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Determining the boundaries of any processrdesign where feasible and safe operation
is guaranteed has long been recognized as a major concern in process industries. Of
additional ®alue is identifying the range of operating conditions where the design is most
profitable. Although there is a lot of discussion in the open literature regarding design
feasibility in terms of uncertainty of process ®ariables, these techniques are rather limited
due to the underestimation of the feasible space. A new approach is presented based on
the ideas of inner and outer approximation of the feasible region to identify the operat-
ing en®elopes where process operation is feasible, safe, and profitable. A number of
example problems are presented including two case studies to illustrate the applicability
of this approach.

Introduction

The issue of determining the operating envelope for a fea-
sible and safe operation is a concern for any industrial pro-
cess plant. For example, in the air separation process which
will be studied later, the feasibility of the optimal plant con-
figuration is evaluated with respect to the flow rates of the
liquid and gaseous oxygen produced that enables the deter-
mination of the capability range of the specific design. The
same issues appear in the design of new materials where the
constraints have the form of property functions targeting spe-
cific values. Of course, a hard constraint in any operability
analysis of a product or a process is the reassurance of safe
operation. Safety constraints can consequently be very limit-
ing in terms of the available operating ranges. It is, thus, of
major benefit to be able to identify as precisely as possible
the feasible operating ranges to avoid limiting the operation
to narrow conditions eliminating the ability to perform profit
optimization studies. As would become apparent from the
first case study presented, the issue of obtaining the feasible
region of a design can be extended to the synthesis level where
various process configurations are analyzed based mainly on
their costs. The identification of feasibility in terms of operat-
ing conditions would greatly enhance the power of analytical
tools for productrprocess design since it would improve the
comparison of various design alternatives. In terms of ad-
dressing uncertainty issues, a flexibility and feasibility analy-
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Žsis approach proposed by Grossmann and coworkers Swaney
.and Grossmann, 1985a,b has been proven to be a powerful

and, in most cases, the only approach available to identify the
uncertainty ranges where the productrprocess is feasible to
operate or function. However, as was first shown by Ier-

Ž .apetritou 2001 , this approach can largely underestimate the
actual feasible region. Thus, determining a feasible range
more accurately will be of great value to analyze uncertainty
in process and product design. This article presents a system-
atic framework for an accurate approximation of the feasible
region or operating envelope of a given design based on the
basic idea of approximating the feasible region from inside
using the simplicial approximation approach and from the
outside using the tangent planes at specific boundary points.

A number of articles have been published in the area of
global optimization utilizing similar ideas of approximating
the objective function andror constraints either from inside
or outside resulting in the development of successive approxi-
mation techniques. An interested reader is directed to the

Ž .book by Horst and Tuy 1993 .
The proposed framework including the presentation of the

simplicial approximation, the proposed approach to generate
the outer approximation of the feasible region, and the intro-
duction of new metric to represent the design feasibility are
presented. A number of case studies are presented to illus-
trate the applicability of the proposed approach to address
the design under uncertainty, to identify the ranges of oper-
ating conditions where the alternative plant configurations for
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air separation are most profitable, and, finally, to determine
the ranges of initial conditions where reduced kinetics mod-
els are valid. This is followed by a conclusion with discussion
and future work directions.

Proposed Approach
To illustrate the basic concept of the proposed approach, it

is assumed that the specific design is described by a set of
( )inequality constraints f d,z,� F0 assuming that the equalityj

constraints have been eliminated for ease in the presenta-
tion. In these constraints d represents the set of design vari-
ables, and z represents the set of control variables that can
be adjusted to accommodate variations on the operating vari-
ables or uncertain parameters represented by the vector � .
The main idea of the proposed approach is to iteratively im-
prove the approximation of the boundary of the feasible re-
gion by determining points at the boundary using a simplicial

Ž .approximation approach Director and Hachtel, 1977 , which
are used to inscribe a convex hull inside the feasible region
that serves as a lower bound of the feasible space and then to
determine the outer envelope by generating the tangent
planes at these points. This serves as an upper bound of the
feasible region and is also used to determine a new feasibility
metric that accurately describes the design feasibility. For the
case of a convex feasible region, the convex hull determined
in this way is guaranteed to be inscribed within the feasible
region. However, for the nonconvex case, there is no guaran-
tee that this would be always the case. A study of the general
nonconvex case is a subject of present research and would be
published in a later publication.

Simplicial approximation of the feasible region
ŽThe Simplicial Approximation Approach Director and

.Hachtel, 1977 is based on explicitly approximating the
boundary � R of the feasible region R of an n-parameter de-
sign space by a polyhedron made up of n-dimensional simpli-
cies. It has been assumed that the constraint functions are
locally convex, that is, that the sequence of points generated
on � R are extreme points of a convex set. The procedure is
described in the following steps:
Ž .1 Determining any m points p , p ,..., p on the bound-1 2 m

ary � R, where mGnq1. One way to find the m points is to
Ž .perform line searches, as described in Ierapetritou 2001 .

Ž .2 Using the set of m points on R, the convex hull of
these points is then constructed. The convex hull is deter-

Žmined by applying the Quickhull algorithm Barber et al.,
.1996 . The convex hull is characterized by the set of m in-H

equalities, describing the hyperplanes that complete the con-
vex hull

hT pF c , ks1, 2, . . . , m 1Ž .k k H

where h is a unit vector normal to k th hyperplane pointingk
outwards and c is a measure of the distance of the k th hy-k
perplane from the origin.
Ž .3 Given the first approximation of � R, the largest hyper-

sphere that can be inscribed in the convex hull is obtained.
The distance from a point p� inside the polytope to the k th

Figure 1. Steps in simplicial approximation.
Ž .Initial convex hull 1,2,3 and the resulting convex hull

Ž .1,2,3,4 after one iteration.

hyperplane is

d shT p�y c 2Ž .k k k

Thus, the center and radius of the largest hypersphere can be
estimated using the following linear program

max r

hT p�q rF c 3Ž .k k

Ž .4 The next step is to determine which is the largest of
the m faces of the polyhedron that are tangent to the in-H
scribed hypersphere. The largest face is the one in which the

Ž .largest ny1 dimensional hypersphere can be inscribed. The
largest face is of importance, because that is most likely the
poorest approximation of the � R, since the best approxima-

Žtion corresponds to an infinite number of faces points at the
.boundary , as shown in Figure 1. The tangent faces of the

polyhedron are those with the zero slack variables in the so-
lution of the linear program defined by Eq. 3. The center of
the largest hypersphere inscribed in the jth face of the poly-
hedron, denoted by p� must be on the jth hyperplane. Thej
surface of a hypersphere of radius r can be described byj

p�q r hH 4Ž .j j j

where hH denotes a unit vector perpendicular to h , suchj j
that

THh h s0 5Ž .Ž .j j

The largest such hypersphere is the one with the largest rj
that satisfies the constraints

hT p�q r hH Fc , ks1, 2, . . . , m ; k� j 6Ž .Ž .k j j j k h
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which is equivalent to the constraint

hT p�q r sin � Fc 7Ž .k j j jk k

where � is the angle between h and h . Thus, a linearjk k j
program has to be solved to determine p� and maximize r
subject to Eqs. 5 and 7. As described in Director and Hachtel
Ž .1977 , this problem corresponds to the dual of the following
Ž .primal linear program. Minimize the objective function

m q1H

�s c � 8Ž .Ý k k
ks1

subject to the constraints

h h ��� h ��� h yh1 2 j m jH
. . . . .. . . . .. . . . .� 0sin � sin � ��� 0 ��� sin � 01 j 2 j m jH

�1 0. .. .� s 9Ž .. .� 0� 0� 1m q1H

and � G0 for all k. Note that c syc .k m q1 jH
Ž .5 A new boundary point is determined by making a one-

dimensional search in the outwards normal direction, starting
from the center of the largest inscribed hypersphere in the
plane found at step 4.
Ž .6 This new point is then added to the set of boundary

points found in the previous iteration and a new convex hull
is formed. Thus, an approximation to � R is improved in each
step and a convex hull that approximates the feasible region
is finally obtained.

The volume of the convex hull at each iteration is evalu-
Ž .ated using the Quickhull algorithm Barber et al., 1996 , which

Ž� .shows an average time complexity of O n log m for nF3
Ž .and O f otherwise, where m is the number of points, n ism

their dimensionality and f is the maximum number of facetsm
for m vertices. The simplicial convex hull obtained serves as
a lower bound on the total feasible design space.

Scaling-inscribing a hyperellipsoid
When the feasible region is asymmetric in shape, inscribing

a hypersphere could result in a poor approximation. This
problem can be handled by scaling the uncertain or operating
parameters and inscribing a hyperellipsoid. After the appro-
priate scaling is performed, the procedure for inscribing the
simplicial follows the same steps, as described in the previous
subsection.

The scaling is performed in the following way. Assume that,
after the mth step of simplicial approximation procedure nq
mq1 boundary points, p , ks1,2, . . . ,nqmq1 have beenk
found. The lower and upper bounds for each parameter are

determined as

p Lsmin pi ik
k

pUsmax pi ik
k

for is1,2, . . . ,n where p is the ith coordinate of the k thik
boundary point. The scale factor for the ith component of
the parameter vector is then given by

F s pUy p L, is1, 2, . . . , ni i i

A scaled set of boundary points are now defined as

p sFy1p , ks1, 2, . . . , nˆk k

where F is the scale matrix defined as

Fsdiag F , F , . . . , F1 2 n

Using this scaled set of points, the simplicial approximation
procedure can be carried out and the final unscaled bound-
ary points can be obtained as

p sFp ks1, 2, . . . , nˆk k

Most of the examples shown in the next section have been
scaled due to their asymmetric design space.

Con©ex polytope: the outer bound
In this section an algorithm is developed for the construc-

tion of a convex polytope around the simplicial convex hull.
Ž .This provides a an upper bound to the feasible region and

Ž .b an improved metric for design feasibility which is defined
as the ratio of the volumes of the feasible convex hull and the

Žouter convex polytope. Compared to the FCHR Iera-
.petritou, 2001 , this metric is much more accurate since the

comparison is made with respect to the maximum design fea-
sibility and the overall expected range. The proposed algo-
rithm is based on the supporting hyperplane theorem of con-
vex sets that states that if S is a convex set and p is a bound-
ary point of S. Then, there exists a hyperplane containing p
and containing S in one of its closed half-spaces. For any
point p defined on the boundary of S, the tangent plane is0
defined as

T T
�h p ps �h p pw x w xŽ . Ž .0 0 0

Ž .where h p F0 is an active constraint at point p and0
Ž . ( .�h p is the gradient of the function h p . For a point p on0

Ž .the boundary, a tangent plane at h p satisfies the support-0
ing hyperplane theorem. The aim of the algorithm is to ap-
proximate the feasible region R by a polytope

� m� n m� 4RRs x HpF c , H� R ; c� R

formed by intersection of m halfspaces in Rn. The basic steps
of the algorithm are as follows:
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Ž .1 The points obtained by the generation of the simplicial
convex hull are used as the initial boundary points.
Ž .2 Tangent hyperplanes are generated at the points ob-

tained at step 1. The active constraints at a boundary point
are the ones with a zero slack variable during the one-dimen-

Ž .sional 1-D line searches in the simplicial convex hull gener-
ation, so no additional optimization problems have to be
solved to obtain the polytope, if the constraints are explicitly
defined. In the case where the constraints are implicit, as, for
example, the air separation case study which will be pre-
sented later, a different approach is used to calculate the
slope of the tangent hyperplanes at each simplicial point. The
basic idea is to numerically determine the derivatives at each
simplicial point, considering small pertubations in the � pa-

Ž .rameters by solving the feasibility problem Eq. 10

� d , � smin uŽ .
z ,u

s.t. h d , z , x , � s0; ig IŽ .i

g d , z , x , � Fu jg J 10Ž . Ž .j

where d corresponds to the vector of design variables, z is
the vector of control variables, x is the vector of state vari-
ables, � is the vector of operating variables or uncertain pa-

Ž . Žrameters, and � d,� , is the feasibility function Swaney and
. Ž .Grossmann, 1985a . Values of � for which � d,� F0 are

feasible and the boundary of the region is determined implic-
Ž .itly by � d,� s0. Computationally, this approach requires

Ž .the solution of k nql nonlinear programs where k is the
number of simplicial points and n is the dimension of the set
of � parameters.
Ž .3 The points of intersection of the tangent half-planes

are obtained.
Ž .4 A convex hull is generated using the Quickhull Algo-

Ž .rithm Barber et al., 1996 at the intersection points obtained

above, forming the outer polytope which serves as an enve-
lope of the simplicial convex hull.

The above obtained polytope serves as an upper bound
Ž .UB for the feasible region and the simplicial convex hull as

Ž .the lower bound LB . The iterative procedure then proceeds
until convergence is achieved between the upper and lower

Ž k .bound andror the volume V at iteration k of the convex
hull, as illustrated in Figure 2. In the next section, the design
under uncertainty problem is addressed using three example
problems from the literature, followed by an air separation
process synthesis case study that targets the evaluation of the
feasible range of operating conditions of various products and
the problem of evaluating the range of initial conditions for a
specific reduced kinetic model.

Remark 1. The complete optimization problem requires the
Ž .solution of k nonlinear and k nq1 linear programs. If the

Ž .constraints are implicit in nature, k nq1 additional nonlin-
Ž .ear programs have to be solved Figure 2 . It should be noted

Ž .that the computational time CPU needed for all of the opti-
mization problems solved in the next section is very small
and, hence, is not a significant factor.

Remark 2. The proposed approach has also been proved to
be independent of the nominal point as shown in the illus-
trating example in the next section.

Case Studies
Uncertainty consideration

Illustrating Example. The first case study considered in this
section involves the following set of constraints

f s� q� 2y� y40F01 2 1 1

f s� 2q� y� y2F02 1 1 2

f s� y4�� y30F03 2 1

Figure 2. Overall algorithm for the proposed approach.
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Figure 3. Simplicial convex hull for Case Study 1 with
( ) ( )nominal points of � 1, � 2 s 2.5, 20 .

Ž . Ž .A nominal point of � , � s 2.5, 20 is considered with ex-l 2
pected deviations of 	�ys7.5, 	�qs2.5, 	�qs20, and1 l 2
	�ys60. The flexibility index is evaluated first and is found2
to be equal to Fs0.174, as described by the rectangular re-
gion in Figure 3. The convex hull is then constructed by the

Ž .approach of Ierapetritou 2001 and is found to have the vol-
ume of 148.7 units and a FCHRs0.19, which is shown as the
light shaded area in Figure 3. The proposed approach is then
applied resulting in the inscribed convex hull shown in Figure
3 by the polytope with the dark edges with a volume of 172.59
units and the outer convex polytope with a volume of 209.8
units, resulting in a feasibility metric of 0.8226. The outer
polytope is shown in Figure 3 with the dark dotted edges.
Computationally, the proposed approach requires the solu-
tion of seven nonlinear and five linear programs for all itera-
tions and converges in four simplicial iterations. All computa-
tions in this article are performed on a Dell 933 Mhz Pc with
a Linux operating system and a convergence parameter of
10y4. On average, the NLPs required 25 iterations per run
and the LPs converge in five iterations. Note that the number
of linear programs required in this problem are considerably
lower due to the low dimensionality of the problem that al-
lows the determination of the largest tangent plane in each

Žsimplicial iteration directly from the Qhull algorithm Barber
.et al., 1996 by computing the area of each facet of the con-

vex hull. To illustrate the independence of the proposed
technique from the nominal point location, the nominal points

Ž . Ž . Ž . Ž .were changed from � ,� s 2.5, 20 to � , � s 3, 30 andl 2 l 2
the analysis was performed again. It is observed that both the
flexibility index and the convex hull generated by the ap-

Ž .proach of Ierapetritou 2001 showed a change to 0.195 and
FCHRs0.145, which are shown in Figure 4 as the rectangu-
lar and the light shaded region, respectively. The simplicial
approximation approach results in a slight increase in volume
of the inscribed convex hull to 178.56 units, and the outer
convex polytope volume slightly decreased to 204.83 units, as
shown in Figure 4. This gives rise to a new feasibility metric
of 0.872, as compared to 0.823 obtained using different nomi-
nal points. Moreover, one can notice by comparing Figure 3

Figure 4. Simplicial convex hull for Case Study 1 with
( ) ( )nominal points of � 1, � 2 s 3, 30 .

and Figure 4 that, although the inscribed convex hull region
is approximately the same, the flexibility region and the re-

Ž .gion inscribed following the approach of Ierapetritou 2001
are very much different. Thus, it is shown that the proposed
approach offers the additional advantage of being almost in-
dependent of the nominal points, as compared to the existing
approaches.

3-D Case. The second case study considered here is an
Ž .example from Ierapetritou 2001 with three uncertain pa-

rameters. The constraints describing the feasible region of
Ž .the design d , d have the following form1 2

f sy zy� q0.5�� 2q2.0�� 2qd y3� d y8F01 1 2 3 1 2

f sy zy� r3y� y� r3qd q8r3F02 1 2 3 2

f s zq� �� y� yd q� y4F03 1 1 2 1 3

where z is the control variable, and � , � , � are the uncer-l 2 3
tain parameters with the nominal value of � Ns� Ns� Ns21 2 3
and expected deviations 	� �s	� �s	� �s2. All the1 1 1

Ž . Ž .constraints are jointly convex on � and z . The design ex-
Ž . Ž .amined here corresponds to d , d s 3,1 . Using the ap-l 2

Ž .proach of Ierapetritou 2001 , the feasible region is approxi-
mated with a convex hull of volume of 12.16 units and a
FCHRs0.19, which is shown as the light shaded area in Fig-
ure 5. The proposed approach is then applied resulting in a
feasible region, approximated by a convex hull that has an
increased volume of 14.69 units and is shown in Figure 5 by
the polyhedron with the darker edge and the outer convex
polytope that has a volume 25.29 units. This is shown in Fig-
ure 5 with the dark dotted edges, resulting in a new feasibil-
ity metric of 0.581. Computationally, the proposed approach
requires the solution of 14 nonlinear and 44 linear programs
and converges in ten simplicial iterations. The NLPs on aver-
age converge in ten iterations per run and the LPs converge
in seven.

Pump Design Problem. The third case study considered is
the pump and pipe example in Swaney and Grossmann
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Figure 5. Simplicial convex hull for a 3-D feasible re-
gion.

Ž .1985a . This problem involves a centrifugal pump which
transports liquid at a flow rate m from its source at pressure
P through a pipe to its destination at a pressure P . Thel 2
design variables are the pipe diameter D, the pump head H,
the driver power W, and the control valve size C max. The®
design corresponds to the values of Ds0.0762 m, Hs1.3
kJrkg, Ws31.2 KW, and C maxs0.0577. The valve coeffi-®
cient C is the control variable. m, P , k, 
 are considered as® 2
uncertain parameters in this problem with expected devia-
tions and nominal points, as shown in Table 1.

After elimination of the state variables, the constraints for
this problem are expressed as

m2
1.84 y5.16f sP q � � Hy yk� m � D yP y�F0.01 1 22� �c®

m2
1.84 y5.16f syP y � � Hq qk� m � D qP y�F0.02 1 22� �c®

ˆf sm� Hy
�W F0.03

f sc ycmaxF0.04 ® ®

f syc q r �cmaxF0.05 ® ®

Since the above problem is nonconvex, the following expo-
nential transformation is applied

msexp m� , C sexp C� ksexp k�Ž . Ž .Ž .® ®

where m�, C� , k� are the new transformed variables. The®
problem is further transformed using two new variables, xs

Table 1. Uncertain Parameters: Example 4

y1 .84 5.16Ž . Ž . Ž .Ž . Ž .Parameter P kPa m kgrs 
 k kPa kgra m2
y6Nominal Value 800 10 0.5 9.101�10
y6Positive Dev. 200 2 0.05 0.45505.101�10
y6Negative Dev. 500 5 0.05 0.45505.101�10

2m�y2C� and ysk�q1.84m�, so that the constraints can®
now be expressed as

f sy1,380q0.001 exp x q0.587641 exp y qP G0Ž . Ž .1 2

f sy1420q0.001 exp x q0.587641 exp y qP F0Ž . Ž .2 2

f s1.3 exp m� y31.2
F0.0Ž .3

f sexp c� ycmaxF0.0Ž .4 ® ®

f syexp c� q0.05cmaxF0.0Ž .5 ® ®

The problem is, thus, transformed to a convex model and can
be solved using a local optimization solver. The proposed ap-
proach is then applied resulting in a feasible region approxi-
mated by a convex hull of volume 24.38 unit and an outer
convex polytope with the volume 36 units and a new feasibil-
ity metric of 0.65. Although, the dimensionality of the prob-
lem is high, the computational requirement does not increase
drastically and, in particular, 14 nonlinear and 50 linear pro-
grams have to be solved and the procedure converges in nine
simplicial iterations. The NLPs on an average converge in 25
iterations per run and the LPs in twelve.

Air separation plant: determination of operating en©elopes
The case study presented in this section is the optimization

Ž .of an air separation unit ASU for the cryogenic separation
of air into gaseous and liquid oxygen and nitrogen products.
The main product of the plant is gaseous oxygen with co-
products of liquid oxygen, liquid nitrogen and gaseous nitro-
gen. An ASU consists of four unit operations: heat ex-
changer, refrigeration, distillation and compression. Depend-
ing on the size and type of equipment used for each process a
number of different options and suboptions are available,
representing various unit operations decisions. The number
of options and suboptions for each unit are as shown in Table
2.

The objective of the problem is to determine the minimum
cost of production of gaseous oxygen that meets the given
production rate of gaseous oxygen at a specified pressure and
composition by the appropriate selection of equipment and
operating conditions. The model constraints represent the
mass and energy balance equations along with variable
bounds. The optimization problem is a mixed integer nonlin-
ear programming problem and is solved using branch and
bound solution procedure. Details of the model equations are

Ž .available in Sirdeshpande et al. 2001 . By selecting a specific
case of a product requirement, the above optimization prob-
lem is solved to determine the design as shown in Table 3.
The feasibility of this design is then examined in terms of the
flow rate of gaseous oxygen F and the flow rate of liquidGOX

Table 2. Options for the Unit Operations in the ASU

Unit Operation No. of Main Options No. of Suboptions

Heat Exchanger 2
Distillation Col. 4 4
Refrigerator 4 2
Compressor 4 2
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Table 3. Optimized Equipment Selection for the BOC ASU

Main Option Suboption

Heat Exchanger 2
Distillation Column 4 1
Refrigerator 2 3
Compressor 4 1

oxygen F . The nominal point for the operating variablesLOX
corresponds to F s800Mtpd and F s170Mtpd withGOX LOX
expected deviations of 	 Fq s 400 Mtpd, 	 Fy sGO X GO X
270Mtpd, 	 Fq s64Mtpd and 	 Fy s70Mtpd. The de-LOX LOX
sign pressure is P s9 atm and the desired product purityGOX
of oxygens95%. The feasible region is first approximatied

Ž .by the approach of Ierapetritou 2001 and the convex hull is
found to have the volume of 62,221.39 units and a FCHRs
0.69 and is shown as the dark shaded area in Figure 6. The
proposed approach is then applied resulting in a feasible re-
gion, approximated by a convex hull that has an increased
volume of 63,563.72 units. This is shown in Figure 6 by the
polyhedron with the darker edge and the outer convex poly-
tope that has a volume of 72,358.4 units, as shown in Figure 6
with the dark dotted edges, thus resulting in a new feasibility
metric of 0.879. Note that, for this case study, since the con-
straints are not explicitly defined, the derivatives of the
boundary of the feasible regions at the simplicial points are
determined numerically using the procedure described ear-
lier. The computational requirement for this case study re-
quired the solution of 44 nonlinear and nine linear programs
and converges in eight simplicial iterations. The NLP for each
simplicial iteration converge in an average of seven iterations
per run, and the NLP for determining the derivatives con-
verge in 150 iterations per run and the LPs converge in seven.
Note that the result constitutes an excellent representation of
the actual feasible region compared with the flexibility index
method. Another important outcome of this approach is the
description of the feasible space by a set of linear equations,
which describe the half-planes that form the convex hull. By
obtaining this information, there is no need to work with the
original nonlinear model in order to evaluate the feasibility

Ž .of any given point in the F , F operating space.GOX LOX

Figure 6. Simplicial convex hull for the BOC case study.

Reduced kinetics model: identification of range of ©alidity
The problem addressed in this section is to evaluate the

range of validity in terms of the initial conditions of a re-
Ž .duced kinetic model Sirdeshpande et al., 2001 . The system

studied is the H rO combustion problem at low pressure2 2
and is assumed to take place in an isobaric batch reactor with
premixed reactants and well mixed contents operating
isothermally and adiabatically. Details of the model reduc-

Ž .tion process are available in Sirdeshpande et al. 2001 and
Ž .Androulakis 2000 . After the reduction has been performed,

it is of great interest to evaluate the range of conditions un-
der which the reduced model could be used with a required
accuracy. In other words to evaluate the range of initial con-
ditions that would result in output species profiles that are in
close agreement with the profiles generated by the full mech-
anism. Considering the initial oxygen mole fraction X andO2

initial temperature T as the conditions of interest with the0
following bounds

	 Xq s0.85, 	 Xy s0.15, 	Tqs250, 	Tys400O O 0 02 2

around a nominal point X s0.15 and T s1,250 K, theO n2

proposed approach can be applied to evaluate accurately the
range of validity of a given mechanism. First, to determine
the feasible region of the design of this reduced mechanism,
a grid search procedure is performed on the entire feasible
range of operation to obtain the boundary of the feasible re-
gion. The range of validity is approximated by the simplicial
approximation approach, and the convex hull obtained is
shown in Figure 7 as the polyhedron with dark edges and
represents 89.26% of the overall considered range. Com-
pared to the flexibility index approach that results in the re-
tangular region shown in Figure 7, the proposed approach
determines the range of validity much more accurately. Thus,
the outer envelope is not obtained in this case study. Also, a
large increase is achieved compared to the proposed ap-

Ž .proach of Ierapetritou 2001 that obtained a FCHR of 0.351,
and, thus, represents only 35.1% of the overall space of vari-

Figure 7. Simplicial convex hull for the kinetics case
study.
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ability of the initial conditions. Computationally, the pro-
posed approach required the solution of eight nonlinear and
six linear programs and converged in five simplicial itera-
tions. The differential equations were solved using LSODE
Ž .Hindmarsh, 1983 , and the thermophysical properties and
reaction rates appearing in the ODs were evaluated using the
CHEMKIN-III package. The NLPs on an average required
twelve iterations per run and the LPs required five.

Discussion and Future Directions
A new approach is presented to identify the operating en-

velopes where process operation is feasible. The basic idea of
the proposed approach is to iteratively improve the approxi-
mation of the boundary of the feasible region by determining
points at the boundary using the simplicial approximation ap-

Ž .proach Director and Hachtel, 1977 , which are used to in-
scribe a convex hull inside the feasible region that serves as a
lower bound of the feasible space and then to determine the
outer envelope by generating the tangent planes at these
points. This serves as an upper bound of the feasible region
and is used to determine a new feasibility metric that accu-
rately describes the design feasibility. The convex hull is com-
puted using the Quickhull Algorithm, which is an incremental
algorithm for evaluating the convex hull given a set of points.
The outcome of the application of the Quickhull Algorithm is
not only the computation of the convex hull described by a
set of linear constraints, but also its volume. In all the case
studies considered in this article we found that the proposed
approach results in a much better description of the feasible
space and was independent of the nominal point. Work is
currently underway regarding the extension of the approach
to a nonvonvex case and to a tighter convergence of the feasi-
ble region between the simplicial hull and its outer convex
envelope. Another area of future research is the effect on the

accuracy of the results by using the largest hyper-plane and
not the largest tangent hyper-plane, as that would greatly re-
duce the number of linear programs that have to be solved.
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