Abstract

In this paper, we provide a general classification of mathematical optimization problems, followed by a matrix of applications that shows the areas in which these problems have been typically applied in process systems engineering. We then provide a review of solution methods of the major types of optimization problems for continuous and discrete variable optimization, particularly nonlinear and mixed-integer nonlinear programming (MINLP). We also review their extensions to dynamic optimization and optimization under uncertainty. While these areas are still subject to significant research efforts, the emphasis in this paper is on major developments that have taken place over the last 25 years.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: Process optimization, Nonlinear programming, Mixed integer nonlinear programming, Linear programming, Dynamic optimization, Stochastic optimization

1. Introduction

When the two authors were asked to provide retrospective and perspective articles in the area of optimization, we decided that writing the two papers jointly would offer a better fit, given the breadth of the optimization area and our complementary interests. Our objective in this first paper is to provide a general review on optimization, emphasizing the strategies that have been applied or studied more extensively, namely, nonlinear programming (NLP), mixed-integer nonlinear programming (MINLP), dynamic optimization, and optimization under uncertainty. In the second paper we outline future directions of research that are motivated by the current barriers and limitations that are being experienced. These include global and logic-based optimization, large-scale computation, and advanced scientific computation.

Optimization has become a major enabling area in process systems engineering. It has evolved from a methodology of academic interest into a technology that has and continues to make significant impact in industry. Before we discuss the applications of optimization, it is useful to present a classification of problem types. It should be noted that this classification is independent of the solution methods. As shown in Fig. 1, optimization problems can first be classified in terms of continuous and of discrete variables. The major problems for continuous optimization include linear programming (LP) and NLP. An important subclass of LP is the linear complementarity problem (LCP), while for the NLP it includes quadratic programming (QP) and semidefinite programming (SP). For the latter, an important distinction is also whether the NLP problem is convex or nonconvex, since the latter may give rise to multiple local optima. Another important distinction is whether the problem is assumed to be differentiable or not. As for discrete problems, they are first classified into mixed-integer linear programming (MILP) and MINLP.

For the former an important particular case is when all the variables are integer, which gives rise to an integer programming (IP) problem. This problem in turn can be classified into many special problems (e.g. assignment, traveling salesman, etc.), which we do not show in Fig. 1. The MINLP problem also gives rise to special problems, although here the main distinction, like in the NLP problem, is whether its relaxation is convex or nonconvex.

Regarding their formulation, discrete/continuous optimization problems when represented in algebraic form, correspond to mixed-integer optimization problems that have the following general form:

\[
\begin{align*}
\min Z &= f(x, y) \text{s.t.} \\
h(x, y) &= 0 \\
g(x, y) &\leq 0 \\
x \in X, y \in \{0, 1\}^m
\end{align*}
\]

(MIP)

where \(f(x, y) \) is the objective function (e.g. cost), \(h(x, y) = 0 \) are the equations that describe the performance of the system (material balances, production rates), and \(g(x, y) \leq 0 \) are...
inequalities that define the specifications or constraints for feasible plans and schedules. The variables x are continuous and generally correspond to state variables, while y are the discrete variables, which generally are restricted to take 0–1 values to define for instance the assignments of equipment and sequencing of tasks. Problem (MIP) corresponds to a mixed-integer nonlinear program (MINLP) when any of the functions involved are nonlinear. If all functions are linear it corresponds to a MILP. If there are no 0–1 variables, the problem (MIP) reduces to a NLP or LP depending on whether or not the functions are linear.

It should be noted that (MIP) problems, and their special cases, may be regarded as steady-state models. Hence, one important extension is the case of dynamic models, which in the case of discrete time models gives rise to multiperiod optimization problems, while for the case of continuous time it gives rise to optimal control problems that generally involve differential–algebraic equation (DAE) systems. Another important extension includes problems under uncertainty, which give rise to stochastic optimization problems.

1.1. Applications matrix

Mathematical programming, and optimization in general, have found extensive use in process systems engineering. A major reason for this is that in these problems there are often many alternative solutions, and hence, it is often not easy to find the optimal solution. Furthermore, in many cases, the economics is such that finding the optimum solution translates into large savings. Therefore, there might be a large economic penalty to just sticking to suboptimal solutions.

In summary, optimization has become a major technology that helps companies to remain competitive.

As for specific areas, process design problems tend to give rise to NLP and MINLP problems, while scheduling and planning problems tend to give rise to LP and MILP problems. The reason for this is that design problems tend to rely more heavily on predictions of process models, which are nonlinear, while in scheduling and planning the physical predictions tend to be less important, since most operations are described through time requirements and activities. In the case of process control the split is about even.

In Table 1, we indicate what specific types of models have been formulated for a number of applications in process systems engineering. As seen in Table 1, design and synthesis have been dominated by NLP and MINLP models due to the need for the explicit handling of performance equations, although simpler targeting models give rise to LP and MILP problems. Operations problems, in contrast, tend to be dominated by linear models, LP and MILP; for planning,
scheduling and supply chain problems. NLP, however, plays a crucial role at the level of real time optimization. Control has traditionally relied on LP and NLP models, although MILPs are being increasingly used for hybrid systems. Finally, note that global optimization has concentrated more on design than on operations problems, since nonconvexities in the design problems are more likely to yield suboptimal solutions since the corresponding bounds for the variables are rather loose in these problems. It is also worth noting that the applications listed in Table 1 have been facilitated not only by progress in optimization algorithms, but also by the advent of modeling techniques (Williams, 1985)

Several other papers in this special issue discuss applications of optimization in process engineering. Instead, this paper will emphasize optimization methods and concepts as a core area for research in process systems engineering. As a result, this review serves as a complement to detailed optimization models in specific applications areas that are presented in other papers in this issue. In the next section, we present an overview of linear and nonlinear programming methods for optimization problems with continuous variables, including simulated annealing (SA) and genetic algorithms (GA). Section 3 then extends to mixed-integer problems and provides a review of MINLP methods. Section 4 provides a survey of methods for optimization problems that include differential–algebraic equations and Section 5 discusses optimization under uncertainty. Finally, Section 6 presents an overview of linear and nonlinear programming methods in specific applications areas that are presented below:

2. Continuous variable optimization

For continuous variable optimization we consider (MIP) without discrete variables \(x \). The general problem (NLP) is presented below:

\[
\text{Min } f(x) \text{s.t. } \begin{cases} h(x) = 0 \\ g(x) \leq 0 \end{cases} \quad \text{(NLP)}
\]

A key characteristic of problem (NLP) is whether it is convex or not, i.e., it has a convex objective function and a convex feasible region. Convex feasible regions require \(g(x) \) to be convex and \(h(x) \) to be linear. If (NLP) is a convex problem, then any local solution is also a global solution to (NLP). Moreover, if the objective function is strictly convex, this solution is unique. On the other hand, the KKT conditions can only satisfy local optimality for nonconvex problems and, as discussed in our companion perspectives paper, a more rigorous (and expensive) search procedure is required to find a global solution.

Further specializations of the problem can be made if the constraint and objective functions satisfy certain properties, and specialized algorithms can be constructed for these cases. In particular if the objective and constraint functions in (NLP) are linear then the following linear program:

\[
\text{Min } c^T x \text{s.t. } Ax = b, \quad Cx \leq d \quad \text{(LP)}
\]

can be solved in a finite number of steps. The standard method to solve (LP) is the simplex method, developed in the late 1940s (see Dantzig, 1963), although interior point methods have become quite advanced and competitive for highly constrained problems (Wright, 1996). Methods to solve (LP) are widespread and well implemented. Currently, start of the art LP solvers can handle millions of variables and constraints and the application of further decomposition methods leads to the solution of problems that are two or three orders of magnitude larger than this. Because these methods are so widely known, further mention of the simplex method will not be described here (see the standard references: Edgar, Himmelblau, & Lasdon, 2001; Hillier & Lieberman, 1974 for more details). Also, the interior point method is described below from the perspective of more general nonlinear problems.

Quadratic programs represent a slight modification of (LP) and can be stated as

\[
\text{Min } c^T x + \frac{1}{2} x^T Q x \text{s.t. } Ax = b, \quad Cx \leq d \quad \text{(QP)}
\]

If the matrix \(Q \) is positive semi-definite (positive definite) when projected into the null space of the active constraints, then (QP) is (strictly) convex and the (QP) has a unique minimum (minimizer). Otherwise, local solutions exist for (QP) and more extensive global optimization methods are needed to obtain the global solution. Convex QPs can also be solved in a finite number of steps. Here, a number of active set strategies have been created that solve the KKT conditions of the QP and incorporate efficient updates of active constraints. Popular methods include null space algorithms (Gill, Murray, & Wright, 1981), range space methods and Schur complement methods. As with LPs, QP problems can also be solved with interior point methods (see Wright, 1996). Structures of large-scale QPs can be exploited quite efficiently with interior and Schur complement methods.

2.1. Solving the NLP problem

To introduce solution techniques for (NLP) we first consider solvers based on successive quadratic programming (SQP) as they allow the construction of a number of NLP algorithms based on Newton steps. Moreover, these solvers have been shown to require the fewest function evaluations to solve NLPs (Binder et al., 2001; Schittkowski, 1987) and

\[1\] The function \(g(x) \) is convex over \(x \in X \) if \(g(\alpha x_1 + (1-\alpha)x_2) \leq \alpha g(x_1) + (1-\alpha)g(x_2) \) holds for all \(\alpha \in (0,1) \) and \(x_1, x_2 \in X \). Strict convexity requires that this inequality be strict.
they can be tailored to a broad range of process engineering problems with different structure.

SQP applies the equivalent of a Newton step to the KKT conditions of the nonlinear programming problem and this leads to a fast rate of convergence. An informal derivation proceeds as follows. At a stationary point of (NLP), the first-order KKT conditions for this problem are given by

\[
\nabla f(x) + A(x)^T \lambda + C(x) v = 0
\]

(KKTa)

\[
h(x) = 0
\]

(KKTB)

\[g(x) + s = 0\]

(KKTC)

\[\n abla \phi(x)_v \geq 0\]

(KKTD)

\[(x, v) \geq 0\]

(KKTE)

where \(\sigma = \{1, \ldots, 1\}, \lambda \) is the multiplier vector of the equalities, \(v \) the multipliers of the inequalities, \(A(x) = \nabla h(x), C(x) = \nabla g(x), S = \text{diag}(s), V = \text{diag}(v) \).

SQP methods find solutions that satisfy (KKT) by generating Newton-like search directions at iteration \(k \). In general, one can classify SQP methods by the following categories:

- **Active set versus barrier methods** to handle bounds and inequality constraints in generating search directions.
- **Second-order information** can be provided in a number of ways and problem structure can be exploited for Newton-like steps.
- **Line search versus trust region methods** to enforce global convergence of the SQP iterations.

2.1.1. Active set versus barrier methods

The complementarity conditions (KKTa and KKTb) present a key difficulty in solving the KKT conditions as a set of equations. At the solution, the equations (KKTa) and active bounds (KKTb) are dependent and serve to make the KKT system ill-conditioned near the solution. SQP algorithms treat these conditions in two ways. In the active set strategy, discrete decisions are made regarding the active constraint set, \(i \in I \rightarrow [g_i(x) > 0] \), (KKTb) is replaced by \(s_i = 0, i \in I \), and \(v_i = 0, i \notin I \) and determining the active set is a combinatorial problem. A relatively inexpensive way to determine an estimate of the active set (and also satisfy (KKTb)) is to formulate, at a point \(x^k \), and to solve the quadratic programming (QP) problem at iteration \(k \) given by

\[
\begin{align*}
\min & \quad \nabla \phi(x)^T p + \frac{1}{2} p^T W(x, \lambda^k, s^k) p \\
\text{s.t.} & \quad h(x^k) + A(x^k)^T p = 0 \\
& \quad g(x^k) + C(x^k)^T p + s = 0, s \geq 0
\end{align*}
\]

(SQP)

The KKT conditions of (SQP) are given by

\[
\begin{align*}
\nabla \phi(x) + W(x, \lambda, s^k) p + A(x^k) \lambda \\
& + C(x^k) v = 0
\end{align*}
\]

(QPKKTa)

\[
h(x^k) + A(x^k)^T p = 0
\]

(QPKKTb)

where \(W(x, \lambda, s) = \nabla^2 f(x) + h(x^k)^T \lambda + g(x^k)^T s \); \(A(x) = \nabla h(x), C(x) = \nabla g(x) \) is the Hessian of the Lagrange function. It is easy to show that (QPKKTb) correspond to a linearization of (KKTa–KKTc) at iteration \(k \). Also, selection of the active set is now handled at the QP level in satisfying the conditions (QPKKTb). To evaluate and change candidate active sets, QP algorithms apply inexpensive matrix updating strategies to the KKT matrix associated with (SQP). Details of this approach can be found in (Fletcher, 1987; Nocedal & Wright, 1999).

To avoid the combinatorial problem of selecting the active set, barrier methods modify the NLP problem (1–3) to form:

\[
\begin{align*}
\min & \quad \phi(x) - \mu \sum_{t \in V} \ln s_t \\
\text{s.t.} & \quad h(x) = 0 \\
& \quad g(x) + s = 0
\end{align*}
\]

(IP)

where the solution to this problem has \(s > 0 \) for the penalty parameter \(\mu > 0 \), and decreasing \(\mu \) to zero leads to solution of problem (NLP). The KKT conditions for this problem can be written as

\[
\begin{align*}
\nabla \phi(x) + A(x^k)^T \lambda + C(x^k) v = 0 \\
h(x^k) = 0 \\
g(x^k) + s = 0
\end{align*}
\]

(IPKKT)

and for \(\mu > 0, s > 0 \), and \(\nu > 0 \), Newton steps generated to solve (IPKKT) are well-behaved and analogous to (QP-KKT). With a modification on the right hand side of (QP-KKTd), moreover, if \(\nabla^2 f(x) > 0 \) is positive definite in the null space of \(A(x) \), the Newton step can be written as the following QP subproblem:

\[
\begin{align*}
\min & \quad \nabla \phi(x)^T p + \frac{1}{2} p^T W(x, \lambda^k, s^k) p \\
& - \mu s^k \nabla^2 f(x)^{-1} s^k \Delta s + \frac{1}{2} \Delta s^k (\nabla^2 f(x^k)^{-1}) \Delta s \\
\text{s.t.} & \quad h(x^k)^T + A(x^k)^T p = 0 \\
& \quad g(x^k) + C(x^k)^T p + s = 0
\end{align*}
\]

(IPQP)

where \(s = \lambda^k + \Delta s \). This QP can be further simplified if the inequality constraints take the form of simple bounds. Note that the complementarity conditions are now replaced by penalty terms in the objective function. The optimality conditions for this QP can now be written as a set of linear equations and the combinatorial problem of selecting the active set disappears.

In comparing these approaches, both methods possess clear trade-offs. Barrier methods may require more iterations to solve (IP) for various values of \(\mu \), while active set
2.1.2. Providing second-order information

With the development and increasing application of automatic differentiation tools, there are a number of modeling and simulation platforms where accurate first and second derivatives can be accessed for optimization. If second derivatives are not available, positive definite quasi-Newton approximations to the reduced Hessian (such as BFGS) are often quite successful. Here, if we define the nd vector \(d^T = [p^T \Delta x^T] \), an nc vector \(c^T = [h^T (g + s)] \) and

\[
H = \begin{bmatrix} A^T & 0 \\ c^T & 1 \end{bmatrix},
\]

then we can partition \(d = Z d_d + Y d_y \) where \(Z \in \mathbb{R}^{n_d \times n_d}, Y \in \mathbb{R}^{n_c \times n_c}, HZ = 0 \) and \([Z \ Y] \) is a nonsingular matrix. If we write the QPs (IPQP) or (SQP), without the bound constraint in the following form:

\[
\min_d d^T d + \frac{1}{2} d^T Q d \quad s.t. c + H d = 0 \quad (QP1)
\]

then substituting the partition of \(d \) into (QP1) and simplifying leads to

\[
d_y = -H^{-1} (Y)^{-1} c \quad (RD)
\]

and

\[
\min_d (Z^T u + Z^T Q d_d)^T d_d + \frac{1}{2} d_d^T (Z^T Q Z) d_d. \quad (ND)
\]

With this decomposition, (RD) is often a sparse linear system of equations of order \(n_c \) while (ND) has only \((nd - n_c) \) variables. If there are only a few degrees of freedom \((nd - n_c) \), then the quantities \((Z^T Q Z) \) and \((Z^T Q Y) d \) are inexpensive to approximate with quasi-Newton update formulae and finite difference formulae, respectively. Moreover, a stabilized BFGS update approximation for \((Z^T Q Z) \) leads to a positive definite reduced Hessian in (ND) and a unique solution for the QP subproblem.

Finally, for problems with quadratic objective functions, as in data reconciliation, parameter estimation, and model predictive control, one can often assume that the value of the objective function and its gradient at the solution are vanishingly small. Under these conditions, one can show that the multipliers \((s, \nu) \) also vanish and \(W \) can be substituted by \(V^T \phi(s^*) \). This Gauss–Newton approximation has been shown to be very efficient for the solution of least squares problems.

2.1.3. Line search versus trust region methods

To promote convergence from poor starting points, two types of globalization strategies, line search and trust region methods, are commonly used for the search directions calculated from the above QP subproblems. In a trust region approach, the constraint, \(||d|| \leq \Delta \) is added to the QP. The step, \(x^{k+1} = x^k + d \), is taken if there is sufficient reduction of a merit function (e.g., the objective function weighted with some measure of the constraint violations). Popular merit functions for SQP methods include the augmented Lagrangian function (of the form: \(\phi(x) + \lambda^T h(x) + \frac{\rho}{2} |g(x)|^2 \) or exact penalty functions (of the form: \(\phi(x) + \rho |g(x)|^2 \)). Also the size of the trust region \(\Delta \) is adjusted based on the agreement of the reduction of the actual merit function compared to its predicted reduction from the QP (see Nocedal & Wright, 1999). However, for values of \(\Delta \) sufficiently small, (QP1) may have no solution. Instead, trust region constraints can be applied to subproblems for \(d_d \) and \(d_y \), which replace (RD) and (ND), respectively. This approach has been applied in the KNITRO code (Byrd, Hribar, & Nocedal, 1997). Such methods have strong global convergence properties and are especially appropriate for ill-conditioned NLPs.

On the other hand, line search methods can be more efficient on problems with reasonably good starting points and well-conditioned QP subproblems, as in real time optimization. Typically, once the QP search direction is calculated from (SQP) or from (IPQP) a step size \(a \in [0, 1] \) is chosen so that \(x^k + ad \) leads to a sufficient decrease of a merit function. As a recent alternative, a novel line search strategy has been developed based on a bi-criterion minimization, with the objective function and constraint infeasibility as competing objectives. Termed the filter approach, this method, also developed for trust regions (Fletcher, Gould, Leyffer, Toint, &
Table 2 presents a sampling of available codes of SQP-type solvers that represent the above classifications.

2.2. Other gradient-based NLP solvers

In addition to SQP methods, several NLP solvers have been developed and adapted for large scale problems. Generally, these methods require more function evaluations than SQP methods but they perform very well when interfaced to optimization modeling platforms such as AMPL, CUTE or GAMS, where function evaluations are cheap. All of these can be derived from the perspective of applying Newton steps to portions of the KKT conditions of (NLP).

LANCELOT (Conn, Gould, & Toint, 2000) is based on the solution of bound constrained subproblems. Here an augmented Lagrangian is formed from (NLP) and the following subproblem is solved:

\[
\begin{align*}
\min f(x) + \lambda^T h(x) + \nu^T g(x) + s
+ \frac{1}{2}\rho \left[h(x) + g(x) + s \right]^T \left[h(x) + g(x) + s \right] & \geq 0 \\
\end{align*}
\]

(AL)

The above subproblem can be solved very efficiently for fixed values of the multipliers, \(\lambda \) and \(\nu \), and penalty parameter \(\rho \). Here, a gradient projection, trust region algorithm is applied. Once subproblem (AL) is solved, the multipliers and penalty parameter are updated in an outer loop and the cycle repeats until the KKT conditions for (NLP) are satisfied. LANCELOT works best when exact second derivatives are available. This promotes a fast convergence rate in solving each subproblem and allows the trust region method to exploit directions of negative curvature in the Hessian.

MINOS (Murtagh & Saunders, 1987) is a well-implemented package with a number of similarities to SQP-type methods. Here, the quadratic programming subproblem is replaced by a linearly constrained NLP, with an augmented Lagrangian objective function:

\[
\begin{align*}
\min f(x) + \lambda^T h(x) + \nu^T g(x) + s
+ \frac{1}{2}\rho \left[h(x) + g(x) + s \right]^T \left[h(x) + g(x) + s \right] & \geq 0 \\
\text{s.t.} \quad g(x) + At(x) + p = 0, \quad x \geq 0 \quad (LCNLP)
\end{align*}
\]

At the current iterate, \(x_k \), MINOS selects an active set and applies a reduced space decomposition to (LCNLP). In fact, the decomposition is implemented in such a way that MINOS naturally defaults to the LP simplex method if the objective and constraint functions are linear. Upon eliminating the dependent and bounded variables, an unconstrained quasi-Newton method is applied to the remaining variables. At the solution of this subproblem, the constraints are linearized and the cycle repeats until the KKT conditions of (NLP) are satisfied. For problems with few degrees of freedom, this leads to an extremely efficient method even for very large problems. Note that the augmented Lagrangian function is used in (LCNLP) in order to penalize movement away from the feasible region. MINOS has been interfaced to both GAMS and AMPL and enjoys widespread use. It performs especially well on problems with few nonlinear constraints.

Finally the generalized reduced gradient (GRG) methods, GRG2, CONOPT, and SOLVER, consider the same subproblem as in MINOS, but also ensure that the constraints are always satisfied at each iterate of (LCNLP) (Edgar et al., 2001). GRG methods select an active set and applies a reduced space decomposition. Upon eliminating the dependent and bounded variables, an unconstrained quasi-Newton method is applied to the remaining variables, along with a constraint restoration step. Note that since \(x_k \) is always feasible, the augmented Lagrangian function in (LCNLP) simply becomes \(f(x) \). Among all of the gradient based NLP solvers, the GRG methods are the most popular; the SOLVER code has been incorporated into MS Excel and optimization is now a widely used option in Excel. In the GAMS and AMPL modeling environments, CONOPT is an efficient and widely used code that is usually more reliable than MINOS.
2.3. Optimization without derivatives

We now consider a broad class of optimization strategies that do not require derivative information. These methods have the advantage of easy implementation and little prior knowledge of the optimization problem. In particular, such methods are well-suited for ‘quick and dirty’ optimization studies that explore the scope of optimization for new problems, prior to investing effort for more sophisticated modeling and solution strategies. Most of these methods are derived from heuristics that naturally spawn numerous variations. As a result, a very broad literature describes these methods. Here, we discuss only a few important trends in this area and describe the mostly widely used methods using the following classifications.

2.3.1. Classical direct search methods

Developed in the 1960s and 1970s these methods include one-at-a-time search, a variety of pattern searches, and methods based on experimental designs (EVOP). In fact, when Computers and Chemical Engineering was founded 25 years ago, direct search methods were the most popular optimization methods in chemical engineering. Methods that fall into this class include the conjugate direction method of Powell (1964), simplex and complex searches, in particular Nelder and Mead (1965), the adaptive random search methods of Luus and Jaakola (1973), Goulcher and Cesares Long (1978) and Banga and Seider (1996). All of these methods are based on well defined search methods that require only objective function values for unconstrained minimization. Associated with these methods are numerous studies with successful results on a wide range of process problems. Moreover, many of these methods include heuristics that prevent premature termination (e.g., directional flexibility in the complex search as well as random restarts and direction generation).

2.3.2. Simulated annealing

This strategy derives from a class of heuristics with analogies to the motion of molecules in the cooling and solidification of metals (Laarhoven & Aarts, 1987). Here, a ‘temperature’ parameter, \(T \), can be raised or lowered to influence the probability of accepting points that do not improve the objective function. The method starts with a base point, \(x \), and objective value, \(f(x) \). The next point \(x' \) is chosen at random from a distribution. If \(f(x') < f(x) \), the move is accepted with \(x' \) as the new point. Otherwise, \(x' \) is accepted with probability \(p(T, x', x) \). Options include the Metropolis distribution,

\[
p(T, x', x) = \exp\left(\frac{f(x') - f(x)}{T} \right)
\]

and the Glauber distribution,

\[
p(T, x', x) = \frac{\exp\left(-\left(f(x') - f(x)\right)/T\right)}{1 + \exp\left(-\left(f(x') - f(x)\right)/T\right)}
\]

Temperature is then reduced and the method continues until no further progress is made. Simulated annealing has been employed on a wide variety of process examples including separation synthesis (Floquet, Pibouleau, & Domenech, 1994), heat exchanger network synthesis (Dolman, Cummings, & Levan, 1989) and batch process scheduling (Das, Cummings, & LeVan, 1990).

2.3.3. Genetic algorithms

This approach, first proposed in (Holland, 1975), is based on the analogy of improving a population of solutions through modifying their gene pool. Two forms of genetic modification, crossover or mutation, are used and the elements of the optimization vector, \(x \), are represented as binary strings. Crossover deals with random swapping of vector elements (among parents with highest objective function values or other rankings of population) or any linear combinations of two parents. Mutation deals with the addition of a random variable to elements of the vector. Genetic algorithms (GAs) have seen widespread use in process engineering and a number of codes are available. For instance, Edgar, Himmelblau, and Lasdon (2002) describe a related GA algorithm described that is available in Excel. Case study examples in process engineering include batch process scheduling (Jung, Lee, & Lee, 1998), Loehl, Schulz, and Engell (1998), sensor network design (Sen, Narasimhan, & Deb, 1998), and mass exchanger network synthesis (Garrard & Fraga, 1998).

2.3.4. Derivative free optimization (DFO)

In the past decade, the availability of parallel computers and faster computing hardware and the need to incorporate complex simulation models within optimization studies, have led a number of optimization researchers to reconsider classical direct search approaches. In particular, Dennis and Torczon (1991) developed a multidimensional search algorithm that extends the simplex approach of Nelder and Mead. They note that the Nelder–Mead algorithm fails as the number of variables increases, even for very simple problems. To overcome this, their multidimensional simplex approach combines reflection, expansion and contraction steps that act as line search algorithms for a number of linear independent search directions. This approach is easily adapted to parallel computation and the method can be tailored to the number of processors available. Moreover, Torczon (1991) showed that this approach converges to locally optimal solutions for unconstrained problems and observed an unexpected performance synergy when multiple processors are used. It should be noted that even EVOP and Hooke–Jeeves may be amenable to this convergence analysis, although the multidimensional search is much more efficient. The work of Dennis and Torczon (1991) has spawned considerable research on the analysis and code development for DFO methods. For instance, Conn, Scheinberg and Toint (1997) construct a multivariable DFO algorithm that uses a surrogate model.
for the objective function within a trust region method. Here points are sampled to obtain a well-defined quadratic interpolation model and these approximations for trust region methods enforce convergence properties. A number of trust region methods that rely on this approach are reviewed in Conn et al. (1997). Moreover, a number of DFO methods have been developed that lead to black box optimization implementations for large, complex simulation models. These include the DAKOTA package at Sandia National Lab (Eldred, 2002) and FOCUS developed at Boeing Corporation (Booker, Dennis, Frank, & Serfaty, 1998).

All of the above methods are easy to apply to a wide variety of problem types and optimization models. Moreover, because their termination criteria are not based on gradient information and stationary points, these methods are often more likely to favor the search for global rather than locally optimal solutions. These methods can also be adapted easily to include integer variables. However, no rigorous convergence properties to globally optimal solutions have yet been discovered.

Derivative free methods are best suited for unconstrained problems or for problems with simple bounds. Otherwise, they may have difficulties in handling constraints, as the only options open for handling constraints are equality constraint elimination or addition of penalty functions for inequality constraints. Both approaches can be unreliable and may lead to failure of the optimization algorithm. Finally, the performance of derivative free methods scales poorly (and often exponentially) with the number of decision variables. While performance can be improved with the use of parallel computing, these methods are rarely applied to problems with more than a few dozen decision variables.

3. Discrete optimization

In many applications in process systems engineering it is required to model discrete decisions such as selection of units in a flowsheet or sequences in scheduling, or number of units or batches. The former are commonly represented with 0–1 variables, while the latter are represented with integer variables that are often approximated as continuous if they take large values. In the sections below we review the generalization of (NLP), or alternatively special cases of problem (MIP).

3.1. Mixed-integer linear programming

MILP problems have the general form:

\[\min \ z = a^T x + b^T y \quad \text{s.t.} \quad \begin{cases} Ax + By \leq d \\ x \geq 0, \ y \in \{0, 1\}^m \end{cases} \]

(MILP)

For the case when no discrete variables \(y\) are involved, the problem reduces to a linear programming (LP) problem. MILP methods have been largely developed by operations researchers, and therefore we only provide a brief review. The major contribution of chemical engineers in this area has been to discover problems and applications that can be framed in the form of problem (MILP) (e.g. see Grossmann, Caballero, & Yeomans, 1999; Grossmann, Quesada, Raman, & Voudouris, 1996; Kalrath, 2000; Pinto & Grossmann, 1998).

MILP methods (Nemhauser & Wolsey, 1988) rely largely on the simplex LP-based branch and bound method (Dakin, 1965). This method consists of a tree enumeration in which the integer space is successively partitioned into relaxed LP subproblems that are solved at each node of the tree. The initial node in which the variables \(y\) in (MILP) are treated as continuous, yields an absolute lower bound (minimization case) to the optimal solution. If as is often the case, this solution exhibits one or more \(y\) variables with fractional values a tree search is performed according to pre-specified branching rules (e.g. depth first, minimum reduced cost). The LP solution of each node yields a lower bound to the solution of the descendant nodes. When a feasible integer solution is found this yields an upper bound. Nodes are eliminated based on these bounding properties, and the enumeration continues until the difference between the current lower and upper bounds lies within a tolerance.

In the worst case, the branch and bound method may end up enumerating most of the nodes in the tree, and therefore, not unexpectedly, MILP methods are NP-hard. To overcome the potential exponential computation in MILP problems two major developments have been the use of preprocessors and cutting planes. Pre-processing techniques rely on techniques for automatic elimination of variables and constraints, reduction of bound, fixing of integer variables, and reformulation of constraints. Cutting plane techniques are derived from theoretical analysis of the integer convex hull of either specialized problems (e.g. knapsack, network flows), or from general unstructured MILP problems. Cutting planes are generally generated from the LP relaxation and a separation problem that cuts off a portion of the relaxed continuous feasible region that does not contain the integer optimal solution. Cutting planes have usually the effect of producing tighter lower bounds for the LP relaxation. Recent trends in MILP include the development of branch-and-price (Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998) and branch-and-cut methods such as the lift-and-project method by Balas, Ceria and Cornuejols (1993), in which cutting planes (e.g. Go-mory, mixed-integer rounding cuts) are generated as part of the branch and bound enumeration. See also Johnson, Nemhauser, and Savelsbergh (2000) for a recent review on MILP.

MILP codes build on LP codes that are widely available. The best known include CPLEX (ILOG, 2000), XPRESS, and CROCODILE (Smit, 1998).
3.2 Mixed-integer nonlinear programming

MINLP models typically arise in synthesis and design problems, and in planning and scheduling problems. MINLP clearly provides much greater modeling flexibility for tackling a large variety of problems. While MILP methods have been largely developed outside process systems engineering, chemical engineers have played a prominent role in the development of MINLP methods.

Major methods for MINLP problems include Branch and Bound (BB) (Borchers & Mitchell, 1994; Gupta & Ravindran, 1985; Leyffer, 2001; Stubbs & Mehrotra, 1999), which is a direct extension of the linear case, except that NLP subproblems are solved at each node. Generalized benders decomposition (GBD) (Benders, 1962; Geoffrion, 1972), and Outer-Approximation (OA) (Duran & Grossmann, 1986; Ding-Mai & Sargent, 1992; Fletcher & Leyffer, 1994; Quesada & Grossmann, 1992; Yuan, Zhang, Piboleau, & Domenech, 1988), are iterative methods that solve a sequence of alternate NLP subproblems and MILP cutting plane subproblems. In particular, the new values are derived at the solution of the NLP subproblem. Note that for an infeasible subproblem, the bound is only considered for problem (P1).

3.2.1 NLP subproblems

There are three basic NLP subproblems that can be considered for problem (P1).

3.2.1.1 NLP relaxation.

\[
\min Z_{1R} = f(x, y) \text{s.t. } \begin{align*}
g_k(x, y) &\leq 0, \quad j \in J \\
x &\in X, \quad y \in Y_R
\end{align*}
\]

\[\text{(NLP1)}\]

where \(Y_R\) is the continuous relaxation of the set \(Y\), and \(X_L\), \(X_U\) are index subsets of the integer variables \(y_i, i \in I\), which are restricted to lower and upper bounds, \(u^L, u^U\) at the kth step of a branch and bound enumeration procedure. It should be noted that \(u^L, u^U\) are noninteger values at a previous step, and are the floor and ceiling functions, respectively.

Also note that if \(\mathcal{I}_k^L = \mathcal{I}_k^U = \emptyset\) (i.e., \(k = 0\), MILP correspond to the continuous NLP relaxation of (P1). Except for few and special cases, the solution to this problem yields in general a noninteger vector for the discrete variables. Problem (NLP1) also corresponds to the kth step in a branch and bound search. The optimal objective function provides an absolute lower bound to (P1); for \(m \geq k\), the bound is only valid for \(\mathcal{I}_k^L \subset \mathcal{I}_L, \mathcal{I}_k^U \subset \mathcal{I}_U\).

3.2.1.2 NLP subproblem for fixed \(y^i\).

\[
\min Z_{1R}^i = f(x, y^i) \text{s.t. } \begin{align*}
g_k(x, y^i) &\leq 0, \quad j \in J \\
x &\in X
\end{align*}
\]

\[\text{(NLP2)}\]

which yields an upper bound \(Z_{1R}^i\) to (P1) provided (NLP2) has a feasible solution. When this is not the case, we consider the next subproblem.

3.2.1.3 Feasibility subproblem for fixed \(y^i\).

\[
\min \text{ u.s.t. } \begin{align*}
g_k(x, y^i) &\leq u, \quad j \in J \\
x &\in X, \quad u \in R^I
\end{align*}
\]

\[\text{(NLPF)}\]

which can be interpreted as the minimization of the infinity-norm measure of infeasibility of the corresponding NLP subproblem. Note that for an infeasible subproblem the solution of (NLPF) yields a strictly positive value of the scalar variable \(u\).

3.2.2 MILP cutting plane

The convexity of the nonlinear functions is exploited by replacing them with supporting hyperplanes, that are generally, but not necessarily, derived at the solution of the NLP subproblems. In particular, the new values \(y^i(x, y^i)\) are...
obtained from a cutting plane MILP problem that is based on the K points, \((x^k, y^k)\), \(k = 1, \ldots, K\) generated at the K previous steps:

\[
\begin{align*}
\text{Min} \ Z^k_L &= a \text{ s.t.} \\
& a \geq f(x^k, y^k) + \nabla f(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix} \\
& g_j(x^k, y^k) + \nabla g_j(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix} \leq 0, \quad j \in J^k \\
x \in X, \quad y \in Y
\end{align*}
\]

where \(J^k \subseteq J\). When only a subset of linearizations is included, these commonly correspond to violated constraints in problem (P1). Alternatively, it is possible to include all linearizations in (M-MIP). The solution of (M-MIP) yields a valid lower bound \(Z^k_L\) to problem (P1). This bound is nondecreasing with the number of linearization points \(K\). Note that since the functions \(f(x, y)\) and \(g(x, y)\) are convex, the linearizations in (M-MIP) correspond to outer-approximations of the nonlinear feasible region in problem (P1). Here it can be seen that the convex objective function is being underestimated, and the convex feasible region is overestimated with these linearizations.

The different methods can be classified according to their use of the subproblems (NLP1), (NLP2) and (NLPF), and the specific specialization of the MILP problem (M-MIP).

The BB method is generally only attractive if the NLP subproblems are relatively inexpensive to solve, or when only few of them need to be solved. This could be either because of the low dimensionality of the discrete variables, or because the integrality gap of the continuous NLP relaxation of (P1) is small.

Outer-Approximation (Duran & Grossmann, 1986; Fletcher & Leyffer, 1994; Yuan et al., 1988). The OA method arises when NLP subproblems (NLP2) and MILP master problems (M-MIP) with \(J^k = J\) are solved successively in a cycle of iterations to generate the points \((x^k, y^k)\).

Since the master problem (M-MIP) theoretically requires for equivalence with (P1), the solution of all feasible discrete variables \(y^k\), the following MILP relaxation is considered, assuming that the solution of \(K\) different NLP subproblems (where \(K = |KFS \cup KIS|\), KFS is the set of solutions from (NLP2) and KIS is the set of solutions from (NLPF)) is available:

\[
\begin{align*}
\text{Min} \ Z^k_L &= a \text{ s.t.} \\
& a \geq f(x^k, y^k) + \nabla f(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix} \\
& g_j(x^k, y^k) + \nabla g_j(x^k, y^k)^T \begin{bmatrix} x - x^k \\ y - y^k \end{bmatrix} \leq 0, \quad j \in I \\
x \in X, \quad y \in Y
\end{align*}
\]

Given the assumption on convexity of the functions \(f(x, y)\) and \(g(x, y)\), the solution of problem (RM-OA), \(Z^k_L\) corresponds to a lower bound of the solution of problem (P1).

Also, since function linearizations are accumulated as iterations proceed, the master problems (RM-OA) yield a non-decreasing sequence of lower bounds, \(Z^1_L \leq Z^2_L \leq \cdots \leq Z^k_L \leq \cdot \cdot \cdot \leq Z^k_F\), since linearizations are accumulated as iterations \(k\) proceed.

The OA algorithm as proposed by Duran and Grossmann (1986) consists of performing a cycle of major iterations, \(k = 1, \ldots, K\), in which (NLP1) is solved for the corresponding \(y^k\), and the relaxed MILP master problem (RM-OA) is updated and solved with the corresponding function linearizations at the point \((x^k, y^k)\), for which the corresponding subproblem NLP2 is solved. If feasible, the solution to that problem is used to construct the first MILP master problem; otherwise a feasibility problem (NLPF) is solved to generate the corresponding continuous point (Fletcher and Leyffer, 1994). The initial MILP master problem (RM-OA) then generates a new vector of discrete variables. The (NLP2) subproblems yield an upper bound that is used to define the best current solution, \(UB = \text{Min} \{ Z^k_L \} \).
The cycle of iterations is continued until this upper bound and the lower bound of the relaxed master problem, Z^K_{MB}, are within a specified tolerance. One way to solving the feasibility problem (NLPF) in the OA algorithm when the discrete variables in problem (P1) are 0–1, is to introduce the following integer cut whose objective is to make infeasible the choice of the previous 0–1 values generated at the K previous iterations (Duran & Grossmann, 1986):

$$\sum_{i \in B} y_i - \sum_{i \in N} y_i \leq |B^d| - 1, \quad k = 1, \ldots, K, \quad (ICUT)$$

where $B^d = \{ i | y_i = 1 \}$, $N^d = \{ i | y_i = 0 \}$, $k = 1, \ldots, K$. This cut becomes very weak as the dimensionality of the 0–1 variables increases. However, it has the useful feature of ensuring that new 0–1 values are generated at each major iteration. In this way, the algorithm will not return to a previous integer point when convergence is achieved. Using the above integer cut the termination takes place as soon as $Z^K_{MB} = UB^K$. The OA method generally requires relatively few cycles or major iterations. One reason is that the OA algorithm trivially converges in one iteration if $f(x, y)$ and $g(x, y)$ are linear. This property simply follows from the fact that if $f(x, y)$ and $g(x, y)$ are linear in x and y the MILP master problem (M-OA) is identical to the original problem (P1).

It is also important to note that the MILP master problem need not be solved to optimality. In fact given the upper bound UB^K and a tolerance ε, it is sufficient to generate the new (y^1, x^1) by finding a mixed-integer solution to the MILP that lies below $UB^K - \varepsilon$. In this case, the OA iterations are terminated when (RM-OA) has no feasible solution.

Generalized benders decomposition (Geehman, 1972). The GBD method (see Filippou & Kan, 1993) is similar to the OA method. The difference arises in the definition of the MILP master problem (M-MIP). In the GBD method only active inequalities in one iteration if $f(x, y)$ and $g(x, y)$ are linear. This property follows from the fact that the Lagrangian and feasibility cuts, (LC^K) and (FC^K), are surrogates of the OAs (OA^K). Given the fact that the lower bounds of GBD are generally weaker, this method commonly requires a larger number of cycles or major iterations. As the number of 0–1 variables increases this difference becomes more pronounced. This is to be expected since only one new cut is generated per iteration. Therefore, user-supplied constraints must often be added to the master problem to strengthen the bounds. Also, it is sometimes possible to generate multiple cuts from the solution of an NLP subproblem in order to strengthen the lower bound (Magnani & Wong, 1981). As for the OA algorithm, the trade-off is that while it generally predicts stronger lower bounds than GBD, the computational cost for solving the master problem (M-OA) is greater since the number of constraints added per iteration is equal to the number of nonlinear constraints plus the nonlinear objective. Sahinidis and Grossmann (1991) have shown that if problem (P1) has zero integrality gap, the GBD algorithm converges in one iteration once the optimal (x^*, y^*) is found. This property implies that the only case one can expect the GBD method to terminate in one iteration, is when the initial discrete vector is the optimum, and when the objective value of the NLP relaxation of problem (P1) is the same as the objective of

$$a \geq f(x^k, y^k) + \nabla f(x^k, y^k)^T \left[\begin{array}{c} x - x^k \\ y - y^k \end{array} \right]$$

$$g(x^k, y^k) + \nabla g(x^k, y^k)^T \left[\begin{array}{c} x - x^k \\ y - y^k \end{array} \right] \leq 0$$

where for a fixed y^k the point x^k corresponds to the optimal solution to problem (NLP2). Making use of the Karush-Kuhn-Tucker conditions and eliminating the continuous variables x, the inequalities in (OA^K) can be reduced as follows (Quesada & Grossmann, 1992):

$$a \geq f(x^k, y^k) + \nabla f(x^k, y^k)^T (y - y^k) + (\mu^k)^T [g(x^k, y^k) + \nabla g(x^k, y^k)^T (y - y^k)]$$

which is the Lagrangian cut projected in the y-space. This can be interpreted as a surrogate constraint of the equations in (OA^K), because it is obtained as a linear combination of those.

For the case when there is no feasible solution to problem (NLP2), then if the point x^k is obtained from the feasibility subproblem (NLPF), the following feasibility cut projected in y can be obtained using a similar procedure,

$$a \geq f(x^k, y^k) + \nabla f(x^k, y^k)^T (y - y^k)$$

In this way, the problem (M-MIP) reduces to a problem projected in the y-space

$$\text{Min } Z^K_{MB} = a \text{ s.t.}$$

$$a \geq f(x^k, y^k) + \nabla f(x^k, y^k)^T (y - y^k) + (\mu^k)^T [g(x^k, y^k) + \nabla g(x^k, y^k)^T (y - y^k)]$$

$$g(x^k, y^k) + \nabla g(x^k, y^k)^T (y - y^k) \leq 0$$

where KFS is the set of feasible subproblems (NLP2) and KIS is the set of infeasible subproblems whose solution is given by (NLPF). Also $|KFS \cup KIS| = K$.

Since the master problem (RM-GBD) can be derived from the master problem (M-OA), in the context of problem (P1), GBD can be regarded as a particular case of the OA algorithm. In fact given the same set of K subproblems, the lower bound predicted by the relaxed master problem (RM-OA) can be shown to be greater or equal to the one predicted by the relaxed master problem (RM-GBD). This property follows from the fact that the Lagrangian and feasibility cuts, (LC^K) and (FC^K), are surrogates of the OAs (OA^K). Given the fact that the lower bounds of GBD are generally weaker, this method commonly requires a larger number of cycles or major iterations. As the number of 0–1 variables increases this difference becomes more pronounced. This is to be expected since only one new cut is generated per iteration. Therefore, user-supplied constraints must often be added to the master problem to strengthen the bounds. Also, it is sometimes possible to generate multiple cuts from the solution of an NLP subproblem in order to strengthen the lower bound (Magnani & Wong, 1981). As for the OA algorithm, the trade-off is that while it generally predicts stronger lower bounds than GBD, the computational cost for solving the master problem (M-OA) is greater since the number of constraints added per iteration is equal to the number of nonlinear constraints plus the nonlinear objective. Sahinidis and Grossmann (1991) have shown that if problem (P1) has zero integrality gap, the GBD algorithm converges in one iteration once the optimal (x^*, y^*) is found. This property implies that the only case one can expect the GBD method to terminate in one iteration, is when the initial discrete vector is the optimum, and when the objective value of the NLP relaxation of problem (P1) is the same as the objective of
the optimal mixed-integer solution. One further property that relates the OA and GBD algorithms is that a cut obtained from performing one Benders iteration on the MILP master (RM-OA) is equivalent to the cut obtained from the GBD algorithm. By making use of this property, instead of solving the MILP (RM-OA) to optimality, for instance by LP-based branch and bound, one can generate a GBD cut by simply performing one Benders (1962) iteration on the MILP master problem. Leyffer (1993) has reported substantial savings with this method.

3.3. Extensions of MINLP methods

In this subsection, we present an overview of some of the major extensions of the methods presented in the previous sections.

Quadratic master problems. For most problems of interest, problem (P1) is linear in \(y \): \(f(x, y) = f(x) + c^T y \), \(g(x, y) = h(x) + By \). When this is not the case Fletcher and Leyffer (1994) suggested to include in the feasibility version of (RMIP-OA) a quadratic approximation \(\nabla^2 L(x^t, y^t) \) of the Hessian of the Lagrangian of the last NLP subproblem, which yields a mixed-integer quadratic programming (MIQP) problem. Ding-Mai and Sargent (1992), found that the quadratic approximations can help to reduce the number of major iterations since an improved representation of the continuous space is obtained. Note also that for convex \(f(x, y) \) and \(g(x, y) \) using an MIQP leads to rigorous solutions since the outer-approximations remain valid. Also, if the function \(f(x, y) \) is nonlinear in \(y \), and \(y \) is a general integer variable, Fletcher and Leyffer (1994) have shown that the original OA algorithm may require a much larger number of iterations to converge than when the master problem (M-MIQP) is used. This, however, comes at the price of having to solve an MIQP instead of an MILP. Of course, the ideal situation is the case when the original problem (P1) is quadratic in the objective function and linear in the constraints, as then (M-MIQP) is an exact representation of such a mixed-integer quadratic program.

Reducing dimensionality of the master problem in OA. The master problem (RM-OA) can involve a rather large number of constraints, due to the accumulation of linearizations. One option is to keep only the last linearization point, but this can lead to nonconvergence even in convex problems, since then the monotonic increase of the lower bound is not guaranteed. A rigorous way of reducing the number of constraints without greatly sacrificing the strength of the lower bound can be achieved in the case of the “largely” linear MINLP problem:

\[
\begin{align*}
\text{Min } Z = a^T w + r(i) + c^T y & \quad \text{ s.t. } \\
\beta \geq r(i) + (\hat{x}_{jV})^T [Dw + r(i)] & \quad \text{ for } \beta \in R^1
\end{align*}
\]

where \((w, v) \) are continuous variables and \((i) \) and \((i) \) are nonlinear convex functions. As shown by Quesada and Grossmann (1992), linear approximations to the nonlinear objective and constraints can be aggregated with the following MILP master problem:

\[
\begin{align*}
\text{Min } Z = a^T w + r(i) + c^T y & \quad \text{ s.t. } \\
\beta \geq r(i) + (\hat{x}_{jV})^T [Dw + r(i)] + c_j & \quad \text{ for } \beta \in R^1
\end{align*}
\]
Numerical results have shown that the quality of the bounds is not greatly degraded with the above MILP as might happen if GBD is applied to (P).

Handling of equalities. For the case when linear equalities of the form \(h(x, y) = 0 \) are added to (P), there is no major difficulty since these are invariant to the linearization points. If the equations are nonlinear, however, there are two difficulties. First, it is not possible to enforce the linearized equalities at \(K \) points. Second, the nonlinear equations may generally introduce nonconvexities, unless they relax as convex inequalities (see Bazata, Sherali, & Shetty, 1994). Kocis and Grossmann (1987) proposed an equality

\[
\begin{align*}
\text{Min } \sum_{k=1}^{K} (a_k x^k + b_k y^k) \\
x \leq 0
\end{align*}
\]

relaxation strategy in which the nonlinear equalities are replaced by the inequalities,

\[
T^k \nabla h(x^k, y^k)^T [x - x^k]
\]

where and \(T^k = \{ \lambda^k_i \} \), and \(\lambda^k_i = \text{sign}(\lambda^k_i) \) in which \(\lambda^k_i \) is the multiplier associated to the equation \(h_i(x, y) = 0 \). Note that if these equations relax as the inequalities \(h(x, y) \leq 0 \) for all \(y \), and \(h(x, y) \) is convex, this is a rigorous procedure. Otherwise, nonvalid supports may be generated. Also, note that in the master problem of GBD, (RM-GBD), no special provision is required to handle equations since these are simply included in the Lagrangian cuts. However, similar difficulties as in OA arise if the equations do not relax as convex inequalities.

Handling of nonconvexities. When \(f(x, y) \) and \(g(x, y) \) are nonconvex in (P), or when nonlinear equalities, \(h(x, y) = 0 \) are present, two difficulties arise. First, the NLP subproblems \(\text{(NLP1)} \), (NLP2), \(\text{(NLPF)} \) may not have a unique local optimum. Second, the master problem \(\text{(M-MIP)} \) and its variants (e.g. M-MIEP, M-MIEQD, M-MIQP), do not guarantee a valid lower bound \(Z^K \) or a valid bounding representation with which the global optimum may be cut off. One possible approach to circumvent this problem is reformulation. This, however, is restricted to special cases, most notably in geometric programming constraints (polynomials) in which exponential transformations, \(u = \exp(x) \), can be applied for convexification.

One general solution approach for handling nonconvexities is to develop rigorous global optimization algorithms, that assume specific forms of the nonlinearities (e.g. bilinear, linear fractional, concave separable) as will be discussed in the Perspectives article. The other option for handling nonconvexities is to apply a heuristic strategy to try to reduce as much as possible the effect of nonconvexities. While not being rigorous, this requires much less computational effort. We will describe here an approach for reducing the effect of nonconvexities at the level of the MILP master problem. Viswanathan and Grossmann (1990) proposed to introduce slacks in the MILP master problem to reduce the likelihood of cutting-off feasible solutions. This master problem “augmented penalty/equality relaxation” (APER) has the form:

\[
\begin{align*}
\text{Min } & \sum_{k=1}^{K} [a_k x^k + b_k y^k] \\
\text{s.t.} & \quad T^k \nabla h(x^k, y^k)^T [x - x^k]
\]

where \(u^i, w^i \) are weights that are chosen sufficiently large (e.g. 1000 times magnitude of Lagrange multiplier). Note that if the functions are convex then the MILP master problem (M-APER) predicts rigorous lower bounds to (P) since all the slacks are set to zero.

It should also be noted that another modification to reduce the undesirable effects of nonconvexities in the master problem is to apply global convexity tests followed by a suitable validation of linearizations. One possibility is to apply the tests to all linearizations with respect to the current solution vector \((x^F, x^R) \) (Grossmann & Kravanja, 1997).

3.4 Computer codes for MINLP

The number of computer codes for solving MINLP problems is still rather small. The program DICOPT (Viswanathan & Grossmann, 1990) is an MINLP solver that is available in the modeling system GAMS (Brooke et al., 1998). The code is based on the master problem (M-APER) and the NLP subproblems (NLPS). This code also uses the relaxed (NLPS) to generate the first linearization for the above master problem, with which the user need not specify an initial integer value. Also, since bounding properties of (M-APER) cannot be guaranteed, the search for nonconvex problems is terminated when there is no further improvement in the feasible NLP subproblems. This is a heuristic that works reasonably well in many problems. Codes that implement the branch-and-bound method using subproblems (NLPS) include the code MINLP_BB that is based on an SQP algorithm (Leyffer, 2001) and is available in AMPL, the code BARON (Sahinidis, 1996) that also implements global optimization capabilities, and the code
SBB which is available in GAMS (Brooke et al., 1998). The code α-ECP implements the extended cutting plane method by Westerlund and Pettersson (1995), including the extension by Pörn and Westerlund (2000). Finally, the code MINOPT (Schweiger & Floudas, 1998) also implements the OA and GBD methods, and applies them to mixed-integer dynamic optimization problems. It is difficult to make general remarks on the efficiency and reliability of all these codes and their corresponding methods since no systematic comparison has been made. However, one might anticipate that branch and bound codes are likely to perform better if the relaxation of the MINLP is tight. Decomposition methods based on OA are likely to perform better if the NLP subproblems are relatively expensive to solve, while GBD can perform with some efficiency if the MINLP is tight, and there are many discrete variables. ECP methods tend to perform well on mostly linear problems.

4. Dynamic optimization

4.1. DAE optimization—problem statement

Interest in dynamic simulation and optimization of chemical processes has increased significantly during the last two decades. Chemical processes are modeled dynamically using DAEs, consisting of differential equations that describe the dynamic behavior of the system, such as mass and energy balances, and algebraic equations that ensure physical and thermodynamic relations. Typical applications include control and scheduling of batch processes; startup, upset, shutdown and transient analysis; safety studies and the evaluation of control schemes. We state a general differential-algebraic optimization problem (DAOP) as follows:

$$
\begin{align*}
\text{Min } \Phi(z(t); y(t); u(t); t; p) &= 0, \ z(0) = z_0 \\
F(z, y, u, p, t) &= 0 \\
G_j(z(t); y(t); u(t); t; p) &= 0 \\
\frac{\delta F(z, y, u, p, t)}{\delta z} &= 0 \\
\frac{\delta F(z, y, u, p, t)}{\delta y} &= 0 \\
\frac{\delta F(z, y, u, p, t)}{\delta u} &= 0 \\
\frac{\delta F(z, y, u, p, t)}{\delta p} &= 0 \\
\frac{\delta F(z, y, u, p, t)}{\delta t} &= 0
\end{align*}
$$

(DAOP)

where Φ is a scalar objective function at final time, t_f, F are DAE constraints, G_j are additional point conditions at times t_j, z's are differential state profile vectors, y's are algebraic state profile vectors, u's are control state profile vectors and p is a time-independent parameter vector.

We assume, without loss of generality, that the index of the DAE system is one, consistent initial conditions are available and that the objective function is in the Mayer form. Otherwise, it is easy to reformulate problems to this form. Problem (DAOP) can be solved either by the variational approach or by applying some level of discretization that converts the original continuous time problem into a discrete problem.

Early solution strategies, known as indirect methods, were focused on solving the classical variational conditions for optimality. On the other hand, methods that discretize the original continuous time formulation can be divided into two categories, according to the level of discretization. Here, we distinguish between the methods that discretize only the control profiles (partial discretization) and those that discretize the state and control profiles (full discretization). Basically, the partially discretized problem can be solved either by dynamic programming or by applying a nonlinear programming (NLP) strategy (direct-sequential). A basic characteristic of these methods is that a feasible solution of the DAE system, for given control values, is obtained by integration at every iteration of the NLP solver. The main advantage of these approaches is that, for the NLP solver, they generate smaller discrete problems than full discretization methods.

Methods that fully discretize the continuous time problem also apply NLP strategies to solve the discrete system and are known as direct-simultaneous methods. These methods can use different NLP and discretization techniques but the basic characteristic is that they solve the DAE system only once, at the optimum. In addition, they have better stability properties than partial discretization methods, especially in the presence of unstable dynamic modes. On the other hand, the discrete problem is larger and requires large-scale NLP solvers.

With this classification we take into account the degree of discretization used by the different methods. Below we briefly present the description of the variational methods, followed by methods that partially discretize the dynamic optimization problem, and finally we consider full discretization methods for problem (DAOP).

4.2. Variational methods

These methods are based on the solution of the first order necessary conditions for optimality that are obtained from Pontryagin’s Maximum Principle (Pontryagin, Boltyanskii, Gamkrelidze, & Mishchenko, 1962). If we consider a version of (DAOP) without bounds, the optimality conditions are formulated as a set of DAEs:

$$
\frac{\delta F(z, y, u, p, t)}{\delta z} = 0
$$

(VCa)

$$
F(z, y, u, p, t) = 0
$$

(VCb)
G_l(z, y, u, p, t_0) = 0 \quad \text{(VCc)}
G_k(z, y, u, p, t_L) = 0 \quad \text{(VCd)}
\frac{\partial H}{\partial y} = \frac{\partial F(z, y, u, p, t)}{\partial y} \lambda = 0 \quad \text{(VCe)}
\frac{\partial H}{\partial u} = \frac{\partial F(z, y, u, p, t)}{\partial u} \lambda = 0 \quad \text{(V Cf)}
\int_0^T \frac{\partial F(z, y, u, p, t)}{\partial p} \lambda \, dt = 0 \quad \text{(VCg)}

where the Hamiltonian, H, is a scalar function of the form
H(t) = F(z, y, u, p, t)\lambda(t) and \lambda(t) is a vector of adjoint variables. Boundary and jump conditions for the adjoint variables are given by:

\frac{\partial F}{\partial z} \nu_1 + \frac{\partial G}{\partial z} \nu_1 = 0
\frac{\partial F}{\partial z} \nu_0 + \frac{\partial G}{\partial z} \nu_0 = \frac{\partial F}{\partial t}(z_0)

where \nu_1, \nu_0 are the multipliers associated with the final time and point constraints, respectively. The most expensive step lies in obtaining a solution to this boundary value problem. Normally, the state variables are given as initial conditions and the adjoint variables as final conditions. This formulation leads to boundary value problems (BVPs) that can be solved by a number of standard methods including single shooting, invariant embedding, multiple shooting or some discretization method such as collocation on finite elements or finite differences. Also the point conditions lead to an additional calculation loop to determine the multipliers \nu_1 and \nu_0. On the other hand, when bound constraints are considered, the above conditions are augmented with additional multipliers and associated complementarity conditions. Solving the resulting system leads to a combinatorial problem that is prohibitively expensive except for small problems.

4.3. Partial discretization

These strategies consider a discretization of the control profile u(t) in (DAOP). Two strategies are usually considered, one based on dynamic programming and the other based on nonlinear programming.

4.3.1. Dynamic programming

Iterative dynamic programming (IDP) for the solution of dynamic optimization problems has been limited to small problems. However, this approach can be made efficient (Bojko & Luus, 1992; Luus, 1993) by allowing a coarse solution grid, which in some cases can be accurate enough to represent a solution to (DAOP). Although the IDP algorithm is slower than most gradient-based algorithms, it can be useful to crosscheck results of relatively small problems and it may avoid local solutions. Here the probability of obtaining the global optimum is usually high if the grid is well chosen (Dadebo & McAuley, 1995). For these techniques the time horizon is divided into P time stages, each of length L. Then, the control variables are usually represented as piecewise constant or piecewise linear functions in each interval.

The functions in each interval \([t_k, t_{k+1}] \), usually take the form:
\[u(t) = u_k + ((u_{k+1} - u_k)/(t_{k+1} - t_k)) \cdot (t - t_k) \]
where \(u_k \) and \(u_{k+1} \) are the values of \(u \) at \(t_k \) and \(t_{k+1} \), respectively. The dynamic optimization problem is to find \(u_i \), \(i = 1, \ldots, P \) that minimize a given objective function. The basic search algorithm mimics the classical dynamic programming algorithm starting at the last stage with a discrete set of control values. For a set of input states, the best control is chosen at each stage and the algorithm proceeds forward to a previous stage. Once all of the stages are considered, the discrete set of control values is narrowed around the best set of values and the process repeats. More details of this approach can be found in (Dadebo & McAuley, 1995; Luus, 1993). The IDP algorithm works well when the dynamic optimization problem does not include bounds on state variables. In order to include such bounds, a penalty term has to be added into the objective function to penalize the constraint violation. This can be done by adding a state variable for each inequality that measures the constraint violation over time (Mekaraprun & Luus, 1997) or by computing the constraint violation at given points in time (Dadebo & McAuley, 1995).

4.3.2. Direct sequential methods

With partial discretization methods (also called sequential methods or control vector parameterization), only the control variables are discretized. Given the initial conditions and a given set of control parameters, the DAE system is solved with a differential algebraic equation solver at each iteration. This produces the value of the objective function, which is used by a NLP solver to find the optimal parameters in the control parameterization, \(v \). The sequential method is reliable when the system contains only stable modes. If this is not the case, finding a feasible solution for a given set of control parameters can be difficult. The time horizon is divided into time stages and at each stage the control variables are represented with a piecewise constant, a piecewise linear or a polygonal approximation (Fechey & Barton, 1998; Vassiliadis, 1993). A common practice is to represent the controls as a set of Lagrange interpolation polynomials.

For the NLP solver, gradients of the objective and constraint functions with respect to the control parameters can be calculated with the sensitivity equations of the DAE system, given by

\[\frac{\partial F^T}{\partial z} s_k + \frac{\partial F^T}{\partial y} w_k + \frac{\partial F^T}{\partial q} q_k = 0 \]

\[s_k(t) = \frac{\partial c(t)}{\partial q_k}, \quad w_k(t) = \frac{\partial y(t)}{\partial q_k} \quad \text{and} \quad q^T = [p^T, v^T] \]

As can be inferred from (SE), the cost of obtaining
these sensitivities is directly proportional to N_q, the number of
decision variables in the NLP. Alternately, gradients can be
obtained by integration of the adjoint equations (V_C, V_E, V_B) (Bryson & Ho, 1969; Hasdorff, 1976; Sargent & Sullivan, 1979) at a cost independent of the number of in-
put variables and proportional to the number of constraints
in the NLP.

The methods that are based on this approach cannot treat
directly the bounds on state variables because the state
variables are not included in the nonlinear programming
problem. Instead, most of the techniques for dealing with
inequality path constraints rely on defining a measure of the
constraint violation over the entire horizon, and then penal-
izing it in the objective function, or forcing it directly to
zero through an end-point constraint (Vassiliadis, Sargent,
&Pantelides, 1994). Other techniques approximate the
constraint satisfaction by introducing an exact penalty func-
tion (Bloss, Biegler & Schiesser, 1999; Sargent & Sullivan,
1979) or a Kreisselmeier–Steinhauser function (Bloss et al.,
1999) into the problem.

Finally, initial value solvers that handle path constraints
directly have been developed in Fechter and Barton (1998).
The main idea is to use an algorithm for constrained dynamic
simulation so that any admissible combination of the control
parameters produces an initial value problem that is feasible
with respect to the path constraints. The algorithm proceeds
by detecting activation and deactivation of the constraints
during the solution, and solving the resulting high-index
DAE system and their related sensitivities.

4.4. Full discretization

Full discretization methods explicitly discretize all the
variables of the DAE system and generate a large scale non-
linear programming problem that is usually solved with
a successive quadratic programming (SQP) algorithm. These
methods follow a simultaneous approach (or infeasible path
approach): that is, the DAE system is not solved at every
iteration, it is only solved at the optimum point. Because of
the size of the problem, special decomposition strategies are
used to solve the NLP efficiently. Despite this characteristic,
the simultaneous approach has advantages for problems with
state variable (or path) constraints and for systems where in-
stabilities occur for a range of inputs. In addition, the simul-
taneous approach can avoid intermediate solutions that may
not exist, are difficult to obtain, or require excessive com-
p utational effort. There are mainly two different approaches
to discretize the state variables explicitly, multiple shooting
(Bock & Plitt, 1984; Leineweber et al., 1997) and collocation
on finite elements (Bettis, 2001; Biegler, Cervantes, & Wächter, 2002; Cuthrell & Biegler, 1987).

4.4.1. Multiple shooting

With multiple shooting, time is discretized into P stages
and control variables are parameterized using a finite set of
control parameters in each stage, as with partial discretiza-
tion. The DAE system is solved on each stage, $i = 1, \ldots, P$
and the values of the state variables $\dot{z}(i)$ are chosen as ad-
ditional unknowns. In this way a set of relaxed, decoupled
initial value problems (IVP) is obtained, as follows:

$$\dot{f}(\dot{z}, \ddot{z} (t); y(t); u; p) = 0, \quad t \in [t_i, t_{i+1}], \quad \dot{z}(t_{i+1}) = z_i,$$

$$z_{i+1} - z(f(t; z_i; u; p) = 0, \quad i = 1, \ldots, P - 1$$

Note that continuity between stages is treated through equal-
ity constraints, so that the final solution satisfies the DAE
system. With this approach, inequality constraints for states
and controls can be imposed directly at the grid points, but
path constraints for the states may not be satisfied between
grid points. This problem can be avoided by applying penalty
techniques to enforce feasibility, like the ones used in the
sequential methods.

The resulting NLP is solved using SQP-type methods, as
described above. At each SQP iteration, the DAEs are inte-
grated in each stage and objective and constraint gradients
with respect to p, z_i and u_i are obtained using sensitivity
equations, as in (SE). Compared to sequential methods, the
NLP contains many more variables but efficient decompos-
sitions have been proposed (Leineweber et al., 1997) and
many of these calculations can be performed in parallel.

4.4.2. Collocation methods

In this formulation, the continuous time problem is con-
verted into an NLP by approximating the profiles as a family
of polynomials on finite elements. Various polynomial rep-
resentations are used in the literature, including Lagrange
interpolation polynomials for the differential and algebraic
profiles (see Cuthrell & Biegler, 1987). In Bettis (2001), a
Hermite–Simpson collocation form is used while Cervantes
and Biegler (1998) and Tanartkit and Biegler (1995) use a
monomial basis representation (Bader & Ascher, 1987) for
the differential profiles. All of these representations stem
from implicit Runge–Kutta formulae and the monomial repre-
sentation is recommended because of smaller condition
numbers and smaller rounding errors. On the other hand,
control and algebraic profiles are approximated using La-
grange polynomials.

Discretizations of (DAOP) using collocation formulations
lead to the largest NLP problems but these can be solved
efficiently using large-scale NLP solvers, such as IPOPT
and by exploiting the structure of the collocation equations.
Biegler et al. (2002) provide a review of dynamic optimiza-
tion methods using simultaneous methods. These methods
offer a number of advantages for challenging dynamic opti-
mization problems, including:

- Control variables can be discretized at the same level of
 accuracy as the differential and algebraic state vari-
 ables. Finite elements allow for discontinuities in control
 profiles.
- Collocation formulations allow problems with unstable
 modes to be handled in an efficient and well-conditioned
 manner. The NLP formulation inherits stability properties
of boundary value solvers. Moreover, an element-wise decomposition has been developed that pins down unstable modes in (DAOP).

- Collocation formulations have been proposed with moving finite elements. This allows the placement of elements both for accurate breakpoint locations of control profiles as well as accurate DAE solutions.

Dynamic optimization using collocation methods has been used for a number of process applications including batch process optimization (Bhatia & Biegler, 1996), nonlinear model predictive control (Albuquerque et al., 1997), and grade transitions and process changeovers (Cervantes, Tonelli, Brandolin, Bandoli, & Biegler, 2002) and reactor design and synthesis (Lakshmanan, Rooney, & Biegler, 2000; terapetrizou, 2001).

4.5. Extensions for dynamic optimization

Here, we briefly summarize a few issues that emerge for dynamic optimization. These extend the methods presented so far to larger and more challenging applications and include discrete decisions, the treatment of multistage dynamic systems and fundamental questions on the accuracy of discretized optimal control problems.

4.5.1. Discrete decisions in dynamic optimization

Along with the DAE models described in (2) and (3), it becomes important to consider the modeling of discrete events in many dynamic simulation and optimization problems. In chemical processes, examples of this phenomena include phase changes in vapor-liquid equilibrium systems, changes in modes in the operation of safety and relief valves, vessels running dry or overflowing, discrete decisions made by control systems and explosions due to accidents. These actions can be reversible or irreversible with the state profiles and should be modeled with appropriate logical constraints. An interesting presentation on modeling discrete events can be found in Allgor and Barton (1999). The simulation of these events is often triggered by an appropriate discontinuity function which monitors a change in the condition and leads to a change in the state equations. These changes can be reformulated either by using complementarity conditions (with positive continuous variables x and y alternately set to zero) or as binary decision variables (Barton & Park, 1997). These additional variables can then be embedded within optimization problems. Here complementarity conditions can be reformulated through barrier methods (Raghunathan & Biegler, 2002) to yield an NLP while the incorporation of integer variables leads to mixed-integer optimization problems.

For the latter case, several studies have considered the solution of mixed-integer dynamic optimization (MIDO) problems. In particular, Avraam, Shah, and Pantelides (1998) developed a complete discretization of the state and control variables to form a MINLP. On the other hand, Allgor and Barton (1999) apply a sequential strategy and discretize only the control profile. In this case, careful attention is paid to the calculation of sensitivity information across discrete decisions that are triggered in time.

4.5.2. Multistage applications

The ability to solve large dynamic optimization problems and to model discrete decisions allows the integration of multiple dynamic systems for design and analysis. Here, different dynamic stages of operation can be considered with individual models for each dynamic stage. Multistage applications in process engineering include startups and transients in dynamic systems with different modes of operation, design and operation of periodic processes with different models (e.g., adsorption, regeneration, pressurization, in a dynamic cycle (Nilchan & Pantelides, 1998)), synthesis of chemical reactor networks (Lakshmanan & Biegler, 1995), changes in physical phenomena due to discrete changes (as seen above) and multiproduct and multiperiod batch plants where scheduling and dynamics need to be combined and different sequences and dynamic operations need to be optimized. For these applications each stage is described by separate state variables and models as in equations (2) and (3). These stages include an overall objective function with parameters linking among stages and control profiles that are manipulated within each stage. Moreover, multistage models need to incorporate transitions between dynamic stages. These can include logical conditions and transitions to multiple models for different operation. Moreover, the DAE models for each stage require consistent initializations across profile discontinuities, triggered by discrete decisions.

The solution of multistage optimization problems has been considered in a number of recent studies. Bhatia and Biegler (1996) consider the simultaneous design, operation and scheduling of a multiproduct batch plant by solving a large NLP. More recently, multistage problems have been considered as mixed-integer problems using sequential strategies as well as simultaneous strategies. These applications only represent the initial stages of dynamic systems modeling, in order to deal with an integrated analysis and optimization of large scale process models. With the development of more efficient decomposition and solution strategies for dynamic optimization, much more challenging and diverse multistage applications will continue to be considered.

4.5.3. Improved formulations for dynamic optimization

For optimal control problems where control variables are discretized at the same level as the state variables, there are a number of open questions related to convergence of the solution of the original variational problem. A number of studies have shown (e.g., Cuthrell & Biegler, 1989; Polak, 1997; Reddien, 1979; Schwartz, 1996) that the KKT conditions of the simultaneous NLP can be made consistent with the optimality conditions of the variational problem. Nevertheless, these consistency properties do not guarantee conver-
5. Optimization under uncertainty

All the previous optimization problems that we have reviewed are deterministic in nature. However, as one might expect, there is often significant uncertainty in applications of optimization in the real world. Failure to account for the uncertainty of key parameters (e.g., technical coefficients, product demands) has the drawback that the solution of deterministic models can lead to non-optimal or infeasible decisions. This, however, does not mean that deterministic models are not useful. In fact, as will be seen, they are used as a basis in virtually any stochastic optimization method, or methods for flexibility analysis.

Considerable theoretical work has been reported in the literature on the formulation and solution of linear stochastic optimization problems (see reviews by Birge, 1992; Dantzig, 1987; Forrest, 1980; Dantzig, 1987; Rosen, 1963; Wets, 1966), but left questions concerning the solution to the general problem largely unanswered. Since the certainty equivalent LP, expanded to multi-stage as needed, is intractably large for all but the smallest problems (see Dantzig, 1987 for discussion of exponential expansion), current solution methods use Benders-based decomposition strategies (Benders, 1962; Geoffrion, 1972; Van Slyke and Wets, 1969). See Dantzig (1987) or Birge (1982a) for a discussion of the general multi-stage stochastic LP formulations. Comprehensive reviews of theory and solution practices are provided in the collections edited by Dempster (1980) and Ermoliev and Wets (1988). Spurred in part by the expansion in computing power, recent progress has been made in solving the two-stage stochastic linear programming problem using Benders-based schemes (see e.g., Dantzig & Glynn, 1989; Gassmann, 1990; Infanger, 1991; Wets, 1983; Wets, 1989). Extension to multi-stage problems via nested decomposition methods is conceptually straightforward. The multi-stage problem however remains intractable due to computational expense, arising from the nested structure of the problem and resultant exponential growth in the number of subproblems (see Birge, 1982a; Dantzig, 1987; Dempster, 1980; Gassmann, 1990; Louveaux, 1986). While a few specialized problems have been addressed (see Beale, Forrest, & Taylor, 1980; Bienstock and Shapiro, 1985; Dantzig, 1987; Kureman, 1963), general multi-stage linear programming problems remain computationally intractable. Multi-stage solution methods generally rely on nested decomposition strategies which involve solving series of two-stage subproblems (Birge, 1982a; Ermoliev & Wets, 1988; Gassmann, 1990). Hence, advances in the solution to two-stage models are applicable toward improving multi-stage solution methods. Conceptually the extension to nonlinear stochastic problems is similar as in the linear case. The extension to stochastic mixed-integer problems is considerably more difficult (see Sahinidis, 2003).

5.1. Process flexibility

In contrast to the stochastic optimization approach, considerable effort has been devoted in process systems engineering over the last 25 years to developing methods for evaluating and optimizing flexibility. The major goal has been to address nonlinear optimization problems under uncertainty, particularly design problems (see Grossmann &
where a common description of T is $T = \{ \theta^I \leq \theta \leq \theta^F \}$, where θ^I, θ^F are lower and upper bounds, respectively. Other descriptions of T such as hypercircles or hyper-ellipsoids can also be easily used.

The more general problem of quantifying flexibility, also known as the flexibility index problem (F3), is to determine the maximum deviation Δ that a given design d can tolerate, such that every point θ in the uncertain parameter space, $T(\theta)$, is feasible. The most common choice is the hyper-rectangle parametric in δ, $T(\delta) = \{ \theta^I + \delta \Delta \theta^I \leq \theta \leq \theta^F + \delta \Delta \theta^F \}$, where $\Delta \theta^I$ and $\Delta \theta^F$ are the expected deviations of uncertain parameters in the positive and negative direction. Other descriptions of $T(\delta)$, such as the parametric hyper-ellipsoid, are also possible (see Rooney & Biegler, 1999).

As shown by Swaney and Grossmann (1985a), the flexibility index can be determined from the formulation,

$$ F = \max \delta \text{ s.t. } \begin{cases} \max_{T(\delta)} \psi(\theta, d) \leq 0 \\ \delta \geq 0, \delta \in \mathbb{R}^1 \end{cases} \quad (F3) $$

As seen from the implicit form of the projected feasibility function $\psi(\theta, d)$, problem (F3) cannot be directly solved unless ψ is determined. The simplest way around this problem (see Swaney & Grossmann, 1985b) is to determine the flexibility index in (F3) by vertex enumeration search in which the maximum displacement is computed along each vertex direction, thus avoiding the explicit construction of ψ. This vertex enumeration scheme relies on the assumption that the critical points $\theta^* \in A$ are the vertices of $T(\Delta \theta^*)$, which is valid for the case of a linear model and in general only if certain convexity conditions hold. The drawback with this approach, however, is that it requires the solution of 2$^n \theta$ optimization problems, and therefore, it scales exponentially with the number of uncertain parameters.

An alternative method for evaluating the flexibility index that does not rely on the assumption that critical points correspond to vertices, is the active set strategy by Grossmann and Floudas (1987). In this method the key idea is that the feasible region projected into the space of d and θ, can be expressed in terms of active sets of constraints $f_j(z, \theta, d) = u_j, j \in J_h, \theta \in \mathbb{R}^1$, where δ_{AS} is the number of possible active sets of f_j. These active sets are defined by all subsets of non-zero multipliers that satisfy the Kuhn–Tucker conditions of (F1):

$$ \sum_{j \in J_h} \delta_{j \theta} = 1$$
$$ \sum_{j \in J_h} \delta_{j \theta} \frac{\partial f_j}{\partial \theta} = 0$$

By reformulating problem (F3) for evaluating the flexibility index, and using the above equations with 0-1 variables for the complementarity conditions and slacks, we get a mixed integer optimization problem that can explicitly solve (F3) without having to find a priori all the active sets.
they involve the selection of the stage 1 variables
ables. (Johns, Marketos, & Rippin, 1976; Malik & Hughes, 1979)
multiobjective optimization problem. as given by (F3), where the latter problem gives rise to a
design variables) so as to minimize cost and either (a) satisfy
tribution functions, is given by
parameters has considered the effect of the continuous uncertain param-
approach is to assign penalties for the violation of
le during stage 2 during which the control variables
reason the above also requires a two-stage strategy is
problems under uncertainty
they involve the selection of the stage 1 variables \(d\) (i.e. design variables) so as to minimize cost and either (a) satisfy the
flexibility test (F2), or (b) maximize the flexibility index
parameters \(\theta\) for the design optimization through the minimization
of the expected value of the cost using a two-stage strategy,
position in the optimal design of flexible chemical plants
proposed an alternative method for the two-stage problem that sim-
tifies the evaluation of flexibility.
Stochastic approaches for the evaluation of flexibility rely on
the idea of using joint probability distribution functions,
problems beyond linear programming was often viewed as a
curiosity without much benefit. Now optimization
paradigms and extensions for MINLPs. Related to these two approaches is opti-
mization with differential algebraic models. Over the past
decade these challenging problems have been considered more frequently in the process industries through sequen-
tial and simultaneous methods. Finally, we survey methods
to deal with the essential problem of optimization under
uncertainty.

\[
F = \min_{d, \theta} \sum_{k=1}^{K} w_k \theta^k \]
\[
f(d, z, \theta) + s_j = 0, \; j \in J
\]
\[
\sum_{j=1}^{|J|} \lambda_j s_j = 1
\]
\[
\sum_{j=1}^{|J|} \delta f_j = 0
\]
s.t.
\[
j_j - U(1 - s_j) \geq 0, \; j \in J
\]
\[
\lambda_j \geq 0, \; j \in J
\]
\[
\theta \in \Theta
\]

This model (ASF) gives rise to an MINLP problem (or MILP if all constraints are linear) with \(n_i = \text{card}(|J|)\) binary vari-

As for nonlinear optimization problems under uncertainty
they involve the selection of the stage 1 variables \(d\) (i.e. design variables) so as to minimize cost and either (a) satisfy the
flexibility test (F2), or (b) maximize the flexibility index
as given by (F3), where the latter problem gives rise to a
multiplicative optimization problem.

Most of the previous work in design under uncertainty
\(\theta\) for the design optimization through the minimization
of the expected value of the cost using a two-stage strategy,
similar as the one in problem (SLP), but for continuous dis-
tribution functions, is given by

\[
\min_{d, \theta} \mathbb{E}_{\theta}[\min \{ C(d, z, \theta) \} | f(d, z, \theta) \leq 0] \quad \text{(SNLP)}
\]

The reason the above also requires a two-stage strategy is
because the design variables \(d\) are chosen in stage 1 and re-
main fixed during stage 2 during which the control variables
\(z\) are adjusted depending on the realizations of the param-
eters \(\theta\). In order to handle infeasibilities in the inner minimiza-
tion, one approach is to assign penalties for the violation of
constraints (e.g. \(C(d, z, \theta) = C\) if \(f(d, z, \theta) > 0\). The other
approach is to enforce feasibility for a specified flexibility
index \(F\) (e.g. see Halemane and Grossmann, 1993) through
the parameter set \(T(F) = [\theta^0 - F^\delta, \theta^0 + F^\delta]\).
In this case (SNLP) is formulated as

\[
\min_{d, \theta} \mathbb{E}_{\theta}[\min \{ C(d, z, \theta) \} | f(d, z, \theta) \leq 0] \quad \text{(SNLPF)}
\]

A particular case of (SNLP) occurs when only a discrete set
of points \(\theta^k, k = 1, \ldots, K\) are specified which then gives
rise to the optimal design problem.

\[
\min_{d, z^k, \theta^k} \sum_{k=1}^{K} w_k C(d, z^k, \theta^k) \quad \text{(DSNLP)}
\]
s.t.
\[
f(d, z^k, \theta^k) \leq 0, \; k = 1, \ldots, K
\]

where \(w_k\) are weights that are assigned to each point \(\theta^k\), and
\(\sum_{k=1}^{K} w_k = 1\).

Problem (DSNLP) can be interpreted as problem under
uncertainty with discrete probabilities, which is also
equivalent to a multiperiod problem, which is also of great
importance in the optimal design of flexible chemical plants
(see Grossmann & Sargent, 1979; Varvarigos, Grossmann
& Biegler, 1992, 1993). As shown by Grossmann
and Sargent (1978) problem (DSNLP) can also be used to ap-
proximate the solution of (SNLP). This is accomplished
by selecting an initial set of points \(\theta^0\), solving problem
(DSNLP) and verifying its feasibility over \(T(F)\) by solving
problem (F2) or (F3). If the design is feasible the procedure
terminates. Otherwise the critical point obtained from the
flexibility evaluation is included to the set of \(K\) points and
the solution of (DSNLP) is repeated. Computational experi-
ence has shown that commonly one or two major iterations
must be performed to achieve feasibility with this method.
Ostrovsky, Volin, and Senyavinj (1997) has proposed a
alternative method for the two-stage problem that simplifies
the evaluation of flexibility.

Stochastic approaches for the evaluation of flexibility rely on
the idea of using joint probability distribution functions,
which are integrated over the feasible region in order to
determine the probability that constraints be satisfied given
that control variables can be manipulated (e.g. Straub
& Grossmann, 1993; Pistikopoulos & Mazzuchi, 1990). For
a recent review of stochastic flexibility see Pistikopoulos
(2002).

6. Summary and conclusions

Research in the formulation, solution and analysis of
mathematical programs has grown tremendously over the
past 25 years. In 1980, optimization on engineering prob-
lems beyond linear programming was often viewed as a
curiosity without much benefit. Now optimization
analyses are essential in all areas of process systems
engineering including design, identification, control, esti-
mation, scheduling and planning. This paper offers a ret-
rospective on relevant optimization methods that have been
developed and applied over the past 25 years and reviews
four broad areas. First, we deal with methods for contin-
uous variable optimization and survey advances in non-
linear programming methods with and without derivative
evaluations. Next we consider mixed-integer programming
methods and cover a family of algorithms and extensions
for MINLPs. Related to these two approaches is opti-
mization with differential algebraic models. Over the past
decade these challenging problems have been considered
more frequently in the process industries through sequen-
tial and simultaneous methods. Finally, we survey methods
to deal with the essential problem of optimization under
uncertainty.
References

