Available online at www.sciencedirect.com

iencE (oimecT: Computers
N @ & Chemical

Engineering

www.elsevier.com/locate/compchemeng

ELS ER Computers and Chemical Engineering 28 (2004) 1169-1192

Retrospective on optimization

Lorenz T. Bieglet, Ignacio E. Grossmann

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

Abstract

In this paper, we provide a general classification of mathematical optimization problems, followed by a matrix of applications that shows the
areas in which these problems have been typically applied in process systems engineering. We then provide a review of solution methods of the
major types of optimization problems for continuous and discrete variable optimization, particularly nonlinear and mixed-integer nonlinear
programming (MINLP). We also review their extensions to dynamic optimization and optimization under uncertainty. While these areas are
still subject to significant research efforts, the emphasis in this paper is on major developments that have taken place over the last 25 years.
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1. Introduction (LP) and NLP. An important subclass of LP is the linear com-
plementarity problem (LCP), while for the NLP it includes
When the two authors were asked to provide retrospective quadratic programming (QP) and semidefinite programming
and perspective articles in the area of optimization, we de- (Sp). For the latter, an important distinction is also whether
cided that writing the two papers jointly would offer a better the NLP problem is convex or nonconvex, since the latter
fit, given the breadth of the optimization area and our com- may give rise to multiple local optima. Another important
plementary interests. Our objective in this first paper is to distinction is whether the problem is assumed to be differ-
provide a general review on optimization, emphasizing the entiable or not. As for discrete problems, they are first clas-
strategies that have been applied or studied more extensivelysified into mixed-integer linear programming (MILP) and
namely, nonlinear programming (NLP), mixed-integer non- MINLP.
linear programming (MINLP), dynamic optimization, and  For the former an important particular case is when all
optimization under uncertainty. In the second paper we out- the variables are integer, which gives rise to an integer pro-
line future directions of research that are motivated by the gramming (IP) problem. This problem in turn can be classi-
current barriers and limitations that are being experienced. fied into many special problems (e.g. assignment, traveling
These include global and logic-based optimization, large- salesman, etc.), which we do not shovFig. 1 The MINLP
scale computation, and advanced scientific computation.  problem also gives rise to special problems, although here

Optimization has become a major enabling area in processthe main distinction, like in the NLP problem, is whether its
systems engineering. It has evolved from a methodology of relaxation is convex or nonconvex.

academic interest into a technology that has and continues to  Regarding their formulation, discrete/continuous opti-
make significant impact in industry. Before we discuss the mization problems when represented in algebraic form,

applications of Optimization, itis useful to present a classifi- Correspond to mixed-integer optimization prob|ems that
cation of problem types. It should be noted that this classifi- have the following general form:

cation is independent of the solution methods. As shown in

Fig. 1, optimization problems can first be classified in terms h(x,y) =0

of continuous and of discrete variables. The major problems minZ = f(x, y)st. { g(x,y) <0 (MIP)

for continuous optimization include linear programming xeX,yel{o 1"
* Corresponding author. Tekt 1-412-268-2232: wheref(x, y) i; the objective f.unction (e.g. costy(x,y) =0

fax: +1-412-268-7139. are the equations that describe the performance of the system
E-mail addressbiegler@cmu.edu (L.T. Biegler). (material balances, production rates), ajd, y) < 0 are

0098-1354/$ — see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compchemeng.2003.11.003



1170 L.T. Biegler, I.E. Grossmann/Computers and Chemical Engineering 28 (2004) 1169-1192

Optimization

LP, Qp,

MIP 6.0 LCP NLP
. Surrogate  SA,GA

MINLP
DFO

Fig. 1. Tree of classes of optimization problem.

inequalities that define the specifications or constraints for major reason for this is that in these problems there are often
feasible plans and schedules. The variaklage continuous  many alternative solutions, and hence, it is often not easy to
and generally correspond to state variables, whigge the find the optimal solution. Furthermore, in many cases, the
discrete variables, which generally are restricted to take 0—1economics is such that finding the optimum solution trans-
values to define for instance the assignments of equipmentlates into large savings. Therefore, there might be a large
and sequencing of tasks. Problem (MIP) corresponds to aeconomic penalty to just sticking to suboptimal solutions.
mixed-integer nonlinear program (MINLP) when any of the In summary, optimization has become a major technology
functions involved are nonlinear. If all functions are linear that helps companies to remain competitive.
it corresponds to a MILP. If there are no 0-1 variables, As for specific areas, process design problems tend to
the problem (MIP) reduces to a NLP or LP depending on give rise to NLP and MINLP problems, while scheduling
whether or not the functions are linear. and planning problems tend to give rise to LP and MILP
It should be noted that (MIP) problems, and their special problems. The reason for this is that design problems tend to
cases, may be regarded as steady-state models. Hence, orely more heavily on predictions of process models, which
important extension is the case of dynamic models, which are nonlinear, while in scheduling and planning the physical
in the case of discrete time models gives rise to multiperiod predictions tend to be less important, since most operations
optimization problems, while for the case of continuous are described through time requirements and activities. In
time it gives rise to optimal control problems that generally the case of process control the split is about even.
involve differential-algebraic equation (DAE) systems. An-  In Table 1 we indicate what specific types of models have
other important extension includes problems under uncer- been formulated for a number of applications in process sys-
tainty, which give rise to stochastic optimization problems. tems engineering. As seen Trable 1 design and synthe-
sis have been dominated by NLP and MINLP models due
1.1. Applications matrix to the need for the explicit handling of performance equa-
tions, although simpler targeting models give rise to LP and
Mathematical programming, and optimization in general, MILP problems. Operations problems, in contrast, tend to
have found extensive use in process systems engineering. Ae dominated by linear models, LP and MILP, for planning,

Table 1
Applications of mathematical programming in process systems engineering
LP MILP QP, LCP NLP MINLP Global SA/GA
Design and synthesis
HENS X X X X X X
MENS X X X X X X
Separations x x
Reactors X X X X
Equipment Design X X %
Flowsheeting X X
Operations
Scheduling X X X X
Supply chain X X X
Real-time optimization X X x
Control
Linear MPC X X
Nonlinear MPC X x

Hybrid X X X
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scheduling and supply chain problems. NLP, however, plays more rigorous (and expensive) search procedure is required
a crucial role at the level of real time optimization. Control to find a global solution.
has traditionally relied on LP and NLP models, although  Further specializations of the problem can be made if
MILPs are being increasingly used for hybrid systems. Fi- the constraint and objective functions satisfy certain proper-
nally, note that global optimization has concentrated more ties, and specialized algorithms can be constructed for these
on design than on operations problems, since nonconvexi-cases. In particular if the objective and constraint functions
ties in the design problems are more likely to yield subop- in (NLP) are linear then the following linear program:
timal solutions since the corresponding bounds for the vari-
ables are rather loose in these problems. It is also worth Min ¢T x st.
noting that the applications listed irable 1have been facil-
itated not only by progress in optimization algorithms, but
also by the advent of modeling techniqu®dl{iams, 1985
and systems such as GAMS8rpoke, Kendrick, Meeraus,
& Raman, 1998 and AMPL (Fourer, Gay, & Kernighan,
1992.

Several other papers in this special issue discuss appli-
cations of optimization in process engineering. Instead, this

paper will emphasize optimization methods and concepts 8Sand constraints and the application of further decomposi-

a core area for research in process systems engineering. Aﬁon methods leads to the solution of problems that are two

? rgqu_t, this rc(javlle\_/v serve? asa I(_:or?plement totge:alled OP-4r three orders of magnitude larger than this. Because these
|mlfad|9n n:rc: €IS In Spect ;ﬁ'app ica |(I)n?hareast a ?'re P methods are so widely known, further mention of the sim-
sented in other papers In this 1ssue. In the next section, Weplex method will not be described here (see the standard

pretshen(: afn overt\_/le_w (t)'f Ilnearbzlind nor_1tl;]near tprogrammmg referencesEdgar, Himmelblau, & Lasdon, 200Hillier &
methods for optimization problems with continuous vari- Lieberman, 1974or more details). Also, the interior point

ables, including simulated annealing (SA) and genetic algo- - : :
rithms (GA) Sgction %then extends ?o(miied—intgeger probg— method is described below from the perspective of more
T . . general nonlinear problems.

lems and provides a review of MINLP method&ection 4 : ; P

provides zfsurvey of methods for optimization problems Quadratic programs represent a slight modification of
) . ) . . . LP) and can be stated as

that include differential-algebraic equations éektion 5 (LP)

discusses optimization under uncertainty. Fingllgction 6

provides a summary and sets the stage for future work dis-

cussed in our companion Perspectives paper.

{ AX="b (LP)

Cx<d

can be solved in a finite number of steps. The standard
method to solve (LP) is the simplex method, developed in
the late 1940s (sePantzig, 1963, although interior point
methods have become quite advanced and competitive for
highly constrained problemsA(right, 1996. Methods to
solve (LP) are widespread and well implemented. Currently,
start of the art LP solvers can handle millions of variables

. 1 AX="b
Min ¢Tx + ExTst.t. { Cx<d (QP)

If the matrix Q is positive semi-definite (positive definite)
when projected into the null space of the active constraints,
2. Continuous variable optimization thgr) (QP) is. ('str.ictly) convex.and the (QP).has a .unique
minimum (minimizer). Otherwise, local solutions exist for
For continuous variable optimization we consider (MIP) (QP) and more extensive global optimization methods are
without discrete variableg. The general problem (NLP) is needed to obtain the global solution. Convex QPs can also

presented below: be solved in a finite number of steps. Here, a number of
active set strategies have been created that solve the KKT

Min f(x) st. h(x) =0 (NLP) conditions of the QP and incorporate efficient updates of
gx) =0 active constraints. Popular methods include null space algo-

o ) - rithms Gill, Murray, & Wright, 1981), range space methods
A key characteristic of problem (NLP) is whether itis convex 5.4 schur complement methods. As with LPs, QP problems
or not, i.e., it has a convex objective function and a convex ~,n also be solved with interior point methods (¥eeght
feasible region. Convex feasible regions reqe) to be 1996. Structures of large-scale QPs can be exploited quite

convex and(x) to be_line_ar% If (NLP) is a convex problem,  giciently with interior and Schur complement methods.
than any local solution is also a global solution to (NLP).

Moreover, if the objective function is strictly convex, this
solution is unique. On the other hand, the KKT conditions
can only satisfy local optimality for nonconvex problems

: : . . To introduce solution techniques for (NLP) we first con-
and, as discussed in our companion perspectives paper, a. ; . .
Sider solvers based on successive quadratic programming

(SQP) as they allow the construction of a number of NLP
L The functiong(x) is convex overr € X if: p(axy + (1— a)ra) < algorithms based on Newton steps. Moreover, these solvers
ap(x1) + (1 — a)¢p(x2) holds for alla € (0,1) and x1,x2 € X. Strict have been shown to require the fewest function evaluations
convexity requires that this inequality be strict. to solve NLPs Binder et al., 2001; Schittkowski, 198@nd

2.1. Solving the NLP problem
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they can be tailored to a broad range of process engineeringy(x*) + c(x*)Tp + s =0

problems with different structure.

SQP applies the equivalent of a Newton step to the KKT
conditions of the nonlinear programming problem and this
leads to a fast rate of convergence. An informal derivation
proceeds as follows. At a stationary point of (NLR), the
first-order KKT conditions for this problem are given by

V f(x*) + AL 4+ C(x*)v=0 (KKTa)
h(x*) =0 (KKTb)
g™ +s5s=0 (KKTc)
SVe=0 (KKTd)
(s,v) >0 (KKTe)
wheree = [1,1,...,1]", A is the multiplier vector of

the equalitiesy the multipliers of the inequalitiesi (x) =
Vh(x), C(x) = Vg(x), S = diag{s}, V = diag(v).

SQP methods find solutions that satisfy (KKT) by gener-
ating Newton-like search directions at iteratiorin general,
one can classify SQP methods by the following categories:

e Active set versus barrier methotts handle bounds and
inequality constraints in generating search directions.

e Second-order informatiorcan be provided in a num-
ber of ways and problem structure can be exploited for
Newton-like steps.

e Line search versus trust regionethods to enforce global
convergence of the SQP iterations.

2.1.1. Active set versus barrier methods
The complementarity conditions (KKTd and KKTe)
present a key difficulty in solving the KKT conditions as a

L.T. Biegler, I.E. Grossmann/Computers and Chemical Engineering 28 (2004) 1169-1192

(QPKKTC)
SVe=0 (QPKKTd)
(5,v) >0 (QPKKTe)

whereW(x, A, V) = V2(f(x) + h(x)TA + gx)Tv); A(xF) =
Vh(x¥) andC(x*) = Vg(x*) is the Hessian of the Lagrange
function. It is easy to show that ((QPKKTa)—(QPKKTCc))
correspond to a linearization of ((KKTa)-(KKTc)) at itera-
tion k. Also, selection of the active set is now handled at
the QP level in satisfying the conditions ((QPKKTd), (QP-
KKTe)). To evaluate and change candidate active sets, QP
algorithms apply inexpensive matrix updating strategies to
the KKT matrix associated with (SQP). Details of this ap-
proach can be found irF(etcher, 1987; Nocedal & Wright,
1999.

To avoid the combinatorial problem of selecting the ac-
tive set, barrier methods modify the NLP problem (1-3) to
form:

h(x¥y =0

gx*) +s=0 (1)

Min ¢(x*) — u) "Ins; st

where the solution to this problem has- 0 for the penalty
parametep. > 0, and decreasing to zero leads to solution
of problem (NLP). The KKT conditions for this problem
can be written as

Vo (x*) + A(x*)A + C(x*)v = 0
h(x*) =0

gx*)+s5s=0

SVe= e

(IPKKT)

set of equations. At the solution, the equations (KKTd) and and foru > 0, s > 0, andv > 0, Newton steps generated

active bounds (KKTe) are dependent and serve to make theto solve (IPKKT) are well-behaved and analogous to (QP-

KKT system ill-conditioned near the solution. SQP algo- KKT), with a modification on the right hand side of (QP-

rithms treat these conditions in two ways. In the active set KKTd). Moreover, if WK is positive definite in the null space

strategy, discrete decisions are made regarding the activeof A(x*)", the Newton step can be written as the following

constraint setj € I = {i|g;(x*) = 0}, (KKTd) is replaced QP subproblem:

bys; =0,i € I, andv; = 0,i ¢ I and determining the

active set is a combinatorial problem. A relatively inexpen- Min V()T p + %pTW(xk, A Vp

sive way to determir_1e an estimate of the a_lctive set (and (81T A5 + %AST(Sk)—l\/c As

also satisfy (KKTe)) is to formulate, at a poirf, and to X T

solve the quadratic programming (QP) problem at iteration ¢ h(x) + A ' p=0 (IPQP)

k, given by g6 +CeMTp+5s5+ As=0

Min Vo ()T p + 2 pT Wik, 2k v p
h(x*) + A Tp=0

wheres = s¥ + As. This QP can be further simplified if
the inequality constraints take the form of simple bounds.

18 ' T (SQP) Note that the complementarity conditions are now replaced
g0 +C(H) p+s=0520 by penalty terms in the objective function. The optimality
The KKT conditions of (SQP) are given by conditions for this QP can now be written as a set of linear
equations and the combinatorial problem of selecting the
Vo (k) + Wk, A5 VEyp + AF) active set disappears.
+COFWv=0 (QPKKTa) In comparing thesg approaches, both m'ethods possess
clear trade-offs. Barrier methods may require more itera-
heR) + A Tp=0 (QPKKTb) tions to solve (IP) for various values pf, while active set
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methods require the solution of a more expensive QP sub-and

problem (SQP). Thus, if there are few inequality constraints , ,. T T T 1,T,5T

or an active set is known (say from a good starting guess, orMde(Z a+ 2 QYa) d: + 3d; (2 QDd:. (ND)
the warm-start QP solution from a previous iteration) then With this decomposition, (RD) is often a sparse linear sys-
solving (SQP) is not expensive and the active set methodtem of equations of ordemc while (ND) has only fd —

is favored. On the other hand, for problems with many in- nc) variables. If there are only a few degrees of freedarh (
equality constraints, barrier methods are often faster, as they— nc), then the quantitiesZ{ Q2) and ZTQY)dy are inex-
avoid the combinatorial problem of selecting the active set. pensive to approximate with quasi-Newton update formulae
This is especially the case for large-scale problems when aand finite difference formulae, respectively. Moreover, a sta-
large number of bounds are active, as this approach elimi-bilized BFGS update approximation faZ(QZ2) leads to a
nates the necessity of choosing an active set. Examples thapositive definite reduced Hessian in (ND) and a unique so-
demonstrate the performance of these approaches includdution for the QP subproblem.

the solution of linear model predictive control (MPC) prob- Finally, for problems with quadratic objective functions,
lems Rao, Rawlings, & Wright, 1998and nonlinear MPC  as in data reconciliation, parameter estimation, and model
problems Albuquerque, Gopal, Staus, Biegler, & Ydstie, predictive control, one can often assume that the value of
1997 using interior point QP solvers, as well as the solu- the objective function and its gradient at the solution are
tion of large optimal control problems using barrier NLP vanishingly small. Under these conditions, one can show that
solvers. For instance, an efficient implementation of IPOPT the multipliers §, v) also vanish andV can be substituted
allows the solution of problems with more than 2,000,000 by V24(x*). This GaussNewton approximatiorhas been

variables and 4500 degrees of freedom (d¥&chter, shown to be very efficient for the solution of least squares
2002. problems.
2.1.2. Providing second-order information 2.1.3. Line search versus trust region methods

With the development and increasing application of au- To promote convergence from poor starting points, two
tomatic differentiation tools, there are a number of model- types of globalization strategies, line search and trust region
ing and simulation platforms where accurate first and sec- methods, are commonly used for the search directions cal-
ond derivatives can be accessed for optimization. If secondculated from the above QP subproblems. In a trust region
derivatives are available for the objective or constraint func- approach, the constraintd|| < A is added to the QP. The
tions, they can be used to construct the HesaMn for the step,x**1 = x¥ + 4, is taken if there is sufficient reduction
above QP subproblems. However, to obtain a unique solu-of a merit function (e.g., the objective function weighted
tion for these QPs, the active constraint gradients must still with some measure of the constraint violations). Popular
be full rank and\* must be positive definite when projected merit functions for SQP methods include the augmented La-
into the null space of the active constraint gradients. Thesegrangian function (of the formp(x) + ATh(x) + v g(x) +
properties may not hold far from the solution or for prob- p||g(x)+, h(x)||?) or exact penalty functions (of the form:
lems that do not satisfy sufficient second-order conditions, ¢(x) + p||g(x)+, h(x)|]). Also the size of the trust region
and corrections to the Hessian in (SQP) may be necessaryA is adjusted based on the agreement of the reduction of
(seeFletcher, 198Y. the actual merit function compared to its predicted reduction

If second derivatives are not available, positive definite from the QP (sed&ocedal & Wright, 1999 However, for
guasi-Newton approximations to the reduced Hessian (suchvalues ofA sufficiently small, (QP1) may have no solution.
as BFGS) are often quite successful. Here, if we define theInstead, trust region constraints can be applied to subprob-

ndvectord” = [p" As'], anncvectorc” = [hT (g +5)7] lems ford, andd,, which replace (RD) and (ND), respec-

and tively. This approach has been applied in the KNITRO code
AT 0 (Byrd, Hribar, & Nocedal, 1997 Such methods have strong

H— [ } 7 global convergence properties and are especially appropriate
cT T for ill-conditioned NLPs.

On the other hand, line search methods can be more effi-
then we can partitiod = Zd,+Yd, whereZ e grndx (nd-nc) cient on problems with reasonably good starting points and
Y e RN H7z — 0 and [Z Y]is a nonsingular matrix.  well-conditioned QP subproblems, as in real time optimiza-
If we write the QPs (IPQP) or (SQP), without the bound tion. Typically, once the QP search direction is calculated
constraint in the following form: from (SQP) or from (IPQP) a step siae= [0, 1] is chosen so

. 1T thatx* +ad leads to a sufficient decrease of a merit function.
Minga'd +3d°Qd st.c+Hd=0 (QP1)  Asarecent alternative, a novel line search strategy has been
developed based on a bi-criterion minimization, with the
objective function and constraint infeasibility as competing
objectives. Termed thiter approach, this method, also de-
dy=—(H Y) e (RD) veloped for trust regiond{etcher, Gould, Leyffer, Toint, &

then substituting the partition fat into (QP1) and simpli-
fying leads to
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Table 2

Representative SQP-type NLP solvers

Method Inequality constraints Globalization Full vs. reduced space Second-order information
IPOPT Wachter & Biegler, 200R Barrier Line search Full or reduced space Exact or quasi-Newton
KNITRO (Byrd et al., 1997 Barrier Trust region Reduced space Exact or quasi-Newton
LOQO (Vanderbei & Shanno, 1997 Barrier Line search Full space Exact

NPSOL (Gill et al., 1990) Active set Line search Full space Quasi-Newton

rSQP (Ternet & Biegler, 1996) Active set Line search Reduced space Quasi-Newton
SNOPT @ill, Murray, & Saunders, 1998 Active set Line search Reduced space Quasi-Newton

SOCS Betts, 200} Active set Line search Full space Exact

SRQP (PSE, 2002) Active set Line search Reduced space Quasi-Newton
TRICE (Dennis, Heinkenschloss, & Vicente, 1998 Barrier Trust region Reduced space Exact or quasi-Newton

Waechter, 200)1 usually leads to better performance than augmented Lagrangian objective function:
line searches based on merit functions. A detailed descrip-
tion of the filter line search method can be foundWéchter

& Biegler, 2003. Min f(x) + ATh(x) + vT (g(x) +9)
Table 2 presents a sampling of available _c_ode_s of + %p||h(x), g(x) +s||2
SQP-type solvers that represent the above classifications. h(k) + A Tp =0

o o1 (LCNLP)
g ) +C(x")'p+s5s=0,5s>0
2.2. Other gradient-based NLP solvers

In addition to SQP methods, several NLP solvers have At the current iteratexk, MINOS selects an active set and
been developed and adapted for large scale problems. Genapplies a reduced space decomposition to (LCNLP). In fact,
erally, these methods require more function evaluations the decomposition is implemented in such a way that MI-
than SQP methods but they perform very well when inter- NOS naturally defaults to the LP Simplex method if the ob-
faced to optimization modeling platforms such as AMPL, jective and constraint functions are linear. Upon eliminat-
CUTE or GAMS, where function evaluations are cheap. All ing the dependent and bounded variables, an unconstrained
of these can be derived from the perspective of apply- quasi-Newton method is applied to the remaining variables.
ing Newton steps to portions of the KKT conditions of At the solution of this subproblem, the constraints are relin-
(NLP). earized and the cycle repeats until the KKT conditions of

LANCELOT (Conn, Gould, & Toint, 200pis based on (NLP) are satisfied. For problems with few degrees of free-
the solution of bound constrained subproblems. Here an aug-dom, this leads to an extremely efficient method even for
mented Lagrangian is formed from (NLP) and the following Very large problems. Note that the augmented Lagrangian
subproblem is solved: function is used in (LCNLP) in order to penalize movement

away from the feasible region. MINOS has been interfaced

. T T to both GAMS and AMPL and enjoys widespread use. It

Min fx) + 474 (x) +v7(8(x) +9) performs especially well on problems with few nonlinear
+30l1h(x), g(x) +5|°st.s > 0 (AL)  constraints.

Finally the generalized reduced gradient (GRG) methods,
The above subproblem can be solved very efficiently for GRG2, CONOPT, and SOLVER, consider the same sub-
fixed values of the multipliers, andv, and penalty param-  problem as in MINOS, but also ensure that the constraints
eter p. Here, a gradient projection, trust region algorithm are always satisfied at each iterate of (LCNLPJigar et al.,
is applied. Once subproblem (AL) is solved, the multipliers 2001). GRG methods select an active set and applies a re-
and penalty parameter are updated in an outer loop and theduced space decomposition. Upon eliminating the depen-
cycle repeats until the KKT conditions for (NLP) are sat- dent and bounded variables, an unconstrained quasi-Newton
isfied. LANCELOT works best when exact second deriva- method is applied to the remaining variables, along with a
tives are available. This promotes a fast convergence rate inconstraint restoration step. Note that sixbés always feasi-
solving each subproblem and allows the trust region methodble, the augmented Lagrangian function in (LCNLP) simply
to exploit directions of negative curvature in the Hessian becomed(x). Among all of the gradient based NLP solvers,
matrix. the GRG methods are the most popular; the SOLVER code

MINOS (Murtagh & Saunders, 1987is a well- has been incorporated into MS Excel and optimization is
implemented package with a number of similarities to now a widely used option in Excel. In the GAMS and AMPL
SQP-type methods. Here, the quadratic programming sub-modeling environments, CONOPT is an efficient and widely
problem is replaced by a linearly constrained NLP, with an used code that is usually more reliable than MINOS.
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2.3. Optimization without derivatives Temperature is then reduced and the method continues
until no further progress is made. Simulated annealing

We now consider a broad class of optimization strategies has been employed on a wide variety of process exam-

that do not require derivative information. These methods ples including separation synthesEdquet, Pibouleau, &

have the advantage of easy implementation and little prior Domenech, 1994 heat exchanger network synthe$i®(an,

knowledge of the optimization problem. In particular, such Cummings, & Levan, 1989%and batch process scheduling

methods are well-suited for ‘quick and dirty’ optimization (Das, Cummings, & LeVan, 1990

studies that explore the scope of optimization for new prob-

lems, prior to investing effort for more sophisticated mod- 2.3.3. Genetic algorithms

eling and solution strategies. Most of these methods are de- This approach, first proposed irHdlland, 1975 is

rived from heuristics that naturally spawn numerous vari- based on the analogy of improving a population of solu-

ations. As a result, a very broad literature describes thesetions through modifying their gene pool. Two forms of

methods. Here, we discuss only a few important trends in genetic modification, crossover or mutation, are used and

this area and describe the mostly widely used methods usingthe elements of the optimization vectar,are represented

the following classifications. as binary strings. Crossover deals with random swapping
of vector elements (among parents with highest objective
2.3.1. Classical direct search methods function values or other rankings of population) or any

Developed in the 1960s and 1970s these methods includdinear combinations of two parents. Mutation deals with
one-at-a-time search, a variety of pattern searches, and meththe addition of a random variable to elements of the vec-
ods based on experimental designs (EVOP). In fact, whentor. Genetic algorithms (GAs) have seen widespread use in
Computers and Chemical Engineeriwgs founded 25 years  process engineering and a number of codes are available.
ago, direct search methods were the most popular optimiza-For instance Edgar, Himmelblau, and Lasdon (200&¢-
tion methods in chemical engineering. Methods that fall into scribe a related GA algorithm described that is available in
this class include the conjugate direction methodPoivell Excel. Case study examples in process engineering include
(1964) simplex and complex searches, in particiNaider batch process schedulingupg, Lee, & Lee, 1998 Loehl,
and Mead (1965)the adaptive random search methods of Schulz, and Engell (1998)sensor network desigrnseén,
Luus and Jaakola (1973%oulcher and Cesares Long (1978) Narasimhan, & Deb, 1998and mass exchanger network
andBanga and Seider (199&ll of these methods are based synthesis Garrard & Fraga, 1998
on well defined search methods that require only objective
function values for unconstrained minimization. Associated 2.3.4. Derivative free optimization (DFO)
with these methods are numerous studies with successful In the past decade, the availability of parallel comput-
results on a wide range of process problems. Moreover, ers and faster computing hardware and the need to in-
many of these methods include heuristics that prevent prema-corporate complex simulation models within optimization
ture termination (e.g., directional flexibility in the complex studies, have led a number of optimization researchers to
search as well as random restarts and direction generation)reconsider classical direct search approaches. In particular,

Dennis and Torczon (1991eveloped a multidimensional
2.3.2. Simulated annealing search algorithm that extends the simplex approach of

This strategy derives from a class of heuristics with analo- Nelder and Mead. They note that the Nelder—-Mead algo-
gies to the motion of molecules in the cooling and so- rithm fails as the number of variables increases, even for
lidification of metals Laarhoven & Aarts, 1987 Here, a very simple problems. To overcome this, their multidimen-
‘temperature’ parameteT, can be raised or lowered to in- sional simplex approach combines reflection, expansion
fluence the probability of accepting points that do not im- and contraction steps that act as line search algorithms
prove the objective function. The method starts with a base for a number of linear independent search directions. This
point,x, and objective valud(x). The next poink’ is chosen approach is easily adapted to parallel computation and the
at random from a distribution. If(x") < f(x), the move is method can be tailored to the number of processors avail-
accepted with( as the new point. Otherwisg,is accepted  able. MoreoverJTorczon (1991)showed that this approach
with probability p(7, x’, x). Options include the Metropolis  converges to locally optimal solutions for unconstrained

distribution, problems and observed an unexpected performance syn-
ergy when multiple processors are used. It should be noted
, fG& — f(x) that even EVOP and Hooke—Jeeves may be amenable to
p(T, x, x) = exp(— T ) this convergence analysis, although the multidimensional
search is much more efficient. The work Dennis and
and the Glauber distribution, Torczon (1991)has spawned considerable research on the
analysis and code development for DFO methods. For
DT x,x) = exp(—(f(x") — f(x))/T) instance,Conn, Scheinberg and Toint (199¢pnstruct a

T 14 exp(—(f(x) — f(x))/T multivariable DFO algorithm that uses a surrogate model
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for the objective function within a trust region method. For the case when no discrete variabjesre involved, the
Here points are sampled to obtain a well-defined quadratic problem reduces to a linear programming (LP) problem.
interpolation model and descent conditions from trust re- MILP methods have been largely developed by operations
gion methods enforce convergence properties. A numberresearchers, and therefore we only provide a brief review.
of trust region methods that rely on this approach are re- The major contribution of chemical engineers in this area
viewed inConn et al. (1997)Moreover, a number of DFO  has been to discover problems and applications that can be
codes have been developed that lead to black box opti-framed in the form of problem (MILP) (e.g. s&ossmann,
mization implementations for large, complex simulation Caballero, & Yeomans, 199%rossmann, Quesada, Raman,
models. These include the DAKOTA package at Sandia & Voudouris, 1996 Kallrath, 2000; Pinto & Grossmann,
National Lab Eldred, 2002 and FOCUS developed at 1998.

Boeing Corporation Booker, Dennis, Frank, & Serafini, MILP methods Nemhauser & Wolsey, 1938ely largely
1998. on the simplex LP-based branch and bound metbakin,

All of the above methods are easy to apply to a wide va- 1965. This method consists of a tree enumeration in which
riety of problem types and optimization models. Moreover, the integer space is successively partitioned into relaxed
because their termination criteria are not based on gradientLP subproblems that are solved at each node of the tree.
information and stationary points, these methods are oftenThe initial node in which the variableg in (MILP) are
more likely to favor the search for global rather than locally treated as continuous, yields an absolute lower bound (min-
optimal solutions. These methods can also be adapted easilymization case) to the optimal solution. If as is often the
to include integer variables. However, no rigorous conver- case, this solution exhibits one or moyevariables with
gence properties to globally optimal solutions have yet been fractional values a tree search is performed according to
discovered. pre-specified branching rules (e.g. depth first, minimum

Derivative free methods are best suited for unconstrainedreduced cost). The LP solution of each node yields a lower
problems or for problems with simple bounds. Otherwise, bound to the solution of the descendant nodes. When a fea-
they may have difficulties in handling constraints, as the sible integer solution is found this yields an upper bound.
only options open for handling constraints are equality Nodes are eliminated based on these bounding proper-
constraint elimination or addition of penalty functions for ties, and the enumeration continues until the difference
inequality constraints. Both approaches can be unreliablebetween the current lower and upper bounds lies within a
and may lead to failure of the optimization algorithm. Fi- tolerance.
nally, the performance of derivative free methods scales Inthe worst case, the branch and bound method may end
poorly (and often exponentially) with the number of deci- up enumerating most of the nodes in the tree, and therefore,
sion variables. While performance can be improved with not unexpectedly, MILP methods are NP-hard. To overcome
the use of parallel computing, these methods are rarelythe potential exponential computation in MILP problems
applied to problems with more than a few dozen decision two major developments have been the use of preprocess-
variables. ing and cutting planes. Pre-processing techniques rely on
techniques for automatic elimination of variables and con-
straints, reduction of bound, fixing of integer variables,
and reformulation of constraints. Cutting plane techniques
are derived from theoretical analysis of the integer convex
o ] ] _ . hull of either specialized problems (e.g. knapsack, network

In many applications in process systems engineering it fys), or from general unstructured MILP problems. Cut-
is req_uired to model discrete decis_ions such as selection Ofting planes are generally generated from the LP relaxation
units in a flowsheet or sequences in scheduling, or numberg4 5 separation problem that cuts off a portion of the
of units or batches. The former are commonly represented gjaxed continuous feasible region that does not contain
with 0-1 yanables, while the latter are represented W|_th iN- the integer optimal solution. Cutting planes have usually
Feger variables that are often approxlmated as contmgousthe effect of producing tighter lower bounds for the LP
if they take_ Iarge values. In the secthns below_we revView rg|axation. Recent trends in MILP include the develop-
the generalization of (NLP), or alternatively special cases of ,ant of branch-and-priceBarnhart, Johnson, Nemhauser,
problem (MIP). Savelsbergh, & Vance, 199&nd branch-and-cut meth-
ods such as the lift-and-project method Bwlas, Ceria
and Cornuejols (1993)n which cutting planes (e.g. Go-
mory, mixed-integer rounding cuts) are generated as part
of the branch and bound enumeration. See dlslonson,
Nembhauser, and Savelsbergh (20fif})a recent review on

Ax+By<d MILP. . . .
mnZ=da"x+b"y st { - (MILP) MILP codes bu!ld on LP codes that are widely available.
x>0, ye{0 1" The best known include CPLEX (ILOG, 2000), XPRESS

3. Discrete optimization

3.1. Mixed-integer linear programming

MILP problems have the general form:
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(Dash Associates, 1999), and OSL (IBM, 1992) all which

have achieved impressive improvements in their problem

solving capabilities. It is worth noting that since MILP

problems are NP-hard it is always possible to run into time

limitations when solving problems with a large number
of 0-1 variables, especially if the integrality gap (differ-

1177

cost charges and mixed-logic constraints):
fayy =cly+r, gy =By+h.

3.2.1. NLP subproblems
There are three basic NLP subproblems that can be con-

ence between optimal integer objective and optimal Lp Sidered for problem (P1).

relaxation) is large. However, it is also important to em-

phasize that the improvements in solving capabilities for 3.2.1.1. NLP relaxation.

MILP problems have increased by tens of orders of mag-
nitude over the last few years due to a combination of
use of cutting planes, improved preprocessing and fastermin ZfB = f(x, y)st.

computers Bixby, Fenelon, Gu, Rothberg, & Wunderling,
2002.

3.2. Mixed-integer nonlinear programming

MINLP models typically arise in synthesis and design

gj(x,») =0, jeJ

xe X, ye¥Yr
ok ek (NLP1)
i =&, FL

vi > B ie Ik,
whereYr is the continuous relaxation of the Sétand ¥,

I£,, are index subsets of the integer varialylgs € 7, which
are restricted to lower and upper boundé,ﬁf.‘ at thekth

problems, and in planning and scheduling problems. MINLP step of a branch and bound enumeration procedure. It should

clearly provides much greater modeling flexibility for tack-
ling a large variety of problems. While MILP methods have

be noted thatf = | y!|, gf =[], 1 <k, m < k, where
yl, ™, are noninteger values at a previous step, and are the

been largely developed outside process systems engineerfloor and ceiling functions, respectively.
ing, chemical engineers have played a prominent role in the  Also note that if],’;U = 1,’§L =@ (k = 0), (NLP1) corre-

development of MINLP methods.

Major methods for MINLP problems include Branch
and Bound (BB) Borchers & Mitchell, 1994; Gupta
& Ravindran, 1985; Leyffer, 2001; Stubbs & Mehrotra,
1999, which is a direct extension of the linear case,

sponds to the continuous NLP relaxation of (P1). Except for
few and special cases, the solution to this problem yields in
general a noninteger vector for the discrete variables. Prob-
lem (NLP1) also corresponds to th# step in a branch and
bound search. The optimal objective function provides an

except that NLP subproblems are solved at each node.absolute lower bound to (P1); fer > k, the bound is only

Generalized benders decomposition (GBDBelfders,
1962; Geoffrion, 197 and Outer-Approximation (OA)
(Duran & Grossmann, 198@ing-Mai & Sargent, 1992;
Fletcher & Leyffer, 1994; Quesada & Grossmann, 1992
Yuan, Zhang, Piboleau, & Domenech, 198&re iter-

ative methods that solve a sequence of alternate NLP

subproblems with all the 0-1 variables fixed, and MILP

master problems that predict lower bounds and new val-

valid for 18, C 1%, 1K, C IP.

3.2.1.2. NLP subproblem for fixed.y

gi(x, ) <0, jeJ

Min Z§, = f(x, y*) st. { oy (NLP2)

which yields an upper bounﬂﬁ to (P1) provided (NLP2)

ues for the 0-1 variables. Finally, the Extended Cutting has afeasible solution. When this is not the case, we consider

Plane Method (ECP)Westerlund & Pettersson, 1905
is a variation that does not require the solution of NLP
subproblems.

For the derivation of the above methods the MINLP prob-
lem is assumed to be given by

gjtx,y) =0jeJ

minZ = f(x, y)st.
xeX, yeY

(P1)

wheref(-), g(-) are convex differentiablefunctions,J is the
index set of inequalities, and andy are the continuous
and discrete variables, respectively. TheX$é& commonly
assumed to be a convex compact set, &g—= {x|x €
R",Dx < d, x" < x < xV}; the discrete seY corresponds
to a polyhedral set of integer pointg,= {y|y € Z™, Ay <

a}, which in most applications is restricted to 0-1 values,
y € {0, 1, 1}’". In most applications of interest the objective
and constraint functionk-), g(-) are linear iny (e.g. fixed

the next subproblem.

3.2.1.3. Feasibility subproblem for fixef.y

g, Yy <ujed

xe X, ue RY (NLPF)

Min u s.t. {

which can be interpreted as the minimization of the
infinity-norm measure of infeasibility of the corresponding

NLP subproblem. Note that for an infeasible subproblem
the solution of (NLPF) yields a strictly positive value of the

scalar variable.

3.2.2. MILP cutting plane

The convexity of the nonlinear functions is exploited by
replacing them with supporting hyperplanes, that are gener-
ally, but not necessarily, derived at the solution of the NLP
subproblems. In particular, the new valy&gor (X, y¥)) are
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obtained from a cutting plane MILP problem that is based The BB method is generally only attractive if the NLP
on theK points, &, y*), k = 1,..., K generated at th& subproblems are relatively inexpensive to solve, or when
previous steps:

_ vk
azf(x",y")+Vf(x",y")T[x ! }

y—y
Min ZX = ast. x— k=1, ..., K(M-MIP)
g;(*, ) +Vg,-(x",yk>T[ k} <0 jest
y—=y
xeX,yeYt

where J¥ C J. When only a subset of linearizations is only few of them need to be solved. This could be either
included, these commonly correspond to violated con- because of the low dimensionality of the discrete variables,
straints in problem (P1). Alternatively, it is possible to ©Or because the integrality gap of the continuous NLP relax-
include all linearizations in (M-MIP). The solution of ation of (P1) is small.

(M-MIP) yields a valid lower boundzX to problem Outer-Approximation (Duran & Grossmann, 1986
(P1). This bound is nondecreasing with the number of Fletcher & Leyffer, 1994 Yuan et al., 1988 The OA
linearization pointsK. Note that since the functionfx, method arises when NLP subproblems (NLP2) and MILP

y) and g(x, y) are convex, the linearizations in (M-MIP) ~master problems (M-MIP) with’* = J are solved succes-
correspond to outer-approximations of the nonlinear fea- Sively in a cycle of iterations to generate the POWX{S Yk)-.
sible region in problem (P1). Here it can be seen that Since the master problem (M-MIP) theoretically requires
the convex objective function is being underestimated, for equivalence with (P1), the solution of all feasible discrete
and the convex feasible region overestimated with thesevariablesy®, the following MILP relaxation is considered,
linearizations. assuming that the solution of K different NLP subproblems
The different methods can be classified according to their (Wherek = |[KFSUKIS|, KFS is the set of solutions from

use of the subproblems (NLP1), (NLP2) and (NLPF), and (NLP2) and KIS is the set of solutions from (NLPF)) is
available:

k

ok
o> [k, b+ V kT [x ' }
y—y

Min ZK = ast. k=1,...,K (RM-OA)

k
gk, y) + gk, y)T [ k} <0 jeJ
y—y

xeX, yeY

the specific specialization of the MILP problem (M-MIP). Given the assumption on convexity of the functidfs y)
It should be noted that in the GBD and OA methods (case andg(x, y), the solution of problem (RM-OA)Zf, corre-
3.2.1.2), and in the LP/NLP based branch and bound methodsponds to a lower bound of the solution of problem (P1).
(case 3.2.1.3), the problem (NLPF) is solved if infeasible Also, since function linearizations are accumulated as it-
subproblems are found. Each of the methods is explainederations proceed, the master problems (RM-OA) yield a

next in terms of the basic subproblems. non-decreasing sequence of lower bounzqis,- - < Z’[ <
Branch and boundWhile the earlier work in BB was - < ZK, since linearizations are accumulated as iterations

aimed at linear problemsDgkin, 1965) this method can  k proceed.

also be applied to nonlinear problenBogchers & Mitchell, The OA algorithm as proposed byburan and

1994; Gupta & Ravindran, 1985; Leyffer, 2001; Nabar & Grossmann (1986jonsists of performing a cycle of major
Schrage, 1991; Stubbs & Mehrotra, 199%he BB method iterations,k =1, ..., K, in which (NLP1) is solved for the
starts by solving first the continuous NLP relaxation. If all correspondingy*, and the relaxed MILP master problem
discrete variables take integer values the search is stopped(RM-OA) is updated and solved with the corresponding
Otherwise, a tree search is performed in the space of thefunction linearizations at the poinkX, y*), for which the
integer variabley;. i € 1. These are successively fixed at the corresponding subproblem NLP2 is solved. If feasible, the
corresponding nodes of the tree, giving rise to relaxed NLP solution to that problem is used to construct the first MILP
subproblems of the form (NLP1) which yield lower bounds master problem; otherwise a feasibility problem (NLPF)
for the subproblems in the descendant nodes. Fathomingis solved to generate the corresponding continuous point
of nodes occurs when the lower bound exceeds the current(Fletcher and Leyffer, 1994The initial MILP master prob-
upper bound, when the subproblem is infeasible or when all lem (RM-OA) then generates a new vector of discrete vari-
integer variabley; take on discrete values. The latter yields ables. The (NLP2) subproblems yield an upper bound that is
an upper bound to the original problem. used to define the best current solution,"UB Min; {Z’L‘J}.
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The cycle of iterations is continued until this upper bound tinuous variable, the inequalities in (OX) can be reduced

and the lower bound of the relaxed master probRefn, as follows Quesada & Grossmann, 1992
are within a specified tolerance. One way to avoid solv-

ing the feasibility problem (NLPF) in the OA algorithm —« > f(x*, y*) + V, f(x*, Y)T(y — %)

yvhen the discrete vgrlaples in problem (P1) are _0_12 is to (T, vF) + Vyg(xk’ Ty =y (LCh
introduce the following integer cut whose objective is to

make infeasible the choice of the previous 0-1 values gen-which is the Lagrangian cut projected in thiespace. This
erated at theK previous iterationsfuran & Grossmann, can be interpreted as a surrogate constraint of the equations

1986: in (OAK), because it is obtained as a linear combination of
these.

Yovi— Y vi<IBi-1 k=1...K (ICuT) For the case when there is no feasible solution to problem

ic Bk ie Nk (NLP2), then if the poink* is obtained from the feasibility
subproblem (NLPF), the following feasibility cut projected

where B* = {i|yf = 1}, Nk = {i|yf =0}, k =1,... K. in y can be obtained using a similar procedure,

This cut becomes very weak as the dimensionality of the , . . kKT X

0-1 variables increases. However, it has the useful feature ) [8G" Y + Vyg(x™, y) ' (y = y)] = 0 (FC)

of ensuring that new 0-1 values are generated at each may, tnig way, the problem (M-MIP) reduces to a problem
jor iteration. In this way, the algorithm will not return to a projected in the/-space

e o = S5 ) + Vy 05 YT = 9 + WO TTGR ») + Vi v T (v = Y91k € KFS
Min zF = ast. (RM-GBD)
WOTLe(k, ¥) + Vyg bk, y9)T(y = ¥ <0, k €KIS x € X, a € R

- - - - - _ whereKFS s the set of feasible subproblems (NLP2) and
previous integer point when convergence is achieved. Usingy s s the set of infeasible subproblems whose solution is
the above integer cut the termination takes place as soon aQiven by (NLPF). Also]KFSUKIS| = K.

Zf = UBX. . ] Since the master problem (RM-GBD) can be derived from
The OA method generally requires relatively few cycles ine master problem (RM-OA), in the context of problem

or major iterations. One reason is that the OA algorithm (P1), GBD can be regarded as a particular case of the OA

trivially converges in one iteration flx, y) andg(x, y) are  gigorithm. In fact given the same set Kf subproblems,
linear. This property simply follows from the fact thaffik, the lower bound predicted by the relaxed master problem
y) andg(x, y) are linear irx andy the MILP master problem  (rM-0A) can be shown to be greater or equal to the one pre-
(RM-OA,) is identical to the original problem (P1). dicted by the relaxed master problem (RM-GBD). This prop-

Itis also important to note that the MILP master problem ¢y follows from the fact that the Lagrangian and feasibil-
need not be solved to opt|ma_1l|t_y. In f_a(_:t given the upper ity cuts, (LCX) and (FC¥), are surrogates of the OAs (A
bound UE anfl a tolerance, it is sufficient to generate  Gjyen the fact that the lower bounds of GBD are generally
the new (¥, x‘) by finding a mixed-integer solution 0 \yeaker, this method commonly requires a larger number of
the MILP that lies below UB — &. In this case, the OA  cycles or major iterations. As the number of 0—1 variables
iterations are terminated when (RM-OAF) has no feasible jycreases this difference becomes more pronounced. This is
solution. y _ to be expected since only one new cut is generated per it-

Generalized benders decompositig@eoffrion, 1972. eration. Therefore, user-supplied constraints must often be
The GBD method (seélippo & Kan, 1993 is similar to  4qded to the master problem to strengthen the bounds. Also,
the OA method. The difference arises in the definition of i is sometimes possible to generate multiple cuts from the
the MILP master problem (M-MIP). In the GBD method  gq|ytion of an NLP subproblem in order to strengthen the

only active inequalities are considerétl= {jlg;(+*, y*) = lower bound flagnanti & Wong, 198} As for the OA algo-
0} and the set is disregarded. In particular, consider an ithm the trade-off is that while it generally predicts stronger
outer-approximation given at a given point (y*), lower bounds than GBD, the computational cost for solv-
X ing the master problem (M-OA) is greater since the number
a > f(xK, ¥y + V ek, YT [x xk] of constraints added per iteration is equal to the number of
y—y nonlinear constraints plus the nonlinear objectivehinidis

X (OAY) and Grossmann (199hpve shown that if problem (P1) has
gk, VK + Vg (xk, y9T |:x xk} <0 zero integrality gap, the GBD algorithm converges in one
y—y iteration once the optimal{, y*) is found. This property
implies that the only case one can expect the GBD method
where for a fixedy* the pointx* corresponds to the op- to terminate in one iteration, is when the initial discrete vec-
timal solution to problem (NLP2). Making use of the toris the optimum, and when the objective value of the NLP
Karush—Kuhn-Tucker conditions and eliminating the con- relaxation of problem (P1) is the same as the objective of
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the optimal mixed-integer solution. One further property that master problem_eyffer (1993)has reported substantial sav-
relates the OA and GBD algorithms is that a cut obtained ings with this method.

from performing one Benders iteration on the MILP master

(RM-OA) is equivalent to the cut obtained from the GBD al- 3.3. Extensions of MINLP methods

gorithm. By making use of this property, instead of solving

the MILP (RM-OA) to optimality, for instance by LP-based In this subsection, we present an overview of some of the
branch and bound, one can generate a GBD cut by simplymajor extensions of the methods presented in the previous
performing oneBenders (1962ijteration on the MILP. section.

Extended cutting plan@Vesterlund & Pettersson, 1905 Quadratic master problemd-or most problems of in-

The ECP method, which is an extension of Kelly’s cutting terest, problem (P1) is linear wt f(x, y) = ¢(x) + 'y,
plane algorithm for convex NLPKglley, 1960, does not g(x, y) = h(x) + By.When this is not the caddetcher and
rely on the use of NLP subproblems and algorithms. It re- Leyffer (1994)suggested to include in the feasibility ver-
lies only on the iterative solution of the problem (M-MIP) sion of (RMIP-OA) a quadratic approximatior?L (x*, y*)
by successively adding a linearization of the most vio- of the Hessian of the Lagrangian of the last NLP subprob-
lated constraint at the predicted point,(y*): J¥ = {j € lem, which yields a mixed-integer quadratic programming
argiMax e s gj(x , ¥Y©)}. Convergence is achieved when the (MIQP) problem.Ding-Mai and Sargent (1992jound that
maximum constraint violation lies within the specified tol- the quadratic approximations can help to reduce the num-
erance. The optimal objective value of (M-MIP) yields a ber of major iterations since an improved representation of
non-decreasing sequence of lower bounds. It is of coursethe continuous space is obtained. Note also that for convex
also possible to either add to (M-MIP) linearizatons of all f(x, y) and g(x, y) using an MIQP leads to rigorous solu-
the violated constraints in the s#t, or linearizations of all tions since the outer-approximations remain valid. Also, if
the nonlinear constraintg € J. In the ECP method, the the functionf(x, y) is nonlinear iny, andy is a general in-
objective must be defined as a linear function, which can teger variableFletcher and Leyffer (1994)ave shown that
easily be accomplished by introducing a new variable to the original OA algorithm may require a much larger num-
transfer nonlinearities in the objective as an inequality. ber of iterations to converge than when the master problem

Note that since the discrete and continuous variables are(M-MIQP) is used. This, however, comes at the price of hav-
converged simultaneously, the ECP method may require aing to solve an MIQP instead of an MILP. Of course, the
large number of iterations. However, this method solves in ideal situation is the case when the original problem (P1)
one iteration (as does the OA method) in the limiting case is quadratic in the objective function and linear in the con-
when all the functions are linear. straints, as then (M-MIQP) is an exact representation of such

LP/NLP based branch and boun@uesada & Gross- a mixed-integer quadratic program.
ann, 1992 This method is similar in spirit to a branch and Reducing dimensionality of the master problem in Te
cut method, and avoids the complete solution of the MILP master problem (RM-OA) can involve a rather large number
master problem (M-OA) at each major iteration. The method of constraints, due to the accumulation of linearizations.
starts by solving an initial NLP subproblem, which is lin- One option is to keep only the last linearization point, but
earized as in (M-OA). The basic idea consists then of per- this can lead to nonconvergence even in convex problems,
forming an LP-based branch and bound method for (M-OA) since then the monotonic increase of the lower bound is
in which NLP subproblems (NLP2) are solved at those nodes not guaranteed. A rigorous way of reducing the number of
in which feasible integer solutions are found. By updating constraints without greatly sacrificing the strength of the
the representation of the master problem in the current openlower bound can be achieved in the case of the “largely”
nodes of the tree with the addition of the corresponding lin- linear MINLP problem:
earizations, the need of restarting the tree search is avoided.

This method can also be applied to the GBD and ECP
methods. The LP/NLP method commonly reduces quite Min Z=a'w+r@+cTyst {Fw+Gu+Ey<b (PL)
significantly the number of nodes to be enumerated. The weWveV,yeY
trade-off, however, is that the number of NLP subproblems . .
may increase. Computational experience has indicated thaIWhere v, v) are continuous variables amdv) and t(v)

often the number of NLP subproblems remains unchanged. Zre nonllnearltgognvex functions. As f‘how': Qtyrx]esadaland
Therefore, this method is better suited for problems in which rossmann (1992}inear approximations to the nonlinear

the bottleneck corresponds to the solution of the MILP objectlve and constraints can be aggregated with the follow-
ing MILP master problem:

Dw+t(v) +Cy<0

B > r(v*) + WHT[Dw + 1) + Cy] — WHT(GWw -V k=1,... K
MinZ=a"w+r@w)+c’y st {Fw+Guv+Ey<b (M-MIP)
weW,veV,yeY, BeR?
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Numerical results have shown that the quality of the bounds linear fractional, concave separable) as will be discussed in
is not greatly degraded with the above MILP as might happen the Perspectives article. The other option for handling non-
if GBD is applied to (PL). convexities is to apply a heuristic strategy to try to reduce

Handling of equalitiesFor the case when linear equali- as much as possible the effect of nonconvexities. While not
ties of the formh(x, y) = 0 are added to (P1) there is no being rigorous, this requires much less computational effort.
major difficulty since these are invariant to the linearization We will describe here an approach for reducing the effect of
points. If the equations are nonlinear, however, there are nonconvexities at the level of the MILP master problem.
two difficulties. First, it is not possible to enforce the lin- Viswanathan and Grossmann (1998pposed to intro-
earized equalities & points. Second, the nonlinear equa- duce slacks in the MILP master problem to reduce the
tions may generally introduce nonconvexities, unless they likelihood of cutting-off feasible solutions. This master
relax as convex inequalities (sBazaraa, Sherali, & Shetty, problem “augmented penalty/equality relaxation” (APER)
1994. Kocis and Grossmann (198pyoposed an equality  has the form:

ok
o= fk, b+ 7 fk, YT {x xk}
y—=y

k

X —X
P Tth()Ck,yk)T |:y_yk:| < pk
Min Z8 = o+ “[wh p* + wig] st k=1,...,K (M-APER)

k=1 k ok ¢ gr | XA k
g(x", y*) + Vg (x®, y) Y-y =q

Dienk Yi — Dienk Vi < |BY -1
xeX,yeYaeRt phgdh>0

. . . . " wherew®, w* are weights that are chosen sufficiently large
relaxation strategy in which the nonlinear equalities are re- e.q 10160 tiqmes magnitude of Lagrange multiplier). Note
placed by the inequalities, that if the functions are convex then the MILP master
x —xk -0 problem (M-APER) predicts rigorous lower bounds to (P1)
y—yk |~ since all the slacks are set to zero.

T*Vh(xt, yk)T |:
It should also be noted that another modification to reduce

ko ok k _ ciqnakl ok
where andT™ = {7}, andsj = sign{A;} in which ; is the undesirable effects of nonconvexities in the master prob-
the multiplier associated to the equatibiix, y) = 0. Note o i to apply global convexity tests followed by a suitable
that if these equations relax as the inequalities, y) < 0 validation of linearizations. One possibility is to apply the

for all y, andh(, y) is convex, this is a rigorous procedure. o5 19 all linearizations with respect to the current solution
Othe_r\lee, nonvalid supports may be generated. Also, r.‘Otevector 6, x*) (Grossmann & Kravanja, 1997

that in the master problem of GBD, (RM-GBD), no special

provision is required to handle equations since these are3.4. Computer codes for MINLP

simply included in the Lagrangian cuts. However, similar

difficulties as in OA arise if the equations do not relax as  The number of computer codes for solving MINLP

convex inequalities. problems is still rather small. The program DICOPT
Handling of nonconvexitiedV/henf(x, y) andg(x, y) are (Viswanathan & Grossmann, 1908 an MINLP solver that
nonconvex in (P1), or when nonlinear equalitigéy, y) = is available in the modeling system GAMS8rpoke et al.,

0, are present, two difficulties arise. First, the NLP subprob- 1998. The code is based on the master problem (M-APER)
lems (NLP1), (NLP2), (NLPF) may not have a unique lo- and the NLP subproblems (NLP2). This code also uses
cal optimum solution. Second, the master problem (M-MIP) the relaxed (NLP1) to generate the first linearization for
and its variants (e.g. M-MIPF, M-GBD, M-MIQP), do not the above master problem, with which the user need not
guarantee a valid lower bourﬂq’f or a valid bounding rep-  specify an initial integer value. Also, since bounding prop-
resentation with which the global optimum may be cut off. erties of (M-APER) cannot be guaranteed, the search for
One possible approach to circumvent this problem is refor- nonconvex problems is terminated when there is no further
mulation. This, however, is restricted to special cases, mostimprovement in the feasible NLP subproblems. This is a
notably in geometric programming constraints (polynomi- heuristic that works reasonably well in many problems.
als) in which exponential transformations= exp(x), can Codes that implement the branch-and-bound method using
be applied for convexification. subproblems (NLP1) include the code MINIBB that is
One general solution approach for handling nonconvex- based on an SQP algorithrhelyffer, 200) and is available
ities is to develop rigorous global optimization algorithms, in AMPL, the code BARON $ahinidis, 199 that also
that assume specific forms of the nonlinearities (e.g. bilinear, implements global optimization capabilities, and the code
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SBB which is available in GAMSRHrooke et al., 1998 Early solution strategies, known as indirect methods, were
The codea-ECP implements the extended cutting plane focused on solving the classical variational conditions for
method byWesterlund and Pettersson (1996icluding the optimality. On the other hand, methods that discretize the
extension byP6rn and Westerlund (20Q@inally, the code original continuous time formulation can be divided into
MINOPT (Schweiger & Floudas, 199&lso implements the  two categories, according to the level of discretization. Here,
OA and GBD methods, and applies them to mixed-integer we distinguish between the methods that discretize only the
dynamic optimization problems. It is difficult to make gen- control profiles (partial discretization) and those that dis-
eral remarks on the efficiency and reliability of all these cretize the state and control profiles (full discretization). Ba-
codes and their corresponding methods since no systematisically, the partially discretized problem can be solved either
comparison has been made. However, one might anticipateby dynamic programming or by applying a nonlinear pro-
that branch and bound codes are likely to perform better if gramming (NLP) strategy (direct-sequential). A basic char-
the relaxation of the MINLP is tight. Decomposition meth- acteristic of these methods is that a feasible solution of the
ods based on OA are likely to perform better if the NLP DAE system, for given control values, is obtained by inte-
subproblems are relatively expensive to solve, while GBD gration at every iteration of the NLP solver. The main ad-
can perform with some efficiency if the MINLP is tight, vantage of these approaches is that, for the NLP solver, they
and there are many discrete variables. ECP methods tend t@enerate smaller discrete problems than full discretization
perform well on mostly linear problems. methods.
Methods that fully discretize the continuous time problem
also apply NLP strategies to solve the discrete system and

4. Dynamic optimization are known as direct-simultaneous methods. These methods
can use different NLP and discretization techniques but the
4.1. DAE optimization—problem statement basic characteristic is that they solve the DAE system only

once, at the optimum. In addition, they have better stability

Interest in dynamic simulation and optimization of chem- properties than partial discretization methods, especially in
ical processes has increased significantly during the last twothe presence of unstable dynamic modes. On the other hand,
decades. Chemical processes are modeled dynamically usthe discrete problem is larger and requires large-scale NLP
ing DAESs, consisting of differential equations that describe solvers.
the dynamic behavior of the system, such as mass and energy With this classification we take into account the degree
balances, and algebraic equations that ensure physical an@f discretization used by the different methods. Below we
thermodynamic relations. Typical applications include con- briefly present the description of the variational methods, fol-
trol and scheduling of batch processes; startup, upset, shutlowed by methods that partially discretize the dynamic opti-
down and transient analysis; safety studies and the evaluatiorimization problem, and finally we consider full discretization
of control schemes. We state a general differential-algebraicmethods for problem (DAOP).
optimization problem (DAOP) as follows:

F(dz/dt; z(1); y(@); u(®); t; p) = 0, z(0) = z0
Gs(z(ts); y(ts); ults); ts; p)) =0

<z <V

Min @(z(t); y(t); u(t); tr: p) - st § b < y(@) <y (DAOP)
ub <u(t) < uY

pt<p=<pY

<t <t

where @ is a scalar objective function at final timg, F 4.2. Variational methods

are DAE constraintsis's are additional point conditions at

timests's, Zs are differential state profile vectorgs are These methods are based on the solution of the first order
algebraic state profile vectorg's are control state profile  necessary conditions for optimality that are obtained from
vectors ang is a time-independent parameter vector. Pontryagin’s Maximum PrincipleRontryagin, Boltyanskii,

We assume, without loss of generality, that the index of the Gamkredlidze, & Mishchenko, 1982f we consider a ver-
DAE system is one, consistent initial conditions are available sion of (DAOP) without bounds, the optimality conditions
and that the objective function is in the Mayer form. Other- are formulated as a set of DAEs:
wise, it is easy to reformulate problems to this form. Prob- 3£z, y, u, p, ,) OH  0F(z, y,u, p, 1)
lem (DAOP) can be solved either by the variational approach 8—z’ Tz T 8z (VCa)
or by applying some level of discretization that converts the
original continuous time problem into a discrete problem. F(z, y,u, p,f) =0 (VCb)
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the global optimum is usually high if the grid is well cho-
Gtz y.u. p.1t) =0 (VCo) sen Dadebo & McAuley, 1995 For these techniques the
(VCd) time horizon is divided intd” time stages, each of length
Then, the control variables are usually represented as piece-
wise constant or piecewise linear functions in each interval.

Gs(z,y,u,p,ts) =0

oH 0F(z, y,u, p,t
0H _ 0FG. y.u.p.0), (VCe)

Ay dy The functions in each intervat;{ #;+1), usually take the
form: u(t) = u; + (w41 — u;)/L)(ti+1 — t;) whereu; and
OH _ 9F@z y u, p, t),\ -0 (Ve u;,1 are the values af att; andz;1, respectively. The dy-
ou ou namic optimization problem is to find; i = 1, ..., P that
" F(z, v, u, p, 1) n'1inimiz.e a given obje(;tive functiqn. The basiq search glgo—
/o op Adr=0 (VCo) rithm mimics the classical dynamic programming algorithm

starting at the last stage with a discrete set of control val-

where the HamiltonianH, is a scalar function of the form  ues. For a set of input states, the best control is chosen at
H() = F(z,y,u, p, )" A(f) and A(t) is a vector of adjoint each stage and the algorithm proceeds forward to a previous
variables. Boundary and jump conditions for the adjoint vari- Stage. Once all of the stages are considered, the discrete set

ables are given by of control values is narrowed around the best set of values
9F 90 3G and the process repeats. More details of this approach can
—At)+ —+ —uv =0 be found in Dadebo & McAuley, 1995; Luus, 1993The

3! d = Oz (VBC) IDP algorithm works well when the dynamic optimization
3F  3Gs oF problem does not include bounds on state variables. In or-
a—z/?»(ts )+ o7 U= 8_Z/)L(ts ) der to include such bounds, a penalty term has to be added

into the objective function to penalize the constraint viola-
whereuvt, vs are the multipliers associated with the final time  tion. This can be done by adding a state variable for each
and point constraints, respectively. The most expensive stepinequality that measures the constraint violation over time
lies in obtaining a solution to this boundary value problem. (Mekarapiruk & Luus, 199¥or by computing the constraint
Normally, the state variables are given as initial conditions violation at given points in timefadebo & McAuley, 1995
and the adjoint variables as final conditions. This formulation
leads to boundary value problems (BVPs) that can be solved4.3.2. Direct sequential methods
by a number of standard methods including single shooting, With partial discretization methods (also called sequen-
invariant embedding, multiple shooting or some discretiza- tial methods or control vector parameterization), only the
tion method such as collocation on finite elements or finite control variables are discretized. Given the initial conditions
differences. Also the point conditions lead to an additional and a given set of control parameters, the DAE system is
calculation loop to determine the multipliers andvs. On solved with a differential algebraic equation solver at each
the other hand, when bound constraints are considered, theteration. This produces the value of the objective function,
above conditions are augmented with additional multipliers which is used by a NLP solver to find the optimal parameters
and associated complementarity conditions. Solving the re-in the control parameterizatiop, The sequential method is
sulting system leads to a combinatorial problem that is pro- reliable when the system contains only stable modes. If this

hibitively expensive except for small problems. is not the case, finding a feasible solution for a given set
of control parameters can be difficult. The time horizon is
4.3. Partial discretization divided into time stages and at each stage the control vari-

ables are represented with a piecewise constant, a piecewise
These strategies consider a discretization of the controllinear or a polynomial approximatior-éehery & Barton,
profile u(¢) in (DAOP). Two strategies are usually consid- 1998; Vassiliadis, 1993 A common practice is to represent
ered, one based on dynamic programming and the otherthe controls as a set of Lagrange interpolation polynomials.

based on nonlinear programming. For the NLP solver, gradients of the objective and con-
straint functions with respect to the control parameters can
4.3.1. Dynamic programming be calculated with the sensitivity equations of the DAE sys-

Iterative dynamic programming (IDP) for the solution of tem, given by
dynamic optimization problems has been limited to small

problems. However, this approach can be made eﬁicientETs/ n ETS n ETw n IF T _0

(Bojko & Luus, 1992; Luus, 1993y allowing a coarse so- 9z K 'z k ay k oqx ’

lution grid, which in some cases can be accurate enough to 9z(0)

represent a solution to (DAOP). Although the IDP algorithm sk(0) = g k=1 ..., Ny (SE)

is slower than most gradient-based algorithms, it can be use-
ful to crosscheck results of relatively small problems and it where sy (r) = 0z()/0qx, wi(t) = dy(f)/dgx and ¢g' =
may avoid local solutions. Here the probability of obtaining [p', v']. As can be inferred from (SE), the cost of obtaining



1184 L.T. Biegler, I.E. Grossmann/Computers and Chemical Engineering 28 (2004) 1169-1192

these sensitivities is directly proportionalXy, the number tion. The DAE system is solved on each stage,1, ..., P

of decision variables in the NLP. Alternately, gradients can and the values of the state variabi&g) are chosen as ad-
be obtained by integration of the adjoint equations (VCa, ditional unknowns. In this way a set of relaxed, decoupled
VCe, VBC) Bryson & Ho, 1969; Hasdorff, 1976; Sargent initial value problems (IVP) is obtained, as follows:

& Sullivan, 1979 at a cost independent of the number of in-

put variables and proportional to the number of constraints £(dz/ds; z(0; y(@); Vi; p) =0, 1 € [ti-1, 1], 2(ti-1) = zi

in the NLP. zigr —z(tiizisvis p) =0, i=1...,P-1

. The methods that are based on _th|s approach cannot €3l ote that continuity between stages is treated through equal-
dlrgctly the bound§ on staFe vanableg because the ‘?’tat(%ty constraints, so that the final solution satisfies the DAE
variables are not included in the nqnlmear programming system. With this approach, inequality constraints for states
P“’b'e”?- Instead, mos_t of the technl_ql_,les for dealing with and controls can be imposed directly at the grid points, but
inequality path constraints rely on defining a measure of the path constraints for the states may not be satisfied between
constraint violation over the entire horizon, and then penal- grid points. This problem can be avoided by applying penalty

'zIng t':] n thr? objec(tjwe fu?ctlon,t o.rn;)rc!?gd{t dgectly tto techniques to enforce feasibility, like the ones used in the
zero through an end-point constraiMagsiliadis, Sargent, sequential methods.

& Pantelides, 1994 Other techniques approximate the The resulting NLP is solved using SQP-type methods, as

gonstraint sat_isfaction by i_ntroducing an exact pena_lty func- described above. At each SQP iteration, the DAEs are inte-
tlugr; (BlosskBlgglelr & _Schlsesserr], 1999?rger_|(tﬁ;1§ Sulhvaln, grated in each stage and objective and constraint gradients
1999 prtathrelssebrlneler— teinhauser functididss etal., with respect top, z and v; are obtained using sensitivity

9 into the problem. equations, as in (SE). Compared to sequential methods, the

di Fmt?"i/]’ |n|t|§I valge scl)lverjh_:;]a:] handle(:j %aﬂ: conlsérgagnts NLP contains many more variables but efficient decompo-
irectly have been developedkieehery and Barton ( ) sitions have been proposete{neweber et al., 1997and

T_he main idea is 1o use an z_alg(_)nthm for pon_stramed dynamic many of these calculations can be performed in parallel.
simulation so that any admissible combination of the control

parameters produces an initial value problem that is feasible
with respect to the path constraints. The algorithm proceeds
by detecting activation and deactivation of the constraints
during the solution, and solving the resulting high-index
DAE system and their related sensitivities.

4.4.2. Collocation methods

In this formulation, the continuous time problem is con-
verted into an NLP by approximating the profiles as a family
of polynomials on finite elements. Various polynomial rep-
resentations are used in the literature, including Lagrange
interpolation polynomials for the differential and algebraic
profiles (seeCuthrell & Biegler, 1987. In Betts (2001) a
Hermite—Simpson collocation form is used whilervantes
and Biegler (1998pand Tanartkit and Biegler (1995use a
‘monomial basis representatioBader & Ascher, 198j7for
the differential profiles. All of these representations stem
from implicit Runge—Kutta formulae and the monomial rep-
resentation is recommended because of smaller condition
numbers and smaller rounding errors. On the other hand,
control and algebraic profiles are approximated using La-
egrange polynomials.
Discretizations of (DAOP) using collocation formulations
ad to the largest NLP problems but these can be solved

4.4. Full discretization

Full discretization methods explicitly discretize all the
variables of the DAE system and generate a large scale non
linear programming problem that is usually solved with a
successive quadratic programming (SQP) algorithm. These
methods follow a simultaneous approach (or infeasible path
approach); that is, the DAE system is not solved at every
iteration, it is only solved at the optimum point. Because of
the size of the problem, special decomposition strategies ar
used to solve the NLP efficiently. Despite this characteristic,
the simultaneous approach has advantages for problems Witrie
state variable (or path) constraints and for systems where in'efficiently using large-scale NLP solvers, such as IPOPT
stabilities occur for a range of inputs. In addition, the simul- '

L . . and by exploiting the structure of the collocation equations.
taneous approach can avoid intermediate solutions that mayBiegler et al. (2002provide a review of dynamic optimiza-
not exist, are difficult to obtain, or require excessive com-

tational effort. Th v o diff : h tion methods using simultaneous methods. These methods
putationa’ efiort. 1here are mainly o dIlierent approaches o o nymper of advantages for challenging dynamic opti-
to discretize the state variables explicitly, multiple shooting

) . mization problems, including:
(Bock & Plitt, 1984 Leineweber et al., 1997and colloca- P g
tion on finite elementsBetts, 2001 Biegler, Cervantes, & e Control variables can be discretized at the same level

Wachter, 2002Cuthrell & Biegler, 1987. of accuracy as the differential and algebraic state vari-
ables. Finite elements allow for discontinuities in control
4.4.1. Multiple shooting profiles.

With multiple shooting, time is discretized in®stages e Collocation formulations allow problems with unstable
and control variables are parameterized using a finite set of modes to be handled in an efficient and well-conditioned
control parameters in each stage, as with partial discretiza- manner. The NLP formulation inherits stability properties
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of boundary value solvers. Moreover, an element-wise and Barton (1999%pply a sequential strategy and discretize
decomposition has been developed that pins down unsta-only the control profile. In this case, careful attention is paid
ble modes in (DAOP). to the calculation of sensitivity information across discrete
e Collocation formulations have been proposed with mov- decisions that are triggered in time.
ing finite elements. This allows the placement of elements
both for accurate breakpoint locations of control profiles 4.5.2. Multistage applications
as well as accurate DAE solutions. The ability to solve large dynamic optimization problems
and to model discrete decisions allows the integration of
Dynamic optimization using collocation methods has multiple dynamic systems for design and analysis. Here,
been used for a number of process applications including yifferent dynamic stages of operation can be considered
batch process optimizatiotBatia & Biegler, 1995 non-  yth individual models for each dynamic stage. Multistage
linear model predictive contro{buquerque et al., 1997 gpplications in process engineering include startups and
grade transitions and process changeoveZenfantes,  transients in dynamic systems with different modes of oper-
Tonelli, Brandolin, Bandoni, & Biegler, 200zand reactor  atjon, design and operation of periodic processes with differ-
design and synthesis (Lakshmanan, Rooney, & Biegler, ent models (e.g., adsorption, regeneration, pressurization, in
2000; lerapetritou, 200 a dynamic cycleNilchan & Pantelides, 1998 synthesis of
chemical reactor networkd g§kshmanan & Biegler, 1995
4.5. Extensions for dynamic optimization changes in physical phenomena due to discrete changes (as
seen above) and multiproduct and multiperiod batch plants
Here, we briefly summarize a few issues that emerge for where scheduling and dynamics need to be combined and
dynamic optimization. These extend the methods presenteddifferent sequences and dynamic operations need to be op-
so far to larger and more challenging applications and in- timized. For these applications each stage is described by
clude discrete decisions, the treatment of multistage dynamicseparate state variables and models as in equations (2) and
systems and fundamental questions on the accuracy of dis{3). These stages include an overall objective function with

cretized optimal control problems. parameters linking among stages and control profiles that
are manipulated within each stage. Moreover, multistage
4.5.1. Discrete decisions in dynamic optimization models need to incorporate transitions between dynamic

Along with the DAE models described in (2) and (3), stages. These can include logical conditions and transitions
it becomes important to consider the modeling of discrete to multiple models for different operation. Moreover, the
events in many dynamic simulation and optimization prob- DAE models for each stage require consistent initializations
lems. In chemical processes, examples of this phenomenaacross profile discontinuities, triggered by discrete decisions.
include phase changes in vapor—liquid equilibrium systems, The solution of multistage optimization problems has
changes in modes in the operation of safety and relief valves,been considered in a number of recent studdsatia and
vessels running dry or overflowing, discrete decisions made Biegler (1996)consider the simultaneous design, operation
by control systems and explosions due to accidents. Theseand scheduling of a multiproduct batch plant by solving a
actions can be reversible or irreversible with the state profileslarge NLP. More recently, multistage problems have been
and should be modeled with appropriate logical constraints. considered as mixed-integer problems using sequential
An interesting presentation on modeling discrete events canstrategies as well as simultaneous strategies. These appli-
be found inAllgor and Barton (1999)The simulation of cations only represent the initial stages of dynamic systems
these events is often triggered by an appropriate discontinu-modeling, in order to deal with an integrated analysis and
ity function which monitors a change in the condition and optimization of large scale process models. With the de-
leads to a change in the state equations. These changes carelopment of more efficient decomposition and solution
be reformulated either by using complementarity conditions strategies for dynamic optimization, much more challeng-
(with positive continuous variablesandy alternately setto  ing and diverse multistage applications will continue to be
zero) or as binary decision variabldafton & Park, 199Y. considered.

These additional variables can then be embedded within op-

timization problems. Here complementarity conditions can 4.5.3. Improved formulations for dynamic optimization

be reformulated through barrier method®&afjhunathan & For optimal control problems where control variables are
Biegler, 2002 to yield an NLP while the incorporation of  discretized at the same level as the state variables, there are
integer variables leads to mixed-integer optimization prob- a number of open questions related to convergence to the so-
lems. lution of the original variational problem. A number of stud-

For the latter case, several studies have considered the soies have shown (e.gGuthrell & Biegler, 1989; Polak, 1997;
lution of mixed-integer dynamic optimization (MIDO) prob- Reddien, 1979; Schwartz, 199¢hat the KKT conditions
lems. In particularAvraam, Shah, and Pantelides (1998) of the simultaneous NLP can be made consistent with the
developed a complete discretization of the state and con-optimality conditions of the variational problem. Neverthe-
trol variables to form a MINLP. On the other hand|gor less, these consistency properties do not guarantee conver-
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gence to solution of the infinite dimensional optimal control ity space. This problem is important because: (i) it is rep-
problem and several studies report stability problems due resentative of the multi-stage model in terms of probabilis-
to poor discretizations, high index constraints and singu- tic expansion of variables and constraints, and (ii) it is the
lar arcs. In particular, interesting stability questions arise key structural component to the multi-stage problem and is
regarding appropriate discretizations of control and state the key subproblem for the nested decomposition algorithms
profiles. Empirical evidence of this instability and practical used to solve the multi-stage LP.
remedies have been given limgsdon and Biegler (1989) The study of the theory and solution of the multi-stage
Bausa and Tsatsaronis (200and special cases of these stochastic LP (MSLP) has paralleled the development of de-
have been analyzed rigorously in Dontchev et al. (2000). In terministic LP methods. Early references included seminal
a recent thesisBiehn (2001)showed that for continuous, work on the formulation and problem structure (Dantzig,
convex optimal control problems, two simple simultane- 1955; Dantzig, 1963 Dempster, 1965Madansky, 1963
ous collocation formulations have desirable consistency Rosen, 1963; Wets, 1966), but left questions concerning the
properties. Moreover, his analysis has shown that thesesolution to the general problem largely unanswered. Since
formulations remain stable in the presence of high index the certainty equivalent LP, expanded to multi-stage as
constraints,even when sequentidinitial value) solvers needed, is intractably large for all but the smallest problems
fail on these problems. In related worchwartz (1996)  (see Dantzig, 1987 for discussion of exponential expansion),
developed consistency results faplicit Runge—Kutta dis-  current solution methods use Benders-based decomposi-
cretizations that apply to more challenging optimal control tion strategiesBenders, 1962; Geoffrion, 197¥an Slyke
problems with singular arcs and discontinuous profiles. and Wets, 1969). See Dantzig (1987) or Birge (1982a) for
a discussion of the general multi-stage stochastic LP for-
mulations. Comprehensive reviews of theory and solution
5. Optimization under uncertainty practices are provided in the collections editedd®smpster
(1980) and Ermoliev and Wets (1988)Spurred in part by
All the previous optimization problems that we have re- the expansion in computing power, recent progress has been
viewed are deterministic in nature. However, as one might made in solving the two-stage stochastic linear programming
expect, there is often significant uncertainty in application Problem using Benders-based schemes (see e.g., Dantzig &
of optimization in the real world. Failure to account for the Glynn, 1989; Gassmann, 1990; Infanger, 1991; Wets, 1983;
uncertainty of key parameters (e.g., technical coefficients, Wets, 1989. Extension to multi-stage problems via nested
product demands) has the drawback that the solution ofdecomposition methods is conceptually straightforward.
deterministic models can lead to non-optimal or infeasible The multi-stage problem however remains intractable due
decisions. This, however, does not mean that deterministicto computational expense, arising from the nested struc-
models are not useful. In fact, as will be seen, they are usedture of the problem and resultant exponential growth in the
as a basis in virtually any stochastic optimization method, humber of subproblems (see Birge, 1982a; Dantzig, 1987;
or methods for f|ex|b|||ty ana|ysis_ Dempster, 1980Gassmann, 1990; Louveaux, 198Wh||e
Considerable theoretical work has been reported in the @ few specialized problems have been addressedB@zle,
Operations Researcliterature on the formulation and so- Forrest, & Taylor, 1980 Bienstock and Shapiro, 1985;
lution of linear stochastic optimization problems (see re- Dantzig, 1987; Karreman, 1963), general multi-stage linear
views by Birge, 1992; Dantzig, 198Dempster, 1980; Wets, ~ Problems remain computationally intractable. Multi-stage
1989. We provide here only a very brief review. An excel- solution methods generally rely on nested decomposition
lent recent review can be found Sahinidis (2003) strategies which involve solving series of two-stage subprob-
Extending deterministic models with probabilistic repre- lems (Birge, 1982aFrmoliev & Wets, 1988; Gassmann,
sentations leads to the stochastic programming model. Thel990. Hence, advances in the solution to two-stage mod-
most common linear model is the following two-stage (fixed €ls are applicable toward improving multi-stage solution

recourse) stochastic LP: methods. Conceptually the extension to nonlinear stochas-
tic problems is similar as in the linear case. The extension
Min  z=clxi+ Y pach xox to stochastic mixed-integer problems is considerably more
! keZK * difficult (seeSahinidis, 2008
A =b -
lel Al b VEe K 5.1. Process flexibility
X1+ A2xpr = €

st obTARtem A (SLP) o

0<x1=Uy In contrast to the stochastic optimization approach, con-

O<x1<U, Vkek siderable effort has been devoted in process systems engi-

neering over the last 25 years to developing methods for
where matricedB; and A, are fixed (i.e.,Byy = B1 and evaluating and optimizing flexibility. The major goal has
Ay = Az Yk € K). The termK denotes the set of possi- been to address nonlinear optimization problems under un-
ble stage 2 events defined on the finite, discrete probabil-certainty, particularly design problems (ségossmann &
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Straub, 1991 The proposed approaches can be classified where a common description @fis 7 = {9|6- < 6 < Y},

in two broad classes: (i) deterministic, in which the pa- wheres", 6V are lower and upper bounds, respectively. Other
rameter uncertainty is typically described through bounds descriptions ofT such as hypercircles or hyper-ellipsoids

of expected deviations, and (ii) stochastic, that describescan also be easily used.

the uncertainty through a probability distribution function.
Here, we only review the deterministic flexibility analysis.

The more general problem of quantifying flexibility, also
known as thdlexibility index problen(F3), is to determine

The model of the process can be described, in the casethe maximum deviatiorn that a given desigd can tolerate,

where the topology is fixed, by a set of equations and in-
equalities involving continuous variables of the form:

hd,z,x,0) =0

2(d. 2, x.0) <0 (FO)

where the variables are defined as follows R"¢ denotes
anny vector of stage 1 variables (e.g. design variables) that
defines the structure and equipment sizes of the progess,
R": denotes am, vector of stage 2 variables (e.g. control

variables) that can be adjusted during plant operation (e.g.

flows, pressures), € R~ denotes am, vector of state vari-

ables that describes the behavior of the process (e.g. flows

pressures, temperatures, reactor conversions),R" de-
notes amy vector of uncertain parameters (e.g. feed com-
position, kinetic constants).

For simplicity in the presentation and consistency with
the existing literature Grossmann & Floudas, 1987t is

such that every poirtin the uncertain parameter spacgs),
is feasible. The most common choice is the hyper-rectangle
parametric ins, 7(8) = {0|0N — A0~ <6 < 6N + AT},
where A" and A6~ are the expected deviations of uncer-
tain parameters in the positive and negative direction. Other
descriptions off(8), such as the parametric hyper-ellipsoid,
are also possible (sd®ooney & Biegler, 1999

As shown bySwaney and Grossmann (1985the flexi-
bility index can be determined from the formulation,

Maxgers) w(0,d) <0

§>0, §e R? (F3)

F = Max § s.t. {

As seen from the implicit form of therojected feasibility
functiony(9, d), problem (F3) cannot be directly solved un-
lessys is determined. The simplest way around this problem
(seeSwaney & Grossmann, 198pis to determine the flex-

assumed that the state variables in (FO) are eliminated fromibility index in (F3) by vertex enumeration search in which

the equations and thus the model reduces to

fiz,0,d) <0,

Note, however, that in the development of the proposed
methodology this projection will not be necessary.

For a given desigm, the first important question is to
determine whether this design is feasible for a realization
of the uncertain parametefsalso known as théeasibility
problem(F1). The formulation of this problenH@lemane
& Grossmann, 1983s:

Z,u

jeJ

Note that problem (F1) is an optimization problem where the
objective is to find a poirt*, for fixedd andé, such that the
maximum potential constraint violation is minimized. How-
ever,u is in principle a function ofd and6, and expressed
in that form it represents the projected feasibility function.
Theprojected feasibility functiomy (6, d) is a key concept in
the flexibility analysis and its construction is an important
and challenging task. As can be deduced from (FilXx O
indicates feasibility andr > 0, infeasibility.

The problem of evaluating flexibility over a specified set
T of uncertain parameters, also known asftegibility test
corresponds to the finding the worst valueddh the setT,
which gives rise to the maximization problem,

x(d) = maxyr(d, 0) (F2)
0eT

which is also equivalent to the Max—Min—Max optimization
problem Halemane & Grossmann, 1983

x(d) = Max Min Max f;(d, z,6) (F2)

the maximum displacement is computed along each vertex
direction, thus avoiding the explicit constructionf This
vertex enumeration scheme relies on the assumption that
the critical pointsg* lie at the vertices off(A*), which is
valid for the case of a linear model and in general only if
certain convexity conditions hold. The drawback with this
approach, however, is that it requires the solutioniaf @p-
timization problems, and therefore, it scales exponentially
with the number of uncertain parameters.

An alternative method for evaluating the flexibility index
that does not rely on the assumption that critical points cor-
respond to vertices, is the active set strategyEbgssmann
and Floudas (1987)n this method the key idea is that the
feasible region projected into the spacedadind 6, can be
expressed in terms of active sets of constrajfts, 6, d) =
u,je J/’g, k = 1, nas, wherenps is the number of possible
active sets of;. These active sets are defined by all subsets
of non-zero multipliers that satisfy the Kuhn—Tucker condi-
tions of (F1):

> k=1

o Tk
JEJY

8 .
A’;ﬁ =0
70z

jek
By reformulating problem (F3) for evaluating the flexibility
index, and using the above equations with 0-1 variables for
the complementarity conditions and slacks, we get a mixed
integer optimization problem that can explicitly solve (F3)
without having to find a priori all the active sets.
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Min &
Boijusjoj
fild,z,0)+s5;=0, jelJ
Zje] rj=1

of i
Zjej)‘ja_zj =0

st si—UQ1-y) <0, jeJ
)\,j—yjfo
Yjesyi=nz+1
N —5A0- <0 <oV +sA0T
§>0,4j,5;2>20, jeJ;y;=0,1jeJ

F =

(ASF)

This model (ASF) gives rise to an MINLP problem (or MILP
if all constraints are linear) withy = card{J} binary vari-
ables.

As for nonlinear optimization problems under uncertainty
they involve the selection of the stage 1 variabtk§.e.

L.T. Biegler, I.E. Grossmann/Computers and Chemical Engineering 28 (2004) 1169-1192

wherew; are weights that are assigned to each p@inand
Yicawi = 1.

Problem (DSNLP) can be interpreted as problem un-
der uncertainty with discrete probabilities, which is also
equivalent to a multiperiod problem, which is also of great
importance in the optimal design of flexible chemical plants
(seeGrossmann & Sargent, 197%arvarezos, Grossmann
& Biegler, 1992 1993). As shown byGrossmann and
Sargent (1978problem (DSNLP) can also be used to ap-
proximate the solution of (SNLPF). This is accomplished
by selecting an initial set of pointg*, solving problem
(DSNLP) and verifying its feasibility oveT(F) by solving
problem (F2) or (F3). If the design is feasible the procedure
terminates. Otherwise the critical point obtained from the
flexibility evaluation is included to the set & points and
the solution of (DSNLP) is repeated. Computational experi-
ence has shown that commonly one or two major iterations
must be performed to achieve feasibility with this method.

design variables) so as to minimize cost and either (a) satisfyOstrovsky, Volin, and Senyavinj (199Has proposed an

the flexibility test (F2), or (b) maximize the flexibility index

alternative method for the two-stage problem that simplifies

as given by (F3), where the latter problem gives rise to a the evaluation of flexibility.

multiobjective optimization problem.
Most of the previous work in design under uncertainty
(Johns, Marketos, & Rippin, 1978alik & Hughes, 1979

Stochastic approaches for the evaluation of flexibility rely
on the idea of using joint probability distribution functions,
which are integrated over the feasible region in order to

has considered the effect of the continuous uncertain param-determine the probability that constraints be satisfied given

etersd for the design optimization through the minimization

that control variables can be manipulated (eStraub &

of the expected value of the cost using a two-stage strategy,Grossmann, 1993; Pistikopoulos & Mazzuchi, 1p9%or

similar as the one in problem (SLP), but for continuous dis-

tribution functions, is given by

Min E

(SNLP)
d 0eT(F)

[Mzin Cld,z,9)|fd, z,0) <0]

a recent review of stochastic flexibility sédstikoploulos
(2002)

The reason the above also requires a two-stage strategy i%. Summary and conclusions

because the design variables d are chosen in stage 1 and re-

main fixed during stage 2 during which the control variables ~ Research in the formulation, solution and analysis of
z are adjusted depending on the realizations of the parame-mathematical programs has grown tremendously over the
terso. In order to handle infeasibilities in the inner minimiza- past 25 years. In 1980, optimization on engineering prob-
tion, one approach is to assign penalties for the violation of lems beyond linear programming was often viewed as a
constraints (e.gC(d, z,6) = C if f(d, z,6) > 0. The other curious novelty without much benefit. Now optimization
approach is to enforce feasibility for a specified flexibility applications are essential in all areas of process systems
indexF (e.g. seeHalemane and Grossmann, 19#3rough engineering including design, identification, control, esti-
the parameter s@(F) = {9|6- — FAO~ < 6 < 0V + FApt). mation, scheduling and planning. This paper offers a ret-
In this case (SNLP) is formulated as rospective on relevant optimization methods that have been
developed and applied over the past 25 years and reviews
four broad areas. First, we deal with methods for contin-
uous variable optimization and survey advances in non-
linear programming methods with and without derivative
evaluations. Next we consider mixed-integer programming
A particular case of (SNLP) occurs when only a discrete set methods and cover a family of algorithms and extensions
of pointsé*, k = 1, ..., K are specified which then gives for MINLPs. Related to these two approaches is opti-
rise to the optimal design problem, mization with differential algebraic models. Over the past
decade these challenging problems have been considered
more frequently in the process industries through sequen-
tial and simultaneous methods. Finally, we survey methods
to deal with the essential problem of optimization under
uncertainty.

Min E
d  0eT(F)

st. Max ¢¥(d,60) <0
AeT(F)

[Min Cd, z,0)|f(d, z,0) < 0]

(SNLPF)

K
Min wrC(d, 7*, 6
dzt,..zK ,;_

st. fd, 25,05 <0, k=1,...,K (DSNLP)
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