmin(X) respectively
denote the minimal start time, maximal end time and
minimal duration over all the activities in the set X. Let
A.lct be the latest completion time of activity A.

• Most edge-finding techniques can be captured by the
following rule:

endmax(Ω U A) - startmin(Ω) < durmin(Ω U A) ⇒

A.lct ≤ min Ω´⊆ Ω(endmax(Ω´) - durmin(Ω´)) New
Bound!

Gabriela Henning – PASI – Iguazú Falls – August 2005 31

Example of Edge-finding Propagation

6 14

7 15

6 16

2 16

A1, A2, A3 and
A4 are activities

on a certain
unary resource

A1.duration = 3

A2.duration = 3

A3.duration = 3A4.duration = 2

A4.est A4.lst
A4.ect

A4.lct

est = earliest start time
lst = latest start time
ect = earliest

completion time
lct = latest completion

time

New A4.lct !!!

If A = A4 and Ω = {A1, A2 A3}, the conditions of the propagation rule are satisfied as
endmax(Ω U A) = 16, startmin(Ω) = 6 and durmin(Ω U A) = 11 (16 – 6 < 11).

By taking Ω´ = {A1, A2 A3}, a new upper bound on A4.lct can be computed.

A4.lct ≤ 16 – 9 ; A4.lct ≤ 7 !!!!

Gabriela Henning – PASI – Iguazú Falls – August 2005 32

Domain-specific building-blocks

• Problem Variables:
- Activities
- Resources

• Specific Constraints:
- Resource constraints
- Temporal constraints
- Global constraints

• Search Algorithms:
- Edge Finding
- Others... (Laborie, “Algorithms for...”, Artificial Intelligence, 143, 151-188, 2003)

• Special Constructs
Gabriela Henning – PASI – Iguazú Falls – August 2005 33

Special Constructs

activityHasSelectedResource(activityA,s,u) is a special
construct provided by the OPL language (ILOG, 2004).

• This construct acts like a predicate that evaluates to true (its value is
equal to one), when activityA has selected resource u among the
set of alternative resources s.

• activityHasSelectedResource(activityA,s,u) is in itself a
constraint that can be negated.

• Can be employed in higher order constraints as well as in domain-
specific search procedures.

Activities can consume and produce (non-renewable resources) or can
require and provide (renewable resources) some units of reservoir and
discrete resources. There are special constructs to express these ideas:

• Example: activityA requires (10) UtilityU.
Specifies that activityA requires 10 units of UtilityU during its
execution.

Gabriela Henning – PASI – Iguazú Falls – August 2005 34

Overview

• Definition of Constraint Satisfaction (CS) and
Constraint Programming (CP) problems -
Relevance - Applications than can be tackled

• CP Phases: Modeling & Solutions´ Generation

• Generation of Solutions: Search algorithms –
Consistency Enforcing and Constraint Propagation

• Domain-specific building-blocks for scheduling
problems: Variables, Constraints, Search Algorithms...

• Scheduling of a Multistage, Multiproduct Plant
• Possible extensions to the basic model
• Advantages and disadvantages

Gabriela Henning – PASI – Iguazú Falls – August 2005 35

Scheduling of a Multistage, Multiproduct Plant

e3 e4

e1 e2

e5 e6

Stage 1

Stage 2

Stage 3

j1, j2, j3, j4, j5

CP Model: Scheduling of a Multistage, Multiproduct Plant

enum Jobs...;
enum Equipment...;
enum Stages...;
{Equipment} belongsto[Stages] = ...;
int+ ProcTime[Jobs, Equipment]=...;
scheduleHorizon = 500;

// Variables´ declaration
//Tasks´ Declaration – Resources declaration
Activity Task[j in Jobs, St in Stages];
Activity makespan(0);
UnaryResource tool[Equipment];
AlternativeResources s(tool);

//Objective Function Definition
minimize

makespan.end
//Basic Constraints
subject to {

Specifies the set of Jobs, units and stages

Sets the equipment units that belong to each stage

Declares the array Processing Time

Declares a Task decision variable for each job j and stage t
Declares a Makespan activity having a null duration
Declares equipment as unary resources

CP model stated in the OPL
language

Gabriela Henning – PASI – Iguazú Falls – August 2005 36

CP Model: Scheduling of a Multistage, Multiproduct Plant

forall(j in Jobs)
Task[j,last(Stages)] precedes makespan;

forall(st in Stages)
forall(j in Jobs)

Task[j,st] requires s;
forall(j in Jobs)

forall(St in Stages)
forall(unit in Equipment)

(unit not in belongsto[St]) =>
not activityHasSelectedResource(Task[j,St],s,tool[unit]);

forall(St in Stages)
forall(unit in belongsto[St])

forall(j in Jobs)
activityHasSelectedResource(Task[j,St],s,tool[unit]) =>
(Task[j,St].duration = ProcTime[j,unit]);

forall(St in Stages : St<last(Stages))
forall(j in Jobs)

Task[j,St] precedes Task[j,next(St)];
};

Makespan is the last activity

Eack task requires one element of the
set of alternative resources

If the unit does not belong to the stage, the
special construct activityHasSelectedResource
is negated

If the special construct activityHasSelected
Resource evaluates to true, the task is
assigned the proper duration

Precedence order of the activities within
each job

Gabriela Henning – PASI – Iguazú Falls – August 2005 37

Example Data

Unlimited
Intermediate

Storage
between stages

Jobs = {j1, j2, j3, j4, j5};

Equipment = {e1, e2, e3, e4, e5, e6};

Stages = {st1, st2, st3};

belongsto = #[
st1:{e1,e2},
st2:{e3,e4},
st3:{e5,e6}
]#;

ProcTime=[
[20, 28, 75, 80, 37, 36],
[33, 31, 71, 70, 35, 33],
[41, 35, 68, 75, 40, 34],
[42, 30, 73, 78, 32, 30],
[30, 33, 70, 74, 33, 35]

];

Gabriela Henning – PASI – Iguazú Falls – August 2005 38

e1 e2

j1, j2, j3, j4, j5
Stage 1

e3 e4

e5 e6

Stage 2

Stage 3

Results: UIS Case (Unlimited intermediate storage)

Makespan

Gabriela Henning – PASI – Iguazú Falls – August 2005 39

Results for the ZW Case (Zero-Wait)

Forall(St in Stages : St<last(Stages))
forall(j in Jobs)

Task[j,St].end = Task[j,next(St)].start;

Makespan

Gabriela Henning – PASI – Iguazú Falls – August 2005 40

Overview

• Definition of Constraint Satisfaction (CS) and
Constraint Programming (CP) problems -
Relevance - Applications than can be tackled

• CP Phases: Modeling & Solutions´ Generation

• Generation of Solutions: Search algorithms –
Consistency Enforcing and Constraint Propagation

• Domain-specific building-blocks for scheduling
problems: Variables, Constraints, Search Algorithms...

• Scheduling of a Multistage, Multiproduct Plant
• Possible extensions to the basic model
• Advantages and disadvantages

Gabriela Henning – PASI – Iguazú Falls – August 2005 41

Possible Extensions to the Basic Model

• Several objective functions: different performance measures

involving earliness, tardiness, a combination of them, number of tardy
jobs, etc. (Zeballos & Henning, 2003)

• Consideration of sequence-dependent changeover times
(Zeballos & Henning, 2003)

• Inclusion of topology constraints, forbidden unit-order
pairs, resource constraints (Zeballos & Henning, 2003)

• Hybrid MIP-CP approaches (Maravelias & Grossmann, 2004;

Harjunkoski & Grossmann, 2002; Zeballos & Henning, 2003;

Harjunkoski, Jain & Grossmann, 2002).

Gabriela Henning – PASI – Iguazú Falls – August 2005 42

Incorporation of Changeover Times to the Basic Model

enum Jobs...;
enum Equipment...;
enum Stages...;
enum Products...;
{Equipment} belongsto[Stages] = ...;
Products ProductOfJob[1..card(Jobs)] = ...;
Products JobProduct[Jobs];
initialize {

forall(j in Jobs)
JobProduct[j] = ProductOfJob[ord(j)+1];

};
int+ ProcTime[Jobs, Equipment]=...;
int+ TransitionTimeProducts[Products,Products]=...;
scheduleHorizon = 500;

// Variables´ declaration
//Tasks´ Declaration – Resources declaration
Activity Task[j in Jobs, St in Stages] transitionType JobProduct[j];
Activity makespan(0);
UnaryResource tool[Equipment]](TransitionTimeProducts);
AlternativeResources s(tool);

Specifies the set of Products to be manufactured

Maps a Product into each job

Specifies the state (Product) of each job

Transition times depending on product´s
sequence are defined (transition matrix).

Tasks are associated to
a transitionType that
depends on the state

(product) of the job

Unary equipment resources are
associated with a transition matrix

Gabriela Henning – PASI – Iguazú Falls – August 2005 43

Incorporation of Changeover Times to the Basic Model

Minimize //Objective Function Definition
makespan.end

subject to { //Basic Constraints
forall(j in Jobs)

Task[j,last(Stages)] precedes makespan;
forall(st in Stages)

forall(j in Jobs)
Task[j,st] requires s;

forall(j in Jobs)
forall(St in Stages)

forall(unit in Equipment)
(unit not in belongsto[St]) =>

not activityHasSelectedResource(Task[j,St],s,tool[unit]);
forall(St in Stages)

forall(unit in belongsto[St])
forall(j in Jobs)

activityHasSelectedResource(Task[j,St],s,tool[unit]) =>
(Task[j,St].duration = ProcTime[j,unit]);

forall(St in Stages : St<last(Stages))
forall(j in Jobs)

Task[j,St] precedes Task[j,next(St)];
}; Gabriela Henning – PASI – Iguazú Falls – August 2005 44

Example Data – Sequence Dependent Changeover Times

Jobs = {j1, j2, j3, j4, j5};

Equipment = {e1, e2, e3, e4, e5, e6};

Stages = {st1, st2, st3};

Products = {P1, P2, P3, P4, P5};

ProductOfJob = [P1, P2, P3, P4, P5];

belongsto = #[
st1:{e1,e2},
st2:{e3,e4},
st3:{e5,e6}
]#;

ProcTime=[
[20, 28, 75, 80, 37, 36],
[33, 31, 71, 70, 35, 33],
[41, 35, 68, 75, 40, 34],
[42, 30, 73, 78, 32, 30],
[30, 33, 70, 74, 33, 35]

];

TransitionTimeProducts=[
[0, 8, 5, 6, 1],
[4, 0, 1, 7, 5],
[2, 3, 0, 1, 4],
[3, 4, 4, 0, 5],
[6, 2, 7, 3, 0]

];

Products associated to jobs

When P5 precedes P4, 3
units of cleaning time
are demanded

Gabriela Henning – PASI – Iguazú Falls – August 2005 45

Results for the NIS Case + Changeover Times

Makespan

Gabriela Henning – PASI – Iguazú Falls – August 2005 46

P5 precedes P4, then
3 units of cleaning
time are demanded!!

Malespan has increased
from 266 to 272

Overview

• Definition of Constraint Satisfaction (CS) and
Constraint Programming (CP) problems -
Relevance - Applications than can be tackled

• CP Phases: Modeling & Solutions´ Generation

• Generation of Solutions: Search algorithms –
Consistency Enforcing and Constraint Propagation

• Domain-specific building-blocks for scheduling
problems: Variables, Constraints, Search Algorithms...

• Scheduling of a Multistage, Multiproduct Plant
• Possible extensions to the basic model
• Advantages and disadvantages

Gabriela Henning – PASI – Iguazú Falls – August 2005 47

Evaluation of CP as a technique for tackling
combinatorial problems

• Which technique should be chosen for a given combinatorial
problem? (Brailsford et al., 1999)
Possibilities: CP approaches, OR techniques, local search
heuristics (simulated annealing, tabu search, genetic algorithms).

• There are several reasons why a particular technique may
be chosen to address a problem. Some of the most
important ones are:
– Easy of implementation
– Flexibility to handle a variety of constraints that occur in

practical problems.
– Computational time
– Solution quality

• Unfortunately, the literature contains very few direct
comparisons of CP with other approaches. Existing
comparisons are partial and incomplete.

Gabriela Henning – PASI – Iguazú Falls – August 2005 48

Evaluation of CP – Easy of implementation and flexibility

• For easy of implementation and flexibility, CP scores
highly relative to most of the OR techniques.
- Constraints can be formulated in a quite natural and intuitive

manner.

- Problem-specific constraints can be added without any need
to revise the whole program. The incorporation of extra
constraints is not a burden.

- Formulations tend to benefit from the addition of redundant
constraints

- CP is often the appropriate approach for problems having very
different variables and constraints, such as those with integer,
logical and choice variables and/or linear, non-linear and
logical constraints.

Gabriela Henning – PASI – Iguazú Falls – August 2005 49

Evaluation of CP – Computational time and solution quality

• CP performance, with respect to solution quality and computation
time, as well as the one of other OR techniques, tends to be
problem dependent.

• A critical factor in the success of a CP approach is the amount of
propagation that the constraints permit. CP is likely to be
successful if the nature of the problem is such that a variable
instantiation triggers the pruning of many values from the domains
of the other variables. Scheduling and time-tabling belong to this
category of problems.

• CP performs better on problems that are highly constrained and
therefore have a small search space. MIP is superior in problems
with a large search space and no strong constraints.

• While CP relies mainly on constraint propagation to restrict the
size of the search space, the efficiency of branch and bound
based techniques is highly dependent on the bounding scheme.

Gabriela Henning – PASI – Iguazú Falls – August 2005 50

Suggested Papers – Relevant Weblinks

Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results, P. Laborie, Artificial
Intelligence 143, 151–188, (2003).

http://www.sciencedirect.com/science/journal/00043702
Constraint satisfaction problems: Algorithms and applications, S.
Brailsford, C. Potts, B. Smith, European Journal of Operational
Research 119 557-581, (1999).

http://www.sciencedirect.com/science/journal/03772217
Program Does Not Equal Program: Constraint Programming and Its
Relationship to Mathematical Programming (PDF), Irvin J. Lustig and
Jean-Francois Puget, Interfaces Vol 31., No. 6, pp. 29-53, December,
2001
http://pubsonline.informs.org/feature/pdfs/0092.2102.01.3106.29.pdf
Constraint Satisfaction and Constraint Programmng. Pedro Meseguer.
IBERAMIA-02 Invited Talk, Universidad Autónoma de Barcelona.
http://www.iiia.csic.es/~pedro/Conf-Iberamia-02.pdf

Gabriela Henning – PASI – Iguazú Falls – August 2005 50

Constraint Programming
Techniques for Batch

Scheduling

Gabriela P. Henning

INTEC (Universidad Nacional del Litoral – CONICET)
Santa Fe – Argentina

August 2005

E-mail: ghenning@intec.unl.edu.ar
Gabriela Henning – PASI – Iguazú Falls – August 2005

