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This article presents a new framework, based on parametric programming, that uni-
fies the solution of the ®arious flexibility analysis and design optimization problems that
arise for linear, con®ex, and noncon®ex, nonlinear systems with deterministic or stochas-

( )tic uncertainties. This approach generalizes earlier work by Bansal et al. It allows 1
explicit information to be obtained on the dependence of the flexibility characteristics of

( )a nonlinear system on the ®alues of the uncertain parameters and design ®ariables; 2
the critical uncertain parameter points to be identified a priori so that design optimiza-
tion problems that do not require iteration between a design step and a flexibility analy-

( )sis step can be sol®ed; and 3 the nonlinearity to be remo®ed from the optimization
subproblems that need to be sol®ed when e®aluating the flexibility of systems with
stochastic uncertainties.

Introduction

All chemical plants are subject to uncertainties and varia-
tions during their design and operation. Given this fact, it is
clearly important for an engineer to be able to quantify the
ability of a system to be operated feasibly in the presence of

Ž .uncertainties that is, conduct flexibility analysis and to have
systematic methods for designing systems that are both eco-
nomically optimal and flexible. The past two decades have
seen considerable advances in the development of such meth-
ods, both for deterministic cases, where the uncertain param-
eters are described through sets of lower and upper bounds
on their values, and stochastic cases, where the uncertain pa-

Žrameters are described through probability distributions for
a review, see Bansal, 2000; also Table 1 summarizes the key

. Ž .contributions . Bansal et al. 2000 recently proposed a new
approach for the flexibility analysis and design of linear sys-
tems, based on parametric programming. One of the key ad-
vantages of this approach is that it provides explicit informa-
tion about the dependence of a system’s flexibility on the val-
ues of the design variables. The purpose of this article is to
generalize and unify this parametric programming approach
for the flexibility analysis and design of nonlinear systems.

Correspondence concerning this article should be addressed to E. N. Pistikopou-
los.

Current address of V. Bansal: Orbis Investment Advisory Limited, Orbis House, 5
Mansfield Street, London W1G 9NG, U.K.

The proposed framework is the first to allow a unified solu-
tion approach to be used for the various flexibility analysis
and design optimization problems that arise for different
types of process model and uncertainty model.

The remainder of this article is organized as follows. In the
next section, various flexibility analysis and design problems
are defined that have been researched in the literature. Sub-
sequent to this, new algorithms, based on parametric pro-
gramming, are presented for the solution of convex, nonlin-
ear process models. In all cases, both mathematical and engi-
neering examples are used to illustrate important features.
Based on these developments, a conceptual framework is de-
scribed that unifies the solution of the different flexibility
analysis and design problems in linear, convex, and noncon-
vex, nonlinear systems.

Preliminary Definitions
The process model of a steady-state system can be repre-

sented by

h x , z ,� ,d , y s0, mgM 1Ž . Ž .m

g x , z ,� ,d , y F0, lgL 2Ž . Ž .l
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Table 1. Literature on Flexibility Analysis and Design

Authors Key Features
Ž .Grossmann and Morari 1983 Review of flexibility analysis and design problems

Ž .Halemane and Grossmann 1983 Feasibility test; design for fixed degree of flexibility
Ž .Ostrovsky et al. 1994, 1997, 2000 Bounding algorithms for the problems considered by Halemane and

Ž .Grossmann 1983
Ž .Swaney and Grossmann 1985a,b Flexibility index; vertex enumeration algorithms

Ž .Kabatek and Swaney 1992 Improved implicit vertex enumeration algorithm
Ž .Chacon-Mondragon and Himmelblau 1988, 1996 Alternative metrics to those of Grossmann et al.; based on

the proportion of feasible controls
Ž .Ierapetritou 2001 Alternative metric based on the volume of the convex hull

within the feasible operating region
Ž .Grossmann and Floudas 1987 Active constraint strategy; MINLP formulations for feasibility

test and flexibility index problems
Ž .Floudas et al. 1999 Global optimization for the formulations of Grossmann

Ž .and Floudas 1987
Ž . Ž .Raspanti et al. 2000 Smoothing of the MINLPs of Grossmann and Floudas 1987

using constraint aggregation
Ž .Pistikopoulos and Grossmann 1988a,b Retrofit design for linear systems; analytical expressions

for flexibility index
Ž .Pistikopoulos and Grossmann 1989a,b Extension to special classes of nonlinear systems

Ž .Varvarezos et al. 1995 Flexibility index and retrofit design for linear
systems using sensitivity analysis

Ž .Pistikopoulos and Mazzuchi 1990 Stochastic flexibility of linear systems with normally
distributed parameters

Ž .Straub and Grossmann 1990 Stochastic flexibility of linear systems with generally
distributed parameters

Ž .Straub and Grossmann 1993 Stochastic flexibility of nonlinear systems
Ž .Pistikopoulos and Ierapetritou 1995 Design and simultaneous evaluation of stochastic flexibility of

nonlinear systems
Ž .Bansal et al. 2000 Parametric programming framework for feasibility test,

flexibility index, design optimization, and stochastic flexibility
of linear systems

where Eq. 1 represents the model equations; Eq. 2 repre-
sents inequalities that must be satisfied for feasible opera-
tion; and x, z, � , d and y are vectors of state variables, ad-
justable control variables, uncertain parameters, continuous
design variables, and integer design variables, respectively.
The following flexibility analysis and design problems have
been defined in the literature.

Feasibility test
Given nominal values for the uncertain parameters, � N,

expected deviations in the positive and negative directions,
q y Ž .�� and �� , respectively, and a set of constraints, r � F0

Žwhich may include equations correlating the uncertain pa-
.rameters if they are not independent , the feasibility test

problem is to determine whether, for a given design, there is
at least one set of controls that can be chosen during plant
operation such that, for every possible realization of the un-

Ž .certain parameters, all of the constraints Eq. 2 are satisfied.
Mathematically, this is equivalent to evaluating a feasibility

Ž .test measure Halemane and Grossmann, 1983

� d , y s max � � ,d , y 3Ž . Ž . Ž .
� gT

where

N y N qTs � � y�� F� F� q�� , r � F0 4� 4Ž . Ž .

Ž .and � � ,d, y is called the feasibility function, corresponding
to

� � ,d , y s min uŽ .
x , z ,u

s.t. 5Ž .h x , z ,� ,d , y s0, mgMŽ .m

g x , z ,� ,d , y Fu , lgLŽ .l

in which u is a scalar variable.
Ž .If � d, y F0, then a feasible operation can be ensured for

all � gT.

Flexibility index
ŽThe flexibility index, defined by Swaney and Grossmann,

.1985a , corresponds to the largest scaled deviation, � , of any
of the expected uncertain parameter deviations, ��q and
��y, that a design can handle for a feasible operation. Math-
ematically, this is formulated as

F d , y smax � ,Ž .
s.t. 0G max � � ,d , y 6Ž . Ž .

Ž .� gT �

N y N qT � s � � y��� F� F� q��� , r � F0� 4Ž . Ž .
� G0
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A value of Fs1 indicates that the design has the flexibility
that exactly satisfies the most restrictive constraints on the

w Ž . xsystem in this case, a feasibility test would give � d, y s0 .

Optimal design with fixed degree of flexibility
The objective in this problem is to find the economically

optimal design that can also be operated feasibly over the set
Žof uncertain parameters, T , defined in Eq. 4 equivalent to a

. Ž .flexibility index, Fs1 . Halemane and Grossmann 1983
posed this problem as

min E min C x , z ,� ,d , y hs0, gF0Ž .� gT
zd , y

s.t. max min max g x , z ,� ,d , y F0Ž .l
z� gT lg L

h x , z ,� ,d , y s0 mgM 7Ž . Ž .m

where E is the expected cost over the possible uncer-� gT
tainty realizations.

Optimal design with optimal degree of flexibility
This problem is a generalization of the design problem de-

scribed in the previous section. Here, the objectives are to
simultaneously minimize the cost and maximize the flexibility

Ž .index, while ensuring a feasible operation over the set T �
Ž .which itself is to be determined . This can be formulated as
Ž .Grossmann and Morari, 1983

min E min C x , z ,� ,d , y hs0, gF0Ž .� gT Ž� .
zd , y

max �
z ,�

s.t. max min max g x , z ,� ,d , y F0Ž .l
zŽ . lg L� gT �

h x , z ,� ,d , y s0, mgM 8Ž . Ž .m

Equation 8 defines an infinite number of trade-off or pare-
tooptimal solutions where it is not possible to improve one
objective without worsening the other. When �s1, Eq. 8 is
equivalent to Eq. 7.

Stochastic flexibility
For a system with continuous uncertain parameters that

Ž .are described by a joint probability density function pdf , the
Ž .stochastic flexibility SF is the probability that a given de-

Žsign can be operated feasibly Pistikopoulos and Mazzuchi,
.1990; Straub and Grossmann, 1990 . Mathematically, this

means computing

SF d , y sPr � � ,d , y F0 9Ž . Ž . Ž .Ž .

over all possible realizations of � . The stochastic flexibility
Ž .can also be expressed as the integral of the joint pdf, j � ,

over the feasible region of operation in the space of the un-

certain parameters

SF d , y s j � d� 10Ž . Ž . Ž .H
� Ž . 4� :� � , d , y F 0

Expected stochastic flexibility
ŽThe combined flexibility�availability index Pistikopoulos et

. Ž . Žal., 1990 , or expected stochastic flexibility ESF Straub and
.Grossmann, 1990 , is defined as

2 e q

s sESF d s SF d , y � P y 11Ž . Ž . Ž . Ž .Ý
ss S1

Ž s.where s is the index set for the system states; P y is the
Ž .discrete probability that the system is in state s; and eq is
the number of pieces of equipment in the system. Each state
of the system is defined by different combinations of avail-
able and unavailable equipment. Thus, if y s is a binary vari-i
able that takes a value of 1 if equipment i is available, and is
zero otherwise, and p is the probability that equipment i isi
available, then

P y s s p 1y p 12Ž . Ž .Ž .Ł Łi i
s s� 4 � 4i y s1 i y s 0i i

Feasibility Test and Flexibility Index for Convex,
Nonlinear Systems
Parametric programming approach

Consider a process model of a steady-state system where
the equations are linear and the inequality constraints, g convex,
are convex functions of the states x, the controls z, the un-
certain parameters � , the continuous design variables d, and
the integer variables, y. In this case, the feasibility function

Ž .problem Eq. 5 is

� � ,d , y smin uŽ .
z ,u

s.t. 0sH � xqH � zqH �� qH � dqH � yq h 13Ž .x z � d y c

u � eG g convex x , z ,� ,d , yŽ .

where H , �s x, z,� ,d, y, are matrices of constants; h is a� c
vector of constants; e is a vector whose elements are all unity;
lower and upper bounds are given on � , d, and y; and there

Ž .may be additional convex constraints, r � F0, representing
relationships between dependent uncertain parameters.

Assuming that the integer variables, y, are relaxed, Eq. 13
corresponds to a convex, multiparametric nonlinear program
Ž .mp-NLP . It has been shown that in such mp-NLPs, the ob-

Žjective � is a convex function of � , d, and y Fiacco and
.Kyparisis, 1986 . This convexity property can be used to ap-

Ž .proximate � � ,d, y by linear profiles as follows. First, an
outer approximation of Eq. 13 is created by linearizing the
nonlinear functions, g convex, at an initial feasible point. The

Ž .resulting multiparametric linear program mp-LP is then
Ž .solved exactly using the algorithm of Gal and Nedoma 1972

to give a set of linear, underestimating parametric expres-
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Ž .sions for � � ,d, y and a corresponding set of linear inequali-
ties defining the regions in which these solutions are optimal.
Since � is a convex function of � , d, and y in each region of
optimality, the point of maximum discrepancy between the
linear approximation and the real objective will lie at one of
the verticies of the region. These vertices are identified, and
if the discrepancy is greated than a user-specified tolerance,
� , then new outer approximations are created. The proce-
dure is repeated until all of the underestimating approxima-

Ž .tions for � � ,d, y are accurate to the desired level; the final
underestimators are then converted into overestimators. An
algorithm for the solution of convex mp-NLPs, based on that

Ž .presented by Dua and Pistikopoulos 1999 , is described in
the Appendix.

As previously stated, the outcome of solving Eq. 13 as a
convex mp-NLP is a set of linear parametric expressions for
Ž .� � ,d, y and a corresponding set of linear inequalities defin-

ing the regions in which these solutions are optimal. The fea-
sibility function expressions all have a known absolute accu-
racy, � , which is less than or equal to the initial user-speci-
fied tolerance, � . Since for convex systems the critical uncer-

Žtain parameter points lie in vertex directions Swaney and
.Grossmann, 1985a , exactly the same techniques as those used
Ž .for linear systems see Bansal et al., 2000 can be applied to

obtain linear parametric expressions for the feasibility test
Ž .measure, � Halemane and Grossmann, 1983 , and the de-

Žterministic flexibility index, F Swaney and Grossmann,
.1985a , in terms of d and y.

Algorithm 1
A parametric programming-based algorithm to solve the

feasibility test and flexibility index problems for a convex pro-
cess system can be developed in an analogous way to that for

Ž .linear systems Bansal et al., 2000 .
Ž .Step 1. Solve the feasibility function problem Eq. 13 as a

convex mp-NLP using the method described in the Appendix.
This will give a set of K linear parametric solutions,

k Ž .� � ,d, y , accurate within � , and corresponding regions of
optimality, CRk.

kŽ .Step 2. For each of the K feasibility functions, � � ,d, y ,
obtain the critical uncertain parameter values, � c,k. Since
convex models are being considered, vertex properties can be

Ž .used Swaney and Grossmann, 1985a , that is

�� k
c,k y c ,k N k ya If �0´�� sy�� , � s� y� ��Ž . i i i i i��i

is1, . . . , n 14Ž .�

�� k
c,k q c ,k N k qb If �0´�� sq�� , � s� q� ��Ž . i i i i i��i

is1, . . . , n 15Ž .�

where �� c,k is the critical deviation of the ith uncertain pa-i
rameter from its nominal value � N, and � k is the flexibilityi

Žindex associated with the k th feasibility function Pistiko-
.poulos and Grossmann, 1988b .

Step 3.
For the feasibility test:
Ž . c,k ka Substitute � with � s1 into the feasibility function

kŽ c,k .expressions to obtain new expressions � � , d, y , ks1,
. . . , K ;
Ž . kŽ .b Obtain the set of linear solutions � d, y , and the as-

ksociated regions of optimality, CR , ks1, . . . , K , where K� �
kŽ c,k .FK , by comparing the functions � � ,d, y , ks1, . . . , K ,

and retaining the upper bounds, as described in Appendix B
Ž .of Bansal et al. 2000 ;

Ž .c For any desired d and y, evaluate the feasibility test
kŽ . Ž . Ž .measure from � d, y smax � d, y . If � d, y F0, thenk

the design under investigation can be feasibly operated.

For the flexibility index:
Ž . kw c,kŽ k. xa Solve the linear equations, � � � , d, y s0, ks1,

. . . , K , to obtain a set of linear expressions for � k, ks1, . . . ,
K , in terms of d and y;
Ž . kŽ .b Obtain the set of linear solutions F d, y , and the as-

ksociated regions of optimality, CR , ks1, . . . , K , by com-F
kŽ . kŽ .paring the functions � d, y and the constraints � d, y G0,

ks1, . . . , K , and retaining the lower bounds, as described in
Ž .Appendix B of Bansal et al. 2000 ;

Ž .c For any desired d and y, evaluate the index from
kŽ . Ž .F d, y smin F d, y .k

Illustrati©e example
The steps of Algorithm 1 are now illustrated on a small,

mathematical example. After elimination of the state vari-
ables x, the system under consideration is described by the
following set of reduced inequalities

1 1
2f s0.08 z y� y � q d y13F01 1 2 120 5

1 1 1
1r2f sy zy � q d q11 F02 1 23 20 3

1 1 1
0.21 zf s e q� q � y d y d y11F0 16Ž .3 1 2 1 220 5 20

The ranges of interest for the design variables are 10Fd F151
and 2Fd F4. The uncertain parameters both have nominal2
values of 3 and expected deviations �1, that is, 2F� F4,i
is1, 2.

Step 1. The feasibility function problem is solved as an mp-
NLP, as demonstrated in detail for this example in the Ap-
pendix. Note that if the problem was solved using the ranges
2F� F4, is1, 2, then any expressions generated for thei
flexibility index using Algorithm 1 would only be valid in this
range also, corresponding to FF1. Therefore, in order to
account for designs for which the flexibility index may be
greater than 1, expanded ranges of 1.5F� F4.5, is1, 2, arei
used. Nine parametric expressions are found, which all over-
estimate the real solution to within �s0.0042

� 1 � ,d s0.2052� q0.0150�Ž . 1 2

y0.0601d q0.0200 d y0.1983 17Ž .1 2
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1.1385e3� y� q4d q2 d F2.2787e3° 1 2 1 2
1 ~47.6922� y� y4d y2 d G48.3653CR s 1 2 1 2¢y15.4564� y� q4d q2 d F29.96321 2 1 2

� 2 � ,d s0.3011� q0.0176�Ž . 1 2

y0.0704 d q0.0148d y0.3661 18Ž .1 2

2 �CR s 21.5714� q� y4d y2 d G45.18581 2 1 2

� 3 � ,d sy0.4366� y0.0174�Ž . 1 2

q0.0696 d q0.0326 d y1.0807 19Ž .1 2

3 �CR s y19.8899� q� q4d q0.3570 d F27.16861 2 1 2

� 4 � ,d s0.2542� q0.0157�Ž . 1 2

y0.0630 d q0.0185d y0.2749 20Ž .1 2

36.6166� q� y4d y2 d G44.3804° 1 2 1 2

29.7325� y� y4d y2 d G53.79901 2 1 24 ~CR s
1.0561e3� q� y4d y2 d G2.9549e31 2 1 2¢16.2974� y� y4d y2 d G1.52201 2 1 2

� 5 � ,d s0.2269� q0.0150�Ž . 1 2

y0.0600 d q0.0200 d y0.2418 21Ž .1 2

1.1385e3� y� q4d q2 d G2.2787e3° 1 2 1 2

36.6166� q� y4d y2 d F44.38041 2 1 25 ~CR s y16.7554� q� q4d q2 d F12.32431 2 1 2¢50.1890� q� y4d y2 d G37.71851 2 1 2

� 6 � ,d s0.2792� q0.0166�Ž . 1 2

y0.0664 d q0.0168d y0.3203 22Ž .1 2

21.5714� q� y4d y2 d F45.1858° 1 2 1 2
6 ~29.7325� y� y4d y2 d F53.7990CR s 1 2 1 2¢82.9110� q� y4d y2 d G260.72001 2 1 2

� 7 � ,d s0.2391� q0.0157�Ž . 1 2

y0.0629d q0.0185d y0.2328 23Ž .1 2

47.6922� y� y4d y2 d F48.3653° 1 2 1 2

1.0561e3� q� y4d y2 d F2.9549e31 2 1 27 ~CR s y16.7554� q� q4d q2 d G12.32431 2 1 2¢37.8790� y� y4d y2 d G62.82401 2 1 2

� 8 � ,d s0.1951� q0.0144�Ž . 1 2

y0.0575d q0.0213d y0.2179 24Ž .1 2

y15.4564� y� q4d q2 d G29.9632° 1 2 1 2
8 ~y19.8899� q� q4d q0.3570 d G27.1686CR s 1 2 1 2¢50.1890� q� y4d y2 d F37.71851 2 1 2

� 9 � ,d s0.2652� q0.0164�Ž . 1 2

y0.0657d q0.0172 d y0.2760 25Ž .1 2

16.2974� y� y4d y2 d F1.5220° 1 2 1 2
9 ~82.9110� q� y4d y2 d F260.7200CR s 1 2 1 2¢37.8790� y� y4d y2 d F62.82401 2 1 2

Step 2

�� k
c,k c ,k k�0´�� sq1, � s3q� , is1, 2, k�31 i��i

�� k
c,k c ,k k�0´�� sy1, � s3y� , is1, 2, ks31 i��i

Step 3
For the feasibility test, the critical values for both uncer-

tain parameters are q4 except for � 3, where the critical val-
ues are both y4. After the substitution of these critical points
into Eqs. 17 to 25 and the comparison of the resulting solu-
tions, two linear expressions are obtained, corresponding to
� 2 and � 6

� 1 d sy0.0704 d q0.0148d q0.9088 26Ž . Ž .1 2

2 d qd F22.54981 1 2
CR s ½ d G10, d G21 2

� 2 d sy0.0664d q0.0168d q0.8631 27Ž . Ž .1 2

2 d qd G22.54982 1 2
CR s ½ 10Fd F15, 2Fd F41 2

For the feasibility index, after the solution of the linear
kw c,kŽ k. xequations � � � ,d s0, and a comparison of the re-

kŽ .sulting expressions for � d , ks1, . . . , 9, two parameteric
solutions are obtained, corresponding to � 6s0 and � 9s0

F1 d s0.2243d y0.0569d y1.9174 28Ž . Ž .1 2

2.1883d yd G25.08501 1 2
CR s ½ d F15, 2Fd F41 2

F 2 d s0.2332 d y0.0610 d y2.0199 29Ž . Ž .1 2

2.1883d yd F25.08502 1 2
CR s ½ d G10, 2Fd F41 2

The parametric feasibility test solutions, Eqs. 26 and 27, are
illustrated graphically in d-space in Figure 1, while the flexi-
bility index solutions, Eqs. 28 and 29, are shown in Figure 2.

Remarks on Algorithm 1
Ž .1 Algorithm 1 is the first approach where for a convex,

nonlinear system, the critical parameter values can be identi-
fied a priori, and explicit information is obtained on the de-
pendence of the feasibility test measure and the flexibility
index on the design and structural variables. As with linear
systems, this latter feature gives a designer insight into which
variables most strongly limit the flexibility, and reduces the
evaluation of the flexibility metrics for a particular design and
structure to simple function evaluations.
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Figure 1. Parametric feasibility test solutions in d -space
for the convex illustrative example.

Ž .2 Tables 2 and 3 show the values of the feasibility-test
measure and flexibility index for the illustrative example,
found by substituting the design values at the different points
indicated in Figures 1 and 2 in Eqs. 26 to 29. The tables also
demonstrate the accuracy of these predicted values by com-
paring them with the actual solutions that were obtained by a
repeated application of the vertex enumeration algorithms of

Ž .Halemane and Grossmann 1983 and Swaney and Gross-
Ž .mann 1985a . It can be seen that the predicted values of �

are greater than the actual values, while the predicted values

Figure 2. Parametric flexibility index solutions in
d -space for the convex illustrative example.

Table 2. Feasibility Test for Convex Example:
Predicted vs. Actual Values

predicted actualPoint � � Error Feasible Design?

A 0.2343 0.2336 0.0008 No
B 0.2150 0.2147 0.0003 No
C y0.0985 y0.1012 0.0027 Yes
D y0.0649 y0.0663 0.0015 Yes
E 0.2669 0.2653 0.0015 No
F 0.2425 0.2422 0.0003 No

of F are less than the actual values. Since the linear para-
metric solutions for the feasibility function � given by Step 1
of Algorithm 1 are always overestimators to the real solution,
the feasibility test measure, defined in Eq. 3 by

� d , y s max � � ,d , y 30Ž . Ž . Ž .
� gT

will also always be overestimated, while the flexibility index,
defined in Eq. 6 by

F d , y smax �Ž .

s.t. 0G max � � ,d , yŽ .
Ž .� gT �

N y N qT � s � � y��� F� F� q��� , r � F0� 4Ž . Ž .

� G0 31Ž .

will always be underestimated. This prevents overly opti-
mistic conclusions from being drawn about a system’s flexibil-
ity characteristics.
Ž .3 Because the exact feasibility function, � , is a convex

function of � , d, and y, from Eq. 30, � is also a convex
function of d and y. This means that the point of maximum
discrepancy between the linear parametric solutions given by
Algorithm 1 and the actual solution lies at one of the vertices

Žof the parametric regions of optimality Dua and Pistikopou-
.los, 1999 . Thus, for the illustrative example, Figure 1 and

Table 2 indicate that the magnitude of the error is no greater
than 0.0027 in the whole of d-space, which is less than the
maximum error, �s0.0042, of the feasibility function expres-

Ž .sions Eqs. 17�25 . It should be noted, however, that if the
gradient of � with respect to any of the uncertain parame-
ters is of a magnitude close to zero, then the approximating
linear parametric expressions for � generated in Step 1 of
Algorithm 1 may have coefficients of � that are of the wrong
sign. The subsequent identification of the critical uncertain

Table 3. Flexibility Index for Convex Example:
Predicted vs. Actual Values

predicted actualPoint F F Error

A 0.1904 0.2052 0.0148
B 0.7448 0.7529 0.0081
C 1.3330 1.3468 0.0138
D 1.2193 1.2312 0.0119
E 0.8360 0.8423 0.0065
F 0.0685 0.0803 0.0119
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Figure 3. Feasible region in d -space for the convex il-
lustrative example.

parameter values can then lead to a maximum error in �
that is slightly greater than that for � . In the case of the
flexibility index, which from Eq. 31 is a nonconvex function of
d and y, the magnitude of the error will additionally depend
on the expected deviations, ��y and ��q, of the uncertain
parameters from their nominal values.

Ž .4 As for the linear systems, the parametric information
given by Algorithm 1 for a convex, nonlinear system, allows
the construction of a ‘‘feasible region’’ in the design space for

kŽ .a given structure y, through the expressions � d, y F0, k
Ž ts1, . . . , K or, for a target flexibility index, F , through�

k tŽ . .F d, y GF , ks1, . . . , K . This enables a designer to knowF
a priori for which structures and ranges of design variables a
convex system can be operated feasibly in the presence of
uncertainties. The shaded area in Figure 3 indicates this re-
gion for the illustrative example.

Ž .5 Although Algorithm 1 has been developed for systems
of the form in Eq. 13, with the linear equalities and convex
inequalities, it is also applicable for systems with nonlinear

Žequalities that can be relaxed as convex inequalities Acevedo
.and Pistikopoulos, 1996; Papalexandri and Dimkou, 1998 ,

and for nonconvex systems where elimination of the states x
leads to convexification.

Ž .6 In principle there is no limitation on the number of
uncertain parameters, design, and structural variables that the
new algorithm for feasibility test and flexibility index evalua-
tion can handle. In practice, any size limitations are due to
the underlying mp-NLP algorithm employed. At present, us-
ing the method described in the Appendix, the solution of
convex mp-NLPs can become unwieldy with more than about
10 parameters. Ongoing research is aimed at improving the
efficiency of such mp-NLP algorithms.

Figure 4. Process Example 1: a chemical complex.

Process Example 1
The use of Algorithm 1 is now further demonstrated on a

process problem studied in various forms by Kocis and
Ž . Ž .Grossmann 1987 , Acevedi and Pistikopoulos 1996 , Hené

Ž . Ž .et al. 2002 , and Bernardo et al. 1999 . Figure 4 shows a
system where three plants, 1, 2, and 3, each convert a raw
material A into an intermediate B. This is mixed with a lim-
ited amount of fresh B before passing through plant 4, which
produces the final product C. It is assumed that the supply of
raw material A, denoted by S , is uncertain, with a nominalA
value of 24 and range 20FS F28. Similarly, the supply ofA
fresh B, denoted by S , has a nominal value of 12 and rangeB
10FS F14, while the demand for product C, D , is alsoB C
uncertain, with the same nominal value and range as S . TheA
convex process model, which consists of molar balances and
specifications, is shown in Table 4. There are seven state

w xTvariables, xs F , F , F , F , F , F , F ; four control1 5 6 7 8 10 11
w xTvariables, zs F , F , F , F ; three uncertain parameters,2 3 4 9

w xT w� s S , S , D ; and three design variables, ds d , d ,A B C 1 2
xTd , which correspond to the processing capacities of plants3

1, 2, and 3. The ranges of interest for the latter are 8F
d F12.iŽ is1,2,3.

Step 1 of Algorithm 1 gives seven feasibility function ex-
pressions, which all overestimate the real solution to within

Table 4. Model for Process Example 1

Equalities Inequalities

h sF yF yF yF s0 g sF yS F01 1 2 3 4 1 1 A
w Ž .xh sF y18 ln 1q F r20 s0 g sF yd F02 5 2 2 2 1
w Ž .xh sF y20 ln 1q F r21 s0 g sF yd F03 6 3 3 3 2
w Ž .xh sF y15 ln 1q F r26 s0 g sF yd F04 7 4 4 4 3

h sF yF yF yF s0 g sF yS F05 8 5 6 7 5 9 B
h sF yF yF s0 g sD yF F06 10 8 9 6 C 11
h sF y0.9F s07 11 10
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�s0.0935:

� 1 � ,d sy0.1624� y0.3337� q0.3708� y0.0586 d y0.0744 d y0.4931Ž . 1 2 3 1 2

y17.2014� y9� q10� q12.1061d q11.7064 d q12.3889d G24.9774° 1 2 3 1 2 3

y15.2549� y9� q10� q15.0877d q19.1673d F144.35701 2 3 1 2

y4.0967� y9� q10� q13.4523d q9.6444d F273.91111 2 3 1 21 ~CR s
20.5941� q9� y10� y14.0535d y10.8057d y14.7349d F29.95391 2 3 1 2 3

68.2943� q9� y10� y44.1790 d y43.1153d F783.44441 2 3 1 2¢y16.7132� y9� q10� q25.1263d q10.5869d F115.51851 2 3 1 2

� 2 � ,d sy0.2487� q0.2764� y0.1729d y0.1850 d y0.1170 d y0.2572Ž . 2 3 1 2 3

y17.2014� y9� q10� q12.1061d q11.7064 d q12.3889d F24.9774° 1 2 3 1 2 3
2 ~y9� q10� q2.2325d q16.2731d q0.4944 d F303.4833CR s 2 3 1 2 3¢y14.5843� y9� q10� q10.4632 d q10.0975d q13.0235d F66.38691 2 3 1 2 3

� 3 � ,d sy0.2217� y0.3687� q0.4096� y1.0537Ž . 1 2 3

y15.2549� y9� q10� q15.0877d q19.1673d G144.3570° 1 2 3 1 2
3 ~36.8930� q9� y10� y18.2591d y37.6340 d F106.8750CR s 1 2 3 1 2¢y13.5139� y9� q10� q31.0257d q29.4113d G178.78721 2 3 1 2

� 4 � ,d sy0.1729� y0.3568� q0.3964� y0.0241d y0.0497d y1.1949Ž . 1 2 3 1 2

y4.0967� y9� q10� q13.4523d q9.6444d G273.9111° 1 2 3 1 2

36.8930� q9� y10� y18.2591d y37.6340 d G106.87501 2 3 1 2
4 ~y16.5488� y9� q10� q13.9061d q10.5209d q11.1218d G44.5559CR s 1 2 3 1 2 3

y13.8699� y9� q10� q18.1300 d q14.7399d G112.94361 2 3 1 2¢55.3060� y9� q10� y41.5127d q5.2066 d G1019.6726.1 2 3 1 2

� 5 � ,d sy0.2628� q0.2919� y0.1694d y0.1597d y0.1162 d y0.7293Ž . 2 3 1 2 3

20.5941� q9� y10� y14.0535d y10.8057d y14.7349d G29.9539° 1 2 3 1 2 3

y9� q10� q2.2325d q16.2731d q0.4944 d G303.48332 3 1 2 35 ~CR s y16.5488� y9� q10� q13.9061d q10.5209d q11.1218d F44.55591 2 3 1 2 3¢y17.6390� y9� q10� q12.1872 d q8.8040 d q15.6478d F16.72601 2 3 1 2 3

� 6 � ,d sy0.1310� y0.3296� q0.3662� y0.0789d y0.0943d y0.8535Ž . 1 2 3 1 2

68.2943� q9� y10� y44.1790 d y43.1153d G783.4444° 1 2 3 1 2

y14.5843� y9� q10� q10.4632 d q10.0975d q13.0235d G66.38691 2 3 1 2 36 ~CR s y13.8699� y9� q10� q18.1300 d q14.7399d G112.94361 2 3 1 2¢y17.6390� y9� q10� q12.1872 d q8.8040 d q15.6478d G16.72601 2 3 1 2 3

� 7 � ,d sy0.1977� y0.3528� q0.3919� y0.0055d y0.0521d y0.7372Ž . 1 2 3 1 2

y16.7132� y9� q10� q25.1263d q10.5869d G115.5185° 1 2 3 1 2
7 ~y13.5139� y9� q10� q31.0257d q29.4113d F178.7872CR s 1 2 3 1 2¢55.3060� y9� q10� y41.5127d q5.2066 d F1019.67261 2 3 1 2

In all cases the critical directions for the uncertain parame-
ters are toward the lower bounds for � and � , and toward1 2
the upper bound for � . One expression for the feasibility3
test measure is then obtained that is independent of the val-

ues of the design variables, and is valid over the whole range
of d

� d s� 3 � c,3 ,d s2.2963Ž . Ž .
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Table 5. Feasibility Test for Process Example 1:
Predicted vs. Actual Values

T predicted actuald � � Error Feasible Design?
Ž .8,8,8 2.2963 2.2451 0.0512 No
Ž .8,8,12 2.2963 2.2451 0.0512 No
Ž .12,8,8 2.2963 2.2313 0.0650 No
Ž .12,8,12 2.2963 2.2313 0.0650 No
Ž .8,12,8 2.2963 2.2028 0.0935 No
Ž .8,12,12 2.2963 2.2028 0.0935 No
Ž .12,12,8 2.2963 2.2028 0.0935 No
Ž .12,12,12 2.2963 2.2028 0.0935 No

Since � �0, this indicates that there are no plant capacities
within the given ranges for which the system can be operated
feasibly over the whole ranges of the uncertain supplies and
demand, even with the manipulation of the control variables
during operation. Table 5 compares the predicted value of �
with the exact values given by a vertex enumeration approach
Ž .Halemane and Grossmann, 1983 at the vertices of the de-
sign space. As discussed in remark 3 in the previous section
of this article, since � is a convex function of d, the point of
maximum discrepancy lies at one of these vertices. It can be
seen that in this case the maximum error is the same as that
for the feasibility functions, namely �s0.0935.

Four expressions are obtained from Step 3 of Algorithm 1
for the flexibility index, corresponding to � 1s0, � 3s0, � 4

s0, and � 7s0. These are all independent of the processing
capacity of plant 3

F1 d s0.0209d q0.0266 d y0.1798Ž . 1 2

1.2914 d qd F21.82191 1 2
CR s ½ 1.9948d qd F29.27491 2

F 2 d s0.2962Ž .

0.4852 d qd G15.56232 1 2
CR s ½ 0.1055d qd G11.48991 2

F 3 d s0.0081d q0.01662 d q0.0375Ž . 1 2

1.2914 d qd G21.8219° 1 2
3 ~0.4852 d qd F15.5623CR s 1 2¢17.1793d yd F173.90491 2

F 4 d s0.0018d q0.0170 d q0.1010Ž . 1 2

1.9948d qd G29.2749° 1 2
4 ~0.1055d qd F11.4899CR s 1 2¢17.1793d yd G173.90491 2

The preceding parametric expressions are illustrated graphi-
cally in Figure 5, while the accuracy of the predicted values
at the various points indicated in the diagram is demon-
strated in Table 6. For this example, the errors are all sub-
stantially less than that of the feasibility functions and feasi-
bility test measure, �s0.0935.

Figure 5. Parametric flexibility index solutions in
d -space for process Example 1.

Design Optimization of Convex, Nonlinear Systems
Existing solution approaches

The design problems defined in Eqs. 7 and 8 both corre-
spond to optimization problems with an infinite number of

Žsearch variables since for every realization of � an optimal z
.is chosen , and as such are extremely difficult to solve ex-

Ž .actly. Halemane and Grossmann 1983 built on previous work
Ž .by Grossmann and Sargent 1978 to show that the solution

of Eq. 7 can be approximated by applying the following itera-
Ž .tive algorithm Biegler et al., 1997 .

Step 1. Choose an initial set of uncertainty scenarios � i,
is1, . . . , ns. This may consist, for example, of the nominal
point and some vertex points.

Step 2. For the current set of scenarios, obtain a design
Ž � �.d , y by solving the multiperiod design optimization prob-
lem

ns
i i imin w � C x , z ,� ,d , yŽ .Ý i½ 51 2 n sd , y , z , z , . . . , z is1

s.t.

h x i , z i ,� i ,d , y s0, mgMŽ .m

g x i , z i ,� i ,d , y F0, lgL, is1, . . . , ns 32Ž .Ž .l

where w are discrete probabilities for the selected parameteri
i Ž ns .points � Ý w s1 , and are usually chosen based on en-is1 i

gineering judgement. Equation 32 corresponds to an MINLP
Ž .due to the presence of the integer usually binary design

variables y.
Step 3. Test the design from Step 2 for feasibility over all

the ranges of the uncertain parameters by solving Eq. 3. If
Ž � �.� d , y F0, then the system is feasible and the algorithm

terminates; otherwise, the solution of Eq. 3 defines a critical
point that is then added to the set of scenarios, before re-
turning to Step 2.
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Table 6. Flexibility Index for Process Example 1:
Predicted vs. Actual Values

predicted actualŽ .Point d , d F F Error1 2

Ž .A 8,8 0.2002 0.2270 0.0268
Ž .B 10.6653,8 0.2560 0.2718 0.0158

Ž .C 12,8 0.2584 0.2824 0.0240
Ž .D 12,10.2240 0.2962 0.3140 0.0179

Ž .E 12,12 0.2962 0.3241 0.0279
Ž .F 8,12 0.2962 0.3036 0.0074

Ž .G 8,11.6809 0.2962 0.3002 0.0040
Ž .H 8,11.4903 0.2930 0.2979 0.0049

Ž .I 10.7259,10.3584 0.2962 0.3124 0.0162
Ž .J 10.5966,8.1369 0.2582 0.2742 0.0160

The usual approach that is employed for solving Eq. 8 is to
Žsimply solve it at a number of different values of � Gross-

.mann and Morari, 1983 that is, apply the preceding algo-
rithm using different sets T in Step 3. A trade-off curve of
cost vs. flexibility index can then be drawn up and the engi-
neer can choose a design.

Parametric programming approach
Multiparametric programming can be used to avoid the it-

eration required between Steps 2 and 3. First, by applying
Algorithm 1, all of the critical points of the uncertain param-
eters are identified a priori and analytical expressions are ob-
tained for the feasibility test measure and the flexibility in-
dex. The problem of optimal design for a fixed degree of flex-
ibility can then be determined by solving the convex MINLP

ns
convex i i imin w � C x , z ,� ,d , yŽ .Ý i

1 2 n sd , y , z , z , . . . , z is1

s.t.

hlinear x i , z i ,� i ,d , y s0, mgM , is1, . . . , nsŽ .m

g convex x i , z i ,� i ,d , y F0, lgL, is1, . . . , nsŽ .l

� k d , y F0, ks1, . . . , K 33Ž . Ž .�

where the set � i, is1, . . . , ns, consists of the critical points
identified in Steps 2 and 3a of Algorithm 1 that lead to the

kŽ .final set of parametric expressions � d, y , ks1, . . . , K , as�

well as other points, such as the nominal one.
Similarly, the more general problem of optimal design with

optimal degree of flexibility can be formulated as

ns
convex i i i tmin w � C x , z ,� F ,d , yŽ .Ý i½ 51 2 n sd , y , z , z , . . . , z is1

s.t.
linear i i i th x , z ,� F ,d , y s0, mgM , is1, . . . , nsŽ .m

convex i i i tg x , z ,� F ,d , y F0, lgL, is1, . . . , nsŽ .l

F k d , y GF t , ks1, . . . , K 34Ž . Ž .F

where the critical points within � i, is1, . . . , ns, are func-
tions of the target flexibility index, F t, since they are identi-
fied in Step 3b of Algorithm 1 with � ksF t, ks1, . . . , K.
Instead of having to solve Eq. 34 repeatedly for different val-

ues of the target flexibility index, F t, Eq. 34 can be solved as
a convex, single-parameter, mixed-integer nonlinear program
Ž . tp-MINLP in F to explicitly yield all the cost solutions as
linear functions of F t.

Illustrati©e example
In order to demonstrate the use of the parametric pro-

gramming approach just proposed compared to existing solu-
tion approaches, consider the illustrative example that was
used earlier in this article with an economic-objective func-
tion that depends only on d. Using existing solution ap-
proaches, the first step is to pose the design optimization
problem as

d2 d2
1 2

Costs min qž /25 4d ,d1 2

s.t.
1 12i i if s0.08 z y� y � q d y13F0, is1, . . . , nsŽ .1 1 2 120 5

1 1 11r2i if sy z y � q d q11 F0, is1, . . . , nsŽ .2 1 23 20 3

1 1 1i0.21 z i if s e q� q � y d y d y11F0, is1, . . . , ns3 1 2 1 220 5 20

3yF tF� i F3qF t , is1, . . . , ns1,2

10Fd F151

2Fd F42

The preceding convex NLP is solved with the uncertain pa-
rameters initially at their nominal values, that is, � 1s� 1s3.1 2
For F ts1, for example, a design d s10, d s2, is obtained1 2
with a cost of 5 units. The next step is to test this design over
the whole range of uncertain parameters. This could be ac-
complished, for example, by using the vertex formulation of

Ž .Halemane and Grossmann 1983 . For the preceding exam-
w xTple, the critical vertex is � s 4,4 , where � s0.2335. This

point becomes the second scenario and Eq. 35 is solved again
to give a new design, d s13.46, d s2, with a cost of 8.251 2
units. This design is then tested and found to be feasible in
the whole space of � , so the algorithm terminates. In order
to generate the trade-off curve of cost against flexibility, this
involved a procedure that needs to be repeated again at nu-
merous fixed values of F t.

In contrast to this, using the flexibility index expressions,
Eqs. 28 and 29, provided by Algorithm 1, the problem can be
neatly posed in the form of Eq. 34

d2 d2
1 2tCost F s min qŽ . ž /25 4d ,d1 2

s.t.

F1s0.2243d y0.0569d y1.9174GF t
1 2

F 2s0.2332 d y0.0610 d y2.0199GF t
1 2

10Fd F151

2Fd F4 35Ž .2
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Figure 6. Cost vs. flexibility index trade-off curve for the convex illustrative example.

Equation 35 can be solved as a convex p-NLP; however, with
its quadratic objective function and linear constraints, Eq. 35

Žactually corresponds to a parametric quadratic program p-
.QP , for which specialized techniques exist to solve it exactly

Ž .for example, Berkelaar et al., 1997; Dua et al., 2002 . Solving
Eq. 35 as a p-QP in the range 0.3FF tF1.3 yields the alge-
braic form of the cost-flexibility trade-off curve

21 t tCost s0.7354 F q3.1502 F q4.3736 36Ž . Ž .
1 t�CR s 0.3FF F0.7448

Active constraint: F 2sF t

22 t tCost s0.7952 F q3.2304F q4.2807 37Ž . Ž .
2 t�CR s 0.7448FF F1.3

Active constraint: F1sF t

The slightly nonlinear trade-off curve defined by the para-
Ž .metric solutions Eqs. 36 and 37 is shown in Figure 6, to-

gether with a number of points obtained using the nonpara-
metric, iterative approach described earlier. It can be seen
that there is very good agreement between the two sets of
results.

Stochastic Flexibility of Convex, Nonlinear
Systems
Algorithm 2

In an entirely analogous way to that described for linear
Ž .systems in Bansal et al. 2000 , a parametric programming-

based algorithm for the evaluation of the stochastic flexibility
of convex, nonlinear systems can be developed.

kŽ .Step 1. Obtain the linear feasibility functions � � ,d, y ,
ks1, . . . , K , by applying Step 1 of Algorithm 1 described
earlier in the article.

Step 2. For is1 to n :�

Ž .a Compute the upper and lower bounds of � in the fea-i
sible operating region, � max and � min, respectively, as lineari i
functions of lower-dimensional parameters, � , dpŽ ps1, . . . , iy1.

Ž .and y Acevedo and Pistikopoulos, 1997a , by solving the mp-
LP

max � max q1 . . . qiy1y� min q1 . . . qiy1 38Ž .Ž .i i

s.t. � k � aq1 . . . qiy1 , � max q1 . . . qiy1 , � q1 . . . q p ,d , yŽ .jŽ js iq1 , . . . ,n . i pŽ ps1 , . . . , iy1.�

F0, ks1, . . . , K

� k � bq1 . . . qiy1 , � min q1 . . . qiy1 , � q1 . . . q p , d , yŽ .jŽ js iq1 , . . . ,n . i pŽ ps1 , . . . , iy1.�

F0, ks1, . . . , K

� LF� aq1 . . . qiy1 , � bq1 . . . qiy1F� U, js iq1, . . . , nj j j j �

� LF� min q1 . . . qiy1F� max q1 . . . qiy1F� U
i i i i

� LF� q1 . . . q pF� U, ps1, . . . , iy1p p p

d LF dF dU

y LF yF yU

Here, � a and � b reflect the fact that different values of � ,j j j
js iq1, . . . , n , must be chosen in order to calculate the�
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upper and lower bounds on � ; q is the index set for thei i
quadrature points to be used for the ith parameter; and y L

and yU will usually be 0 and 1, respectively. The solution of
Eq. 38 gives N solutions and corresponding regions of opti-i
mality in � , d and y.pŽ ps1, . . . , iy1.

Note that lower and upper bounds on the uncertain pa-
rameters can be obtained by truncating the probability distri-
bution at points beyond which there is a negligible change in
probability. For example, for a normally distributed parame-
ter with mean 	 and standard deviation 
 , bounds of � Ls
	y4
 and � Us	q4
 can be used.
Ž . q1 . . . qib Express the quadrature points, � , in terms of thei

w xlocations of Gauss�Legendre quadrature points in the y1,1
Ž . qiinterval Carnahan et al., 1969 , � , fromi

1
q . . . q max q . . . q q1 i 1 iy1 i� d , y s � 1q�Ž . Ž .i i i2

minq . . . q q1 iy1 iq� 1y� , �q 39Ž .Ž .i i i

Step 3.

Qmax min max q min q1 1 1� y� � y�1 1 2 2q1SF d , y s w . . .Ž . Ý 12 2q s11

Qn�

q q q . . . qn 1 1 n� �w j � , . . . , � 40Ž .Ž .Ý n 1 n� �

q s1n�

where w qi, q s 1, . . . , Q , are the weights of thei i i
Ž .Gauss�Legendre quadrature points Carnahan et al., 1969

for the ith parameter.

Illustrati©e example
Consider the problem of evaluating the stochastic flexibil-

Žity of the system described by the reduced inequalities Eq.
. w x16 , where � is uniformly distributed on the interval 2,4 ,1

Ž .and � � N 3, 1r16 . The solution of the mp-NLP in Step 12
of Algorithm 2 gives the nine feasibility function expressions,
Eqs. 17�25. In Step 2a, two mp-LPs are solved using the al-

Ž .gorithm of Gal and Nedoma 1972 , giving

� maxs0.2477d y0.0647d q0.9169, � mins21 1 2 1

2.2443d yd F24.79921 21,1CR s ½ 10Fd , 2Fd F41 2

� maxs0.2376 d y0.0602 d q1.0281, � mins21 1 2 1

2.2443d yd G24.7992° 1 2
1,2 ~3.9436 d yd F49.3264CR s 1 2¢2Fd F42

� maxs4, � mins21 1

3.9436 d yd G49.32641 21,3CR s ½ d F15, 2Fd F41 2

� max q1s4, � minq1s22 2

16.1509� q1y4d q1.0455d F12.80911 1 22,1CR s q1½ 16.8348� y4d q1.0143d F15.30781 1 2

� max q1sy16.1509� q1q4d y1.0455d q16.80912 1 1 2

� min q1s22

12.8091F16.1509� q1y4d q1.0455d F14.80911 1 22,2CR s q1½ 21.9210� qd F80.08931 2

� max q1sy16.8348� q1q4d y1.0143d q19.30782 1 1 2

� min q1s22

15.3078F16.8348� q1y4d q1.0143d F17.30781 1 22,3CR s q1½ 21.9210� qd G80.08931 2

The stochastic flexibility for a given set of design variables
and quadrature points can be calulated by substituting the
relevant values in the preceding expressions, together with
Eqs. 39 and 40, where for this example the bivariate probabil-
ity density function defined by � and � is given by1 2

2 2q q q q q1 1 2 1 2j � , � s �exp y8 � y3Ž . Ž .(1 2 2


Table 7 shows the stochastic flexibility results for various de-
signs and illustrates their accuracy by comparing them with
the values obtained using the sequential approach of Straub

Ž .and Grossmann 1993 .

Remarks on Algorithm 2
Ž .1 Algorithm 2 provides the explicit dependence of the

uncertain parameter bounds, and ultimately the stochastic
flexibility of convex, nonlinear system, on the values of the
design variables, and the parameters of the quadrature
method being used. By applying the algorithm once, the
stochastic flexibility can be evaluated for a given design and
structure, for any number of quadrature points, by perform-
ing a series of function evaluations. This is demonstrated in
Table 7 where no further optimization subproblems need to
be solved in order to obtain the stochastic flexibilities of the
second to fifth designs.
Ž .2 Algorithm 2 leads to a significant reduction in the

number of optimization subproblems that need to be solved
compared with existing approaches for stochastic flexibility
evaluation. If the same number of quadrature points, Q, is
used for each uncertain parameter, the sequential ap-

Ž .proaches of Straub and Grossmann 1993 and Pistikopoulos
Ž . n� iy1and Ierapetritou 1995 require the solution of Ý Qis1

NLPs. Algorithm 2, on the other hand, only requires the so-
lution of one mp-NLP and n mp-LPs. The potential benefit�

of this for the illustrative example can be seen in Table 7.
Generating the stochastic flexibilities shown requires the so-
lution of a total of 490 NLPs using the sequential approach
compared to just 1, albeit more difficult to solve, mp-NLP
and 2 mp-LPs with Algorithm 2. Thus, we would expect the
parametric programming approach to be beneficial for prob-
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Table 7. SF of Convex Illustrative Example: Parametric vs. Sequential Approach

Stochastic Flexibility, SF No. of Subproblems
Td Q sQ Algorithm 2 Sequential Algorithm 2 Sequential1 2

Ž .10,2 32 0.6010 0.6089 1 mp-NLP 33 NLPs
64 0.6010 0.6089 q2 mp-LPs 65 NLPs

Ž .12,2 32 0.8486 0.8534 No 33 NLPs
64 0.8487 0.8535 Extra 65 NLPs

Ž .14,2 32 0.9999 0.9999 No 33 NLPs
64 0.9999 0.9999 Extra 65 NLPs

Ž .10,3 32 0.5687 0.5762 No 33 NLPs
64 0.5687 0.5762 Extra 65 NLPs

Ž .10,4 32 0.5363 0.5426 No 33 NLPs
64 0.5363 0.5426 Extra 65 NLPs

Total: 1 mp-NLPq2 mp-LPs 490 NLPs

lems with a large number of uncertain parameters, since even
for an intermediate number, the sequential approach ex-

Žplodes for an example of this, see Table 7 in Bansal et al.,
.2000 .

Note that the use of the feasibility function expressions in
Step 2a of Algorithm 2 can lead to the individual optimiza-
tion subproblems having a higher number of constraints com-
pared to existing approaches where the process inequalities
are used. This is seen for the illustrative example where there

Ž .are three process inequalities Eq. 16 but nine approximat-
Ž .ing linear feasibility function expressions Eqs. 17�25 . How-

ever, this effect is insignificant compared to the reduction in
the number of subproblems, as described earlier. The use of
the feasibility function expressions in Algorithm 2 also has
the desirable consequence that the subproblems in Step 2a
become linear.
Ž . Ž .3 For the evaluation of the ESF d , defined in Eq. 11 as

2 e q

s sESF d s SF d , y � P yŽ . Ž . Ž .Ý
ss S1

all the advantages of Algorithm 2 just described will be car-
ried over, since it relies on a stochastic flexibility evaluation
for each system state.

New Framework for Flexibility Analysis and Design
Based on the theoretical development presented in Bansal

Ž .et al. 2000 and in this article, we are now able to propose a
unified, conceptual framework for the flexibility analysis and
design optimization of linear or nonlinear systems with deter-
ministic or stochastic parameters. The new framework is il-
lustrated in Figure 7. Note that the framework incorporates
both convex and nonconvex models; in principle, the flexibil-
ity analysis and design of nonconvex systems can be achieved

Žusing similar ideas to those presented for convex systems see
Ž . .Bansal 2000 for detailed algorithms .

For both linear and nonlinear systems, the common start-
ing point in the framework is to solve the feasibility function

Ž .problem Eq. 5 as a multiparametric program using special-
ized algorithms. This gives a set of linear expressions for the
feasibility function in terms of � , d, and y, which are exact
for linear systems and globally accurate within a user-speci-

fied tolerance for nonlinear systems, and an associated set of
regions in which these solutions are optimal. For systems with
deterministic parameters, the critical values of the uncertain
parameters can be identified through vertex properties for
linear and convex models and through the solution of further
multiparametric linear programs for nonconvex models. It is
then possible to express the feasibility test measure, � , and
the flexibility index, F, as explicit linear functions of the de-
sign variables. This reduces their evaluation to simple func-
tion evaluations for a given design and enables a designer to
know a priori the regions in the design space for which feasi-
ble operation can be guaranteed.

The critical parameter information and the expressions for
� and F can be used to formulate design optimization prob-
lems that, unlike existing approaches, do not require itera-
tion between a design step and a flexibility analysis step. In-
stead, the optimal design for a fixed degree of flexibility is

Ž .determined through the solution of a single mixed-integer
nonlinear program, while the algebraic form of the trade-off
curve of cost against flexibility index can be generated explic-

Ž .itly by solving a single-parameter mixed-integer , nonlinear
program.

For systems with stochastic parameters described by any
probability distribution, the procedures for evaluating the
stochastic flexibility and the expected stochastic flexibility
metrics are identical for both linear and nonlinear models
once the parametric feasibility function expressions have been
generated. The use of these expressions is especially signifi-
cant for nonlinear systems because they remove all nonlinear-
ity from the intermediate optimization subproblems, some-
thing that would not be possible using nonparametric ap-
proaches. Furthermore, by considering the subproblems as
multiparametric linear programs, the number of problems
that needs to solved compared to existing approaches is dras-
tically reduced and parametric information is obtained that
allows the metrics to be evaluated for any design through a
series of function evaluations.

Concluding Remarks
This article has described a new framework for conducting

flexibility analysis and design optimization under uncertainty.
The framework provides a unified-solution approach, based
on parametric programming, for different types of process
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Figure 7. Unified parametric programming framework for flexibility analysis and design.

Ž .model linear, convex, and nonconvex and different types of
Ž .uncertainty deterministic and stochastic . For steady-state

systems discribed by general classes of models, the frame-
work:

� Allows the critical values of the uncertain parameters that
limit flexibility to be identified a priori.

� Gives the feasibility test measure and flexibility index as
explicit functions of the design variables.

� Reduces the feasibility test and index problems to simple
function evaluations for a given design.

� Allows a designer to know in advance for which designs
feasible operation will be possible in the face of the specified
uncertainties.

� Enables design optimization problems to be solved with-
out having to iterate between a design step and a flexibility
analysis step.

� Gives the algebraic form of the trade-off curve of cost
against flexibility index.

� Involves linear optimization subproblems during stochas-
tic flexibility evaluation, even for nonlinear process models.

� Has a linear rather than exponential increase in the
number of optimization subproblems that need to be solved
as the number of uncertain parameters increases in stochas-
tic flexibility problems.

� Allows the stochastic and expected stochastic flexibility
to be evaluated for a given design and number of quadrature
points through a simple series of function evaluations.

The framework can also accommodate the analysis and de-
sign of other systems. For example, as described in Bansal et

Ž .al. 2001 , for an in-line blending system where some of the
control variables are binary variables corresponding to dis-
crete modes of operation, the starting feasibility function
problem in the framework of Figure 7 corresponds to a mul-

Ž .tiparametric, mixed-integer linear program mp-MILP . An
Ž .algorithm such as that of Acevedo and Pistikopoulos 1999

Ž .or Dua and Pistikopoulos 2000 can be used to obtain linear
parametric expressions for the feasibility functions, and then
the various flexibility analysis and design problems can be
tackled using the framework in a similar manner to that al-
ready described. This will be the subject of a future article.

Ž .Bansal 2000 also discusses the potential for using an analo-
gous framework for the analysis, design, and control opti-
mization of dynamic systems under uncertainty if methods

Žcould be developed for solving multiparametric mixed-
. Ž .integer , dynamic optimization, or mp- MI DO problems.

Finally, as referred to earlier in the article, ongoing re-
search is aimed at improving the efficiency of the underlying
parametric programming algorithms, particularly those for
nonconvex mp-NLPs, in order to enable larger, more realistic
problems to be solved.
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Appendix: An Algorithm for Convex mp-NLPs
Description

An algorithm for the solution of convex mp-MINLPs was
Ž .proposed by Dua and Pistikopoulos 1999 . Here, the primal

part of this algorithm, for the solution of convex mp-NLPs, is
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outlined, with some slight modifications to make it more
amenable for flexibility analysis problems.

Consider a problem of the general form

Obj � smin cconvex wŽ . Ž .
w

s.t. 0s hlinear w ,� A1Ž . Ž .
0G g convex w ,�Ž .

� LF�F�U

where w is a vector of search variables and � is a vector of
parameters.
Ž .1 Find an initial feasible point. This can be accom-

plished, for example, by solving Eq. A1, with � treated as
search variables along with w. If there is no solution, the

Ž � �.problem is infeasible; otherwise, a feasible solution w ,�
is found.
Ž . Ž .2 a Create an outer approximation of Eq. A1 by lin-

earizing the nonlinear functions cconvex and g convex at
Ž � �.w ,� . This gives

ˇ convex � convex � �Obj � smin c w q� � c w � wyww xŽ . Ž . Ž . Ž .w
w

s.t. 0s hlinear w ,� A2Ž . Ž .
0G g convex w� ,�� q� � g convex w� ,�� � wyw�Ž . Ž . Ž .w

q� � g convex w� ,�� � �y��Ž . Ž .�

� LF�F�U

Ž .b Solve Eq. A2 as an mp-LP using the algorithm of
Ž .Gal and Nedoma 1972 described in Appendix A of Bansal

ˇŽ .et al. 2000 . This will give a set of linear expressions, Obj
Ž .� , and a corresponding set of regions, defined by linear
inequalities in �, in which these solutions are optimal.
Ž . Ž .3 Since Obj � is a convex function of �, the point of

ˇ Ž .maximum discrepancy between the linear solution Obj �
Ž .and Obj � in each region of optimality will lie at one of the

vertices of the region. Therefore:
Ž .a Identify all the feasible vertices of the regions of

optimality found in Step 2b. In order to achieve this, Dua
Ž .and Pistikopoulos 1999 used an iterative procedure based

on fixing some of the inequalities that describe each region;
solving the resulting square system of linear equations; test-
ing whether the solution satisfies the ‘‘unfixed’’ inequalities
and storing that vertex if they do; and repeating this for all
square combinations of active inequalities. Here, we propose
an alternative strategy. In each region of optimality, first a

Ž .mixed-integer linear program MILP is solved with a dummy
objective function, corresponding to:

min 0T� �
�

s.t. CRk � q sks0, � i A3Ž . Ž .i i

skyU 1y pk F0, � iŽ .i i

pksnÝ i �

i

p s0, 1; s G0, �l l i

k Ž .In Eq. A3 CR � F0 is the ith inequality defining the k thi
region CRk; sk are positive slack variables with an upperi
bound of U; pk is a binary variable that takes a value of 1 ifi

Ž k .inequality i is active CR s0 , and is zero otherwise; and ni �

is the number of elements in the vector of parameters �.
Once Eq. A3 has been solved to give a vertex, two sets are

formed. The first, I a, consists of the integers associated with
the active inequalities, while the second, I na, corresponds to

a k na� 4the set of inactive inequalities, that is, I s i y s1 and Ii
k� 4s i y s0 . Equation A3 is then re-solved with the additioni

of the integer cut

y ky y kFn y1 A4Ž .Ý Ýi i �
a n aig I ig I

to exclude the previous vertex solution. This procedure is re-
peated until Eq. A3 becomes infeasible, at which point all
the feasible vertices have been identified.

It should be noted that any other vertex enumeration algo-
rithm can be used in the preceding step if it is found to be
more efficient. Other vertex enumeration algorithms have

Ž .been proposed by, for example, Bremner et al. 1998 .
Ž . k ®,kb At each of the V vertices, � , in the k th region

of optimality, evaluate the difference, Obj®,k between the ac-diff
Ž ®,k .tual objective function Obj � and the linear underesti-

ˇ ®,kŽ .mator Obj � . If, for any of the vertices in any of the
regions, Obj®,k �� , where � is a user-specified tolerance, Stepdiff
2a is returned to the vertex that gives the worst discrepancy
as the point for linearization. The parametric expressions re-
sulting from the solution of the new np-LP in Step 2b are
compared with the previous linear solutions using the proce-

Ž .dure of Acevedo and Pistikopoulos 1997b , as described in
Ž .Appendix B of Bansal et al. 2000 , so as to retain the tighter

underestimators, and a new set of regions of optimality is
defined. The vertices are identified, and so on, until Obj®,k Fdiff
� , � ®, �k.
Ž .4 The final underestimators resulting from Step 3b are

Ž .converted to overestimators. Dua and Pistikopoulos 1999
proposed the addition of � to each expression. Alternatively,
slightly tighter overestimators can potentially be obtained by
adding

®,k�smax Obj A5Ž .Ž .diff
® ,k

The regions of optimality remain unchanged.

Illustrati©e example
Consider the feasibility function problem for the system,

w xT w xT LEq. 16, where w s z,u , � s � ,� ,d ,d , � s1 2 1 2
w xT U w xT1.5,1.5,10,2 and � s 4.5,4.5,15,4 . Set �s0.005.
Ž . � ,1 w xT1 A feasible point, � s 1.5,1.5,10,2 , is obtained, with

� ,1 w xTcorresponding w s 11.4582,y0.4331 .
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Ž .2 The outer approximation problem for this example is

�̌ � ,d smin uŽ .
z ,u

1 12� �s.t. uGy0.08 z q0.16 z zy� y � q d y13Ž . 1 2 120 5

1 1 1 11r2 y1r2� �uGy zy � y � � q d q11 A6Ž .Ž . Ž .1 1 1 26 6 20 3

1 1 1� �0.21 z w xuG e � 1q0.21 zy z q� y � y d y d y11Ž . 1 2 1 220 5 20

1.5F� , � F4.51 2

10Fd F151

2Fd F42

Solving Eq. A6 as an mp-LP at �� ,1 and w� ,1 gives

ˇ1� � ,d s0.2052� q0.0150�Ž . 1 2

y0.0601d q0.0200 d y0.2025, A7Ž .1 2

1.5F� , � F4.5° 1 2
1 ~10Fd F15CR s 1¢2Fd F42

Ž . 13 The vertices in CR simply correspond to the 16 ver-
tices in � y� y d y d space. The worst one is �s1 2 1 2

T ˇ1 1w x4.5,4.5,10,2 , where � s0.3895, � s0.2274, and, thus, �diff
s0.1621.
Ž . � ,2 w xT � ,24 Solving Eq. A6 at � s 4.5,4.5,10,2 and w s

w xT10.3367,0.3895 gives

ˇ2� � ,d s0.3011� q0.0176� y0.0704dŽ . 1 2 1

q0.0148d y0.3703 A8Ž .2

ˇ1 ˇ2Ž .5 Comparing � and � in order to retain the tighter
underestimators leads to two new regions of optimality

ˇ1� � ,d s0.2052� q0.0150�Ž . 1 2

y0.0601d q0.0200 d y0.20251 2

Table A1. Solving MILP with Integar Cuts

k k kˇk No. Vertices in CR Worst Vertex � � �diff
Tw x1 16 1.5,1.5,15,4 y0.5919 y0.6935 0.1016

Tw x2 16 3.5383,1.5,15,4 y0.2268 y0.2754 0.0486

37.1436� q� y4d y2 d F64.9242° 1 2 1 2

1.5F�1
1 ~1.5F� F4.5CR s 2

10Fd F151¢2Fd F42

ˇ2� � ,d s0.3011� q0.0176� y0.0704d q0.0148d y0.3703Ž . 1 2 1 2

37.1436� q� y4d y2 d G64.9242° 1 2 1 2

� F4.51
2 ~1.5F� F4.5CR s 2

10Fd F151¢2Fd F42

Ž . Ž .6 Solving the MLP 43 with integer cuts gives Table A1.
w xT 1�s 1.5,1.5,15,4 in CR is, thus, chosen as the next point

for linearization.
Ž . � ,3 w xT � ,37 Solving Eq. A6 at � s 1.5,1.5,15,4 and w s

w xT11.7170,y0.5919 gives

ˇ3� � ,d sy0.4366� y0.0174� q0.0696 dŽ . 1 2 1

q0.0326d y1.0849 A9Ž .2

ˇ1 ˇ2 ˇ3Ž .8 Comparing � , � , and � leads to the new regions of
optimality

ˇ1� � ,d s0.2052� q0.0150� y0.0601d q0.0200 d y0.2025Ž . 1 2 1 2

37.1436� q� y4d y2 d F64.92421 2 1 21CR s ½y19.8006� y� q4d q0.3901d F27.22491 2 1 2

ˇ2� � ,d s0.3011� q0.0176� y0.0704d q0.0148d y0.3703Ž . 1 2 1 2

2 �CR s 37.1436� q� y4d y2 d G64.92421 2 1 2

ˇ3� � ,d sy0.4366� y0.0174� q0.0696 dŽ . 1 2 1

q0.0326 d y1.08492

3 �CR s y19.8006� y� q4d q0.3901d G27.22491 2 1 2

where simple bounds have been omitted for clarity.

Table A2. Vertex Identification

k k kˇk No. Vertices in CR Worst Vertex � � �diff
Tw x1 21 3.5383,1.5,15,4 y0.2268 y0.2754 0.0486
Tw x2 16 3.5383,1.5,15,4 y0.2268 y0.2754 0.0486
Tw x3 11 1.6583,1.5,15,4 y0.6539 y0.6610 0.0071
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Ž .9 The results of the vertex identification and comparison
in the three regions are given in Table A2. �� ,4 s
w xT 1 23.5383,1.5,15,4 , on the boundary of CR and CR , is cho-
sen as the next point at which to solve the outer approxima-
tion problem. The procedure illustrated is repeated until
eventually nine linear underestimators for � are found where
all vertices of their associated regions of optimality give dis-

crepancies of less than �s0.005. The maximum discrepancy,
Tw x� , is actually 0.0042 and occurs at the vertex 3.9258,4.5,10,2

2 6ˇ ˇwhere � s� . After the addition of �s0.0042, the overes-
timating solutions, Eqs. 17�25, result.
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