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Outline of the Seminar

Decision-making Process
Multi-objective Optimization 
Uncertainty Analysis: Measuring the Effects of 
Uncertainty
Uncertainty Analysis: Flexibility and Robustness 
Process Synthesis and Design under Uncertainty: 
Incorporate Demand Description
Scheduling under Uncertainty

Reactive Scheduling
Robust Scheduling 
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Objective

Identify and  
reduce 
bottlenecks at 
different levels 

Integration of 
the whole 
decision-making 
process

Online 
Control

Short-term 
Scheduling

Production 
Planning

Supply Chain 
Management

Time 
Horizon 

Uncertainty 
Complexity 

Opportunity 
for 

Optimization 

Decision Making: Process Operation
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Uncertainty in All Stages of Product Life Cycle 

Challenge: Consider Uncertainty at the Early Decision Stage

Product 
Development

0.7            0.4

Testing tasks

Probability of Success

1 Out of 5000 New 
Components
to the Market

Flexible Manufacturing Flexible-Cost
Effective Designs

Process 
Operations

Infeasible  
Operation

Robust Scheduling
Reactive Scheduling

Process 
Design

Undesirable 
Production
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Feasibility Quantification
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Feasibility Quantification

Pressure 

Te
m

pe
ra

tu
re

 

Safe 
Operating 
Regime 

Determine the range operating conditions
for safe and productive operations 

Given a design/plant or process 

Design
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Feasible Range

Desired Range of Variability

Feasibility Quantification

Convex Hull Approach 
(Ierapetritou, AIChE J., 47, 1407, 2001)
Systematic Way of Boundary Approximation

Flexibility Range
(Grossmann and
coworkers)

Deviation of 
nominal conditions

Nominal Value of Product 1

Nominal Value 
of Product 2
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Simplicial Approximation (Inner Hull)

1

2

3

Find mid point of
largest tangent plane

n+1 LPs

Insert the largest hypersphere 
in the convex hull

Solution 
of one LP

Qhull 
Algorithm

Find Convex hull with 
these points (1-2-3)

Choose m   n+1 points 
for n dimensions (points 

1,2,3) 1

2

3

≥
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1

2

3

Inflate the 
convex hull 
using all the 
new points

Find new boundary points 
by line search from the mid 

point

4

Continue by inserting the largest
hypersphere in the new convex hull

After 4 iterations 
Approximate Feasible 
Region1-2-3-4-5-6-7

Simplicial Approximation (Inner Hull)
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Obtain initial boundary points 
by simplicial approximation

Determine tangent hyperplanes
at each boundary point

Points of intersection 
of the hyperplanes are 
obtained

Find convex hull
using these  
points

Simplicial Approximation (Outer Hull)
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Overall Feasibility Quantification Approach

Initial set of boundary points (n+1)

One step of the Simplicial approximation:
Lower bound of the feasible region

Outer convex hull based on simplicial
points: Upper bound

Inflate 
Convex 
Hull

k 1 kCheck convergence UB - LB   or V  - V   ε ε+< <

1 NLP
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Convex 
Problem

Illustrating Problem

Nominal Point : θ1=2.5, θ2=20

2
1 2 1 1f 40 0θ θ θ= + − − ≤

2
2 1 1 2f 2 0θ θ θ= + − − ≤

3 2 1f 4 30 0θ θ= − − ≤

15 5θ− ≤ ≤

24 0 4 0θ− ≤ ≤
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Illustrating Problem: Simplicial Iterations
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Illustrating Problem: Simplicial Convex Hull

Volume of Simplicial 
Convex hull: 172.59

Coverage of the actual
feasible region:
88.5%

Flexibility Index: 0.174
Coverage of the 
actual feasible region
14%
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Illustrating Problem: Outer Convex Polytope

Volume of Simplicial 
Convex hull:  172.59

Volume of Outer
Hull: 209.8 units

Overestimation of 
the actual feasible 
region: 7%

SFI:  0.823
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Change of Nominal Point (θ1,θ2)=(3,30)

Volume of Simplicial 
Convex hull:  178.56
Coverage of the actual
Feasible region: 91.5%
Volume of Outer Hull: 
204.8 
Overestimation: 5% 

SFI:  0.872 
(Difference ~5.6%)
Independent of Nominal point

Flexibility Index: 0.095
(Difference ~45%)
Nominal point dependent
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Noncovex Problems: Need for Alternative Methods

Failure of Existing 
Methods due to      
Convexity 
Assumptions

Assumption: The Non-
Convex Constraints 
can be identified a 
priori
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Proposed Approach: Non-Convex Regions

Select a constraint 
from the set of 

nonconvex constraints, 
NC

Find a point in the 

infeasible region

Modified 
Feasibility 

Problem  (NLP) 

Simplicial Approximation of 
the

Infeasible Region

Develop the Outer 
Polytope for the 
Simplicial Region

Feasible Region

Infeasible

Region

Determine the 
volume of the 
outer polytope
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Proposed Approach: Non-Convex Regions

Is NC

Empty
Choose another non-convex constraint

and continue

NO

Remove the non convex 
constraints and 

perform Simplicial
Approximation over the 

enlarged region

YES

hullconvexexpandedtheofVolume
polytopesconvexinfeasibleofVolumehullconvexexpandedofVolume ∑−SFI 

=  

Determine the Volume

Of the enlarged region
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Select a constraint 
from the set of Non-
Convex constraint-NC

Approximation of  Non-Convex Regions

Determine the Outer 
Polytope

Perform Simplicial Approximation
Inside the Infeasible Region

Remove Infeasible Constraint 
from the set of Constraints

Calculate 
SFI

Identify a point inside 
the Infeasible Region

Is NC

Empty

No

Yes

Perform 
Simplicial over 
the Expanded 

Region



PASI 2005August 16-25 Iguazu Falls 

Illustrating Example 

1

2

3
2

4

f 2 x 0

f y 2 0

f y 3 0

f x d y 0
d 5
2 x 1 5
2 y 3

= − ≤

= − − ≤

= − ≤

= − − ≤
=
≤ ≤

− ≤ ≤

Volume of Expanded 
Convex hull = 62.6662.66

Volume of Infeasible 
Regions = 39.1339.13

SFI : 0.386 (3.5%)
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Illustrating Example: Relevance of SFI 

Volume of Expanded 
Convex hull = 62.6662.66

Volume of Infeasible 
Regions = 29.429.4

d = 7 SFI : 0.54
d = 5  SFI : 0.386

SFI correctly 
predicts the increased 
flexibility of the new 
design
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Multiple Non-Convex Constraints

Volume of Expanded 
Convex hull = 156.7

Volume of Infeasible 
Regions = 

12.9 + 14.1 = 27.0
SFI : 0.83      
(1.5%)

21 5 1 5θ≤ ≤

1 2 1f 2 1 5 0θ θ= − − ≤

2
1

2 1 2f 4 5 0
2

θ
θ θ= + − − ≤

2
1

23
( 4 )f 1 0 2 0

2
θ

θ
−

= − − ≤

24f 1 5 0θ= − ≤

2 15f ( 6 ) 8 0 0θ θ= + − ≤

11 0 5θ− ≤ ≤
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Multi-Parametric Case

Volume of Expanded 
Convex hull = 26.5

Volume of Infeasible 
Regions = 0.978

SFI : 0.978 (0.2%)
0,,

03

03

03
1

321

34

23

12

2
3

2
2

2
11

≥

≤−=

≤−=

≤−=

≥++=

θθθ

θ

θ

θ
θθθ

f

f

f
f

Computational Complexity
NLP (Line search ) 

Illustrating Example := 18

3 Uncertain parameters := 21
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Computational Complexity

Simplicial Approximation Approach:
k iterations: k  line searches

Outer Polytope Generation:
O(n) process

QuickHull Algorithm: (Convex Hull)
O(n log r) n    3 and O(nfr/r) for n    4

n = size of input with r processed points and fr is 
the maximum number of facets for r vertices

≤ ≥
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Feasible region can be highly 
nonconvex, sometimes disjoint

Conventional feasibility analysis 
techniques do not perform 
adequately 

Convex hull analysis cannot capture the disjoint region
Can over-predict the feasible region

New technique for accurate estimation of nonconvex and disjoint 
feasible regions

Feasible region of reduced methane mechanism

Limitations



PASI 2005August 16-25 Iguazu Falls 

Problem definition of surface reconstruction: 

Given a set of sample 
points, determine the shape 
formed by these points

Analogous to problem of feasibility analysis

Identify points constituting the boundary of the data set
Join boundary points to reconstruct the surface

Determine mathematical representation of the boundary of the 
feasible region

Surface Reconstruction Ideas
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Given a set of points, determine the 
shape formed by these points

Eliminate maximum possible circles of radius α
without eliminating any data point

For            the α shape degenerates to the 
original point set 

For the α shape is the convex hull of 
the original point set 

(Ken Clarkson http://bell-labs.com/netlib/voronoi/hull.html)

0α →

α → ∞

H. Edelsbrunner, 1983

α

α
α

Improved Feasibility Analysis by α − shapes
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Value of α controls the level of details 
of the constructed surface.

α is a function of sample size ( n )
α is a function of inter-point distance 

Determination of α value

Construct minimum spanning tree (MST) of sampled data points
Evaluate Ln =  sum of Euclidean distance between points of the MST

α value =  
n

nL

Mandal& Murty, 1997

Selection of α  value for α − shapes
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Sample the feasible space

Construct an α shape of 
sampled data points

Points constituting the 
boundary of the feasible 
region

Join points by a line in 2-d, by 
triangle in 3d

Obtain polygonal representation of the 
feasible region

Construct MST of sampled 
data to determine α value

Algorithm for Feasibility Analysis
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Implementation of this idea requires 
sampling of the feasible region

Require new technique which samples the feasible region with 
minimum total function evaluations

Common sampling techniques sample the 
parameter space based on the distribution 
of the uncertain parameter

Typically, the feasible region constitutes a small fraction of 
the entire parameter space

Uniform sampling of entire parameter space can be expensive

Sampling Technique
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feasmax V
θ

Sampling problem framed as an optimization problem

θ: sampled parameter value

Formulated optimization problem is 
solved using Genetic Algorithm

( )
( )

( )

1

2

n

subject to: f 0

                 f 0

                
                f 0

θ

θ

θ

≤

≤

≤

#

Obtain good sample of feasible region with less function evaluations

Objective function Vfeas (volume of 
the feasible region) evaluated by 
constructing the α-shape using the 
sample points

Improved only when the sampled 
point is feasible

GA has the inherent property of concentrating around good solutions

Reformulation of Sampling Problem
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Reproduction: identifies good solutions in a population
makes multiple copies of the good   
solution eliminates bad solution

Cannot create 
new solution

Crossover creates new solution by swapping portions of chromosomes

Number of strings with similarities at certain string position is increased

Schema

Solution procedure starts with a population of 
chromosome

Population of chromosome evolve through :
•Reproduction
•Crossover 
•Mutation

0 0001 1111

v1 v2 v3
chromosome

Optimization variables
encoded as a string of bits

Strings are appended to
form a chromosome

Sampling Technique using GA
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-10 -8 -6 -4 -2 0 2 4
-15

-10

-5

0

5

10

15

θ
2

θ1

Feasible region bounded by 
nonconvex constraints

Population size = 20
Solution evolved for 2000 
generations

3000 function evaluations ~ 1000 feasible points

Random Sampling :  950 feasible point generation required 10000 
function evaluation

θ1

θ2

Sampling using GA Simple Random Sampling

Performance of the Sampling Technique
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α value of 25 accurately captured 
the non-convex shape

Higher value of α =1000 could not 
capture non-convexity

α value =  
n

nL ~ 25

α − shape of the Sampled Data
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Sample the feasible space by 
GA formulation

800 feasible points   
GA : 1800 function evaluations
RS : 4000 function evaluations

Construct α – shape with the 
sampled points

Determine points forming the boundary of the feasible region

Join boundary points with triangle for polygonal representation 
of feasible region

Estimation of Feasible Region: α -shape
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Perform point-in-polygon test to check if particular 
parameter value lies inside feasible region

Determination of conditions inside the feasible surface

Point-in-polygon algorithm

Draw semi-infinite ray from point of 
concern 
Determine number of times it intersects 

surface

Point inside the surface number 
of intersections odd

Point outside surface number of 
intersections even/0

Ray casting algorithm
Jordan Curve Theorem

Determination of Feasible Conditions
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α − shape covers a larger 
region than convex hull

α - shape accurately captures 
the nonconvex shape 

The prediction of feasible 
region by α - shape can be 
improved by a better sampling 
technique 

α shape could capture ~ 80 % of the feasible region
Point-in-polygon check ~ 0.3 ms

Performance of α - shape
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Oxygen
Methane

Te
m

pe
ra

t u
r e

Sampled feasible space

OxygenMethane

Te
m

pe
ra

t u
r e

Estimated feasible space

Using α – shape it is possible 
to capture disjoint feasible 
regions

Capturing Disjoint Feasible Region by α - shape
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Characterizing the Effects of Uncertainty
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Uncertainty Propagation
Concentration  vs. time plot

Dynamic 
Model

y =f(A1,A2,…, An)

Specific
Initial 

Conditions

Deterministic Parameter 
Values

Parameter
Variability

An

P(An)

A1

P(A1)

Not a Point
but a 
Distribution

Uncertainty
Propagation

t=t2

t=t1
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Stochastic Response Surface Method

The outputs are represented as a polynomial chaos expansion (Ghanem
and Spanos, 1991) in terms of Hermite polynomials :

The coefficients of these polynomials are determined through 
application of an efficient collocation scheme and regression 

Direct evaluation of the output pdf’s characteristics (for example, for a 
single variable second order SRSM approximation)

Mean = Variance = 

n

i1 0,1 i,1
i 1

U a a ξ
=

= + ∑
n n n 1 n

2
i i i j2 0,2 i,2 ii,2 ij,2

i 1 i 1 i 1 j i
U a a a ( 1) aξ ξ ξξ

−

= = = >

= + + − +∑ ∑ ∑∑

0,2a 2 2
1,2 11,2a 2a+

1st order

2nd order
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Stochastic Surface Response Method

Input Distributions

Model
Output Distributions

Generate a set of 
regression points Estimate the

coefficients of the 
output approximation

Select a set of standard
random variables (srvs)
and transform inputs

in terms of srvs

Outputs as a series in srvs with
unknown coefficients 

• Two orders reduction in  model runs required compared to Monte Carlo
• Output uncertainty expressed as polynomial function of input uncertainty
• Direct evaluation of the output pdf’s characteristics
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Case Study : Supercritical wet oxidation 

Constant temperature (823K) high 
pressure (246 Bar) oxidation of H2
and O2 consisting of 19 reactions 
and 10 species
Pre-exponential factors (Ai’s) 
taken to be log-normal random 
variables. Parameters obtained 
assuming:

Computed and literature values 
of the multiplicative 
uncertainty factors (UF) valid 
for the reaction temperature 
considered
95% confidence limits provide 
upper and lower bounds.

Reaction         Ainom   n   Ea/R UFi
OH+H↔H2O 1.620E+14    0.00     75     3.16

H2+OH↔H2O+H          1.023E+08    1.60   1660    1.26 

H+O2↔HO2                 1.481E+12     0.60      0      1.58

HO2+HO2↔H2O2+O2 1.866E+12     0.00    775    1.41

H2O2+OH↔H2O+HO2 7.826E+12    0.00    670     1.58

H2O2+H↔HO2+H2      1.686E+12     0.00   1890    2.00

H2O2↔OH+OH            3.000E+14    0.00  24400   3.16

OH+HO2↔H2O+O2     2.890E+13     0.00   -250    3.16

H+O2↔OH+O               1.987E+14    0.00   8460   1.16

O+H2↔OH+H               5.117E+04    2.67   3160   1.22

2OH↔O+H2O              1.505E+09    1.14     50     1.22

H2+M↔H+H+M            4.575E+19    -1.40  52530   3.0

H+HO2↔OH+OH         1.686E+14    0.00    440     1.35

H+HO2↔H2+O2          4.274E+13    0.00    710     1.35

O+HO2↔OH+O2         3.191E+13    0.00      0       1.49

H2O2+H↔H2O+OH     1.023E+13     0.00   1800    1.35

O+H+M↔OH+M           4.711E+18    -1.00      0     10.0

O+O+M↔O2+M           1.885E+13     0.00   -900    1.3

H2O2+O↔OH+HO2    6.622E+11     0.00   2000    1.35

†Phenix et. al. 1998
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Uncertainty Propagation: Results

Concentration profiles display time varying distributions
Number of model simulations required by SRSM is orders of 
magnitude less than Monte Carlo (723 vs. 15,000)

H2 mole fraction vs. time 

(Balakrishnan S., P. Georgopoulos,I. Banerjee and M.G. Ierapetritou. AIChE J , 48 2875, 2002) 
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Design Considering Uncertainty



PASI 2005August 16-25 Iguazu Falls 

Trade-off : OPTIMIZATION

Objective: Develop a systematic methodology to 
increase the plant at a minimum cost

Process Design Considering Market Demand

Flexible Production Plant

•Increase Plant 
Flexibility

•Minimize Cost
Fl

ex
ib

ili
ty

Cost

• Potential Set of Units
• Uncertainty in Internal
And External Conditions
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Existing approaches to model uncertainty in 
design/planning problem depends on nature of model  
equations *

Most models restricted by assumption of convexity *

Most models restricted to a rather small number of 
uncertain parameters

Require single model to describe uncertainty propagation 
irrespective of nature and complexity of the problem

*Gal,T.Math.Prog.St.(1984), Jongen,H.T.,Weber,G.W. Ann. Op. Res. (1990),
Pistikopoulos and coworkers,

Background: Design Under Uncertainty
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Background : Design under Uncertainty

Deterministic Approach : description of uncertainty is 
provided by specific bounds, or finite number of fixed 
parameter values

Grossmann, Halemane, AIChE (1982); Grossmann, Sargent AIChE (1987)

Stochastic Approach : uncertainty described by 
probability distribution functions

Pistikopoulos, Mazzuchi, Comput. Chem. Engg.(1990)

Combined multiperiod/ stochastic formulation : 
combines parametric and stochastic programming 
approaches to deal with synthesis/planning problems

Ierapetritou et al, Comput. Chem. Engg (1996), Hene et al, I&ECR (2002)
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Tabulation technique to map input uncertainty to model output.

Systematic 
interpolation

Query Points
( d,q )

Model Prediction
F(d,q)

Perform 
model runs

Tabulate 
results

High Dimensional Model Representation (HDMR)* technique
used to capture the variations of output with changes in the 
input

Proposed Technique

* Rabitz,H. Alis,O. J. Math. Chem. 25,195(1999)



PASI 2005August 16-25 Iguazu Falls 

Design with Parametric Uncertainty:Blackbox Models

Black Box
Model

Feasibility
Analysis

Design
Optimization

Feasible 
range of
parameters

C(θ)

HDMR/
SRSM

No Assumptions Regarding System’s Model 
Parametric Expression of the Optimal Solution

Design

C(d,θ)
Look-up
Table

Query 
Points
( d,θ )

Model 
Prediction
F(d,θ)

(Banerjee, I., and M.G. Ierapetritou. Ind. & Eng. Chem. Res, 41, 6687, 2002)
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Sampled points
for first order 
approximation

First order
prediction

Second order
prediction

Feasibility Analysis

Sampled points
for second order 
approximation

Feasible region

q1

q 2



PASI 2005August 16-25 Iguazu Falls 

High Dimensional Model Reduction

)x,,x,x(f)x,x(f)x(ff)x,x,x(g n21n,2,1
n

nji1
jiij

n

1i
ii0n21 ……… …++∑+∑+=

≤<≤=
f0 constant
fi(xi) independent action of variable xi upon the output
fij(xi,xj) correlated impact of xi, xj upon the output
...
f1,2,…,n(x1,x2,…,xn) residual correlated impact

Order of correlation of independent variables diminish rapidly
2nd order approximation commonly suffices
Application in complex kinetics modeling (i.e.,atmospheric 
chemistry, photochemical reaction modeling etc)  

Evaluation of first order expansion function requires n(s-1) model runs
Evaluation of second order expansion requires n(s-1)2(n-1)/2 model runs
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θ1 ∈ [0 4]; θ2 ∈ [0 4]; θ3 ∈ [0 4]
d1 ∈ [1 5];  d2 ∈ [1 5]

Where:
z is control variable.
q1, q2, q3 are uncertain parameters.
d1,d2 are design variables.

Min u

Subject to :

-z-θ1+θ2
2/2+2θ3

3+d1-3d2-8 ≤ u

-z-θ1/3-θ2-θ3/3+d2+8/3 ≤ u

z+θ1
2-θ2-d1+θ3- 4 ≤ u

Min z

Subject to :

-z-θ1+θ2
2/2+2θ3

3+d1-3d2-8 ≤ 0

-z-θ1/3-θ2-θ3/3+d2+8/3 ≤ 0

z+θ1
2-θ2-d1+θ3- 4 ≤ 0

Optimization problem Feasibility problem

Nonlinear Multiparametric Problem
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Step 1:
Fix the value of design variable. Determine the feasible 
region of operation.

Constraints bounding
the feasible region Fixed value of θ1=2.56 HDMR prediction

Steps of Proposed algorithm:Feasibility Analysis

No overprediction; 0.7% underprediction
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Steps of Proposed Algorithm: Optimization Problem

Step 2 :
Determine the variation
of optimal solution with 
uncertain parameters for
the fixed value of design

HDMR prediction
(points)

Actual solution
(surface)

Estimation Error = 3.73 %
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Step 3 :
Perform the feasibility analysis and design optimization 
for different values of design variables.

Steps of Proposed Algorithm: Design Problem

HDMR prediction

Error=5.5% Uncertainty
at the extreme

Actual solution
HDMR prediction

Error=0.4% 
Uncertainty
at the mean

Estimation Error 7%
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Discretize θ in 
accordance with
HDMR

Solve MINLP at 
fixed values of θ

Construct 
look-up table

Identify different 
design configurations

Fix binary variables 
at optimum configuration

Solve NLP/LP at 
fixed values of θ
over entire range 

Process Synthesis Problem

Update 
look-up 
table
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Branch and Bound Procedure

Z1
2,Z2

2, Z1
3

θ1,θ2,θ3

Z1
2,Z2

2, Z1
3

θ1,θ2,θ3

Z1
2,Z2

2, Z1
3

θ1,θ2,θ3

Z1
2,Z2

2, Z1
3

θ1,θ2,θ3

Relaxed problem
Y1=0Y1=1

Y2=1 Y2=0

Root Node

Node 1

Node 3Node 4

Node 2

Binary variables : y1,y2
Uncertain parameters : θ

At each node solve NLP/LP
at fixed values of θ (θ1,θ2,θ3)

Branching criteria:
Choose a node having larger 
number of better optimal solutions

Fathoming criteria:
Compare solutions at all θ values.
Fathom a node with respect to a particular θ value.
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Z1
2,Z2

2, Z3
2

θ1,θ2,θ3

Z1
1,Z2

1, Z3
1

θ1,θ2,θ3

Z1
4,Z2

4, Z2
4

θ1,θ2,θ3

Z1
3,Z2

3, Z3
3

θ1,θ2,θ3

Relaxed problem
Y1=0Y1=1

Y2=1 Y2=0

Root Node

Node 1

Node 3Node 4

Node 2

Branching Step :
Compare solutions of Node 1 and Node 2 
z1

2 > z1
1 ; z2

2 > z2
1 ; z3

2 < z3
1  

Selected node for branching:  Node 2

Fathoming Step:
Compare Node 3 and Node 4
z1

4 >z1
3 ; z2

4 < z2
3 ; z3

4 < z3
3

Compare Node 3 and Node 1
z1

3 > z1
1 ; z2

3 > z2
1 ; z3

3 < z3
1

Optimal solution 
At θ1 : z1

4 [1,1] ; At θ2 : z2
3 [1,0]

Fathom Node 1 wrt θ1,θ2
Branch on Node 1 only for θ3

Branch and Bound Procedure (Example)
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Process 
1

Process
3

Process
2

Process
5

Process
6

Process
8

Process
4

Process
7

I1

I2

I3

I5

I6

I4
I7

I8

O2

O1

O5

O3

O4

O6

Bf

)(DP 22 θ≥

)(DP 11 θ≥

Binary variables : 8
Uncertain parameter : 1

Example Problem with Single Uncertain Parameter

* Acevedo and Pistikopoulos 1996
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Step 1:
Uncertain range of θ discretized.
MINLP solved at each discrete 
θ value. 

* *
*

*
*

*
*

Optimal binary solutions are noted
[0,1,0,1,0,1,1,1]  [0,1,0,1,1,1,1,1]

Discretize θ

Solution of MINLP 
at discrete θ points

Application of the Proposed Approach
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Step 2:
Fix binary variable at 
optimal combination.
Solve NLP/LP at different
θ values over entire range of θ

Predict variation of optimal solution for each binary 
combination over entire range of θ

[0,1,0,1,0,1,1,1]

[0,1,0,1,1,1,1,1]

Application of the Proposed Approach
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Analyze predicted variation of optimal solution to determine 
optimal binary configuration and optimal solution

[0,1,0,1,0,1,1,1][0,1,0,1,1,1,1]

Actual solution
HDMR prediction

Application of the Proposed Approach

Estimation 
Error = 1.7%
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Problem 1(linear):
3 Binary variables ; 1 uncertain parameter 

Problem 2 (nonlinear):
8 Binary variables; 1 Uncertain parameters

Problem 3 (nonlinear):
8 Binary variables; 2 Uncertain parameters

Problem 4(linear):
2 Binary variables; 3 Uncertain parameters

Problem 5 (nonlinear):
6 Binary variables; 3 Uncertain parameters

Error Analysis of Process Synthesis Problem

Error %

0

0.5

1

1.5

2

Pr
ob

 1

Pr
ob

 2

Pr
ob

 3

Pr
ob

4

Pr
ob

 5

0

0.5

1

1.5

2

Pr
ob

 1

Pr
ob

 2

Pr
ob

 3

Pr
ob

4

Pr
ob
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Area of Interest 
Based on Market Data

Integration of Data Analysis,and Feasibility Quantification 
at the Process Design 

Cluster 3

Cluster 1
Cluster 2

Cluster 4

• Increased Plant Flexibility
• Better Performance Within the Whole Range of Interest
• Larger Profitability Due to the Economy of Scale 

Design Optimization Integrating Market Data

• Limited Flexibility
• Poor Performance Away 

From the Nominal

Product 1

Pr
od

uc
t 

2

Traditionally: Design for the Nominal Point Performance
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Motivation Example

Produce P1 and P2 from A,B,C

Given Demand Data for P1 and P2

MINLP Optimization

Product P1

Pr
od

uc
t 

P2
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Flexibility Plot for Customized Design Development

Demand = (9,17)

Design configuration

= (1,0,0,1,0,0,1,1)

(Processes 1, 4, 7, 8)

Flexibility 

Index = 0.21
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Limitations -1

Underestimation of the Feasible Region

Demand point (6,16)

Feasible 

No New Design Needed
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Limitations -2

Customized Design Development

Demand point (13,20)

New Design Required
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Moving the System Boundaries 

Find: the equipment set that minimizes cost and 
maximizes flexibility

Given:
- Ranges of product 

quality
- Ranges of throughput
- Design alternatives

Supply chain information

Given:
- Product specifications

of different clients
- Client expectations 

Find: the set of designs that optimally cover the 
whole space

LPC

Reboiler/
Cond.

HPC

MA
C

PPU BA
C

G

MHx

JT Valve

TA

HPA

MA

MPN

GOX

WN

IL

PL

RL

LOX

Subcooler

Turbine/
Generator

IC
Pump



PASI 2005August 16-25 Iguazu Falls 

Required Tools

Accurate description of the feasible space of a 
process

Data Clustering technique to cluster the demand data 
into closely packed groups

Development of a unified data analysisprocess
optimization framework
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Data Analysis (Clustering)

Partition a data set of multi-dimensional vectors 
into clusters such that patterns within each 
cluster are more “similar” to each other than to 
patterns in other clusters.

Quality of Clustering depends on both the 
similarity measure used by the algorithm and its 
implementation.
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K-Medoid Clustering: PAM

Find representative objects, called medoids, in 
clusters 

PAM (Partitioning Around Medoids) starts from an 
initial set of medoids and iteratively replaces one 
of the medoids by one of the non-medoids if it 
improves the total distance of the resulting 
clustering.

Kaufman and Rousseeuw, Finding Groups In Data (1990)
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CONVENTIONAL 
APPROACH

Simulation for the specific design
(Black-box models)

Feasibility Check

Design/Synthesis with 
fixed degree of feasibility
(Multi-period Model)

Evaluate Cluster 
Centers

Data Analysis -
Clustering

For each
Cluster center

Evaluate Designs’ 
Feasible Regions

YES STOP

Check if the 
designs cover

the whole 
space

ΝΟ

x1

x2

A BC DE

G F
Cluster 3

Cluster 1

Cluster 2

Integration with Design Optimization

Design Optimization Integrating Market data 
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Air Separation Plant Superstructure

Heat Exchange
{2 : 0}

AIR

Refrigeration
{4 : 4}

Distillation
{4 : 2}

PRODUCTS
Compression

{4 : 2}

{main options/suboptions per main option}
Oxygen/Nitrogen
Gaseous/Liquid
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Factors for Consumption of Oxygen (tons per ton of product)

1.26Propylene Oxide

1.01Ethylene Oxide

ConsumptionProduct

800400200Propylene Oxide

600300150Ethylene Oxide

Sample Plant Capacities (million lb/yr)

Air Separation Case Study:Sample Demand Source
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Demand Data

Fgo (KgMol/Hr)

Pg
o

(A
tm

)

Each point 
represents a 

different 
potential 
customer
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Results – Iteration 1 (3 Clusters)

(1696.2, 41)

(411.2,50)

(514,10)
Feasible 
Points

Simplicial
Approximation
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Optimality Stage

(1696.2,35)

(1455.4, 37.25)
Lower Cost

Similar Flexibility
Accepted

(2056, 41.5)

(1865, 40)
Lower Cost

Lower Flexibility
Rejected

(215.9,10)

(343.7,17.4)
SAME
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Multiple Clients

Throughput

Q
ua

lit
y

A
C3
D1
D1

A
A2
C1
C1

A
A1
A1
A1

A
C1
A1
A1

A
A
B1
B1

Hx
Rf
Dist
Comp

A
A3
D2
D1

Throughput

Q
ua

lit
y

Feasible Points

Accurate descriptio
of the operability 
boundaries

Simplicial Approximation

Trade-offs between
cost and flexibility

Client Demand
D2 increased cost
but higher flexibility

D1
D2

Sensitivity to differ
units

Final Design Portfolio
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Sensitivity to Different Units 

Ch
an

ge
 R

ef
ri

ge
ra

ti
on

 O
pt

io
n

to
 I

nc
re

as
e 

Q
ua

lit
y

Change Distillation Option 
to Increase Throughput
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Introduction of New Technology

Changing 
Compressor to 
Larger Capacity

DOES NOT

Increase 
Plant
Flexibility
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Staging Design - Spare Units 

Throughput

Q
ua

lit
y *4

1

1233.6 1400

Initial        New 
Design     Design

Hx A A
Rf A2 A2
Dc C1 C1+A1
Co C1 C1+A1

Inst.
Cost 13E6 20.18E6
Oper.
Cost 11.E6 12.8E6

Incremental Cost:
Distillation: 2.1E6
Compressor: 5.07E6
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Relevance and Importance

Manufacturer: Modular-based designs are 
substantially cheaper than customized designs 
and can satisfy larger range of  demands

Customer: Greater flexibility in decision 
making  at design stage as different design 
alternatives can be considered based on 
expected demand and economic feasibility
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iΣMin Capital and Operating Cost 

Robustness 

Cost {
iβΣ (Un-met Demands)2

+ m n i i 2
j

j 1i 1
w (z )β

= =
∑ ∑

(variance in operating cost)2
iλΣ

+ n i i i i 2

i 1 i
w (C w C )λ ′

′=
∑ ∑−

Multi-Period Robust Design Optimization

Subject to: 

Process Constraints
i i i

i i i

(d,x ,u , ) 0 i

(d,x ,u , ) 0 i

θ

θ

= ∀

≤ ∀

h

g  

*Mulvey et al., Robust Optimization of Large Scale Systems, Oper. Res., 1995

i i i
Pr od _ j j demand _ jF F i, j             + ≥ ∀z

i = periods,  λ, β = robustness parameters

Un-met Demand Constraints
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Flexible Module-Based Design Generation

For each
Cluster

NLP
Formulation

Robust Design 
Optimization for

each Cluster

x

y

A BC DE

G F
Cluster 3

Cluster 1

Cluster 2

Data Analysis -
Clustering
(Facility Location)

Increase the
number of 

clusters by one

YES

Any new
Designs

NO
Cost

Flexibility

Evaluate Designs’ 
Feasible Regions
Using Simplicial
Approximation

Evaluate Designs’ 
Feasible Regions
Using Simplicial
Approximation

YES
STOP

Check if the 
designs cover

the whole 
space

Enforce feasibility
For the design

NO
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Illustrating Case Study 

Fao Cao xa xb xc

xd xe

FProd

α

β

A B

C         D 

E               

k1

k3

k2

k4 k5

Given rate-constants and demand 

Determine CSTR Volume, Input Fao and Cao  that  
minimize overall cost
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Demand Data

Product B (Mol/Hr)

Pr
od

uc
t 

E 
(M

ol
/H

r)
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Results – Iteration 1 (2 Clusters)

•V = 49.17

•Capital Cost 
= $67006.7

•V = 35.83

•Capital Cost 
= $36924.6
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Iteration 4 (5 Clusters)

• V = 26.1

• Capital Cost 
= $ 24791.9

•V = 40.1

•Capital Cost 
= $47821.

•V = 44.4

•Capital Cost 
= $ 56276.3

11 designs to 
cover demand 
space

Product B (Mol/Hr)

Pr
od

uc
t 
Ε

(M
ol

/H
r)
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Capital Cost vs Feasibility

Increasing β

Increasing β drives 
the objective 
towards larger 
designs with higher 
feasibility

m n i i 2
j

j 1 i 1
w(z )  β

= =
∑∑ i i i

jPr od _ j demand _ jF F+ ≥z
In

fe
as

ib
ili

ti
es

Capital Cost



PASI 2005August 16-25 Iguazu Falls 

Increasing λ drives 
the objective towards 
lower operating cost 
systems at the 
expense of the fixed 
cost

n i i i i 2

i 1 i
w (C w C )λ ′

′=
∑ ∑− +

Capital Cost

O
pe

ra
ti

ng
 C

os
t Increasing λ

Capital Cost vs Robustness
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Optimization of Noisy Systems
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Optimization of Noisy Functions

•Programming Model*:
min  Z = cTy + F(x,ε) 

s.t.   h(X) = 0

g(X) + My ≤ 0

x      X, y      Y∈ ∈

*Biegler et. al., Systematic Methods of Chemical Process Design, (1997), 513

•X is a vector of continuous variables, (P, T, Flowrates)

•Y is a vector of binary variables, (existence of a 
particular stream or unit)

•The uncertainty ε can propagate or dampen as the 
process  moves forward

•Optimality conditions cannot be defined at optima

•Conventional algorithms may become trapped in artificial 
local optima or even fail completely

6 6.5 7 7.5 8 8.5 9 9.5 10
-300

-290

-280

-270

-260

-250

-240

-230

-220

-210

Inputs x

Final Outputs

6 6.5 7 7.5 8 8.5 9 9.5 10
300

400

500

600

700

800

900

1000

1100

6 6.5 7 7.5 8 8.5 9 9.5 10
15

20

25

30

35

40

45

Intermediate Outputs 



PASI 2005August 16-25 Iguazu Falls 

Existing Work
DIRECT “DIvided RECTangles in action” (Jones et. al., 1993) 

x1

x2

•Splits feasible region into hyper-rectangles and samples 
at center points global search

•Scatter plot created to discover which sample points lie 
below a prescribed improvement in the objective local 
search

•If the best point is unsatisfactory, smaller hyper-
rectangles are inscribed inside region and sampling at the 
centers of these new regions continues

•Slow to converge, especially if the optimum is along a 
boundary

60

65

70

75

80

85

0.2 0.4 0.6 0.8 1
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Existing Work
Multilevel Coordinate Search (Huyer & Neumaier, 1998)

Implicit Filtering (Choi & Kelley, 
1999, Gilmore & Kelley, 1994)

σ1

•Applies Newton-based methods 
with step sizes proportional to 
high-frequency noise, “filtering”, 
or “stepping over” low-frequency 
noise 

•Successively decreases the step 
size as optimum is approached

σ1
σ2

σ3

•Avoids slow convergence of DIRECT 
by sampling at boundary points

•Newton-based methods/SQP minimize 
interpolating polynomials to obtain new 
regions for sample points Irregularly split regions 

allow larger area to be 
sampled during local search
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Existing Work
Differential Evolution (Storn & Price, 1995)

X1,G

X2,G

XN,G

Gen. G Choose multiplier F ∈ [0,2]

For i = 1…N:

Randomly select integers 

r1,r2,r3 ∈ 1…N, ra ≠ rb ≠ i

Vi,G= Xr1,G + F(Xr2,G – Xr3,G):
:

Select crossover index CR ∈[0,1]

Select Γ(i) = integer ∈ 1…D (ensures at least 
one element from Vi,G mixes with Xi,G

β(j) ∈ U[0,1], j = 1…D

Xi,G =[Xi1,G Xi2,G …XiD,G]

( ) ( )
( ) ( )⎭

⎬
⎫

⎩
⎨
⎧

Γ≠>
Γ=≤

=+ (i)jandCR(j)ifx
(i)jorCR(j)ifv

X
Gji,

Gji,
1Gji, β

β

X11

X12

X13

X14

X15

X16

X1,G V1,G

V11

V12

V13

V14

V15

V16

X1,G+1

V11

X12

V13

X14

X15

V16
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Existing Work

0h,
h

g(x)h)g(x(h)βFFD >
−+

=

( )f(x)- (h)βVar

errorVar

errorE

FFD

2FFD
s

2FFD
s

∇

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

•F(x) is unknown How to obtain gradient information for optimization?

•Assume E(ε) = 0, Var(ε) = σ2 (ε independent of x) model F(x,ε) as g(x) = F(x) + ε

Determination of Optimal Step Sizes for Finite Differences (Brekelmans et al., 2003) 

•Provides bounds on convergence – upper limit on the stochastic error and the maximum 
variance of the difference in the estimated and true gradient

•Expressions obtained for forward/backward/centered finite differences, as well as for 
Plackett-Burman and Factorial Designs

•Requires estimate of the maximal (n+1)th order derivative (e.g. for FFD, need value for 
the second-order portion of the Taylor series)  

•Estimate of forward finite difference (example): 

•Applies statistical arguments to Taylor series expansions of F(x) to determine:  

⎟
⎠
⎞

⎜
⎝
⎛ −+

=

∇−⎟
⎠
⎞

⎜
⎝
⎛ −+

=

h
ε(x)h)ε(xerror

f(x)
h
f(x)h)f(xerror

FFD
s

FFD
d

where

Unknown
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Existing Work
Response Surface Methods (Myers/Montgomery, 2002, Jones, 2001, Jones et. al. 1998)

(x1,1 … x1,k) = f(x1,1 … x1,k)

(xn,1 … xn,k) = f(xn,1 … xn,k)

∑
=

=
n
1i

)ki,x ... i,1(xiB ic A

0
dx
dAk

1j j
=∑

=
(x1 … xk)opt

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

0 0 .2 0 .4 0 .6 0 .8 1

Steepest 
Descent

( ) (X)iBic
n
1i iX-Xφ i A +∑

=
= λ

:
:

:
:

Radial Basis Functions 
(Gaussian-type functions) 
“correctors” to basis 
functions Bi for fitting 
scattered data groups

0

0.2

0.4
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1
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1.4
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• Stochastic input-output data are the only reliable 
information available for optimization

• Model development is complicated since important 
variables are not known a priori

Inputs x

Outputs F(x,ε)

The Problem

•Given that systems exist where closed-form equation 
models are not available or inaccurately describe the 
physical and chemical behavior, 

•Given that processes of interest are moving to a smaller 
and smaller scale, in which model equations may be unknown, 

•Given that process noise is expected to be present 
regardless of the system scale (macro, micro, nano),

•Given that conventional optimization algorithms can fail 
for noisy systems due to becoming trapped in artificial local 
optima, thus terminating prematurely, 

•How can we optimize stochastic systems where closed-
form equation models are inaccurate or nonexistent – i.e. 
optimize “black-box” models? 
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Microscopic Model Example

A E

A D

B D

C 2 D 

2A C

CA
0,CC

0

{Cj(t) + ε | j = A…E}

•Problem: Without knowledge of rate equations, and assuming outputs are noisy, 
determine (CA

0,CC
0) such that g(CC,CD)SS is minimized. 

( ) ( ) ( ) ( )

10CC0

30AC3

1.0
SS
D2.857C

SS
C0.1428Cy

SS
C0.357C

SS
C0.1428Cxs.t.

0.4πx
3

sin
2

0.4y4
2

0.6x4yx,gmin

≤≤

≤≤

−+−=

−=

++−+−=

Macroscopic Concentrations {CA,CC|t = 0} 
MS (Initial), {Particles (A,C)|t = 0}0

MS (Initial) Evolve system using Gillespie algorithm 
MS (Final), (Particles (A…E)}SS

MS (Final) {Particles (A..E)}SS 

Macroscopic Concentrations {CA…CE}SS g(CC,CD)SS

Obtaining Computational Model

Optimization Subroutine to obtain new iterate, {CA,CC}new

Approximate 
microscopic 

process using 
lattice of size N
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|Fj+1(Y) – Fj(Y)| < tol?

|Xj+1 – Xj| < tol?

j = j + 1

Same criteria 
met for 
previous 

iteration? 

Yes

STOP
No

Evaluate numerical 
gradients using hj

Calculate Diff. Int. 

hj(N)  = cσj
1/3

(c is a multiplier)

Formulate and solve NLP 
to obtain Fj+1(Y), Xj+1

Nj+1 = 2Nj (N is increased as the optimum is 
approached to improve solution accuracy)

Although the above is specific for the 
computational approximation of a microscopic 
system, in general the noise is to be 
decreased using system or control variables

Initialize iteration index j  

Provide starting guess Xj

Approx. microscopic system 
using  lattice of size Nj

Obtain measure of noise 
σj(N) in microscopic system: 

σj
2(N) = Var{Fi(Xj,Nj)|i=1…k}

Nj+1 = Nj

Yes

No

Adaptive Gradient-Based Method
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Optimization Using Response Surfaces

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

0.15 0.2 0.25 0.3 0.35

Phase I: Move towards optimum using simplices until 
value in center becomes the winner.

Phase II: Accelerate convergence by optimizing 
response surfaces using steepest descent

SIMPLEX/STEEPEST DESCENT HYBRID RSM / SQP
Create local response surface 
and formulate quadratic program 
Solve QP over entire region in 
order to find next iterate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Solid Boxes Local Regions for the Simplex/

Steepest Descent Method

Dashed Boxes Local Regions for the Hybrid RSM/

SQP Method

2nd Iteration: Simplex Points

1st Iteration: Starting Point

3rd Iteration: New Iterates

4th Iteration: Final Optimum



PASI 2005August 16-25 Iguazu Falls 

Process Operations under Uncertainty
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Short-term scheduling
Uncertainty (product prices, demands, etc…)
Large-scale (large number of units and material flows)

Production Planning
Longer time horizon under consideration (several months)
Larger number of materials and products
Uncertainty in facility availability, product in demand, etc…

Supply chain management
Multiple sites 

(Involving production, inventory management,transportation etc…)
Longer planning time horizon (couple of years)

Challenges
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Process Plant Optimal Schedule

Given: Determine:
Raw Materials, Required Products, Task Sequence, 
Production Recipe, Unit Capacity Exact Amounts of material

Processed
Scheduling objectives :
Economic Maximize Profit, Minimize Operating Costs, 

Minimize Inventory Costs
Time Based Minimize Makespan, Minimize Tardiness

Short-term Scheduling
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Binary variables to allocate tasks to 
resources

Continuous variables to represent  
timing and material variables 

Mixed Integer Linear Programming 
Models

Smaller models that are  
computationally efficient and 
tractable

T2T2T1 T1

T1 T2 T2 T1 T2 T2 T2T1

Discrete time formulation

“Real” time schedule

Continuous time formulation

Event Points: When a tasks begins

Continuous Time Formulation
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Deterministic Scheduling Formulation
minimize H   or  maximize ∑price(s)d(s,n)

subject to ∑wv(i,j,n) ≤ 1

st(s,n) = st(s,n-1) – d(s,n) + ∑ρP∑b(i,j,n-1) + ∑ρc∑b(i,j,n)

st(s,n) ≤ stmax(s) 

Vmin(i,j)wv(i,j,n) ≤ b(i,j,n) ≤ Vmax(i,j)wv(i,j,n)

∑d(s,n) ≥ r(s) 
Tf(i,j,n) = Ts(i,j,n) + α(i,j)wv(i,j,n) + β(i,j)b(i,j,n)

Ts(i,j,n+1) ≥ Tf(i,j,n) – U(1-wv(i,j,n))
Ts(i,j,n) ≥ Tf(i’,j,n) – U(1-wv(i’,j,n))
Ts(i,j,n) ≥ Tf(i’,j’,n) – U(1-wv(i’,j’,n))

Ts(i,j,n) ≤ H, Tf(i,j,n) ≤ H

Duration 
Constraints

Demand Constraints

Allocation Constraints

Capacity 
Constraints

Material 
Balances

Objective Function

n

s

(i,j)

M.G.Ierapetritou and C.A.Floudas. Effective continuous-time formulation for short-term 
scheduling. 1. Multipurpose batch processes. 1998
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Increased Complexity: Parameter Fluctuations
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Two-stage Stochastic Approach

First Stage Second Stage

Optimal Schedule

Sub-optimal Schedule

Scenario 1

Scenario 2

Scenario 3

Optimal value 
with perfect 
information

Optimal value 
using stochastic 

model

Optimal value of 
deterministic model 
with mean parameter 

values

Optimal value 
without considering 

parameters in 
future

Product 
Price

Time

Production

Time
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Industry
An air separation company producing large quantities of 

oxygen, nitrogen and argon 
Intensive energy consuming process subject to high 

electricity cost
Three operation modes corresponding to different energy 

consumption levels: regular mode, assisted mode and 
shutdown mode

Objective
Determine the production schedule that minimizes the 
energy cost while satisfying the demands and other 
operation consideration
Uncertain parameters
Future energy price

Industrial Problem
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Solution Approach

In the first stage, 3-day energy price is assumed 
deterministic

Forecasting techniques are utilized to generate 
scenarios of energy price for the next 5 days

In the second stage, 5-day stochastic model is 
considered involving all the scenarios

Energy cost in both stages are combined in the 
objective function.   The solution provides the 
schedule of the first 3 days
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Energy price series--- no obvious seasonal pattern, unable to be 
approximated by linear and quadratic terms
Daily value prediction ------ ARIMA model
Hourly value prediction ----- Hourly Pattern

0

10

20

30

40

50

60

70

7/18/00 7/18/00 7/18/00 7/18/00 7/18/00 7/19/00 7/19/00 7/19/00 7/19/00 7/19/00 7/20/00

Time

pr
ic

e

Predicted Price

Upper Limit 

Lower Limit 

Two-day price 
predicted with 95% 
confidence interval by 
ARIMA(2,1,1) model

Actual  Price

Forecasting Techniques
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Case Study: Energy Intensive Industrial Plant

0 12 24 36 48 60 72

Regular

Shutdown

Price

Assisted

0 12 24 36 48 60 720 12 24 36 48 60 72

Regular

Shutdown

Price

Assisted

Time (hrs)
Minimize power cost by switching between different operation 
modes while satisfying customer requirements

Two-stage Approach considering forecasting prices
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Results Comparison

0

2

4

6

8

2

4

0 20 40 60 80 100 120 140 160 180 200

Scaled Price
Pregular
Pshut
Passisted

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

Time (hours)

Scaled Price
Pregular
Passisted
Pshut

The first 3 days schedule 
determined using the 
proposed approach is the 
same as the optimal 
schedule using the actual 
energy prices

With limited ability to 
reduce forecasting error, 
how effective is the 
proposed two-stage 
stochastic approach?
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0
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Pregular
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Pshut
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0.4

0.6

0.8

1

1.2

1.4

0 6 12 18 24 30 36 42 48 54 60 66 72

Time (hours)

Scaled Price
Pregular
Passisted
Pshut

4335

How is the result 
compared to the schedule 
determined without 
considering future price 
variation?

The schedule achieved 
without considering the 
second stage is more 
sensitive to the 
variation of the price

More conservative 
schedule is determined 
with the two-stage 
approach

Results: Comparison
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Planning Level
Objective: Determine the aggregated demands for each period 

considering increasing uncertainties along future time periods
based on material balance

Rolling Horizon

The schedule of current period is determined. The planning model is 
moving to the next time point with new data and production results 
from the scheduling problem.

Multi-stage Programming

• Scenarios representing possible values
• One schedule corresponding to each scenario

Sequence Factor
• Account for the impact of recipe complexity
• Simplify the model and reduce the size of the problem

H timeprocs
task

×≤∑ σ_ for each unit
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Scheduling Level

Objective: Determine the production schedule that 
satisfies the orders for the current period
produces the  internal demands for the future time

Continuous-time Formulation

Objective function:  Min   priority× Slack

Constraints:  Production ≥ order in current period
Production ≥ demand from planning results - Slack

Infeasibility

• Allow backorders
• Resolve the planning model and produce the backorder in the 

nearest period
• Adjust the sequence factor and forecasting scenarios such 

that they represent better the actual situation
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…… ……

Stage 1 …………Stage 2 Stage 3

Planning Problem 1

Planning Time Horizon

…………Stage 1 Stage 2

Planning Problem 2

Stage 3

Decisions have 
been made for 

this period.

Rolling Horizon Strategy

Decisions to 
be made for 
this period
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Case Study
10 days planning period: 8 hours schedule

Market Orders (at the end of 
each period)
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Range of the aggregated 
demands of P2 for stage 3 

Range of the aggregated 
demands of P1 for stage 3 

Range of the aggregated 
demands of P2 for stage 2 

Range of the aggregated 
demand of P1 for stage 2

Aggregated market orders for the 
first planning problem
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Results
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Demand P1

Demand P2

Inventory/Backorder P1

Inventory/Backorder P2 The inventory is 
compensating against the 
upcoming demand peaks

The Gantt-chart for the first sixteen hours
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The following three approaches are implemented based on the rolling 
horizon strategy

Solve the scheduling problem for each period directly 

Solve the scheduling problem for each two periods directly

Use proposed hierarchical approach and consider current stage, near 

stage, future stage with 1, 2 and 6 time periods respectively

Results

One-period 
Scheduling 
Approach

Two-period 
Scheduling 
Approach

Proposed 
Approach

Time periods with 
backorders 12 9 5
CPU (sec.) 837 111,104* 1,017

Objective value 112,011.9 46,002.8 28,804.1

One-period 
Scheduling 
Approach

Two-period 
Scheduling 
Approach

Proposed 
Approach

Time periods with 
backorders 12 9 5
CPU (sec.) 837 111,104* 1,017

Objective value 112,011.9 46,002.8 28,804.1
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  PP11  PP22  
PPrriiccee  $$1111  $$1100  

PPrroodduuccttiioonn  115500..331188  221166..000000  

Price of P1 is an uncertain parameter. Considering time 
horizon of 16 hours, $1 increase results in the following 
different production schedules. 

Uncertainty 
impacts the 
optimal schedule

 

  PP11  PP22  
PPrriiccee  $$1100  $$1100  

PPrroodduuccttiioonn  114477..553333  222244..776644  
 

Uncertainty in Short-Term Scheduling
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0 82 4 61 3 5 7

0 82 4 61 3 5 7

50.00

50.00

10.40

64.60 10.03 50.93

64.04 4.63 50.93

55.56

74.07 4.63 50.93

44.44 74.07 50.93

55.56 Deterministic 
Schedule

Deterministic 
Schedule

Robust 
Schedule
Robust 

Schedule

heating

heating

reaction 1 reaction 2 reaction 3 reaction 2

reaction 1 reaction 2 reaction 3

separation

reaction 2 reaction 2reaction 3

reaction 3reaction 1 reaction 1

separation

demand (product 2) = 
50*(1 + 60%)

demand (product 2) = 50

Standard Deviation = 0.29
E(makespan) = 7.24hr

E(makespan) = 8.15hr
Standard Deviation = 2.63

Uncertainty in Short-Term Scheduling
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Disruptive Events
Rush Order Arrivals
Order Cancellations
Machine Breakdowns

Not much 
information
is available

REACTIVE
SCHEDULING

Parameter 
Uncertainty
Processing times
Demand of products
Prices

Information 
is available

PREVENTIVE 
SCHEDULING

Uncertainty in Scheduling
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Literature Review: Representative Publications

Reactive Scheduling

S.J.Honkomp, L.Mockus, and G.V.Reklaitis.  A framework for schedule evaluation 
with processing uncertainty. Comput. Chem. Eng. 1999, 23, 595

J.P.Vin and M.G.Ierapetritou. A new approach for efficient rescheduling of 
multiproduct batch plants. Ind. Eng. Chem. Res., 2000, 39, 4228

Handles uncertainty by adjusting a schedule upon realization of the 
uncertain parameters or occurrence of unexpected events

Stochastic Programming
Uncertainty is modeled through discrete or continuous probability functions

J.R.Birge and M.A.H.Dempster.  Stochastic programming approaches to stochastic 
scheduling. J. Global. Optim. 1996, 9, 417

J.Balasubramanian and I.E.Grossmann. A novel branch and bound algorithm for 
scheduling flowshop plants with uncertain processing times. Comput. Chem. Eng. 
2002, 26, 41
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Literature Review: Representative Publications

Robust Optimization

X.Lin, S.L.Janak, and C.A.Floudas.  A new robust optimization approach for scheduling 
under uncertainty – I. bounded uncertainty. Comput. Chem. Eng. 2004, 28, 2109

Produces “robust” solutions that are immune against uncertainties  

Fuzzy Programming

H.Ishibuchi, N.Yamamoto, T.Murata and Tanaka H. Genetic algorithms and 
neighborhood search algorithms for fuzzy flowshop scheduling problems . Fuzzy 
Sets Syst. 1994, 67, 81

J.Balasubramanian and I.E.Grossmann. Scheduling optimization under uncertainty-
an alternative approach. Comput. Chem. Eng. 2003, 27, 469

Considers random parameters as fuzzy numbers and the constraints are 
treated as fuzzy sets

MILP Sensitivity Analysis

Z.Jia and M.G.Ierapetritou. Short-term Scheduling under Uncertainty Using MILP 
Sensitivity Analysis. Ind. Eng. Chem. Res. 2004, 43, 3782

Utilizes MILP sensitivity analysis methods to investigate the effects of 
uncertain parameters and provide a set of alternative schedules
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Common Disruptions
Rush Order arrivals
Order Cancellations
Machine Breakdowns

Key Features
Handles the disturbance at the time it 
occurs
Meet new and existing requirements
Maintain smooth plant operation

Rush Order Arrives

Machine Breakdown

Reactive Scheduling
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Shift starting 
times to account 
for breakdown

DETERMINISTIC
MODEL

DATA

CONSTRAINTS CONSTRAINTS

Modify demand 
constraint

Until the time of disturbance – original schedule is followed
- fixing binary and continuous variables

Take care of any infeasibilities: change the objective function
Maintain smooth plant operation 

Reactive Scheduling Approach
Vin and Ierapetritou Ind. Eng. Chem. Res. 2000
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Fix binary variables to comply with original schedule:
for unit that breaks : fix all tasks that have finished before Tbreak
for other units: fix all tasks that have started before Tbreak

Modify time constraints to shift starting times 
for all event points on which tasks have not yet started

Tsr1(i,j,nb)  ≥ Tbreak +  Tmaint

Minimize the differences between reschedule and original schedule:
Maximize Σ Σ price(s)d(s,n) - penalty ( ( ⎜wvr1(i,n) - wv.l(i,n) ⎜ +  

⎜yvr1(j,n) - yv.l(j,n) ⎜ )

Machine Breakdown
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Fix binary variables to comply with original schedule
for all those tasks whose starting times is less than Trush

Alter the demand constraint to account for additional order
Σ d(s,n)  ≥ rrush(s)

Modify the objective function to :
maximize Σ price(s)*priority(s)*dr1(s,n)

– penalty* Σ priority′(s)*slack(s)
OR

minimize H
Yes

Is the problem    
infeasible?

Rush Order Arrival
No

Stop
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Deterministic
schedule

Reschedule

Reactor 2 breaks down at Tbreak = 3 hrs and requires 1 hr maintenance

The profit goes down from 1498 units to 896 units (40%) due
to machine breakdown

Reactor 2 is inactive

Motivation Example: Machine Breakdown
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Forced using high penalty in the objective function

Profit goes 
down 

further to 
708 units (52%)

Penalty Profit for 
Reschedule 

Differences in 
assignments 

0 896.23 7 
50 896.23 2 
100 826.68 1 
500 708.29 0 

100,000 708.29 0 

Trade-off between profit and smooth plant operation

Smooth Plant Operation
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Utilizes  all possible information from the deterministic schedule 
ensuring  minimal disruption in plant operation at the time of 
disturbance

Although the entire time horizon is considered, fixing the binary 
variables reduces the size of the problem improving the 
computational efficiency

No heuristics are used in rescheduling; all possible rescheduling 
alternatives are considered to obtain an optimal solution

Models the tradeoff between objectives and maintain smooth plant
operation – thus allowing the flexibility to balance the two objectives.

Ability to handle more than one disturbances

Key Features of the Approach
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Preventive Scheduling
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model 
robustness

solution 
robustness

Data 
perturbation

New alternative 
schedules

Deterministic 
schedule

LB/UB on objective 
function

MILP 
sensitivity 

analysis 
framework

product A

pr
od

uc
t 

B

Robust 
optimization

method

A set of solutions 
represent trade-off 

between various 
objectives

Preventive Scheduling
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Preventive Scheduling

Robust Optimization

MILP Sensitivity Analysis

minimize H   or  maximize ∑price(s)d(s,n)
subject to ∑wv(i,j,n) ≤ 1

st(s,n) = st(s,n-1) – d(s,n) + ∑ρP∑b(i,j,n-1) + ∑ρc∑b(i,j,n)
st(s,n) ≤ stmax(s) 

Vmin(i,j)wv(i,j,n) ≤ b(i,j,n) ≤ Vmax(i,j)wv(i,j,n)
∑d(s,n) ≥ r(s) 

Tf(i,j,n) = Ts(i,j,n) + α(i,j)wv(i,j,n) + β(i,j)b(i,j,n)
Ts(i,j,n+1) ≥ Tf(i,j,n) – U(1-wv(i,j,n))
Ts(i,j,n) ≥ Tf(i’,j,n) – U(1-wv(i’,j,n))
Ts(i,j,n) ≥ Tf(i’,j’,n) – U(1-wv(i’,j’,n))

Ts(i,j,n) ≤ H, Tf(i,j,n) ≤ H

MixedMixed--integer integer 
Linear Linear 

ProgrammingProgramming
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mixing

reaction

separation

H (time horizon)
100 2 4 8

55

55

50

mixing

reaction
15

6

15

20
separation

-Can the schedule accommodate 
the demand fluctuation?

-How the capacity of the units affect 
the production objective?

-- What is the effect of processing time at the objective value?

Questions to Address
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Parametric Programming
z(θ) = min  cTx + dTy

subject to   Ax + Dy ≤ b
xL ≤ x ≤ xU

θL ≤ θ ≤ θU

x ∈ Rm, y ∈ (0,1)T

z(θ) = min  cTx + dTy
subject to   Ax + Dy - θr≤ b

cTx + dTy – z0 - λθ = 0
∑yi - ∑yi ≤ |F1| - 1

xL ≤ x ≤ xU

θL’ ≤ θ ≤ θU’
x ∈ Rm, y ∈ (0,1)T

i∈F1 i∈F 0

b = b0 + θr

LP sensitivity analysis: 
z(θ) = z0 + λθ

θL ≤ θL’ ≤ θ ≤ θU’ ≤ θU

solved at b = b0+θLr
optimal solution (x*,y*) 

Integer cut to exclude 
current optimal solution 

b∈[b0+θLr, b0+θUr]

break point θ’, new
optimal solution (x*’, y*’) 

Fix integer variables at y*

A.Pertsinidis et al. Parametric optimization of MILP progarms and a framework for the 
parametric optimization of MINLPs. 1998
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Inference-based MILP Sensitivity Analysis

λi
P ∑Aijuj

P + ∑sj(uj – uj) - λi∆ai ≤ rP

sj
P ≥ λi

P∆Aij, sj
P ≥ -qj

P, j = 1,…,n
rP = -∑qj

Puj
P + λPa – zP +∆zP

∑∆cjuj
P - sj

P(uj
P – uj

P) ≥ -rP

sj
P ≥ -∆cj, sj

P ≥ -qj
P, j = 1,…,n

qj
P = λi

PAij - λi
Pcj

-- for the perturbations for the perturbations ∆∆A and A and ∆∆a a -- for the perturbations for the perturbations ∆∆c c 

Bound z ≥ z* - ∆z holds if there are s1
P,…,sn

P that satisfy:

minimize z = cx
subject to Ax ≥ a

0≤ x ≤ h, xj integer, j=1,…k

minimize   z = (c + ∆∆cc)x
subject to (A + ∆∆AA)x ≥ a + ∆∆aa

0≤ x ≤ h, xj integer, j=1,…k

Aim: Determine under what condition z ≥ z* - ∆z remains valid

Partial assignment at node p xj ∈{uj
P,…,uj

P} j = 1,…,n

*M.W.Dawande and J.N.Hooker, 2000
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Extract information 
from the leaf nodes
Extract information 
from the leaf nodes

Solve the deterministic scheduling 
problem using B&B tree

Solve the deterministic scheduling 
problem using B&B tree

Move the bounds of the 
uncertainty parameter range

Move the bounds of the 
uncertainty parameter range

Identify the feasible schedules 
by examining the B&B tree

Identify the feasible schedules 
by examining the B&B tree

Evaluate the 
alternative schedules

Evaluate the 
alternative schedules

Proposed Uncertainty Analysis Approach

- Range of parameter change 
for certain objective change
- Important parameters
- Plant robustness 

- Range of parameter change 
for certain objective change
- Important parameters
- Plant robustness 

- Robustness
- Nominal performance
- Average performance

- Robustness
- Nominal performance
- Average performance
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Obtain sequence of tasks
from original schedule

42

56

70

84

98

33 44 55 66 77

P1

P2

Generate random demands 
in expected range

Makespan minimization is considered as the objective

Makespan to meet a particular demand is found using the 
sequence of tasks derived from original schedule
Binary variables corresponding to allocation of tasks are fixed
Batch sizes and Starting and Finishing times of tasks are allowed 
to vary

Robustness Estimation
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Inventory of
raw materials
intermediates

etc.

Hmax HinfROLLOVER

Meets maximum possible
demand

Meets unsatisfied
demand

Total makespan Hcorr = Hmax + Hinf

Corrected Standard Deviation:
Hact =  Hp if scenario is feasible

=  Hcorr if the scenario is infeasible 
∑

−
−

=
=

totp

p tot

act
corr p

HHSD
1

2
det

)1(
)(

Robustness under Infeasibility

J.P.Vin and M.G.Ierapetritou. Robust short-term scheduling of multiproduct batch plants 
under demand uncertainty. 2001
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Case Study 1

S1 S2 S3 S4

wv(i1,j1,n0)

wv(i1,j1,n1)

wv(i2,j2,n1)

wv(i3,j3,n2)

wv(i2,j2,n2)

3.0

5.17 3.0

7.65 5.83 7.16infeasible

8.14 10.16 7.16

9.83
infeasible

infeasible8.33

9.87 8.83

7.16

8.839.98
infeasible

9.83

(Schedule 1)

0

00

0

0 0 0 0

00

1

1

1

1 1

1 1

1

11

Effect of demand d~[20, 100]

-0.097 ∆d ≤ ∆Hdnom = 50
H’ ≤ Hnom + 0.097∆d = 12.73hd’ = 80
Hnom = 9.83h 

mixing reaction purification

B&B tree with B&B tree with 
nominal demandnominal demand
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Case Study 1

(Schedule 2) (Schedule 3)

0

0 0

01

1 1

1
(12.13)

schedule 1 schedule 2 schedule 3

Hnom(h)
Havg(h)
SDcorr

9.83
14.20
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10.77
11.56

1.61
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wv(i2,j2,n1)

wv(i3,j3,n2)

wv(i3,j3,n3)

wv(i2,j2,n2)

3.0

5.17 3.0

7.65 5.83 7.16infeasible

8.14 10.16 7.16

9.83
infeasible

infeasible8.33
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8.839.98
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(12.73)(17.97) × × ×

Schedule Schedule 
EvaluationEvaluation
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Demand

H

schedule 1 (optimal when d ≤ 50)

schedule 2 (optimal when d ≥ 50)

schedule 3

Case Study 1
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Case Study 1
Effect of processing time T(i1,j1) ~ [2.0, 4.0]

profit’ ≥ profitnom + 24.48∆T = 47.04
Tnom = 3.0

T’ = 4.0
profitnom = 71.52

schedule 1 schedule 2 schedule 3

profitnom

profitavg

SDcorr

71.52

66.98

26.9

65.27

9.33

65.27

65.17
10.49

wv(i1,j1,n0)

wv(i1,j1,n1)

wv(i2,j2,n1)

wv(i3,j3,n2)

wv(i3,j3,n3)

wv(i2,j2,n2)

100

100 50

100

100 96.05

78.42

50

(75)

0

0

0

0

0

0

0

1

1

1

1

1

1

1

71.52

100

50
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(Schedule 1)

50

75
(75)

1 0
50

72.46
(62.11)

78.42

64.61

(Schedule 2)

1 0

1

0

1

1

1

1 0

(Schedule 3)
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Preventive Scheduling

Robust Optimization

MILP Sensitivity Analysis

Expected Makespan/Profit

Model Robustness 

Solution Robustness

Objective =
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Robust Optimization

*Upper Partial Mean

∗ S.Ahmed and N. Sahinidis. Robust process planning under uncertainty. 1998

stk(s,n) = stk(s,n-1) – dk(s,n) + ∑ρP(s,i)∑bk(i,j,n-1) + ∑ρc∑bk(i,j,n)
stk(s,n) ≤ stmax(s)

Vmin(i,j)wv(i,j,n) ≤ bk(i,j,n) ≤ Vmax(i,j)wv(i,j,n)
∑dk(s,n) + slackk(s) ≥ r(s) 

Tfk(i,j,n) = Tsk(i,j,n) + α(i,j)wv(i,j,n) + β(i,j)bk(i,j,n)
Tsk(i,j,n+1) ≥ Tfk(i,j,n) – U(1-wv(i,j,n))

Tsk(i,j,n) ≤ Hk, Tfk(i,j,n) ≤ Hk

∆k ≥ Hk – ∑ PkHk, ∆k ≥ 0
k

n

(i,j)

∑Pk∆k
k

∑Pk∑slackk(s)
k s

∑PkHk

k

minimize

Average Makespan

Model Robustness

Solution Robustness

Unsatisfied Demand

subject to ∑wv(i,j,n) ≤ 1
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Multiobjective Optimization

Pareto Optimal Solution:

A point x*єC is said to be Pareto optimal if and only if
there is no such xєC that fi(x) ≤ fi(x*) for all i={1,2,…,n} , 
with at least one strict inequality.

Min  F(x) =

f1(x)
f2(x)

fn(x)

:
:xєC

C = {x: h(x) = 0, g(x) ≤ 0, a ≤ x ≤ b}
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Normal Boundary Intersection (NBI)

f1*

f2*

F*

Max  t

g(x) ≤ 0
h(x) = 0

a ≤ x ≤ b

x,t

Φω+ t n = F(x) – F*^s.t.

(Utopia point)

Min  F(x) =
f1(x)
f2(x)

NBIω:

A point in the Convex Hull 
of Individual Minima (CHIM)

∗ I. Das and J. Dennis. NBI: A new method for generating the Pareto surface in nonlinear
multicriteria optimization problems. 1996

Advantage: can produce a set of evenly 
distributed Pareto points independent 
of relative scales of the functions
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Case Study

S1 S2 S3 S4

f1(x*) =
6.46
54

0.09
f2(x*) =

11.5
0

0.66

f3(x*) =
6.77
50
0

mixing reaction purification

F* =
6.46

0
0

stk(s,n) = stk(s,n-1) – dk(s,n) + ∑ρP(s,i)∑bk(i,j,n-1) + ∑ρc∑bk(i,j,n)
stk(s,n) ≤ stmax(s)

Vmin(i,j)wv(i,j,n) ≤ bk(i,j,n) ≤ Vmax(i,j)wv(i,j,n)
∑dk(s,n) + slackk(s) ≥ r(s) 

Tfk(i,j,n) = Tsk(i,j,n) + α(i,j)wv(i,j,n) + β(i,j)bk(i,j,n)
Tsk(i,j,n+1) ≥ Tfk(i,j,n) – U(1-wv(i,j,n))

Tsk(i,j,n) ≤ Hk, Tfk(i,j,n) ≤ Hk

∆k ≥ Hk – ∑ PkHk, ∆k ≥ 0

∑Pk∆k
k

∑Pk∑slackk(s)
k s

∑PkHk
k

minimize

(i,j)
subject to ∑wv(i,j,n) ≤ 1

Φ =
0

54
0.09

4.14
0

0.66

0.31
50
0

0
54

0.09

4.14
0

0.66

0.31
50
0

ω1

ω2

ω3 ∑Pk∆k
k

∑Pk∑slackk(s)
k s

∑PkHk
k

- 6.46
=

maximize t
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