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Abstract

In this paper, we provide a general classification of mathematical optimization problems, followed by a matrix of applications that shows the
areas in which these problems have been typically applied in process systems engineering. We then provide a review of solution methods of the
major types of optimization problems for continuous and discrete variable optimization, particularly nonlinear and mixed-integer nonlinear
programming (MINLP). We also review their extensions to dynamic optimization and optimization under uncertainty. While these areas are
still subject to significant research efforts, the emphasis in this paper is on major developments that have taken place over the last 25 years.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

When the two authors were asked to provide retrospective
and perspective articles in the area of optimization, we de-
cided that writing the two papers jointly would offer a better
fit, given the breadth of the optimization area and our com-
plementary interests. Our objective in this first paper is to
provide a general review on optimization, emphasizing the
strategies that have been applied or studied more extensively,
namely, nonlinear programming (NLP), mixed-integer non-
linear programming (MINLP), dynamic optimization, and
optimization under uncertainty. In the second paper we out-
line future directions of research that are motivated by the
current barriers and limitations that are being experienced.
These include global and logic-based optimization, large-
scale computation, and advanced scientific computation.

Optimization has become a major enabling area in process
systems engineering. It has evolved from a methodology of
academic interest into a technology that has and continues to
make significant impact in industry. Before we discuss the
applications of optimization, it is useful to present a classifi-
cation of problem types. It should be noted that this classifi-
cation is independent of the solution methods. As shown in
Fig. 1, optimization problems can first be classified in terms
of continuous and of discrete variables. The major problems
for continuous optimization include linear programming
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(LP) and NLP. An important subclass of LP is the linear com-
plementarity problem (LCP), while for the NLP it includes
quadratic programming (QP) and semidefinite programming
(SP). For the latter, an important distinction is also whether
the NLP problem is convex or nonconvex, since the latter
may give rise to multiple local optima. Another important
distinction is whether the problem is assumed to be differ-
entiable or not. As for discrete problems, they are first clas-
sified into mixed-integer linear programming (MILP) and
MINLP.

For the former an important particular case is when all
the variables are integer, which gives rise to an integer pro-
gramming (IP) problem. This problem in turn can be classi-
fied into many special problems (e.g. assignment, traveling
salesman, etc.), which we do not show inFig. 1. The MINLP
problem also gives rise to special problems, although here
the main distinction, like in the NLP problem, is whether its
relaxation is convex or nonconvex.

Regarding their formulation, discrete/continuous opti-
mization problems when represented in algebraic form,
correspond to mixed-integer optimization problems that
have the following general form:

minZ = f(x, y) s.t.



h(x, y) = 0

g(x, y) ≤ 0

x ∈ X, y ∈ {0,1}m
(MIP)

wheref(x, y) is the objective function (e.g. cost),h(x, y) = 0
are the equations that describe the performance of the system
(material balances, production rates), andg(x, y) ≤ 0 are
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Fig. 1. Tree of classes of optimization problem.

inequalities that define the specifications or constraints for
feasible plans and schedules. The variablesx are continuous
and generally correspond to state variables, whiley are the
discrete variables, which generally are restricted to take 0–1
values to define for instance the assignments of equipment
and sequencing of tasks. Problem (MIP) corresponds to a
mixed-integer nonlinear program (MINLP) when any of the
functions involved are nonlinear. If all functions are linear
it corresponds to a MILP. If there are no 0–1 variables,
the problem (MIP) reduces to a NLP or LP depending on
whether or not the functions are linear.

It should be noted that (MIP) problems, and their special
cases, may be regarded as steady-state models. Hence, one
important extension is the case of dynamic models, which
in the case of discrete time models gives rise to multiperiod
optimization problems, while for the case of continuous
time it gives rise to optimal control problems that generally
involve differential–algebraic equation (DAE) systems. An-
other important extension includes problems under uncer-
tainty, which give rise to stochastic optimization problems.

1.1. Applications matrix

Mathematical programming, and optimization in general,
have found extensive use in process systems engineering. A

Table 1
Applications of mathematical programming in process systems engineering

LP MILP QP, LCP NLP MINLP Global SA/GA

Design and synthesis
HENS × × × × × ×
MENS × × × × × ×
Separations × ×
Reactors × × × ×
Equipment Design × × ×
Flowsheeting × ×

Operations
Scheduling × × × ×
Supply chain × × ×
Real-time optimization × × ×

Control
Linear MPC × ×
Nonlinear MPC × ×
Hybrid × × ×

major reason for this is that in these problems there are often
many alternative solutions, and hence, it is often not easy to
find the optimal solution. Furthermore, in many cases, the
economics is such that finding the optimum solution trans-
lates into large savings. Therefore, there might be a large
economic penalty to just sticking to suboptimal solutions.
In summary, optimization has become a major technology
that helps companies to remain competitive.

As for specific areas, process design problems tend to
give rise to NLP and MINLP problems, while scheduling
and planning problems tend to give rise to LP and MILP
problems. The reason for this is that design problems tend to
rely more heavily on predictions of process models, which
are nonlinear, while in scheduling and planning the physical
predictions tend to be less important, since most operations
are described through time requirements and activities. In
the case of process control the split is about even.

In Table 1, we indicate what specific types of models have
been formulated for a number of applications in process sys-
tems engineering. As seen inTable 1, design and synthe-
sis have been dominated by NLP and MINLP models due
to the need for the explicit handling of performance equa-
tions, although simpler targeting models give rise to LP and
MILP problems. Operations problems, in contrast, tend to
be dominated by linear models, LP and MILP, for planning,
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scheduling and supply chain problems. NLP, however, plays
a crucial role at the level of real time optimization. Control
has traditionally relied on LP and NLP models, although
MILPs are being increasingly used for hybrid systems. Fi-
nally, note that global optimization has concentrated more
on design than on operations problems, since nonconvexi-
ties in the design problems are more likely to yield subop-
timal solutions since the corresponding bounds for the vari-
ables are rather loose in these problems. It is also worth
noting that the applications listed inTable 1have been facil-
itated not only by progress in optimization algorithms, but
also by the advent of modeling techniques (Williams, 1985)
and systems such as GAMS (Brooke, Kendrick, Meeraus,
& Raman, 1998) and AMPL (Fourer, Gay, & Kernighan,
1992).

Several other papers in this special issue discuss appli-
cations of optimization in process engineering. Instead, this
paper will emphasize optimization methods and concepts as
a core area for research in process systems engineering. As
a result, this review serves as a complement to detailed op-
timization models in specific applications areas that are pre-
sented in other papers in this issue. In the next section, we
present an overview of linear and nonlinear programming
methods for optimization problems with continuous vari-
ables, including simulated annealing (SA) and genetic algo-
rithms (GA).Section 3then extends to mixed-integer prob-
lems and provides a review of MINLP methods.Section 4
provides a survey of methods for optimization problems
that include differential–algebraic equations andSection 5
discusses optimization under uncertainty. Finally,Section 6
provides a summary and sets the stage for future work dis-
cussed in our companion Perspectives paper.

2. Continuous variable optimization

For continuous variable optimization we consider (MIP)
without discrete variablesy. The general problem (NLP) is
presented below:

Min f(x) s.t.

{
h(x) = 0
g(x) ≤ 0

(NLP)

A key characteristic of problem (NLP) is whether it is convex
or not, i.e., it has a convex objective function and a convex
feasible region. Convex feasible regions requireg(x) to be
convex andh(x) to be linear.1 If (NLP) is a convex problem,
than any local solution is also a global solution to (NLP).
Moreover, if the objective function is strictly convex, this
solution is unique. On the other hand, the KKT conditions
can only satisfy local optimality for nonconvex problems
and, as discussed in our companion perspectives paper, a

1 The functionφ(x) is convex overx ∈ X if: φ(αx1 + (1 − α)x2) ≤
αφ(x1) + (1 − α)φ(x2) holds for all a ∈ (0,1) and x1, x2 ∈ X. Strict
convexity requires that this inequality be strict.

more rigorous (and expensive) search procedure is required
to find a global solution.

Further specializations of the problem can be made if
the constraint and objective functions satisfy certain proper-
ties, and specialized algorithms can be constructed for these
cases. In particular if the objective and constraint functions
in (NLP) are linear then the following linear program:

Min cTx s.t.

{
Ax = b
Cx ≤ d (LP)

can be solved in a finite number of steps. The standard
method to solve (LP) is the simplex method, developed in
the late 1940s (seeDantzig, 1963), although interior point
methods have become quite advanced and competitive for
highly constrained problems (Wright, 1996). Methods to
solve (LP) are widespread and well implemented. Currently,
start of the art LP solvers can handle millions of variables
and constraints and the application of further decomposi-
tion methods leads to the solution of problems that are two
or three orders of magnitude larger than this. Because these
methods are so widely known, further mention of the sim-
plex method will not be described here (see the standard
references:Edgar, Himmelblau, & Lasdon, 2001; Hillier &
Lieberman, 1974for more details). Also, the interior point
method is described below from the perspective of more
general nonlinear problems.

Quadratic programs represent a slight modification of
(LP) and can be stated as

Min cTx+ 1

2
xTQxs.t.

{
Ax = b
Cx ≤ d (QP)

If the matrix Q is positive semi-definite (positive definite)
when projected into the null space of the active constraints,
then (QP) is (strictly) convex and the (QP) has a unique
minimum (minimizer). Otherwise, local solutions exist for
(QP) and more extensive global optimization methods are
needed to obtain the global solution. Convex QPs can also
be solved in a finite number of steps. Here, a number of
active set strategies have been created that solve the KKT
conditions of the QP and incorporate efficient updates of
active constraints. Popular methods include null space algo-
rithms (Gill, Murray, & Wright, 1981), range space methods
and Schur complement methods. As with LPs, QP problems
can also be solved with interior point methods (seeWright,
1996). Structures of large-scale QPs can be exploited quite
efficiently with interior and Schur complement methods.

2.1. Solving the NLP problem

To introduce solution techniques for (NLP) we first con-
sider solvers based on successive quadratic programming
(SQP) as they allow the construction of a number of NLP
algorithms based on Newton steps. Moreover, these solvers
have been shown to require the fewest function evaluations
to solve NLPs (Binder et al., 2001; Schittkowski, 1987) and
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they can be tailored to a broad range of process engineering
problems with different structure.

SQP applies the equivalent of a Newton step to the KKT
conditions of the nonlinear programming problem and this
leads to a fast rate of convergence. An informal derivation
proceeds as follows. At a stationary point of (NLP),x∗, the
first-order KKT conditions for this problem are given by

∇f(x∗)+ A(x∗)λ+ C(x∗)v = 0 (KKTa)

h(x∗) = 0 (KKTb)

g(x∗)+ s = 0 (KKTc)

SVe= 0 (KKTd)

(s, v) ≥ 0 (KKTe)

where e = [1,1, . . . ,1]T, λ is the multiplier vector of
the equalities,v the multipliers of the inequalities,A(x) =
∇h(x), C(x) = ∇g(x), S = diag{s}, V = diag(v).

SQP methods find solutions that satisfy (KKT) by gener-
ating Newton-like search directions at iterationk. In general,
one can classify SQP methods by the following categories:

• Active set versus barrier methodsto handle bounds and
inequality constraints in generating search directions.

• Second-order informationcan be provided in a num-
ber of ways and problem structure can be exploited for
Newton-like steps.

• Line search versus trust regionmethods to enforce global
convergence of the SQP iterations.

2.1.1. Active set versus barrier methods
The complementarity conditions (KKTd and KKTe)

present a key difficulty in solving the KKT conditions as a
set of equations. At the solution, the equations (KKTd) and
active bounds (KKTe) are dependent and serve to make the
KKT system ill-conditioned near the solution. SQP algo-
rithms treat these conditions in two ways. In the active set
strategy, discrete decisions are made regarding the active
constraint set,i ∈ I = {i|gi(x∗) = 0}, (KKTd) is replaced
by si = 0, i ∈ I, andvi = 0, i /∈ I and determining the
active set is a combinatorial problem. A relatively inexpen-
sive way to determine an estimate of the active set (and
also satisfy (KKTe)) is to formulate, at a pointxk, and to
solve the quadratic programming (QP) problem at iteration
k, given by

Min ∇φ(xk)Tp+ 1
2p

TW(xk, λk, vk)p

s.t.
h(xk)+ A(xk)Tp = 0

g(xk)+ C(xk)Tp+ s = 0, s ≥ 0
(SQP)

The KKT conditions of (SQP) are given by

∇φ(xk)+W(xk, λk, vk)p+ A(xk)λ
+C(xk)v = 0 (QPKKTa)

h(xk)+ A(xk)Tp = 0 (QPKKTb)

g(xk)+ C(xk)Tp+ s = 0 (QPKKTc)

SVe= 0 (QPKKTd)

(s, v) ≥ 0 (QPKKTe)

whereW(x, λ, v) = ∇2(f(x)+ h(x)Tλ+ g(x)Tv); A(xk) =
∇h(xk)andC(xk) = ∇g(xk) is the Hessian of the Lagrange
function. It is easy to show that ((QPKKTa)–(QPKKTc))
correspond to a linearization of ((KKTa)–(KKTc)) at itera-
tion k. Also, selection of the active set is now handled at
the QP level in satisfying the conditions ((QPKKTd), (QP-
KKTe)). To evaluate and change candidate active sets, QP
algorithms apply inexpensive matrix updating strategies to
the KKT matrix associated with (SQP). Details of this ap-
proach can be found in (Fletcher, 1987; Nocedal & Wright,
1999).

To avoid the combinatorial problem of selecting the ac-
tive set, barrier methods modify the NLP problem (1–3) to
form:

Min φ(xk)− µ
∑
i

ln si s.t.

{
h(xk) = 0

g(xk)+ s = 0
(IP)

where the solution to this problem hass > 0 for the penalty
parameterµ > 0, and decreasingµ to zero leads to solution
of problem (NLP). The KKT conditions for this problem
can be written as

∇φ(x∗)+ A(x∗)λ+ C(x∗)v = 0

h(x∗) = 0

g(x∗)+ s = 0

SVe= µe

(IPKKT)

and forµ > 0, s > 0, andv > 0, Newton steps generated
to solve (IPKKT) are well-behaved and analogous to (QP-
KKT), with a modification on the right hand side of (QP-
KKTd). Moreover, ifWk is positive definite in the null space
of A(xk)T, the Newton step can be written as the following
QP subproblem:

Min ∇φ(xk)Tp+ 1
2p

TW(xk, λk, vk)p

−µ(Sk)−1eT#s+ 1
2#s

T(Sk)−1vk #s

s.t.
h(xk)+ A(xk)Tp = 0

g(xk)+ C(xk)Tp+ sk +#s = 0
(IPQP)

wheres = sk + #s. This QP can be further simplified if
the inequality constraints take the form of simple bounds.
Note that the complementarity conditions are now replaced
by penalty terms in the objective function. The optimality
conditions for this QP can now be written as a set of linear
equations and the combinatorial problem of selecting the
active set disappears.

In comparing these approaches, both methods possess
clear trade-offs. Barrier methods may require more itera-
tions to solve (IP) for various values ofµ, while active set
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methods require the solution of a more expensive QP sub-
problem (SQP). Thus, if there are few inequality constraints
or an active set is known (say from a good starting guess, or
the warm-start QP solution from a previous iteration) then
solving (SQP) is not expensive and the active set method
is favored. On the other hand, for problems with many in-
equality constraints, barrier methods are often faster, as they
avoid the combinatorial problem of selecting the active set.
This is especially the case for large-scale problems when a
large number of bounds are active, as this approach elimi-
nates the necessity of choosing an active set. Examples that
demonstrate the performance of these approaches include
the solution of linear model predictive control (MPC) prob-
lems (Rao, Rawlings, & Wright, 1998) and nonlinear MPC
problems (Albuquerque, Gopal, Staus, Biegler, & Ydstie,
1997) using interior point QP solvers, as well as the solu-
tion of large optimal control problems using barrier NLP
solvers. For instance, an efficient implementation of IPOPT
allows the solution of problems with more than 2,000,000
variables and 4500 degrees of freedom (seeWächter,
2002).

2.1.2. Providing second-order information
With the development and increasing application of au-

tomatic differentiation tools, there are a number of model-
ing and simulation platforms where accurate first and sec-
ond derivatives can be accessed for optimization. If second
derivatives are available for the objective or constraint func-
tions, they can be used to construct the Hessian,Wk, for the
above QP subproblems. However, to obtain a unique solu-
tion for these QPs, the active constraint gradients must still
be full rank andWk must be positive definite when projected
into the null space of the active constraint gradients. These
properties may not hold far from the solution or for prob-
lems that do not satisfy sufficient second-order conditions,
and corrections to the Hessian in (SQP) may be necessary
(seeFletcher, 1987).

If second derivatives are not available, positive definite
quasi-Newton approximations to the reduced Hessian (such
as BFGS) are often quite successful. Here, if we define the
nd vectordT = [pT#sT], an nc vectorcT = [hT (g + s)T]
and

H =
[
AT 0

CT I

]
,

then we can partitiond = Zdz+Ydy whereZ ∈ Rnd×(nd−nc),
Y ∈ Rnd×nc, HZ = 0 and [Z Y ] is a nonsingular matrix.
If we write the QPs (IPQP) or (SQP), without the bound
constraint in the following form:

Mind a
Td + 1

2d
TQd s.t. c + Hd = 0 (QP1)

then substituting the partition ford into (QP1) and simpli-
fying leads to

dy = −( H Y )−1c (RD)

and

Mindz(Z
Ta+ ZTQYdy)

Tdz + 1
2d

T
z (Z

TQZ)dz. (ND)

With this decomposition, (RD) is often a sparse linear sys-
tem of equations of ordernc while (ND) has only (nd −
nc) variables. If there are only a few degrees of freedom (nd
− nc), then the quantities (ZTQZ) and (ZTQY)dy are inex-
pensive to approximate with quasi-Newton update formulae
and finite difference formulae, respectively. Moreover, a sta-
bilized BFGS update approximation for (ZTQZ) leads to a
positive definite reduced Hessian in (ND) and a unique so-
lution for the QP subproblem.

Finally, for problems with quadratic objective functions,
as in data reconciliation, parameter estimation, and model
predictive control, one can often assume that the value of
the objective function and its gradient at the solution are
vanishingly small. Under these conditions, one can show that
the multipliers (λ, v) also vanish andW can be substituted
by ∇2φ(x∗). This Gauss–Newton approximationhas been
shown to be very efficient for the solution of least squares
problems.

2.1.3. Line search versus trust region methods
To promote convergence from poor starting points, two

types of globalization strategies, line search and trust region
methods, are commonly used for the search directions cal-
culated from the above QP subproblems. In a trust region
approach, the constraint,||d|| ≤ # is added to the QP. The
step,xk+1 = xk + d, is taken if there is sufficient reduction
of a merit function (e.g., the objective function weighted
with some measure of the constraint violations). Popular
merit functions for SQP methods include the augmented La-
grangian function (of the form:φ(x)+ λTh(x)+ νTg(x)+
ρ||g(x)+, h(x)||2) or exact penalty functions (of the form:
φ(x) + ρ||g(x)+, h(x)||). Also the size of the trust region
# is adjusted based on the agreement of the reduction of
the actual merit function compared to its predicted reduction
from the QP (seeNocedal & Wright, 1999). However, for
values of# sufficiently small, (QP1) may have no solution.
Instead, trust region constraints can be applied to subprob-
lems fordy anddz, which replace (RD) and (ND), respec-
tively. This approach has been applied in the KNITRO code
(Byrd, Hribar, & Nocedal, 1997). Such methods have strong
global convergence properties and are especially appropriate
for ill-conditioned NLPs.

On the other hand, line search methods can be more effi-
cient on problems with reasonably good starting points and
well-conditioned QP subproblems, as in real time optimiza-
tion. Typically, once the QP search direction is calculated
from (SQP) or from (IPQP) a step sizeα ∈ [0,1] is chosen so
thatxk+αd leads to a sufficient decrease of a merit function.
As a recent alternative, a novel line search strategy has been
developed based on a bi-criterion minimization, with the
objective function and constraint infeasibility as competing
objectives. Termed thefilter approach, this method, also de-
veloped for trust regions (Fletcher, Gould, Leyffer, Toint, &
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Table 2
Representative SQP-type NLP solvers

Method Inequality constraints Globalization Full vs. reduced space Second-order information

IPOPT (Wächter & Biegler, 2002) Barrier Line search Full or reduced space Exact or quasi-Newton
KNITRO (Byrd et al., 1997) Barrier Trust region Reduced space Exact or quasi-Newton
LOQO (Vanderbei & Shanno, 1997) Barrier Line search Full space Exact
NPSOL (Gill et al., 1990) Active set Line search Full space Quasi-Newton
rSQP (Ternet & Biegler, 1996) Active set Line search Reduced space Quasi-Newton
SNOPT (Gill, Murray, & Saunders, 1998) Active set Line search Reduced space Quasi-Newton
SOCS (Betts, 2001) Active set Line search Full space Exact
SRQP (PSE, 2002) Active set Line search Reduced space Quasi-Newton
TRICE (Dennis, Heinkenschloss, & Vicente, 1998) Barrier Trust region Reduced space Exact or quasi-Newton

Waechter, 2001), usually leads to better performance than
line searches based on merit functions. A detailed descrip-
tion of the filter line search method can be found in (Wächter
& Biegler, 2002).

Table 2 presents a sampling of available codes of
SQP-type solvers that represent the above classifications.

2.2. Other gradient-based NLP solvers

In addition to SQP methods, several NLP solvers have
been developed and adapted for large scale problems. Gen-
erally, these methods require more function evaluations
than SQP methods but they perform very well when inter-
faced to optimization modeling platforms such as AMPL,
CUTE or GAMS, where function evaluations are cheap. All
of these can be derived from the perspective of apply-
ing Newton steps to portions of the KKT conditions of
(NLP).

LANCELOT (Conn, Gould, & Toint, 2000) is based on
the solution of bound constrained subproblems. Here an aug-
mented Lagrangian is formed from (NLP) and the following
subproblem is solved:

Min f(x)+ λTh(x)+ νT(g(x)+ s)
+ 1

2ρ||h(x), g(x)+ s||2 s.t. s ≥ 0 (AL)

The above subproblem can be solved very efficiently for
fixed values of the multipliers,λ andv, and penalty param-
eter ρ. Here, a gradient projection, trust region algorithm
is applied. Once subproblem (AL) is solved, the multipliers
and penalty parameter are updated in an outer loop and the
cycle repeats until the KKT conditions for (NLP) are sat-
isfied. LANCELOT works best when exact second deriva-
tives are available. This promotes a fast convergence rate in
solving each subproblem and allows the trust region method
to exploit directions of negative curvature in the Hessian
matrix.

MINOS (Murtagh & Saunders, 1987) is a well-
implemented package with a number of similarities to
SQP-type methods. Here, the quadratic programming sub-
problem is replaced by a linearly constrained NLP, with an

augmented Lagrangian objective function:

Min f(x)+ λTh(x)+ νT(g(x)+ s)
+ 1

2ρ||h(x), g(x)+ s||2

s.t.
h(xk)+ A(xk)Tp = 0

g(xk)+ C(xk)Tp+ s = 0, s ≥ 0
(LCNLP)

At the current iterate,xk, MINOS selects an active set and
applies a reduced space decomposition to (LCNLP). In fact,
the decomposition is implemented in such a way that MI-
NOS naturally defaults to the LP simplex method if the ob-
jective and constraint functions are linear. Upon eliminat-
ing the dependent and bounded variables, an unconstrained
quasi-Newton method is applied to the remaining variables.
At the solution of this subproblem, the constraints are relin-
earized and the cycle repeats until the KKT conditions of
(NLP) are satisfied. For problems with few degrees of free-
dom, this leads to an extremely efficient method even for
very large problems. Note that the augmented Lagrangian
function is used in (LCNLP) in order to penalize movement
away from the feasible region. MINOS has been interfaced
to both GAMS and AMPL and enjoys widespread use. It
performs especially well on problems with few nonlinear
constraints.

Finally the generalized reduced gradient (GRG) methods,
GRG2, CONOPT, and SOLVER, consider the same sub-
problem as in MINOS, but also ensure that the constraints
are always satisfied at each iterate of (LCNLP) (Edgar et al.,
2001). GRG methods select an active set and applies a re-
duced space decomposition. Upon eliminating the depen-
dent and bounded variables, an unconstrained quasi-Newton
method is applied to the remaining variables, along with a
constraint restoration step. Note that sincexk is always feasi-
ble, the augmented Lagrangian function in (LCNLP) simply
becomesf(x). Among all of the gradient based NLP solvers,
the GRG methods are the most popular; the SOLVER code
has been incorporated into MS Excel and optimization is
now a widely used option in Excel. In the GAMS and AMPL
modeling environments, CONOPT is an efficient and widely
used code that is usually more reliable than MINOS.
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2.3. Optimization without derivatives

We now consider a broad class of optimization strategies
that do not require derivative information. These methods
have the advantage of easy implementation and little prior
knowledge of the optimization problem. In particular, such
methods are well-suited for ‘quick and dirty’ optimization
studies that explore the scope of optimization for new prob-
lems, prior to investing effort for more sophisticated mod-
eling and solution strategies. Most of these methods are de-
rived from heuristics that naturally spawn numerous vari-
ations. As a result, a very broad literature describes these
methods. Here, we discuss only a few important trends in
this area and describe the mostly widely used methods using
the following classifications.

2.3.1. Classical direct search methods
Developed in the 1960s and 1970s these methods include

one-at-a-time search, a variety of pattern searches, and meth-
ods based on experimental designs (EVOP). In fact, when
Computers and Chemical Engineeringwas founded 25 years
ago, direct search methods were the most popular optimiza-
tion methods in chemical engineering. Methods that fall into
this class include the conjugate direction method ofPowell
(1964), simplex and complex searches, in particularNelder
and Mead (1965), the adaptive random search methods of
Luus and Jaakola (1973), Goulcher and Cesares Long (1978)
andBanga and Seider (1996). All of these methods are based
on well defined search methods that require only objective
function values for unconstrained minimization. Associated
with these methods are numerous studies with successful
results on a wide range of process problems. Moreover,
many of these methods include heuristics that prevent prema-
ture termination (e.g., directional flexibility in the complex
search as well as random restarts and direction generation).

2.3.2. Simulated annealing
This strategy derives from a class of heuristics with analo-

gies to the motion of molecules in the cooling and so-
lidification of metals (Laarhoven & Aarts, 1987). Here, a
‘temperature’ parameter,T, can be raised or lowered to in-
fluence the probability of accepting points that do not im-
prove the objective function. The method starts with a base
point,x, and objective value,f(x). The next pointx′ is chosen
at random from a distribution. Iff(x′) < f(x), the move is
accepted withx′ as the new point. Otherwise,x′ is accepted
with probabilityp(T, x′, x). Options include the Metropolis
distribution,

p(T, x, x′) = exp

(
−f(x

′)− f(x)
T

)

and the Glauber distribution,

p(T, x, x′) = exp(−(f(x′)− f(x))/T )
1 + exp(−(f(x′)− f(x)))/T

Temperature is then reduced and the method continues
until no further progress is made. Simulated annealing
has been employed on a wide variety of process exam-
ples including separation synthesis (Floquet, Pibouleau, &
Domenech, 1994), heat exchanger network synthesis (Dolan,
Cummings, & Levan, 1989) and batch process scheduling
(Das, Cummings, & LeVan, 1990).

2.3.3. Genetic algorithms
This approach, first proposed in (Holland, 1975) is

based on the analogy of improving a population of solu-
tions through modifying their gene pool. Two forms of
genetic modification, crossover or mutation, are used and
the elements of the optimization vector,x, are represented
as binary strings. Crossover deals with random swapping
of vector elements (among parents with highest objective
function values or other rankings of population) or any
linear combinations of two parents. Mutation deals with
the addition of a random variable to elements of the vec-
tor. Genetic algorithms (GAs) have seen widespread use in
process engineering and a number of codes are available.
For instance,Edgar, Himmelblau, and Lasdon (2002)de-
scribe a related GA algorithm described that is available in
Excel. Case study examples in process engineering include
batch process scheduling (Jung, Lee, & Lee, 1998), Loehl,
Schulz, and Engell (1998), sensor network design (Sen,
Narasimhan, & Deb, 1998), and mass exchanger network
synthesis (Garrard & Fraga, 1998).

2.3.4. Derivative free optimization (DFO)
In the past decade, the availability of parallel comput-

ers and faster computing hardware and the need to in-
corporate complex simulation models within optimization
studies, have led a number of optimization researchers to
reconsider classical direct search approaches. In particular,
Dennis and Torczon (1991)developed a multidimensional
search algorithm that extends the simplex approach of
Nelder and Mead. They note that the Nelder–Mead algo-
rithm fails as the number of variables increases, even for
very simple problems. To overcome this, their multidimen-
sional simplex approach combines reflection, expansion
and contraction steps that act as line search algorithms
for a number of linear independent search directions. This
approach is easily adapted to parallel computation and the
method can be tailored to the number of processors avail-
able. Moreover,Torczon (1991)showed that this approach
converges to locally optimal solutions for unconstrained
problems and observed an unexpected performance syn-
ergy when multiple processors are used. It should be noted
that even EVOP and Hooke–Jeeves may be amenable to
this convergence analysis, although the multidimensional
search is much more efficient. The work ofDennis and
Torczon (1991)has spawned considerable research on the
analysis and code development for DFO methods. For
instance,Conn, Scheinberg and Toint (1997)construct a
multivariable DFO algorithm that uses a surrogate model
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for the objective function within a trust region method.
Here points are sampled to obtain a well-defined quadratic
interpolation model and descent conditions from trust re-
gion methods enforce convergence properties. A number
of trust region methods that rely on this approach are re-
viewed inConn et al. (1997). Moreover, a number of DFO
codes have been developed that lead to black box opti-
mization implementations for large, complex simulation
models. These include the DAKOTA package at Sandia
National Lab (Eldred, 2002) and FOCUS developed at
Boeing Corporation (Booker, Dennis, Frank, & Serafini,
1998).

All of the above methods are easy to apply to a wide va-
riety of problem types and optimization models. Moreover,
because their termination criteria are not based on gradient
information and stationary points, these methods are often
more likely to favor the search for global rather than locally
optimal solutions. These methods can also be adapted easily
to include integer variables. However, no rigorous conver-
gence properties to globally optimal solutions have yet been
discovered.

Derivative free methods are best suited for unconstrained
problems or for problems with simple bounds. Otherwise,
they may have difficulties in handling constraints, as the
only options open for handling constraints are equality
constraint elimination or addition of penalty functions for
inequality constraints. Both approaches can be unreliable
and may lead to failure of the optimization algorithm. Fi-
nally, the performance of derivative free methods scales
poorly (and often exponentially) with the number of deci-
sion variables. While performance can be improved with
the use of parallel computing, these methods are rarely
applied to problems with more than a few dozen decision
variables.

3. Discrete optimization

In many applications in process systems engineering it
is required to model discrete decisions such as selection of
units in a flowsheet or sequences in scheduling, or number
of units or batches. The former are commonly represented
with 0–1 variables, while the latter are represented with in-
teger variables that are often approximated as continuous
if they take large values. In the sections below we review
the generalization of (NLP), or alternatively special cases of
problem (MIP).

3.1. Mixed-integer linear programming

MILP problems have the general form:

minZ = aTx+ bTy s.t.

{
Ax+ By ≤ d
x ≥ 0, y ∈ {0,1}m

(MILP)

For the case when no discrete variablesy are involved, the
problem reduces to a linear programming (LP) problem.
MILP methods have been largely developed by operations
researchers, and therefore we only provide a brief review.
The major contribution of chemical engineers in this area
has been to discover problems and applications that can be
framed in the form of problem (MILP) (e.g. seeGrossmann,
Caballero, & Yeomans, 1999; Grossmann, Quesada, Raman,
& Voudouris, 1996; Kallrath, 2000; Pinto & Grossmann,
1998).

MILP methods (Nemhauser & Wolsey, 1988) rely largely
on the simplex LP-based branch and bound method (Dakin,
1965). This method consists of a tree enumeration in which
the integer space is successively partitioned into relaxed
LP subproblems that are solved at each node of the tree.
The initial node in which the variablesy in (MILP) are
treated as continuous, yields an absolute lower bound (min-
imization case) to the optimal solution. If as is often the
case, this solution exhibits one or morey variables with
fractional values a tree search is performed according to
pre-specified branching rules (e.g. depth first, minimum
reduced cost). The LP solution of each node yields a lower
bound to the solution of the descendant nodes. When a fea-
sible integer solution is found this yields an upper bound.
Nodes are eliminated based on these bounding proper-
ties, and the enumeration continues until the difference
between the current lower and upper bounds lies within a
tolerance.

In the worst case, the branch and bound method may end
up enumerating most of the nodes in the tree, and therefore,
not unexpectedly, MILP methods are NP-hard. To overcome
the potential exponential computation in MILP problems
two major developments have been the use of preprocess-
ing and cutting planes. Pre-processing techniques rely on
techniques for automatic elimination of variables and con-
straints, reduction of bound, fixing of integer variables,
and reformulation of constraints. Cutting plane techniques
are derived from theoretical analysis of the integer convex
hull of either specialized problems (e.g. knapsack, network
flows), or from general unstructured MILP problems. Cut-
ting planes are generally generated from the LP relaxation
and a separation problem that cuts off a portion of the
relaxed continuous feasible region that does not contain
the integer optimal solution. Cutting planes have usually
the effect of producing tighter lower bounds for the LP
relaxation. Recent trends in MILP include the develop-
ment of branch-and-price (Barnhart, Johnson, Nemhauser,
Savelsbergh, & Vance, 1998) and branch-and-cut meth-
ods such as the lift-and-project method byBalas, Ceria
and Cornuejols (1993), in which cutting planes (e.g. Go-
mory, mixed-integer rounding cuts) are generated as part
of the branch and bound enumeration. See alsoJohnson,
Nemhauser, and Savelsbergh (2000)for a recent review on
MILP.

MILP codes build on LP codes that are widely available.
The best known include CPLEX (ILOG, 2000), XPRESS
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(Dash Associates, 1999), and OSL (IBM, 1992) all which
have achieved impressive improvements in their problem
solving capabilities. It is worth noting that since MILP
problems are NP-hard it is always possible to run into time
limitations when solving problems with a large number
of 0–1 variables, especially if the integrality gap (differ-
ence between optimal integer objective and optimal LP
relaxation) is large. However, it is also important to em-
phasize that the improvements in solving capabilities for
MILP problems have increased by tens of orders of mag-
nitude over the last few years due to a combination of
use of cutting planes, improved preprocessing and faster
computers (Bixby, Fenelon, Gu, Rothberg, & Wunderling,
2002).

3.2. Mixed-integer nonlinear programming

MINLP models typically arise in synthesis and design
problems, and in planning and scheduling problems. MINLP
clearly provides much greater modeling flexibility for tack-
ling a large variety of problems. While MILP methods have
been largely developed outside process systems engineer-
ing, chemical engineers have played a prominent role in the
development of MINLP methods.

Major methods for MINLP problems include Branch
and Bound (BB) (Borchers & Mitchell, 1994; Gupta
& Ravindran, 1985; Leyffer, 2001; Stubbs & Mehrotra,
1999), which is a direct extension of the linear case,
except that NLP subproblems are solved at each node.
Generalized benders decomposition (GBD) (Benders,
1962; Geoffrion, 1972), and Outer-Approximation (OA)
(Duran & Grossmann, 1986; Ding-Mai & Sargent, 1992;
Fletcher & Leyffer, 1994; Quesada & Grossmann, 1992;
Yuan, Zhang, Piboleau, & Domenech, 1988), are iter-
ative methods that solve a sequence of alternate NLP
subproblems with all the 0–1 variables fixed, and MILP
master problems that predict lower bounds and new val-
ues for the 0–1 variables. Finally, the Extended Cutting
Plane Method (ECP) (Westerlund & Pettersson, 1995)
is a variation that does not require the solution of NLP
subproblems.

For the derivation of the above methods the MINLP prob-
lem is assumed to be given by

minZ = f(x, y) s.t.
{
gj(x, y) ≤ 0j ∈ J
x ∈ X, y ∈ Y (P1)

wheref(·), g(·) areconvex, differentiablefunctions,J is the
index set of inequalities, andx and y are the continuous
and discrete variables, respectively. The setX is commonly
assumed to be a convex compact set, e.g.X = {x|x ∈
Rn,Dx ≤ d, xL ≤ x ≤ xU}; the discrete setY corresponds
to a polyhedral set of integer points,Y = {y|y ∈ Zm,Ay ≤
a}, which in most applications is restricted to 0–1 values,
y ∈ {0,1,1}m. In most applications of interest the objective
and constraint functionsf(·), g(·) are linear iny (e.g. fixed

cost charges and mixed-logic constraints):

f(x, y) = cTy + r(x), g(x, y) = By+ h(x).

3.2.1. NLP subproblems
There are three basic NLP subproblems that can be con-

sidered for problem (P1).

3.2.1.1. NLP relaxation.

minZkLB = f(x, y) s.t.




gj(x, y) ≤ 0, j ∈ J
x ∈ X, y ∈ YR

yi ≤ αki , i ∈ IkFL

yi ≥ βki , i ∈ IkFU

(NLP1)

whereYR is the continuous relaxation of the setY, andIkFL,
IkFU are index subsets of the integer variablesyi, i ∈ I, which
are restricted to lower and upper bounds,αki ,β

k
i at thekth

step of a branch and bound enumeration procedure. It should
be noted thatαki = ⌊

yli
⌋
, βki = ⌈

ymi
⌉
, l < k, m < k, where

yli, y
m
i , are noninteger values at a previous step, and are the

floor and ceiling functions, respectively.
Also note that ifIkFU = IkFL = ∅ (k = 0), (NLP1) corre-

sponds to the continuous NLP relaxation of (P1). Except for
few and special cases, the solution to this problem yields in
general a noninteger vector for the discrete variables. Prob-
lem (NLP1) also corresponds to thekth step in a branch and
bound search. The optimal objective function provides an
absolute lower bound to (P1); form ≥ k, the bound is only
valid for IkFL ⊂ ImFL, I

k
FU ⊂ ImFL.

3.2.1.2. NLP subproblem for fixed yk.

Min ZkU = f(x, yk) s.t.
{
gj(x, y

k) ≤ 0, j ∈ J
x ∈ X (NLP2)

which yields an upper boundZkU to (P1) provided (NLP2)
has a feasible solution. When this is not the case, we consider
the next subproblem.

3.2.1.3. Feasibility subproblem for fixed yk.

Min u s.t.

{
gj(x, y

k) ≤ u j ∈ J
x ∈ X, u ∈ R1 (NLPF)

which can be interpreted as the minimization of the
infinity-norm measure of infeasibility of the corresponding
NLP subproblem. Note that for an infeasible subproblem
the solution of (NLPF) yields a strictly positive value of the
scalar variableu.

3.2.2. MILP cutting plane
The convexity of the nonlinear functions is exploited by

replacing them with supporting hyperplanes, that are gener-
ally, but not necessarily, derived at the solution of the NLP
subproblems. In particular, the new valuesyk (or (xk, yk)) are
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obtained from a cutting plane MILP problem that is based
on theK points, (xk, yk), k = 1, . . . , K generated at theK
previous steps:

Min ZKL = α s.t.




α ≥ f(xk, yk)+ ∇f(xk, yk)T
[
x− xk
y − yk

]

gj(x
k, yk)+ ∇gj(xk, yk)T

[
x− xk
y − yk

]
≤ 0, j ∈ Jk

x ∈ X, y ∈ Y




k = 1, . . . , K(M-MIP)

where Jk ⊆ J . When only a subset of linearizations is
included, these commonly correspond to violated con-
straints in problem (P1). Alternatively, it is possible to
include all linearizations in (M-MIP). The solution of
(M-MIP) yields a valid lower boundZKL to problem
(P1). This bound is nondecreasing with the number of
linearization pointsK. Note that since the functionsf(x,
y) and g(x, y) are convex, the linearizations in (M-MIP)
correspond to outer-approximations of the nonlinear fea-
sible region in problem (P1). Here it can be seen that
the convex objective function is being underestimated,
and the convex feasible region overestimated with these
linearizations.

The different methods can be classified according to their
use of the subproblems (NLP1), (NLP2) and (NLPF), and

the specific specialization of the MILP problem (M-MIP).
It should be noted that in the GBD and OA methods (case
3.2.1.2), and in the LP/NLP based branch and bound method
(case 3.2.1.3), the problem (NLPF) is solved if infeasible
subproblems are found. Each of the methods is explained
next in terms of the basic subproblems.

Branch and bound.While the earlier work in BB was
aimed at linear problems (Dakin, 1965), this method can
also be applied to nonlinear problems (Borchers & Mitchell,
1994; Gupta & Ravindran, 1985; Leyffer, 2001; Nabar &
Schrage, 1991; Stubbs & Mehrotra, 1999). The BB method
starts by solving first the continuous NLP relaxation. If all
discrete variables take integer values the search is stopped.
Otherwise, a tree search is performed in the space of the
integer variablesyi. i ∈ I. These are successively fixed at the
corresponding nodes of the tree, giving rise to relaxed NLP
subproblems of the form (NLP1) which yield lower bounds
for the subproblems in the descendant nodes. Fathoming
of nodes occurs when the lower bound exceeds the current
upper bound, when the subproblem is infeasible or when all
integer variablesyi take on discrete values. The latter yields
an upper bound to the original problem.

The BB method is generally only attractive if the NLP
subproblems are relatively inexpensive to solve, or when

only few of them need to be solved. This could be either
because of the low dimensionality of the discrete variables,
or because the integrality gap of the continuous NLP relax-
ation of (P1) is small.

Outer-Approximation (Duran & Grossmann, 1986;
Fletcher & Leyffer, 1994; Yuan et al., 1988). The OA
method arises when NLP subproblems (NLP2) and MILP
master problems (M-MIP) withJk = J are solved succes-
sively in a cycle of iterations to generate the points (xk, yk).

Since the master problem (M-MIP) theoretically requires
for equivalence with (P1), the solution of all feasible discrete
variablesyk, the following MILP relaxation is considered,
assuming that the solution of K different NLP subproblems
(whereK = |KFS∪ KIS|, KFS is the set of solutions from
(NLP2) and KIS is the set of solutions from (NLPF)) is
available:

Min ZKL = α s.t.




α ≥ f(xk, yk)+ ∇f(xk, yk)T
[
x− xk

y − yk

]

gj(x
k, yk)+ ∇gj(xk, yk)T

[
x− xk
y − yk

]
≤ 0, j ∈ J

x ∈ X, y ∈ Y




k = 1, . . . , K (RM-OA)

Given the assumption on convexity of the functionsf(x, y)
andg(x, y), the solution of problem (RM-OA),ZKL , corre-
sponds to a lower bound of the solution of problem (P1).
Also, since function linearizations are accumulated as it-
erations proceed, the master problems (RM-OA) yield a
non-decreasing sequence of lower bounds,Z1

L · · · ≤ ZkL ≤
· · · ≤ ZKL , since linearizations are accumulated as iterations
k proceed.

The OA algorithm as proposed byDuran and
Grossmann (1986)consists of performing a cycle of major
iterations,k = 1, . . . , K, in which (NLP1) is solved for the
correspondingyk, and the relaxed MILP master problem
(RM-OA) is updated and solved with the corresponding
function linearizations at the point (xk, yk), for which the
corresponding subproblem NLP2 is solved. If feasible, the
solution to that problem is used to construct the first MILP
master problem; otherwise a feasibility problem (NLPF)
is solved to generate the corresponding continuous point
(Fletcher and Leyffer, 1994). The initial MILP master prob-
lem (RM-OA) then generates a new vector of discrete vari-
ables. The (NLP2) subproblems yield an upper bound that is
used to define the best current solution, UBK = Mink {ZkU}.
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The cycle of iterations is continued until this upper bound
and the lower bound of the relaxed master problem,ZKL ,
are within a specified tolerance. One way to avoid solv-
ing the feasibility problem (NLPF) in the OA algorithm
when the discrete variables in problem (P1) are 0–1, is to
introduce the following integer cut whose objective is to
make infeasible the choice of the previous 0–1 values gen-
erated at theK previous iterations (Duran & Grossmann,
1986):∑
i∈Bk

yi −
∑
i∈Nk

yi ≤ |Bk| − 1, k = 1, . . . , K (ICUT)

whereBk = {i|yki = 1}, Nk = {i|yki = 0}, k = 1, . . . , K.
This cut becomes very weak as the dimensionality of the
0–1 variables increases. However, it has the useful feature
of ensuring that new 0–1 values are generated at each ma-
jor iteration. In this way, the algorithm will not return to a

previous integer point when convergence is achieved. Using
the above integer cut the termination takes place as soon as
ZKL = UBK.

The OA method generally requires relatively few cycles
or major iterations. One reason is that the OA algorithm
trivially converges in one iteration iff(x, y) andg(x, y) are
linear. This property simply follows from the fact that iff(x,
y) andg(x, y) are linear inx andy the MILP master problem
(RM-OA) is identical to the original problem (P1).

It is also important to note that the MILP master problem
need not be solved to optimality. In fact given the upper
bound UBk and a toleranceε, it is sufficient to generate
the new (yk, xk) by finding a mixed-integer solution to
the MILP that lies below UBK − ε. In this case, the OA
iterations are terminated when (RM-OAF) has no feasible
solution.

Generalized benders decomposition(Geoffrion, 1972).
The GBD method (seeFlippo & Kan, 1993) is similar to
the OA method. The difference arises in the definition of
the MILP master problem (M-MIP). In the GBD method
only active inequalities are consideredJk = {j|gj(xk, yk) =
0} and the set is disregarded. In particular, consider an
outer-approximation given at a given point (xk, yk),

α ≥ f(xk, yk)+ ∇f(xk, yk)T
[
x− xk
y − yk

]

g(xk, yk)+ ∇g(xk, yk)T
[
x− xk
y − yk

]
≤ 0

(OAk)

where for a fixedyk the point xk corresponds to the op-
timal solution to problem (NLP2). Making use of the
Karush–Kuhn–Tucker conditions and eliminating the con-

tinuous variablesx, the inequalities in (OAk) can be reduced
as follows (Quesada & Grossmann, 1992):

α≥ f(xk, yk)+ ∇yf(xk, yk)T(y − yk)
+ (µk)T[g(xk, yk)+ ∇yg(xk, yk)T(y − yk)] (LCk)

which is the Lagrangian cut projected in they-space. This
can be interpreted as a surrogate constraint of the equations
in (OAk), because it is obtained as a linear combination of
these.

For the case when there is no feasible solution to problem
(NLP2), then if the pointxk is obtained from the feasibility
subproblem (NLPF), the following feasibility cut projected
in y can be obtained using a similar procedure,

(λk)T[g(xk, yk)+ ∇yg(xk, yk)T(y − yk)] ≤ 0 (FCk)

In this way, the problem (M-MIP) reduces to a problem
projected in they-space

Min ZKL = α s.t.

{
α ≥ f(xk, yk)+ ∇yf(xk, yk)T(y − yk)+ (µk)T[g(xk, yk)+ ∇yg(xk, yk)T (y − yk)] k ∈ KFS

(λk)T[g(xk, yk)+ ∇yg(xk, yk)T(y − yk)] ≤ 0, k ∈ KIS, x ∈ X, α ∈ R1
(RM-GBD)

whereKFS is the set of feasible subproblems (NLP2) and
KIS is the set of infeasible subproblems whose solution is
given by (NLPF). Also|KFS∪ KIS| = K.

Since the master problem (RM-GBD) can be derived from
the master problem (RM-OA), in the context of problem
(P1), GBD can be regarded as a particular case of the OA
algorithm. In fact given the same set ofK subproblems,
the lower bound predicted by the relaxed master problem
(RM-OA) can be shown to be greater or equal to the one pre-
dicted by the relaxed master problem (RM-GBD). This prop-
erty follows from the fact that the Lagrangian and feasibil-
ity cuts, (LCk) and (FCk), are surrogates of the OAs (OAk).
Given the fact that the lower bounds of GBD are generally
weaker, this method commonly requires a larger number of
cycles or major iterations. As the number of 0–1 variables
increases this difference becomes more pronounced. This is
to be expected since only one new cut is generated per it-
eration. Therefore, user-supplied constraints must often be
added to the master problem to strengthen the bounds. Also,
it is sometimes possible to generate multiple cuts from the
solution of an NLP subproblem in order to strengthen the
lower bound (Magnanti & Wong, 1981). As for the OA algo-
rithm, the trade-off is that while it generally predicts stronger
lower bounds than GBD, the computational cost for solv-
ing the master problem (M-OA) is greater since the number
of constraints added per iteration is equal to the number of
nonlinear constraints plus the nonlinear objective.Sahinidis
and Grossmann (1991)have shown that if problem (P1) has
zero integrality gap, the GBD algorithm converges in one
iteration once the optimal (x∗, y∗) is found. This property
implies that the only case one can expect the GBD method
to terminate in one iteration, is when the initial discrete vec-
tor is the optimum, and when the objective value of the NLP
relaxation of problem (P1) is the same as the objective of
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the optimal mixed-integer solution. One further property that
relates the OA and GBD algorithms is that a cut obtained
from performing one Benders iteration on the MILP master
(RM-OA) is equivalent to the cut obtained from the GBD al-
gorithm. By making use of this property, instead of solving
the MILP (RM-OA) to optimality, for instance by LP-based
branch and bound, one can generate a GBD cut by simply
performing oneBenders (1962)iteration on the MILP.

Extended cutting plane(Westerlund & Pettersson, 1995).
The ECP method, which is an extension of Kelly’s cutting
plane algorithm for convex NLP (Kelley, 1960), does not
rely on the use of NLP subproblems and algorithms. It re-
lies only on the iterative solution of the problem (M-MIP)
by successively adding a linearization of the most vio-
lated constraint at the predicted point (xk, yk): Jk = {ĵ ∈
arg{Maxj∈J gj(xk, yk)}. Convergence is achieved when the
maximum constraint violation lies within the specified tol-
erance. The optimal objective value of (M-MIP) yields a
non-decreasing sequence of lower bounds. It is of course
also possible to either add to (M-MIP) linearizatons of all
the violated constraints in the setJk, or linearizations of all
the nonlinear constraintsj ∈ J . In the ECP method, the
objective must be defined as a linear function, which can
easily be accomplished by introducing a new variable to
transfer nonlinearities in the objective as an inequality.

Note that since the discrete and continuous variables are
converged simultaneously, the ECP method may require a
large number of iterations. However, this method solves in
one iteration (as does the OA method) in the limiting case
when all the functions are linear.

LP/NLP based branch and bound(Quesada & Gross-
ann, 1992). This method is similar in spirit to a branch and
cut method, and avoids the complete solution of the MILP
master problem (M-OA) at each major iteration. The method
starts by solving an initial NLP subproblem, which is lin-
earized as in (M-OA). The basic idea consists then of per-
forming an LP-based branch and bound method for (M-OA)
in which NLP subproblems (NLP2) are solved at those nodes
in which feasible integer solutions are found. By updating
the representation of the master problem in the current open
nodes of the tree with the addition of the corresponding lin-
earizations, the need of restarting the tree search is avoided.

This method can also be applied to the GBD and ECP
methods. The LP/NLP method commonly reduces quite
significantly the number of nodes to be enumerated. The
trade-off, however, is that the number of NLP subproblems
may increase. Computational experience has indicated that
often the number of NLP subproblems remains unchanged.
Therefore, this method is better suited for problems in which
the bottleneck corresponds to the solution of the MILP

master problem.Leyffer (1993)has reported substantial sav-
ings with this method.

3.3. Extensions of MINLP methods

In this subsection, we present an overview of some of the
major extensions of the methods presented in the previous
section.

Quadratic master problems.For most problems of in-
terest, problem (P1) is linear iny: f(x, y) = φ(x) + cTy,
g(x, y) = h(x)+ By.When this is not the caseFletcher and
Leyffer (1994)suggested to include in the feasibility ver-
sion of (RMIP-OA) a quadratic approximation∇2L(xk, yk)

of the Hessian of the Lagrangian of the last NLP subprob-
lem, which yields a mixed-integer quadratic programming
(MIQP) problem.Ding-Mai and Sargent (1992), found that
the quadratic approximations can help to reduce the num-
ber of major iterations since an improved representation of
the continuous space is obtained. Note also that for convex
f(x, y) and g(x, y) using an MIQP leads to rigorous solu-
tions since the outer-approximations remain valid. Also, if
the functionf(x, y) is nonlinear iny, andy is a general in-
teger variable,Fletcher and Leyffer (1994)have shown that
the original OA algorithm may require a much larger num-
ber of iterations to converge than when the master problem
(M-MIQP) is used. This, however, comes at the price of hav-
ing to solve an MIQP instead of an MILP. Of course, the
ideal situation is the case when the original problem (P1)
is quadratic in the objective function and linear in the con-
straints, as then (M-MIQP) is an exact representation of such
a mixed-integer quadratic program.

Reducing dimensionality of the master problem in OA.The
master problem (RM-OA) can involve a rather large number
of constraints, due to the accumulation of linearizations.
One option is to keep only the last linearization point, but
this can lead to nonconvergence even in convex problems,
since then the monotonic increase of the lower bound is
not guaranteed. A rigorous way of reducing the number of
constraints without greatly sacrificing the strength of the
lower bound can be achieved in the case of the “largely”
linear MINLP problem:

Min Z= aTw+ r(v)+ cTy s.t.




Dw+ t(v)+ Cy ≤ 0

Fw+ Gv+ Ey ≤ b
w ∈ W, v ∈ V, y ∈ Y

(PL)

where (w, v) are continuous variables andr(v) and t(v)
are nonlinear convex functions. As shown byQuesada and
Grossmann (1992), linear approximations to the nonlinear
objective and constraints can be aggregated with the follow-
ing MILP master problem:

Min Z = aTw+ r(v)+ cT y s.t.



β ≥ r(νk)+ (λk)T[Dw+ t(νk)+ Cy] − (µk)T(G(ν − νk) k = 1, . . . , K

Fw+ Gv+ Ey ≤ b
w ∈ W, v ∈ V, y ∈ Y, β ∈ R1

(M-MIP)
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Numerical results have shown that the quality of the bounds
is not greatly degraded with the above MILP as might happen
if GBD is applied to (PL).

Handling of equalities.For the case when linear equali-
ties of the formh(x, y) = 0 are added to (P1) there is no
major difficulty since these are invariant to the linearization
points. If the equations are nonlinear, however, there are
two difficulties. First, it is not possible to enforce the lin-
earized equalities atK points. Second, the nonlinear equa-
tions may generally introduce nonconvexities, unless they
relax as convex inequalities (seeBazaraa, Sherali, & Shetty,
1994). Kocis and Grossmann (1987)proposed an equality

relaxation strategy in which the nonlinear equalities are re-
placed by the inequalities,

T k∇h(xk, yk)T
[
x− xk
y − yk

]
≤ 0

where andT k = {tkii }, and tkii = sign{λki } in which λki is
the multiplier associated to the equationhi(x, y) = 0. Note
that if these equations relax as the inequalitiesh(x, y) ≤ 0
for all y, andh(x, y) is convex, this is a rigorous procedure.
Otherwise, nonvalid supports may be generated. Also, note
that in the master problem of GBD, (RM-GBD), no special
provision is required to handle equations since these are
simply included in the Lagrangian cuts. However, similar
difficulties as in OA arise if the equations do not relax as
convex inequalities.

Handling of nonconvexities.When f(x, y) andg(x, y) are
nonconvex in (P1), or when nonlinear equalities,h(x, y) =
0, are present, two difficulties arise. First, the NLP subprob-
lems (NLP1), (NLP2), (NLPF) may not have a unique lo-
cal optimum solution. Second, the master problem (M-MIP)
and its variants (e.g. M-MIPF, M-GBD, M-MIQP), do not
guarantee a valid lower boundZKL or a valid bounding rep-
resentation with which the global optimum may be cut off.
One possible approach to circumvent this problem is refor-
mulation. This, however, is restricted to special cases, most
notably in geometric programming constraints (polynomi-
als) in which exponential transformations,u = exp(x), can
be applied for convexification.

One general solution approach for handling nonconvex-
ities is to develop rigorous global optimization algorithms,
that assume specific forms of the nonlinearities (e.g. bilinear,

linear fractional, concave separable) as will be discussed in
the Perspectives article. The other option for handling non-
convexities is to apply a heuristic strategy to try to reduce
as much as possible the effect of nonconvexities. While not
being rigorous, this requires much less computational effort.
We will describe here an approach for reducing the effect of
nonconvexities at the level of the MILP master problem.

Viswanathan and Grossmann (1990)proposed to intro-
duce slacks in the MILP master problem to reduce the
likelihood of cutting-off feasible solutions. This master
problem “augmented penalty/equality relaxation” (APER)
has the form:

Min ZK = α+
K∑
k=1

[wkpp
k + wkqqk] s.t.




α ≥ f(xk, yk)+ ∇f(xk, yk)T
[
x− xk
y − yk

]

T k ∇h(xk, yk)T
[
x− xk
y − yk

]
≤ pk

g(xk, yk)+ ∇g(xk, yk)T
[
x− xk
y − yk

]
≤ qk

∑
i∈Bk yi −

∑
i∈Nk yi ≤ |Bk| − 1

x ∈ X, y ∈ Y, α ∈ R1, pk, qk ≥ 0




k = 1, . . . , K (M-APER)

wherewkp, w
k
q are weights that are chosen sufficiently large

(e.g. 1000 times magnitude of Lagrange multiplier). Note
that if the functions are convex then the MILP master
problem (M-APER) predicts rigorous lower bounds to (P1)
since all the slacks are set to zero.

It should also be noted that another modification to reduce
the undesirable effects of nonconvexities in the master prob-
lem is to apply global convexity tests followed by a suitable
validation of linearizations. One possibility is to apply the
tests to all linearizations with respect to the current solution
vector (yk, xk) (Grossmann & Kravanja, 1997).

3.4. Computer codes for MINLP

The number of computer codes for solving MINLP
problems is still rather small. The program DICOPT
(Viswanathan & Grossmann, 1990) is an MINLP solver that
is available in the modeling system GAMS (Brooke et al.,
1998). The code is based on the master problem (M-APER)
and the NLP subproblems (NLP2). This code also uses
the relaxed (NLP1) to generate the first linearization for
the above master problem, with which the user need not
specify an initial integer value. Also, since bounding prop-
erties of (M−APER) cannot be guaranteed, the search for
nonconvex problems is terminated when there is no further
improvement in the feasible NLP subproblems. This is a
heuristic that works reasonably well in many problems.
Codes that implement the branch-and-bound method using
subproblems (NLP1) include the code MINLPBB that is
based on an SQP algorithm (Leyffer, 2001) and is available
in AMPL, the code BARON (Sahinidis, 1996) that also
implements global optimization capabilities, and the code
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SBB which is available in GAMS (Brooke et al., 1998).
The code�-ECP implements the extended cutting plane
method byWesterlund and Pettersson (1995), including the
extension byPörn and Westerlund (2000). Finally, the code
MINOPT (Schweiger & Floudas, 1998) also implements the
OA and GBD methods, and applies them to mixed-integer
dynamic optimization problems. It is difficult to make gen-
eral remarks on the efficiency and reliability of all these
codes and their corresponding methods since no systematic
comparison has been made. However, one might anticipate
that branch and bound codes are likely to perform better if
the relaxation of the MINLP is tight. Decomposition meth-
ods based on OA are likely to perform better if the NLP
subproblems are relatively expensive to solve, while GBD
can perform with some efficiency if the MINLP is tight,
and there are many discrete variables. ECP methods tend to
perform well on mostly linear problems.

4. Dynamic optimization

4.1. DAE optimization—problem statement

Interest in dynamic simulation and optimization of chem-
ical processes has increased significantly during the last two
decades. Chemical processes are modeled dynamically us-
ing DAEs, consisting of differential equations that describe
the dynamic behavior of the system, such as mass and energy
balances, and algebraic equations that ensure physical and
thermodynamic relations. Typical applications include con-
trol and scheduling of batch processes; startup, upset, shut-
down and transient analysis; safety studies and the evaluation
of control schemes. We state a general differential–algebraic
optimization problem (DAOP) as follows:

Min Φ(z(tf ); y(tf ); u(tf ); tf ;p) s.t.




F(dz/dt; z(t); y(t); u(t); t;p) = 0, z(0) = z0
Gs(z(ts); y(ts); u(ts); ts;p)) = 0

zL ≤ z(t) ≤ zU
yL ≤ y(t) ≤ yU

uL ≤ u(t) ≤ uU

pL ≤ p ≤ pU

tLf ≤ tf ≤ tUf

(DAOP)

whereΦ is a scalar objective function at final time,tf , F
are DAE constraints,Gs’s are additional point conditions at
times ts’s, z’s are differential state profile vectors,y’s are
algebraic state profile vectors,u’s are control state profile
vectors andp is a time-independent parameter vector.

We assume, without loss of generality, that the index of the
DAE system is one, consistent initial conditions are available
and that the objective function is in the Mayer form. Other-
wise, it is easy to reformulate problems to this form. Prob-
lem (DAOP) can be solved either by the variational approach
or by applying some level of discretization that converts the
original continuous time problem into a discrete problem.

Early solution strategies, known as indirect methods, were
focused on solving the classical variational conditions for
optimality. On the other hand, methods that discretize the
original continuous time formulation can be divided into
two categories, according to the level of discretization. Here,
we distinguish between the methods that discretize only the
control profiles (partial discretization) and those that dis-
cretize the state and control profiles (full discretization). Ba-
sically, the partially discretized problem can be solved either
by dynamic programming or by applying a nonlinear pro-
gramming (NLP) strategy (direct-sequential). A basic char-
acteristic of these methods is that a feasible solution of the
DAE system, for given control values, is obtained by inte-
gration at every iteration of the NLP solver. The main ad-
vantage of these approaches is that, for the NLP solver, they
generate smaller discrete problems than full discretization
methods.

Methods that fully discretize the continuous time problem
also apply NLP strategies to solve the discrete system and
are known as direct-simultaneous methods. These methods
can use different NLP and discretization techniques but the
basic characteristic is that they solve the DAE system only
once, at the optimum. In addition, they have better stability
properties than partial discretization methods, especially in
the presence of unstable dynamic modes. On the other hand,
the discrete problem is larger and requires large-scale NLP
solvers.

With this classification we take into account the degree
of discretization used by the different methods. Below we
briefly present the description of the variational methods, fol-
lowed by methods that partially discretize the dynamic opti-
mization problem, and finally we consider full discretization
methods for problem (DAOP).

4.2. Variational methods

These methods are based on the solution of the first order
necessary conditions for optimality that are obtained from
Pontryagin’s Maximum Principle (Pontryagin, Boltyanskii,
Gamkredlidze, & Mishchenko, 1962). If we consider a ver-
sion of (DAOP) without bounds, the optimality conditions
are formulated as a set of DAEs:

∂F(z, y, u, p, t)

∂z′
λ′ = ∂H

∂z
= ∂F(z, y, u, p, t)

∂z
λ (VCa)

F(z, y, u, p, t) = 0 (VCb)



L.T. Biegler, I.E. Grossmann / Computers and Chemical Engineering 28 (2004) 1169–1192 1183

Gf (z, y, u, p, tf ) = 0 (VCc)

Gs(z, y, u, p, ts) = 0 (VCd)

∂H

∂y
= ∂F(z, y, u, p, t)

∂y
λ = 0 (VCe)

∂H

∂u
= ∂F(z, y, u, p, t)

∂u
λ = 0 (VCf)

∫ tf

0

∂F(z, y, u, p, t)

∂p
λdt = 0 (VCg)

where the Hamiltonian,H, is a scalar function of the form
H(t) = F(z, y, u, p, t)Tλ(t) andλ(t) is a vector of adjoint
variables. Boundary and jump conditions for the adjoint vari-
ables are given by

∂F

∂z′
λ(tf )+ ∂Φ

∂z
+ ∂Gf

∂z
vf = 0

∂F

∂z′
λ(t−s )+

∂Gs

∂z
vs = ∂F

∂z′
λ(t+s )

(VBC)

wherevf , vs are the multipliers associated with the final time
and point constraints, respectively. The most expensive step
lies in obtaining a solution to this boundary value problem.
Normally, the state variables are given as initial conditions
and the adjoint variables as final conditions. This formulation
leads to boundary value problems (BVPs) that can be solved
by a number of standard methods including single shooting,
invariant embedding, multiple shooting or some discretiza-
tion method such as collocation on finite elements or finite
differences. Also the point conditions lead to an additional
calculation loop to determine the multipliersvf andvs. On
the other hand, when bound constraints are considered, the
above conditions are augmented with additional multipliers
and associated complementarity conditions. Solving the re-
sulting system leads to a combinatorial problem that is pro-
hibitively expensive except for small problems.

4.3. Partial discretization

These strategies consider a discretization of the control
profile u(t) in (DAOP). Two strategies are usually consid-
ered, one based on dynamic programming and the other
based on nonlinear programming.

4.3.1. Dynamic programming
Iterative dynamic programming (IDP) for the solution of

dynamic optimization problems has been limited to small
problems. However, this approach can be made efficient
(Bojko & Luus, 1992; Luus, 1993) by allowing a coarse so-
lution grid, which in some cases can be accurate enough to
represent a solution to (DAOP). Although the IDP algorithm
is slower than most gradient-based algorithms, it can be use-
ful to crosscheck results of relatively small problems and it
may avoid local solutions. Here the probability of obtaining

the global optimum is usually high if the grid is well cho-
sen (Dadebo & McAuley, 1995). For these techniques the
time horizon is divided intoP time stages, each of lengthL.
Then, the control variables are usually represented as piece-
wise constant or piecewise linear functions in each interval.

The functions in each interval (ti; ti+1), usually take the
form: u(t) = ui + ((ui+1 − ui)/L)(ti+1 − ti) whereui and
ui+1 are the values ofu at ti andti+1, respectively. The dy-
namic optimization problem is to findui; i = 1, . . . , P that
minimize a given objective function. The basic search algo-
rithm mimics the classical dynamic programming algorithm
starting at the last stage with a discrete set of control val-
ues. For a set of input states, the best control is chosen at
each stage and the algorithm proceeds forward to a previous
stage. Once all of the stages are considered, the discrete set
of control values is narrowed around the best set of values
and the process repeats. More details of this approach can
be found in (Dadebo & McAuley, 1995; Luus, 1993). The
IDP algorithm works well when the dynamic optimization
problem does not include bounds on state variables. In or-
der to include such bounds, a penalty term has to be added
into the objective function to penalize the constraint viola-
tion. This can be done by adding a state variable for each
inequality that measures the constraint violation over time
(Mekarapiruk & Luus, 1997) or by computing the constraint
violation at given points in time (Dadebo & McAuley, 1995).

4.3.2. Direct sequential methods
With partial discretization methods (also called sequen-

tial methods or control vector parameterization), only the
control variables are discretized. Given the initial conditions
and a given set of control parameters, the DAE system is
solved with a differential algebraic equation solver at each
iteration. This produces the value of the objective function,
which is used by a NLP solver to find the optimal parameters
in the control parameterization,υ. The sequential method is
reliable when the system contains only stable modes. If this
is not the case, finding a feasible solution for a given set
of control parameters can be difficult. The time horizon is
divided into time stages and at each stage the control vari-
ables are represented with a piecewise constant, a piecewise
linear or a polynomial approximation (Feehery & Barton,
1998; Vassiliadis, 1993). A common practice is to represent
the controls as a set of Lagrange interpolation polynomials.

For the NLP solver, gradients of the objective and con-
straint functions with respect to the control parameters can
be calculated with the sensitivity equations of the DAE sys-
tem, given by

∂F

∂z′
T

s′k + ∂F
∂z

T

sk + ∂F
∂y

T

wk + ∂F

∂qk

T

= 0,

sk(0) = ∂z(0)

∂qk
, k = 1, . . . , Nq (SE)

where sk(t) = ∂z(t)/∂qk, wk(t) = ∂y(t)/∂qk and qT =
[pT, υT]. As can be inferred from (SE), the cost of obtaining
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these sensitivities is directly proportional toNq, the number
of decision variables in the NLP. Alternately, gradients can
be obtained by integration of the adjoint equations (VCa,
VCe, VBC) (Bryson & Ho, 1969; Hasdorff, 1976; Sargent
& Sullivan, 1979) at a cost independent of the number of in-
put variables and proportional to the number of constraints
in the NLP.

The methods that are based on this approach cannot treat
directly the bounds on state variables because the state
variables are not included in the nonlinear programming
problem. Instead, most of the techniques for dealing with
inequality path constraints rely on defining a measure of the
constraint violation over the entire horizon, and then penal-
izing it in the objective function, or forcing it directly to
zero through an end-point constraint (Vassiliadis, Sargent,
& Pantelides, 1994). Other techniques approximate the
constraint satisfaction by introducing an exact penalty func-
tion (Bloss, Biegler & Schiesser, 1999; Sargent & Sullivan,
1979) or a Kreisselmeier–Steinhauser function (Bloss et al.,
1999) into the problem.

Finally, initial value solvers that handle path constraints
directly have been developed inFeehery and Barton (1998).
The main idea is to use an algorithm for constrained dynamic
simulation so that any admissible combination of the control
parameters produces an initial value problem that is feasible
with respect to the path constraints. The algorithm proceeds
by detecting activation and deactivation of the constraints
during the solution, and solving the resulting high-index
DAE system and their related sensitivities.

4.4. Full discretization

Full discretization methods explicitly discretize all the
variables of the DAE system and generate a large scale non-
linear programming problem that is usually solved with a
successive quadratic programming (SQP) algorithm. These
methods follow a simultaneous approach (or infeasible path
approach); that is, the DAE system is not solved at every
iteration, it is only solved at the optimum point. Because of
the size of the problem, special decomposition strategies are
used to solve the NLP efficiently. Despite this characteristic,
the simultaneous approach has advantages for problems with
state variable (or path) constraints and for systems where in-
stabilities occur for a range of inputs. In addition, the simul-
taneous approach can avoid intermediate solutions that may
not exist, are difficult to obtain, or require excessive com-
putational effort. There are mainly two different approaches
to discretize the state variables explicitly, multiple shooting
(Bock & Plitt, 1984; Leineweber et al., 1997) and colloca-
tion on finite elements (Betts, 2001; Biegler, Cervantes, &
Wächter, 2002; Cuthrell & Biegler, 1987).

4.4.1. Multiple shooting
With multiple shooting, time is discretized intoP stages

and control variables are parameterized using a finite set of
control parameters in each stage, as with partial discretiza-

tion. The DAE system is solved on each stage,i = 1, . . . , P
and the values of the state variablesz(ti) are chosen as ad-
ditional unknowns. In this way a set of relaxed, decoupled
initial value problems (IVP) is obtained, as follows:

F(dz/dt; z(t); y(t); vi;p) = 0, t ∈ [ti−1, ti], z(ti−1) = zi
zi+1 − z(ti; zi; υi;p) = 0, i = 1, . . . , P − 1

Note that continuity between stages is treated through equal-
ity constraints, so that the final solution satisfies the DAE
system. With this approach, inequality constraints for states
and controls can be imposed directly at the grid points, but
path constraints for the states may not be satisfied between
grid points. This problem can be avoided by applying penalty
techniques to enforce feasibility, like the ones used in the
sequential methods.

The resulting NLP is solved using SQP-type methods, as
described above. At each SQP iteration, the DAEs are inte-
grated in each stage and objective and constraint gradients
with respect top, zi and υi are obtained using sensitivity
equations, as in (SE). Compared to sequential methods, the
NLP contains many more variables but efficient decompo-
sitions have been proposed (Leineweber et al., 1997) and
many of these calculations can be performed in parallel.

4.4.2. Collocation methods
In this formulation, the continuous time problem is con-

verted into an NLP by approximating the profiles as a family
of polynomials on finite elements. Various polynomial rep-
resentations are used in the literature, including Lagrange
interpolation polynomials for the differential and algebraic
profiles (seeCuthrell & Biegler, 1987). In Betts (2001), a
Hermite–Simpson collocation form is used whileCervantes
and Biegler (1998)andTanartkit and Biegler (1995) use a
monomial basis representation (Bader & Ascher, 1987) for
the differential profiles. All of these representations stem
from implicit Runge–Kutta formulae and the monomial rep-
resentation is recommended because of smaller condition
numbers and smaller rounding errors. On the other hand,
control and algebraic profiles are approximated using La-
grange polynomials.

Discretizations of (DAOP) using collocation formulations
lead to the largest NLP problems but these can be solved
efficiently using large-scale NLP solvers, such as IPOPT
and by exploiting the structure of the collocation equations.
Biegler et al. (2002)provide a review of dynamic optimiza-
tion methods using simultaneous methods. These methods
offer a number of advantages for challenging dynamic opti-
mization problems, including:

• Control variables can be discretized at the same level
of accuracy as the differential and algebraic state vari-
ables. Finite elements allow for discontinuities in control
profiles.

• Collocation formulations allow problems with unstable
modes to be handled in an efficient and well-conditioned
manner. The NLP formulation inherits stability properties
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of boundary value solvers. Moreover, an element-wise
decomposition has been developed that pins down unsta-
ble modes in (DAOP).

• Collocation formulations have been proposed with mov-
ing finite elements. This allows the placement of elements
both for accurate breakpoint locations of control profiles
as well as accurate DAE solutions.

Dynamic optimization using collocation methods has
been used for a number of process applications including
batch process optimization (Bhatia & Biegler, 1996), non-
linear model predictive control (Albuquerque et al., 1997),
grade transitions and process changeovers (Cervantes,
Tonelli, Brandolin, Bandoni, & Biegler, 2002) and reactor
design and synthesis (Lakshmanan, Rooney, & Biegler,
2000;Ierapetritou, 2001).

4.5. Extensions for dynamic optimization

Here, we briefly summarize a few issues that emerge for
dynamic optimization. These extend the methods presented
so far to larger and more challenging applications and in-
clude discrete decisions, the treatment of multistage dynamic
systems and fundamental questions on the accuracy of dis-
cretized optimal control problems.

4.5.1. Discrete decisions in dynamic optimization
Along with the DAE models described in (2) and (3),

it becomes important to consider the modeling of discrete
events in many dynamic simulation and optimization prob-
lems. In chemical processes, examples of this phenomena
include phase changes in vapor–liquid equilibrium systems,
changes in modes in the operation of safety and relief valves,
vessels running dry or overflowing, discrete decisions made
by control systems and explosions due to accidents. These
actions can be reversible or irreversible with the state profiles
and should be modeled with appropriate logical constraints.
An interesting presentation on modeling discrete events can
be found inAllgor and Barton (1999). The simulation of
these events is often triggered by an appropriate discontinu-
ity function which monitors a change in the condition and
leads to a change in the state equations. These changes can
be reformulated either by using complementarity conditions
(with positive continuous variablesx andy alternately set to
zero) or as binary decision variables (Barton & Park, 1997).
These additional variables can then be embedded within op-
timization problems. Here complementarity conditions can
be reformulated through barrier methods (Raghunathan &
Biegler, 2002) to yield an NLP while the incorporation of
integer variables leads to mixed-integer optimization prob-
lems.

For the latter case, several studies have considered the so-
lution of mixed-integer dynamic optimization (MIDO) prob-
lems. In particular,Avraam, Shah, and Pantelides (1998)
developed a complete discretization of the state and con-
trol variables to form a MINLP. On the other hand,Allgor

and Barton (1999)apply a sequential strategy and discretize
only the control profile. In this case, careful attention is paid
to the calculation of sensitivity information across discrete
decisions that are triggered in time.

4.5.2. Multistage applications
The ability to solve large dynamic optimization problems

and to model discrete decisions allows the integration of
multiple dynamic systems for design and analysis. Here,
different dynamic stages of operation can be considered
with individual models for each dynamic stage. Multistage
applications in process engineering include startups and
transients in dynamic systems with different modes of oper-
ation, design and operation of periodic processes with differ-
ent models (e.g., adsorption, regeneration, pressurization, in
a dynamic cycle (Nilchan & Pantelides, 1998)), synthesis of
chemical reactor networks (Lakshmanan & Biegler, 1995),
changes in physical phenomena due to discrete changes (as
seen above) and multiproduct and multiperiod batch plants
where scheduling and dynamics need to be combined and
different sequences and dynamic operations need to be op-
timized. For these applications each stage is described by
separate state variables and models as in equations (2) and
(3). These stages include an overall objective function with
parameters linking among stages and control profiles that
are manipulated within each stage. Moreover, multistage
models need to incorporate transitions between dynamic
stages. These can include logical conditions and transitions
to multiple models for different operation. Moreover, the
DAE models for each stage require consistent initializations
across profile discontinuities, triggered by discrete decisions.

The solution of multistage optimization problems has
been considered in a number of recent studies.Bhatia and
Biegler (1996)consider the simultaneous design, operation
and scheduling of a multiproduct batch plant by solving a
large NLP. More recently, multistage problems have been
considered as mixed-integer problems using sequential
strategies as well as simultaneous strategies. These appli-
cations only represent the initial stages of dynamic systems
modeling, in order to deal with an integrated analysis and
optimization of large scale process models. With the de-
velopment of more efficient decomposition and solution
strategies for dynamic optimization, much more challeng-
ing and diverse multistage applications will continue to be
considered.

4.5.3. Improved formulations for dynamic optimization
For optimal control problems where control variables are

discretized at the same level as the state variables, there are
a number of open questions related to convergence to the so-
lution of the original variational problem. A number of stud-
ies have shown (e.g.,Cuthrell & Biegler, 1989; Polak, 1997;
Reddien, 1979; Schwartz, 1996) that the KKT conditions
of the simultaneous NLP can be made consistent with the
optimality conditions of the variational problem. Neverthe-
less, these consistency properties do not guarantee conver-
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gence to solution of the infinite dimensional optimal control
problem and several studies report stability problems due
to poor discretizations, high index constraints and singu-
lar arcs. In particular, interesting stability questions arise
regarding appropriate discretizations of control and state
profiles. Empirical evidence of this instability and practical
remedies have been given inLogsdon and Biegler (1989),
Bausa and Tsatsaronis (2001)and special cases of these
have been analyzed rigorously in Dontchev et al. (2000). In
a recent thesis,Biehn (2001)showed that for continuous,
convex optimal control problems, two simple simultane-
ous collocation formulations have desirable consistency
properties. Moreover, his analysis has shown that these
formulations remain stable in the presence of high index
constraints,even when sequential(initial value) solvers
fail on these problems. In related work,Schwartz (1996)
developed consistency results forexplicit Runge–Kutta dis-
cretizations that apply to more challenging optimal control
problems with singular arcs and discontinuous profiles.

5. Optimization under uncertainty

All the previous optimization problems that we have re-
viewed are deterministic in nature. However, as one might
expect, there is often significant uncertainty in application
of optimization in the real world. Failure to account for the
uncertainty of key parameters (e.g., technical coefficients,
product demands) has the drawback that the solution of
deterministic models can lead to non-optimal or infeasible
decisions. This, however, does not mean that deterministic
models are not useful. In fact, as will be seen, they are used
as a basis in virtually any stochastic optimization method,
or methods for flexibility analysis.

Considerable theoretical work has been reported in the
Operations Researchliterature on the formulation and so-
lution of linear stochastic optimization problems (see re-
views by Birge, 1992; Dantzig, 1987;Dempster, 1980; Wets,
1989). We provide here only a very brief review. An excel-
lent recent review can be found inSahinidis (2003).

Extending deterministic models with probabilistic repre-
sentations leads to the stochastic programming model. The
most common linear model is the following two-stage (fixed
recourse) stochastic LP:

Min z = cT1x1 +
∑
k∈K
p2kc

T
2kx2k

s.t.

A1x1 = b1

B1x1 + A2x2k = b2k ∀k ∈ K
0 ≤ x1 ≤ Uk1
0 ≤ x1 ≤ Uk1 ∀k ∈ K

(SLP)

where matricesB1 and A2 are fixed (i.e.,B1k = B1 and
A2k = A2 ∀k ∈ K). The termK denotes the set of possi-
ble stage 2 events defined on the finite, discrete probabil-

ity space. This problem is important because: (i) it is rep-
resentative of the multi-stage model in terms of probabilis-
tic expansion of variables and constraints, and (ii) it is the
key structural component to the multi-stage problem and is
the key subproblem for the nested decomposition algorithms
used to solve the multi-stage LP.

The study of the theory and solution of the multi-stage
stochastic LP (MSLP) has paralleled the development of de-
terministic LP methods. Early references included seminal
work on the formulation and problem structure (Dantzig,
1955; Dantzig, 1963; Dempster, 1965; Madansky, 1963;
Rosen, 1963; Wets, 1966), but left questions concerning the
solution to the general problem largely unanswered. Since
the certainty equivalent LP, expanded to multi-stage as
needed, is intractably large for all but the smallest problems
(see Dantzig, 1987 for discussion of exponential expansion),
current solution methods use Benders-based decomposi-
tion strategies (Benders, 1962; Geoffrion, 1972; Van Slyke
and Wets, 1969). See Dantzig (1987) or Birge (1982a) for
a discussion of the general multi-stage stochastic LP for-
mulations. Comprehensive reviews of theory and solution
practices are provided in the collections edited byDempster
(1980) and Ermoliev and Wets (1988). Spurred in part by
the expansion in computing power, recent progress has been
made in solving the two-stage stochastic linear programming
problem using Benders-based schemes (see e.g., Dantzig &
Glynn, 1989; Gassmann, 1990; Infanger, 1991; Wets, 1983;
Wets, 1989). Extension to multi-stage problems via nested
decomposition methods is conceptually straightforward.
The multi-stage problem however remains intractable due
to computational expense, arising from the nested struc-
ture of the problem and resultant exponential growth in the
number of subproblems (see Birge, 1982a; Dantzig, 1987;
Dempster, 1980; Gassmann, 1990; Louveaux, 1986). While
a few specialized problems have been addressed (seeBeale,
Forrest, & Taylor, 1980; Bienstock and Shapiro, 1985;
Dantzig, 1987; Karreman, 1963), general multi-stage linear
problems remain computationally intractable. Multi-stage
solution methods generally rely on nested decomposition
strategies which involve solving series of two-stage subprob-
lems (Birge, 1982a;Ermoliev & Wets, 1988; Gassmann,
1990). Hence, advances in the solution to two-stage mod-
els are applicable toward improving multi-stage solution
methods. Conceptually the extension to nonlinear stochas-
tic problems is similar as in the linear case. The extension
to stochastic mixed-integer problems is considerably more
difficult (seeSahinidis, 2003).

5.1. Process flexibility

In contrast to the stochastic optimization approach, con-
siderable effort has been devoted in process systems engi-
neering over the last 25 years to developing methods for
evaluating and optimizing flexibility. The major goal has
been to address nonlinear optimization problems under un-
certainty, particularly design problems (seeGrossmann &
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Straub, 1991). The proposed approaches can be classified
in two broad classes: (i) deterministic, in which the pa-
rameter uncertainty is typically described through bounds
of expected deviations, and (ii) stochastic, that describes
the uncertainty through a probability distribution function.
Here, we only review the deterministic flexibility analysis.

The model of the process can be described, in the case
where the topology is fixed, by a set of equations and in-
equalities involving continuous variables of the form:

h(d, z, x, θ) = 0
g(d, z, x, θ) ≤ 0

(F0)

where the variables are defined as follows:d ∈ Rnd denotes
annd vector of stage 1 variables (e.g. design variables) that
defines the structure and equipment sizes of the process,z ∈
Rnz denotes annz vector of stage 2 variables (e.g. control
variables) that can be adjusted during plant operation (e.g.
flows, pressures),x ∈ Rnx denotes annx vector of state vari-
ables that describes the behavior of the process (e.g. flows,
pressures, temperatures, reactor conversions),θ ∈ Rnθ de-
notes annθ vector of uncertain parameters (e.g. feed com-
position, kinetic constants).

For simplicity in the presentation and consistency with
the existing literature (Grossmann & Floudas, 1987), it is
assumed that the state variables in (F0) are eliminated from
the equations and thus the model reduces to

fj(z, θ, d) ≤ 0, j ∈ J
Note, however, that in the development of the proposed
methodology this projection will not be necessary.

For a given designd, the first important question is to
determine whether this design is feasible for a realization
of the uncertain parametersθ also known as thefeasibility
problem(F1). The formulation of this problem (Halemane
& Grossmann, 1983) is:

ψ(θ, d) = Min
z,u

u s.t. fj(z, θ, d) ≤ u, j ∈ J; u ∈ R1 (F1)

Note that problem (F1) is an optimization problem where the
objective is to find a pointz∗, for fixedd andθ, such that the
maximum potential constraint violation is minimized. How-
ever,u is in principle a function ofd andθ, and expressed
in that form it represents the projected feasibility function.
Theprojected feasibility functionψ(θ, d) is a key concept in
the flexibility analysis and its construction is an important
and challenging task. As can be deduced from (F1),ψ ≤ 0
indicates feasibility andψ > 0, infeasibility.

The problem of evaluating flexibility over a specified set
T of uncertain parameters, also known as theflexibility test,
corresponds to the finding the worst value ofθ in the setT,
which gives rise to the maximization problem,

χ(d) = max
θ∈T

ψ(d, θ) (F2)

which is also equivalent to the Max–Min–Max optimization
problem (Halemane & Grossmann, 1983),

χ(d) = Max
θ∈T

Min
z

Max
j∈J

fj(d, z, θ) (F2′)

where a common description ofT is T = {θ|θL ≤ θ ≤ θU},
whereθL, θU are lower and upper bounds, respectively. Other
descriptions ofT such as hypercircles or hyper-ellipsoids
can also be easily used.

The more general problem of quantifying flexibility, also
known as theflexibility index problem(F3), is to determine
the maximum deviation# that a given designd can tolerate,
such that every pointθ in the uncertain parameter space,T(δ),
is feasible. The most common choice is the hyper-rectangle
parametric inδ, T(δ) = {θ|θN − δ#θ− ≤ θ ≤ θN + δ#θ+},
where#θ+ and#θ− are the expected deviations of uncer-
tain parameters in the positive and negative direction. Other
descriptions ofT(δ), such as the parametric hyper-ellipsoid,
are also possible (seeRooney & Biegler, 1999).

As shown bySwaney and Grossmann (1985a), the flexi-
bility index can be determined from the formulation,

F = Max δ s.t.

{
Maxθ∈T(δ) ψ(θ, d) ≤ 0

δ ≥ 0, δ ∈ R1 (F3)

As seen from the implicit form of theprojected feasibility
functionψ(θ, d), problem (F3) cannot be directly solved un-
lessψ is determined. The simplest way around this problem
(seeSwaney & Grossmann, 1985b) is to determine the flex-
ibility index in (F3) by vertex enumeration search in which
the maximum displacement is computed along each vertex
direction, thus avoiding the explicit construction ofψ. This
vertex enumeration scheme relies on the assumption that
the critical pointsθ∗ lie at the vertices ofT(#∗), which is
valid for the case of a linear model and in general only if
certain convexity conditions hold. The drawback with this
approach, however, is that it requires the solution of 2nθ op-
timization problems, and therefore, it scales exponentially
with the number of uncertain parameters.

An alternative method for evaluating the flexibility index
that does not rely on the assumption that critical points cor-
respond to vertices, is the active set strategy byGrossmann
and Floudas (1987). In this method the key idea is that the
feasible region projected into the space ofd andθ, can be
expressed in terms of active sets of constraintsfj(z, θ, d) =
u, j ∈ JkA, k = 1, nAS, wherenAS is the number of possible
active sets offj. These active sets are defined by all subsets
of non-zero multipliers that satisfy the Kuhn–Tucker condi-
tions of (F1):∑
j∈JkA

λkj = 1

∑
j∈JkA

λkj
∂fj

∂z
= 0

By reformulating problem (F3) for evaluating the flexibility
index, and using the above equations with 0–1 variables for
the complementarity conditions and slacks, we get a mixed
integer optimization problem that can explicitly solve (F3)
without having to find a priori all the active sets.
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F = Min
δ,λj ,sj ,yj

δ

s.t.

fj(d, z, θ)+ sj = 0, j ∈ J∑
j∈J λj = 1∑
j∈J λj

∂fj

∂z
= 0

sj − U(1 − yj) ≤ 0, j ∈ J
λj − yj ≤ 0∑
j∈J yj = nz + 1

θN − δ#θ− ≤ θ ≤ θN + δ#θ+
δ ≥ 0, λj, sj ≥ 0, j ∈ J; yj = 0,1j ∈ J

(ASF)

This model (ASF) gives rise to an MINLP problem (or MILP
if all constraints are linear) withnf = card{J} binary vari-
ables.

As for nonlinear optimization problems under uncertainty
they involve the selection of the stage 1 variablesd (i.e.
design variables) so as to minimize cost and either (a) satisfy
the flexibility test (F2), or (b) maximize the flexibility index
as given by (F3), where the latter problem gives rise to a
multiobjective optimization problem.

Most of the previous work in design under uncertainty
(Johns, Marketos, & Rippin, 1976; Malik & Hughes, 1979)
has considered the effect of the continuous uncertain param-
etersθ for the design optimization through the minimization
of the expected value of the cost using a two-stage strategy,
similar as the one in problem (SLP), but for continuous dis-
tribution functions, is given by

Min
d

E
θ∈T(F)

[Min
z
C(d, z, θ)|f(d, z, θ) ≤ 0] (SNLP)

The reason the above also requires a two-stage strategy is
because the design variables d are chosen in stage 1 and re-
main fixed during stage 2 during which the control variables
z are adjusted depending on the realizations of the parame-
tersθ. In order to handle infeasibilities in the inner minimiza-
tion, one approach is to assign penalties for the violation of
constraints (e.g.C(d, z, θ) = C̄ if f(d, z, θ) > 0. The other
approach is to enforce feasibility for a specified flexibility
indexF (e.g. seeHalemane and Grossmann, 1993) through
the parameter setT(F) = {θ|θL −F∆θ− ≤ θ ≤ θU+F∆θ+}.
In this case (SNLP) is formulated as

Min
d

E
θ∈T(F)

[Min
z
C(d, z, θ)|f(d, z, θ) ≤ 0]

s.t. Max
θ∈T(F)

ψ(d, θ) ≤ 0 (SNLPF)

A particular case of (SNLP) occurs when only a discrete set
of pointsθk, k = 1, . . . , K are specified which then gives
rise to the optimal design problem,

Min
d,z1,...zK

K∑
k=1

wkC(d, z
k, θk)

s.t. f(d, zk, θk) ≤ 0, k = 1, . . . , K (DSNLP)

wherewk are weights that are assigned to each pointθk, and∑K
k=1wk = 1.
Problem (DSNLP) can be interpreted as problem un-

der uncertainty with discrete probabilities, which is also
equivalent to a multiperiod problem, which is also of great
importance in the optimal design of flexible chemical plants
(seeGrossmann & Sargent, 1979; Varvarezos, Grossmann
& Biegler, 1992, 1993). As shown byGrossmann and
Sargent (1978)problem (DSNLP) can also be used to ap-
proximate the solution of (SNLPF). This is accomplished
by selecting an initial set of pointsθk, solving problem
(DSNLP) and verifying its feasibility overT(F) by solving
problem (F2) or (F3). If the design is feasible the procedure
terminates. Otherwise the critical point obtained from the
flexibility evaluation is included to the set ofK points and
the solution of (DSNLP) is repeated. Computational experi-
ence has shown that commonly one or two major iterations
must be performed to achieve feasibility with this method.
Ostrovsky, Volin, and Senyavinj (1997)has proposed an
alternative method for the two-stage problem that simplifies
the evaluation of flexibility.

Stochastic approaches for the evaluation of flexibility rely
on the idea of using joint probability distribution functions,
which are integrated over the feasible region in order to
determine the probability that constraints be satisfied given
that control variables can be manipulated (e.g.Straub &
Grossmann, 1993; Pistikopoulos & Mazzuchi, 1990). For
a recent review of stochastic flexibility seePistikoploulos
(2002).

6. Summary and conclusions

Research in the formulation, solution and analysis of
mathematical programs has grown tremendously over the
past 25 years. In 1980, optimization on engineering prob-
lems beyond linear programming was often viewed as a
curious novelty without much benefit. Now optimization
applications are essential in all areas of process systems
engineering including design, identification, control, esti-
mation, scheduling and planning. This paper offers a ret-
rospective on relevant optimization methods that have been
developed and applied over the past 25 years and reviews
four broad areas. First, we deal with methods for contin-
uous variable optimization and survey advances in non-
linear programming methods with and without derivative
evaluations. Next we consider mixed-integer programming
methods and cover a family of algorithms and extensions
for MINLPs. Related to these two approaches is opti-
mization with differential algebraic models. Over the past
decade these challenging problems have been considered
more frequently in the process industries through sequen-
tial and simultaneous methods. Finally, we survey methods
to deal with the essential problem of optimization under
uncertainty.
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