

Pan American Advanced Studies Institute Program on Process Systems Engineering

Part 3

Process and Supply Chain Operations

Supply chain optimization Jose Pinto

Outline

- I. Strategic Framework to the Analysis of Supply Chain Networks
- II. Design of Supply Chain Networks
- III. Planning of Supply Chains
- IV. Planning, Scheduling and Supply Chain Management for Operations in Oil Refineries

Appendices

- I. Demand Forecast
- II. Transportation Issues
- III. The Role of Inventory

Supply Chain

- Scope: a supply chain covers the flow of materials, information and cash across the entire enterprise
- Supply chain management: process of integrating, planning, sourcing, making and delivering product, from raw material to end customer, and measuring the results globally
- To satisfy customers and make a profit
- Why a 'supply chain'?

Traditional View: Logistics in the Economy

	1990	1996
Freight transportation	\$352	\$455 billion
Inventory expense	\$221	\$311 billion
Administrative expense	\$ 27	\$ 31 billion
 Logistics related activity 	11%	10.5% GNP

Source: Cass Logistics

Supply Chain Management: The Magnitude in the Traditional View

- The grocery industry could save \$30 billion (10% of operating cost by using effective logistics and supply chain strategies
 - A typical box of cereal spends 104 days from factory to sale
 - A typical car spends 15 days from factory to dealership
- Compaq estimates it lost \$0.5 billion to \$1 billion in sales in 1995 because laptops were not available when and where needed
- P&G estimates it saved retail customers \$65 million by collaboration resulting in a better match of supply and demand
- Laura Ashley turns its inventory 10 times a year, five times faster than 3 years ago

Objectives of a Supply Chain

- Maximize overall value generated
 - Satisfying customer needs at a profit
 - Value strongly correlated to profitability
 - Source of revenue customer
 - Cost generated within supply chain by flows of information, product and cash
 - Flows occur across all stages customer, retailer, wholesaler, distributor, manufacturer and supplier
 - Management of flows key to supply chain success

Supply Chain Stages

Decision phases in a supply chain

- Supply chain strategy or design
 - Location and capacity of production and warehouse facilities?
 - Products to be manufactured, purchased or stored by location?
 - Modes of transportation?
 - Information systems to be used?
 - Configuration must support overall strategy
- Supply chain planning
 - Operating policies markets served, inventory held, subcontracting, promotions, …?
- Supply chain operation
 - Decisions and execution of orders?

Cycle View of Supply Chains

Customer order cycle

- Trigger: maximize conversion of customer arrivals to customer orders
- Entry: ensure order quickly and accurately communicated to all supply chain processes
- Fulfillment: get correct and complete orders to customers by promised due dates at lowest cost
- Receiving: customer gets order

Replenishment cycle

- Replenish inventories at retailer at minimum cost while providing necessary product availability to customer
- Retail order:
 - Trigger replenishment point balance service and inventory
 - Entry accurate and quick to all supply chain
 - □ Fulfillment by distributor or mfg. On time
 - Receiving by retailer, update records

- Manufacturing cycle
 - Includes all processes involved in replenishing distributor (retailer) inventory, on time @ optimum cost
 - Order arrival
 - Production scheduling
 - Manufacturing and shipping
 - Receiving

- Procurement cycle
 - Several tiers of suppliers
 - Includes all processes involved in ensuring material available when required

Supply chain macro processes

- CRM (Customer Relationship Management) all processes focusing on interface between firm and customers
- ISCM (Internal Supply Chain Management) processes internal to firm
- SRM (Supplier Relationship Management) all processes focusing on interface between firm and suppliers

Push/Pull View of Supply Chains

Pull – processes in response to a customer order Push – processes in anticipation of a customer order

Achieving strategic fit

- Understanding the Customer and Demand Uncertainty
 - Quantity lot size
 - Response time
 - Product variety
 - Service level
 - Price
 - Innovation

Implied Demand Uncertainty Regular Demand Uncertainty due to customers demand and Implied Demand Uncertainty due to uncertainty in Supply Chain

Levels of Implied Demand Uncertainty

Detergent Long lead time steel		High Fashion Emergency stee	
Price Custo	mer Need	Responsiveness	
Low		High	
Implied Demand Uncertainty	Low	High	
Product Margin	Low	High	
Average Forecast Error	10%	40-100%	
Average Stockout rate	1-2%	10-40%	
Average markdown	0%	10-25%	

Fischer (1997) Harvard Bus. Rev, March-April, 83

Supply source uncertainty

- Supply uncertainty increases with...
 - Frequent breakdowns
 - Unpredictable and/or low yields
 - Poor quality
 - Limited supplier capacity
 - Inflexible supply capacity
 - Evolving production processes
- Life cycle position of product
 - New products high uncertainty
 - salt vs existing automobile model vs new communication device

Understanding the Supply Chain

Responsive and Efficient Supply Chains

	Efficient	Responsive
Primary goal	demand at lowest cost	respond quickly
Product design strategy	maximize performance at minimum cost	create modularity
Pricing strategy	Lower margins	higher margins
Manufacturing strategy	lower costs (high utilization)	maintain flexibility
Inventory strategy	minimize to lower cost	maintain buffer inventory
Lead time strategy	reduce but not at expense of costs	aggressively reduce
Supplier strategy	select based on cost and strategy	select based on speed, flexibility, reliability and quality

Inventory

- 'What' of supply chain
- Mismatch between supply and demand
- Major source of cost
- Huge impact on responsiveness
- Material flow time
 - i = d t (i inventory, d throughput, t flow time)
- Role in competitive strategy
- Components
 - Cycle inventory average inventory between replenishments
 - Safety inventory to cover demand and supply uncertainty
 - Seasonal inventory counters predictable variation
- Overall trade off: responsiveness vs. efficiency

Transportation

- 'How' of supply chain
- Large impact on responsiveness and efficiency
- Role in competitive strategy
- Components
 - Mode air, truck, rail, ship, pipeline, electronic
 - Route selection
 - In house or outsource
- Overall trade off: responsiveness vs efficiency

Facilities

- 'Where' of supply chain
- Transformed (factory) or stored (warehouse)
- Role in competitive strategy
- Components
 - Location central or decentral
 - Capacity flexibility vs. efficiency
 - Manufacturing methodology product or process focus
 - Warehousing methodology storage sku, job lot, crossdocking
- Overall trade off: responsiveness vs. efficiency

Information

- Affects every part of supply chain
 - Connects all stages
 - Essential to operation of all stages
- Role in competitive strategy
 - Substitute for inventory
- Components
 - Push vs. pull
 - Coordination and information sharing
 - Forecasting and aggregate planning
 - Enabling technologies

EDI, Internet, ERP, SCM

Overall trade off: responsiveness vs. efficiency

Considerations for Supply Chain Drivers

Driver	Efficiency	Responsiveness
Inventory	Cost of holding	Availability
Transportation	Consolidation	Speed
Facilities	Consolidation / Dedicated	Proximity / Flexibility
Information	What information is best suited for each objective	

Obstacles to achieving strategic fit

- Increasing variety of products
- Decreasing product life cycles
- Increasingly demanding customers
- Fragmentation of supply chain ownership
- Globalization
- Difficulty executing new strategies
- All increase uncertainty

Major obstacles to achieving fit

- Multiple global owners / incentives in a supply chain
 - Information Coordination & Contractual Coordination

Local optimization and lack of global fit

 Increasing product variety / shrinking life cycles / demanding customers/customer fragmentation

Increasing demand and supply uncertainty

Fragmentation of Markets and Product Variety

- Are the requirements of all market segments served identical?
- Are the characteristics of all products identical?
- Can a single supply chain structure be used for all products / customers?
- No! A single supply chain will fail different customers on efficiency or responsiveness or both.

II. Designing the supply chain network
FACILITY DECISIONS: Network Design Decisions

- Facility role
 - What processes are performed
- Facility location
 - Where should facilities be located
- Capacity allocation
 - How much capacity should be allocated to each facility
- Market & supply allocation
 - What markets should each facility serve
 - What supply sources should feed each facility

Factors Influencing Network Design Decisions

Strategic

Cost or Responsiveness focus

Technological

Fixed costs and flexibility determine consolidation

Macroeconomic

- Tariffs and Tax incentives. Stability of currency
- Political stability clear commerce & legal rules

Infrastructure

sites, labor, transportation, highways, congestion, utilities

Competition

Logistics and facility costs

The Cost-Response Time Frontier

Logistics and facilities costs

- Inventory costs
- Transportation costs
 - Inbound and outbound
- Facility (setup and operating) costs
- Total logistics costs

Service and Number of Facilities

Number of Facilities

Costs and Number of Facilities

Cost Build-up as a function of facilities

Number of Facilities

Framework for network design decisions

- Define a supply chain strategy
 - COMPETITIVE strategy
- Define a regional facility strategy
 - Location, roles and capacity
- Select desirable sites
 - Hard infrastructure transport, utilities, suppliers, warehouses
 - Soft infrastructure skilled workforce, community
- Choose location
 - Price location and capacity allocation

A Framework for Global Site Location

Manufacturer Storage with Direct Shipping

In-Transit Merge Network

Distributor Storage with Carrier Delivery

Distributor Storage with "Last Mile" Delivery

Manufacturer or Distributor Warehouse with Consumer Pickup

Tailored Network: Multi - Echelon Finished Goods Network

Network Optimization Models

- Allocating demand to production facilities
- Locating facilities and allocating capacity
 - Speculative Strategy
 - Single sourcing
 - Hedging Strategy
 - Match revenue and cost exposure
 - Flexible Strategy
 - Excess total capacity in multiple plants
 - Flexible technologies

Key Costs: Fixed facility cost Transportation cost Production cost Inventory cost Coordination cost

Which plants to establish? How to configure the network?

Capacitated Plant Location Models

 y_i

 x_{ii}

Decisions

1 if plant *i* is open; 0 otherwise

quantity shipped from plant *i* to market *j*

Gravity Location Models

ASSUMPTION: TRANSPORT COSTS GROW LINEARLY WITH SHIPMENTS

Min Total Cost
$$TC = \sum_{n=1}^{k} D_n \cdot d_n \cdot f_n$$

$$d_n = \sqrt{(x - x_n)^2 + (y - y_n)^2}$$

х, у	Warehouse Coordinates
x_n, y_n	Coordinates of delivery location n
d_n	Distance to delivery location <i>n</i>
f_n	Cost per ton mile to delivery location <i>n</i>
D_n	Quantity to be shipped

Demand Allocation Model

- Which market is served by which plant?
- Which supply sources are used by a plant?

n

$$Min C = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{i,j} x_{i,j}$$

s.t.

All mkt demand satisfied

$$\sum_{i=1}^{n} x_{i,j} = D_j \qquad j = 1, \dots m$$

No factory capacity exceed

$$\sum_{j=1}^{m} x_{i,j} \le K_i \qquad i = 1, ..., n$$
$$x_{i,j} \ge 0 \qquad i = 1, ..., n; j = 1, ..., n$$

quantity shipped from plant X_{ij} site i to customer j C_{ii} cost to produce & ship one unit from factory i to market j no. of factory locations no. of markets m D_{j} annual demand from market j K_i annual capacity of factory i

Warehouse and Plant Location Model

- Plant and warehouse locations?
- Quantities shipped between various points?

$$Min C = \sum_{i=1}^{n} f_{i} y_{i} + \sum_{e=1}^{t} f_{e} y_{e} + \sum_{h=1}^{l} \sum_{i=1}^{n} c_{h,i} x_{h,i} + \sum_{i=1}^{n} \sum_{e=1}^{t} c_{i,e} x_{i,e} + \sum_{e=1}^{t} \sum_{j=1}^{m} c_{e,j} x_{e,j}$$

Fixed costs plants warehouse Shipping costs Supply source to plant Plant to warehouse Warehouse to market

Warehouse and Plant Location Model

- Supplier capacity
- Balance supply-plant
- Supplier capacity
- Balance plant-warehouse
- Warehouse capacity
- Demand satisfaction

$$\begin{split} \sum_{i=1}^{n} x_{h,i} &\leq S_h & h = 1, \dots l \\ \sum_{h=1}^{l} x_{h,i} - \sum_{e=1}^{t} x_{i,e} &\geq 0 & i = 1, \dots n \\ \sum_{e=1}^{t} x_{i,e} &\leq K_i y_i & i = 1, \dots n \\ \sum_{i=1}^{n} x_{i,e} - \sum_{j=1}^{m} x_{e,j} &\geq 0 & e = 1, \dots t \\ \sum_{j=1}^{m} x_{e,j} &\leq W_e y_e & e = 1, \dots t \\ \sum_{e=1}^{t} x_{e,j} &= D_j & j = 1, \dots m \end{split}$$

Network design decisions in practice

- Do not underestimate the life span of plants
 - Long life hence long term consequences
 - Anticipate effect future demands, costs and technology change
 - Storage facilities easier to chance than production facilities
- Do not gloss over cultural implications
 - Location urban, rural, proximity to others
- Do not ignore quality of life issues
 - Workforce availability and morale
- Focus on tariffs & tax incentives when locating facilities
 - Particularly in international locations

III.

Supply chain management of flexible process networks - Lagrangean-based decomposition techniques

Peter Chen Jose M. Pinto

Content

- Motivation
- Decomposition techniques considered
 - Lagrangean and Lagrangean/surrogate relaxation
 - Subgradient and Modified subgradient optimization
- Problem Statement
- CPFN Model
 - Structure
 - Objective and constraints
- Observation
- Decomposition Applied
 - Lagrangean relaxation
 - Lagrangean/surrogate relaxation
- Strategies Proposed
- Results
- Conclusion
- Future Work

Motivation

- Difficulties faced by most chemical companies
 - Increasing number of competitors
 - Increasing product variety from customer demand
 - Larger and more complicated process network
 - More efficient management is needed to survive and stay competitive
- Why decomposition techniques are needed
 - The optimization of process networks are very difficult to solve using standard (full-scale) method.
 - Large computational effort
 - Technological barriers
- Comparison of techniques are necessary
 - Various decomposition techniques exist
 - The effectiveness of the techniques is not standardized

Problem Statement

- A process network interconnects in a finite number of ways.
 - Processes I1~I4
 - I1 is dedicated
 - I2, I3, and I4 are flexible
 - Chemicals J1~J6
 - J1 and J2 are purchased
 - J3 is consumed or sold as product
 - J4 and J6 are purchased or produced
 - J5 is sold as product
 - Sites C1 & C2
 - C1: consists of all the processes and production schemes, contains byproduct J6.
 - C2: doesn't have I1, I3 contains only 3 schemes, and J6 is not produced.
 - Markets L1~L4
 - L1 and L2 sells raw materials
 - L3 and L4 buys products

Bok et al. (2000) Ind. Eng. Chem. Res. 39, 1279-1290.

CFPN Structure

CFPN Model – Objective Function

Objective – Maximize the operating profit of the network

List of Assumptions

Assumptions

- Mass balance of raw materials and byproducts are proportional to the main product of the process and respective production scheme.
- The operating cost of a process is proportional to the amount of main product produced.
- Changeover only implies in cost and the overall time spent is negligible.
- Only one delivery of chemicals from one market over τ_c time interval is allowed.
- Demand is given by a range of values, having an upper and a lower bounds

CFPN Model – Constraints

- Ratio of input chemicals to the main product $W_{ijkct} = \mu_{ijkc}W_{ij'kct}$ $i \in I_j, j \in JI_{ikc}, j' \in JM_{ik}, k \in K_i, c \in C, t \in T$
- Ratio of output chemicals to the main product $W_{ijkct} = \mu_{ijkc}W_{ij'kct}$ $i \in I_j, j \in JO_{ikc}, j' \in JM_{ik}, k \in K_i, c \in C, t \in T$
- Limits production under available capacity $W_{ijkct} \leq \rho_{ijck}Q_{ic}$ $i \in I_j, j \in JM_{ik}, k \in K_i, c \in C, t \in T$
- Indicates when changeover occurred ($Z_{ikk'ct} = 1$) $Y_{ikct} + Y_{ik'ct+1} - 1 \le Z_{ikk'ct}$ $i \in I_j, k \in K_i, k' \in K_i, c \in C, t \in T$
- Allows only one production scheme per time period

$$\sum_{k \in K_i} Y_{ikct} = 1 \qquad i \in I_j, k \in K_i, c \in C, t \in T$$

CFPN Model - Constraints (Cont'd)

Mass balance of chemicals in the network

$$V_{jc,t-1} + \sum_{i \in O_j} \sum_{k \in K_i} W_{ijkct} + \sum_{l \in L} P_{jlct} + F_{jct} = V_{jct} + \sum_{l \in L} S_{jlct} + \sum_{i \in I_j} \sum_{k \in K_i} W_{ijkct} + \sum_{c' \in C - \{c\}} F_{jc't} \qquad j \in J, c \in C, t \in T$$

Delivery of raw materials

$$P_{jlct} \leq \sum_{d \in D} YP_{dlct} P_{jlct}^U \qquad j \in J, l \in L, c \in C, t \in T$$

- Limits one delivery of chemicals over a τ_c time interval. $YP_{dlc,t-2} + YP_{dlc,t-1} + YP_{dlct} \le 1$ $d \in D, l \in L, c \in C, t \in T$
- Prevents the purchase of raw material from exceeding the available amount

 $\sum_{c \in C} P_{jlct} \le a_{jlt}^{U} \qquad j \in J, l \in L, t \in T$

CFPN Model - Constraints (Cont'd)

Limits the product sales below the maximum allowable demand

$$\sum_{c \in C} S_{jlct} \le d_{jlt}^{U} \qquad j \in J, l \in L, t \in T$$

Shortfall penalty if the minimum demand is not met

$$SF_{jlt} \ge SF_{jl,t-1} + d_{jlt}^{L} - \sum_{c \in C} S_{jlct} \qquad j \in J, l \in L, t \in T$$

Bounds

$$\begin{split} V_{jct} &\leq V_{jct}^{U} \\ Z_{ikk'ct} &\leq 1 \\ F_{jct}, P_{jlct}, S_{jlct}, SF_{jlt}, V_{jct}, W_{ijkct}, Z_{ikk'ct} &\geq 0 \\ Y_{ikct}, YP_{dlct} &\in \left\{0,1\right\} \end{split}$$

Decomposition techniques considered

Relaxation

- Lagrangean relaxation
 - Easier to solve
 - Relaxing the right constraint
 - Obtaining a good multiplier
- Lagrangean/surrogate relaxation
 - Reduction in the oscillating behavior
- Updating multipliers
 - Subgradient optimization
 - Simple algorithm structure
 - Modified subgradient optimization
 - Accelerating convergence
 - A more suitable step size
 - Improved search direction

Lagrangean and Lagrangean/surrogate relaxation

General MIP $Z = \max cx + dy$ $Ax + By \le b$ $Cx + Dy \le e$ $x \ge 0^{m}$ $y \in \{0,1\}^{n}$ Lagrangean relaxation

$$Z(u) = \max cx + u(b - (Ax + By))$$
$$Cx + Dy \le e$$
$$x \ge 0^{m}$$
$$y \in \{0,1\}^{n}$$

■ Lagrangean/surrogate relaxation $Z_u(t) = \max cx + t \cdot u(b - (Ax + By))$ $Cx + Dy \le e$ $x \ge 0^m$ $y \in \{0,1\}^n$.

Narciso and Lorena, EJOR 1999, 114, 165

Subgradient and modified subgradient optimization

Subgradient optimization

$$u^{k+1} = u^{k} + t_{k}g^{k} \qquad t_{k} = \frac{l_{k}\left(w - L\left(u^{k}\right)\right)}{\left\|g^{k}\right\|^{2}} \qquad \varepsilon_{1} \le l_{k} \le 2 - \varepsilon_{2}\left(\varepsilon_{1}, \varepsilon_{2} > 0\right)$$

Modified subgradient optimization

$$u^{k+1} = u^{k} + t_{k}d^{k} \qquad t_{k} = \left(\frac{1}{\beta_{k}}\right)\left[\frac{\overline{L} - L(u^{k})}{\|d^{k}\|^{2}}\right] \qquad \alpha_{r} = \begin{cases} \varepsilon_{0} & \text{if } r \ge r_{2} \\ e^{-0.6933(r/r_{1})^{3.26}} & \text{otherwise} \end{cases}$$

$$d^{k} = g^{k} + \xi_{k}d^{k-1}; \qquad \qquad \xi_{k} = \begin{cases} -\gamma \frac{d^{k-1}g^{k}}{\|d^{k-1}\|^{2}} & \text{if } d^{k-1}g^{k} \ge 0, \\ 0 & \text{otherwise} \end{cases}$$

$$\overline{L} = \alpha_{r}L^{0} + (1 - \alpha_{r})L^{c}; \qquad \qquad \zeta_{k} = \begin{cases} 0 & \text{otherwise} \end{cases}$$

Fumero, Comp. & Oper. Res. 2001, 28, 33-52.

Observation

• Constraints that link variables at different time period $\begin{array}{l} Y_{ikct} + Y_{ik'ct+} -1 \leq Z_{ikk'ct} & i \in I_j, k \in K_i, k' \in K_i, c \in C, t \in T \\ \hline V_{jc,t-1} + \sum_{i \in O_j} \sum_{k \in K_i} W_{ijkct} + \sum_{l \in L} P_{jlct} + F_{jct} = V_{jct} + \sum_{l \in L} S_{jlct} + \sum_{i \in I_j} \sum_{k \in K_i} W_{ijkct} + \sum_{c' \in C - \{c\}} F_{jc't} & j \in J, c \in C, t \in T \\ \hline VP_{dlc,t-2} + VP_{dlc,t-1} + VP_{dlct} = 1 & d \in D, l \in L, c \in C, t \in T \\ \hline SF_{jlt} = (SF_{jl,t-1}) + d_{jlt}^L - \sum_{c \in C} S_{jlct} & j \in J, l \in L, t \in T \end{array}$

 The model can be decomposed into |T| separate problems if the variables at different time periods in these constraints are treated as different variables.
Decomposition applied

- Following equations are declared and converted to the equivalent inequality form
 - $$\begin{split} V_{jct}^{B} &= V_{jct}^{C} & \longrightarrow & V_{jct}^{B} \geq V_{jct}^{C} \quad and \quad V_{jct}^{B} \leq V_{jct}^{C} \\ SF_{jlt}^{B} &= SF_{jlt}^{C} & \longrightarrow & SF_{jlt}^{B} \geq SF_{jlt}^{C} \quad and \quad SF_{jlt}^{B} \leq SF_{jlt}^{C} \\ Y_{ikct}^{A} &= Y_{ikct}^{B} & \longrightarrow & Y_{ikct}^{A} \geq Y_{ikct}^{B} \quad and \quad Y_{ikct}^{A} \leq Y_{ikct}^{B} \\ YP_{dlct}^{A} &= YP_{dlct}^{B} & \longrightarrow & YP_{dlct}^{A} \geq YP_{dlct}^{B} \quad and \quad YP_{dlct}^{A} \leq YP_{dlct}^{B} \\ YP_{dlct}^{B} &= YP_{dlct}^{C} & \longrightarrow & YP_{dlct}^{B} \geq YP_{dlct}^{C} \quad and \quad YP_{dlct}^{B} \leq YP_{dlct}^{C} \end{split}$$
- Following variable replacement are done

$$\begin{split} V_{jct} &\to V_{jct}^{B}, \quad V_{jc,t-1} \to V_{jc,t-1}^{C} \\ SF_{jlt} &\to SF_{jlt}^{B}, \quad SF_{jl,t-1} \to SF_{jl,t-1}^{C} \\ Y_{ikc,t+1} &\to Y_{ikc,t+1}^{A}, \quad Y_{ikct} \to Y_{ikct}^{B} \\ YP_{dlct} &\to YP_{dlct}^{A}, \quad YP_{dlc,t-1} \to YP_{dlc,t-1}^{B}, \quad YP_{dlc,t-2} \to YP_{dlc,t-2}^{C} \end{split}$$

The model is decomposed into |T| sub-problems through relaxation

Lagrangean relaxation

- Relaxing the following inequalities into objective $V_{jct}^{B} \leq V_{jct}^{C}, SF_{jlt}^{B} \leq SF_{jlt}^{C}, Y_{ikct}^{A} \geq Y_{ikct}^{B}, YP_{dlct}^{A} \leq YP_{dlct}^{B}, Yp_{dlct}^{B} \geq YP_{dlct}^{C}$
- Adding the remaining inequalities as constraints $V_{jct}^{B} \ge V_{jct}^{C}, \quad SF_{jlt}^{B} \ge SF_{jlt}^{C}, \quad Y_{ikct}^{A} \le Y_{ikct}^{B}, \quad YP_{dlct}^{A} \ge YP_{dlct}^{B}, \quad Yp_{dlct}^{B} \le YP_{dlct}^{C}$
- Resulting objective function

$$\begin{aligned} Max \ Z_{CFPN-LR} &= \sum_{t \in T} \left(\sum_{j \in J} \sum_{i \in L} \sum_{c \in C} \gamma_{jlt} S_{jlct} \right) - \sum_{t \in T} \left(\sum_{j \in J} \sum_{i \in L} \sum_{c \in C} \varphi_{jlt} P_{jlct} \right) - \sum_{t \in T} \left(\sum_{i \in J} \sum_{s \in K_i} \sum_{c \in C} \delta_{ikct} W_{ijkct} \right) \\ &= \sum_{t \in T} \left(\sum_{j \in J} \sum_{c \in C} V_{jct}^B \right) - \sum_{t \in T} \left(\sum_{i \in I} \sum_{k \in K_i} \sum_{k' \in K_i} \sum_{c \in C} \zeta_{ikk'c} Z_{ikk'ct} \right) \left(\sum_{t \in T} \left(\sum_{j \in J} \sum_{c \in C} \theta_{jt} SF_{jlt}^B \right) - \sum_{t \in T} \left(\sum_{i \in I} \sum_{k \in K_i} \sum_{k' \in K_i} \sum_{c \in C} \zeta_{ikk'c} Z_{ikk'ct} \right) \right) \\ &= \sum_{t \in T} \left(\sum_{j \in J} \sum_{c \in C} \psi_{jct}^F F_{jct} \right) + \sum_{t \in T} \left(\sum_{i \in J} \sum_{c \in C} u_{jct}^V (V_{jct}^C - V_{jct}^B) \right) + \sum_{t \in T} \left(\sum_{i \in J} \sum_{c \in C} u_{ict}^{YP} (Y_{ict}^A - Y_{ikct}^B) \right) \\ &+ \sum_{t \in T} \left(\sum_{j \in J} \sum_{l \in L} u_{jlt}^{SF} (SF_{jlt}^C - SF_{jlt}^B) + \sum_{t \in T} \left(\sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dic}^{YP} (YP_{dlct}^B - YP_{dlct}^A) \right) + \sum_{t \in T} \left(\sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dic}^{YP} (YP_{dlct}^B - YP_{dlct}^A) \right) \\ &+ \sum_{t \in T} \left(\sum_{j \in J} \sum_{l \in L} u_{jlt}^{SF} (SF_{jlt}^C - SF_{jlt}^B) \right) + \sum_{t \in T} \left(\sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dic}^{YP} (YP_{dlct}^B - YP_{dlct}^A) \right) \\ &+ \sum_{t \in T} \left(\sum_{j \in J} \sum_{l \in L} u_{jlt}^{SF} (SF_{jlt}^C - SF_{jlt}^B) \right) \\ &+ \sum_{t \in T} \left(\sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dic}^{YP} (YP_{dlct}^B - YP_{dlct}^A) \right) \\ &+ \sum_{t \in T} \left(\sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dlc}^{YP} (YP_{dlct}^B - YP_{dlct}^A) \right) \\ &+ \sum_{t \in T} \left(\sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dlc}^{YP} (YP_{dlct}^B - YP_{dlct}^A) \right) \\ &+ \sum_{t \in T} \left(\sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dlc}^{YP} (YP_{dlct}^B - YP_{dlct}^A) \right) \\ &+ \sum_{t \in T} \left(\sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dlc}^{YP} (YP_{dlct}^B - YP_{dlct}^A) \right) \\ &+ \sum_{t \in T} \left(\sum_{d \in D} \sum_{l \in D} \sum_{c \in C} \sum_{d \in D} \sum_{l \in D} \sum_{c \in C} u_{dlc}^{YP} (YP_{dlct}^A - YP_{dlct}^A) \right) \\ &+ \sum_{t \in T} \left(\sum_{d \in D} \sum_{c \in C} \sum_{d \in D} \sum_{c \in D} \sum_{c$$

Lagrangean relaxation (Cont'd)

Resulting objective function at time period t

$$\begin{aligned} &Max \ Z_{CFPN-LR}^{t} = \sum_{j \in J} \sum_{l \in L} \sum_{c \in C} \gamma_{jlt} S_{jlct} - \sum_{j \in J} \sum_{l \in L} \sum_{c \in C} \varphi_{jlt} P_{jlct} - \sum_{i \in I} \sum_{j \in JM_{ik}} \sum_{k \in K_i} \sum_{c \in C} \delta_{ikct} W_{ijkct} - \sum_{j \in J} \sum_{c \in C} \xi_{jc} V_{jct}^{B} \\ &- \sum_{i \in I} \sum_{k \in K_i} \sum_{k' \in K_i} \sum_{c \in C} \zeta_{ikk'c} Z_{ikk'ct} - \sum_{j \in J} \sum_{c \in C} \theta_{jlt} SF_{jlt}^{B} - \sum_{d \in D} \sum_{l \in L} \sum_{c \in C} \omega_{dlct} YP_{dlct}^{A} - \sum_{j \in J} \sum_{l \in L} \phi_{jct} F_{jct} \\ &+ \sum_{j \in J} \sum_{c \in C} u_{jct}^{V} (V_{jct}^{C} - V_{jct}^{B}) + \sum_{i \in I} \sum_{k \in K_i} \sum_{c \in C} u_{ikct}^{Y} (Y_{ikct}^{A} - Y_{ikct}^{B}) + \sum_{j \in J} \sum_{l \in L} u_{jlt}^{SF} (SF_{jlt}^{C} - SF_{jlt}^{B}) \\ &+ \sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dlct}^{YP1} (YP_{dlct}^{B} - YP_{dlct}^{A}) + \sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dlct}^{YP2} (YP_{dlct}^{B} - YP_{dlct}^{C}) \end{aligned}$$

The total profit is equal to the summation over the time periods

$$Z_{CFPN-LR} = \sum_{t \in T} Z_{CFPN-LR}^{t}$$

Lagrangean relaxation - Constraints

List of constraints

 $W_{ijkct} = \mu_{ijkc}W_{ij'kct} \qquad i \in I_i, j \in JI_{ikc}, j' \in JM_{ik}, k \in K_i, c \in C$ $W_{ijkct} = \mu_{ijkc} W_{ij'kct} \qquad i \in I_j, j \in JO_{ikc}, j' \in JM_{ik}, k \in K_i, c \in C$ $W_{iikct} \le \rho_{iick} Q_{ic}$ $i \in I_i, j \in JM_{ik}, k \in K_i, c \in C$ $Y_{ikct}^{B} + Y_{ik'c,t+1}^{C} - 1 \le Z_{ikk'ct}$ $i \in I_{i}, k \in K_{i}, k' \in K_{i}, c \in C$ $\sum_{k \in K_i} Y_{ikct}^B = 1 \qquad i \in I_j, k \in K_i, c \in C$ $V_{jc,t-1}^{C} + \sum_{i \in Q} \sum_{k \in K} W_{ijkct} + \sum_{l \in I} P_{jlct} + F_{jct} = V_{jct}^{B} + \sum_{l \in I} S_{jlct} + \sum_{i \in I} \sum_{k \in K} W_{ijkct} + \sum_{c' \in C} F_{jc't} \qquad j \in J, c \in C$ $P_{jlct} \leq \sum Y P_{dlct}^{C} P_{jlct}^{U} \qquad j \in J, l \in L, c \in C$ $YP_{d|c|t-2}^{C} + YP_{d|c|t-1}^{B} + YP_{d|c|t}^{A} \le 1 \qquad d \in D, l \in L, c \in C$

Lagrangean relaxation – Constraints (Cont'd)

$$\begin{split} \sum_{c \in C} P_{j|ct} &\leq a_{j|t}^{U} \qquad j \in J, l \in L \\ \sum_{c \in C} S_{j|ct} &\leq d_{j|t}^{U} \qquad j \in J, l \in L \\ SF_{j|t}^{B} &\geq SF_{j|t,t-1}^{C} + d_{j|t}^{L} - \sum_{c \in C} S_{j|ct} \qquad j \in J, l \in L \\ V_{jct}^{B} &\leq V_{jct}^{U}, \quad V_{jct}^{C} \leq V_{jct}^{U}, \quad Z_{ikk'ct} \leq 1 \\ F_{jct}, P_{j|ct}, S_{j|ct}, SF_{j|t}^{B}, SF_{j|t}^{C}, V_{jct}^{B}, V_{jct}^{C}, W_{ijkct}, Z_{ikk'ct} \geq 0 \\ Y_{ikct}^{A}, Y_{ikct}^{B}, YP_{d|ct}^{A}, YP_{d|ct}^{B}, YP_{d|ct}^{C} \in \{0,1\} \\ V_{jct}^{B} &\geq V_{jct}^{C}, \quad SF_{j|t}^{B} \geq SF_{j|t}^{C}, \quad Y_{ikct}^{A} \leq Y_{ikct}^{B}, \quad YP_{d|ct}^{A} \geq YP_{d|ct}^{B}, \quad YP_{d|ct}^{C} \leq YP_{d|ct}^{C} \end{split}$$

Lagrangean/surrogate relaxation

- Lagrangean/surrogate relaxation is done in a similar fashion like the Lagrangean relaxation
- Resulting objective function at each time period t

$$\begin{aligned} &Max \ Z_{CFPN-LS}^{t} = \sum_{j \in J} \sum_{l \in L} \sum_{c \in C} \gamma_{jlt} S_{jlct} - \sum_{j \in J} \sum_{l \in L} \sum_{c \in C} \varphi_{jlt} P_{jlct} - \sum_{i \in I} \sum_{j \in JM_{ik}} \sum_{k \in K_{i}} \sum_{c \in C} \delta_{ikct} W_{ijkct} - \sum_{j \in J} \sum_{c \in C} \xi_{jc} V_{jct}^{B} \\ &- \sum_{i \in I} \sum_{k \in K_{i}} \sum_{k' \in K_{i}} \sum_{c \in C} \zeta_{ikk'c} Z_{ikk'ct} - \sum_{j \in J} \sum_{c \in C} \theta_{jlt} SF_{jlt}^{B} - \sum_{d \in D} \sum_{l \in L} \sum_{c \in C} \omega_{dlct} YP_{dlct}^{A} - \sum_{j \in J} \sum_{l \in L} \phi_{jct} F_{jct} \\ &+ t \times \left(\sum_{j \in J} \sum_{c \in C} u_{jct}^{V} (V_{jct}^{C} - V_{jct}^{B}) + \sum_{i \in I} \sum_{k \in K_{i}} \sum_{c \in C} u_{ikct}^{Y} (Y_{ikct}^{A} - Y_{ikct}^{B}) + \sum_{j \in J} \sum_{l \in L} u_{jlt}^{SF} (SF_{jlt}^{C} - SF_{jlt}^{B}) \\ &+ \sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dlct}^{YP1} (YP_{dlct}^{B} - YP_{dlct}^{A}) + \sum_{d \in D} \sum_{l \in L} \sum_{c \in C} u_{dlct}^{YP2} (YP_{dlct}^{B} - YP_{dlct}^{C}) \right) \end{aligned}$$

Subject to the same constraints as the Lagrangean relaxation

• Total Profit:
$$Z_{CFPN-LS} = \sum_{t \in T} Z_{CFPN-LS}^{t}$$

Proposed strategy

- Strategy A
 - Lagrangean relaxation with subgradient optimization
- Strategy B
 - Lagrangean relaxation with modified subgradient optimization
- Strategy C
 - Lagrangean/surrogate relaxation with subgradient optimization
- Strategy D
 - Lagrangean/surrogate relaxation with modified subgradient optimization

Results – Calculation time

Results – Solution value

Results – Percent difference from the optimum

time period	Strategy A	Strategy C
7	0.000	0.000
14	0.554	0.536
21	1.195	1.723
28	0.829	0.826
35	0.833 0.824	
42	1.317	1.313

Conclusion

- Calculation time
 - Time spent is much less than the full scale method
- Solution value
 - The percentage deviation from the optimum is below 2%
- Lagrangean vs. Lagrangean/surrogate relaxation
 - Lagrangean/surrogate always used equal or more iterations
 - Lagrangean/surrogate spent slightly more time
 - For same number of iterations, Lagrangean relaxation gave equal or better solution value

Alternative approaches

Decentralized approach

Model predictive control strategies

Multiproduct, multiechelon distribution networks with multiproduct batch plants

(Perea, Ydstie and Grossmann, 2003)

Comparison with integrated approach Poorer coordination of the supply chain decisions Smaller computational time

Future work

- Implementing modified subgradient optimization
- Testing strategies B and D and compare them with A and C
- Search for new strategies
 - Other decomposition methods
 - Applying *search_t** algorithm for each set of multiplier values

IV.

Planning, Scheduling and Supply Chain Management for Operations in Oil Refineries

JOSÉ M. PINTO

OUTLINE

- Introduction
- Planning Models
 - refinery diesel production
- Scheduling models
 - crude oil scheduling
 - fuel oil / asphalt area
- Logistics
 - oil supply model
- Petroleum Supply Chain
- Conclusions

MOTIVATION

Beginning of Computational Applications for *Planning/Scheduling*:

1970s

- Petrochemical Industry: 1950s (Symonds, 1955; Bodington, 1992)
- CPI in general: (Reklaitis, 1991; Kudva and Pekny; 1993)

950s (Linear Programming) (Dantzig, 1963)

ADVANCES

- ★ Availability of more powerful and less expensive computers;
- ★ Mathematical Developments:
 - ★ Time representation; (Moro and Pinto, 1998)
 - ★ Combinatorics in MIP; (Raman and Grossmann, 1994)
 - ★ Non-convexities in MINLP; (Viswanathan and Grossmann, 1990)

Consequences for the Petroleum Industry:

(Ramage, 1998)

Unit Level Optimization (FCC, Crude Unit, etc..) Large Portions of the Plant or **Plant-wide** Optimization

1980's

1990's

OPTIMIZATION IN REFINERY OPERATIONS

LPs in crude blending and product pooling (50's) Advanced control : MPC

Planning models

crude selection, crude allocation for multi refinery partnership models for raw material supply OVM Refinery, Austria (LP) In-house simulation models for scheduling Scheduling optimization models gasoline blending gasoline blending crude oil unloading (Symonds, 1955) (Cutler, DMCC,1983) (Coxhead, Moro et al, 1998.)

(Steinschorn and Hofferl, 1997) (Magalhaes et al., 1998)

(Bodington, 1993) (Rigby et al., 1995) (Lee et al., Shah, 1996)

OUTLINE

- Introduction
- Planning Models

 refinery diesel production
- Scheduling models
 - crude oil scheduling
 - fuel oil / asphalt area
- Logistics
 - oil supply model
- Conclusions

PLANNING MODEL FOR REFINERIES

Objectives

- To develop a general representation for refinery units
 - streams with multiple inputs and destinations
 - nonlinear mixing and process equations
 - bounds on unit variables
- To apply to the production planning of a real world refinery
 - diesel production
 - to satisfy multiple specifications

TYPICAL PROCESS UNIT

UNIT EQUATIONS

- Feed flowrate:

$$Q_{u,F} = \sum_{u' \in U_u} \sum_{s \in S_{u',u}} Q_{u',s,u}$$

- Feed Properties:

$$P_{u,F,j} = f_j \left(Q_{u',s,u}, Pu',s,j \right) \qquad u' \in U_u, s \in S_{u',u'}, j \in J_s$$

- Total flowrate of each product stream:

$$Q_{u,s} = f(Q_{u,F}, P_{u,F,j}, V_u) \qquad j \in J_F, s \in S_U$$

- Unit product stream properties:

$$P_{u,s,j} = f_j (P_{u,F,j}, V_u) \qquad j \in J_s, s \in S_U$$

- Product streams flowrates (splitter):

$$Q_{u,s} = \sum_{u' \in U_{s,u'}} Q_{u,s,u'} \qquad s \in S_U$$

HYDROTREATING UNIT (HT)

HT MODEL

Feed flowrate:

 $Q_{HT,F} = Q_{CD1,HD,HT} + Q_{CD2,HD,HT} + Q_{FCC,LCO,HT} + Q_{CK,CGO,HD}$ Feed properties:

Example - Flash Point (FP)

$$P_{HT,F,FP} = 0.55 \left[\frac{10006.1}{ln(\alpha) + 14.0922} - 415 \right] \qquad \alpha = \frac{\sum Q_{u,HD,HT} I_{u,HD,FP}}{\sum U_{HT} Q_{u,HD,HT}}$$

 $I_{u,HD,FP} = \exp[10006.1/(1.8 P_{u,HD,FP} + 415) - 14.0922]$ $u \in U_{HT}$

REAL-WORLD APPLICATION

Planning of diesel production

Petrobras RPBC refinery in Cubatão (SP, Brazil).

Three types of diesel oil:

Metropolitan Diesel.Low sulfur levelsmetropolitan areasRegular Diesel.Higher sulfur levelsother regions of the countryMaritime Diesel.High flashing point.

DIESEL SPECIFICATIONS

Property	DIESEL		
	REGULAR	METROPOLITAN	MARITIME
DENSITY	0.82/	0.82/	0.82/
min / max	0.88	0.88	0.88
FLASH POINT	-	-	60.0
min (°C)			
ASTM 50%	245.0/	245.0/	245.0/
min / max (°C)	310.0	310.0	310.0
ASTM 85%	370.0	360.0	370.0
max (°C)			
CETANE NUMBER min	40.0	42.0	40.0
SULFUR CONTENT max	0.5	0.2	1.0
(% WEIGHT)			

MAIN RESULTS

Potential Improvement

US\$ 23,000 / day or US\$ 8,000,000 / yr Implemented with on-line data acquisition

OUTLINE

- Introduction
- *Planning Models* – refinery diesel production
- Scheduling models
 - crude oil scheduling
 - fuel oil / asphalt area
- Logistics
 - oil supply model
- Conclusions

PROPOSED APPROACH FOR PLANNING AND SCHEDULING

SHORT TERM CRUDE OIL SCHEDULING Crude Oil System

OBJECTIVES

maximize total operating profit revenue provided by oil processing cost of operating the tanks

generate a schedule for crude oil operations receiving oil from pipeline waiting for brine settling feeding the distillation units

TIME SLOT REPRESENTATION

MILP OPTIMIZATION MODEL

total operating profit Max subject to: **Timing constraints** Pipeline material balance equations Pipeline operating rules Pipeline always connected to a tank Material balance equations for the tanks Volumetric equations Component volumetric balance Tank operating rules Minimum settling time Rules for feeding the distillation unit

DECISION VARIABLES

REAL-WORLD EXAMPLE

Oil parcel	Volume	Start time	End Time	Composition
	(m ³)	(h)	(h)	
1	60,000	8	20	100% Bonito
2	50,000	48	58	100% Marlin
3	1,000	58	58.2	100% Marlin
4	60,000	100	112	100% RGN

Tank initial conditions

Distillation target flowrate = $1500 \text{ m}^3/\text{h}$

RESULTS

MODEL SOLUTION

- GAMS / OSL
- CPU time

2.80 hrs (Pentium II 266 MHz 128 MB RAM)

- Variable size time slot model
 - 912 discrete variables
 - 3237 continuous variables

5599 equations

• Fixed size time slot model

21504 discrete variables !

OUTLINE

- Introduction
- *Planning Models* – refinery diesel production
- Scheduling models
 - crude oil scheduling
 - fuel oil / asphalt area
- Logistics
 - oil supply model
- Conclusions

FUEL OIL/ASPHALT PRODUCTION SCHEDULING PROBLEM

- •The plant produces $\cong 80\%$ of all Brazilian fuel oil;
- •The plant has relevant storage limitations;
- •Complexity of distribution operations;
- •End of the monopoly in the Brazilian oil sector.

Base	Diluent used
RASF	OCC+LCO or OCC or LCO
RASF	OCC+LCO or OCC or LCO
RASF	OCC+LCO or OCC or LCO
RASF	OCC+LCO or OCC or LCO
RASF	pure LCO
RASF	pure LCO
RASF	pure HG
RASF	pure HG
	Base RASF RASF RASF RASF RASF RASF RASF RASF

major specification:

MATHEMATICAL MODELS

- Uniform Discretization of Scheduling Horizon;
- Objective Function: **Minimize the Operational Cost**.

First Approach:

non-convex **MINLP** (5 bilinear products in the viscosity constraints);

Linear Transformation

MINLP MODEL

Minimize:

COST = Raw-Material Costs + Inventory Costs + + Pumping Costs + Transition Costs

$$COST = \sum_{t=1}^{T} \left[\sum_{s=1}^{S} (CD_{s} \cdot FDC_{s,t}) + CD_{2} \cdot FOCCR_{t} + CD_{3} \cdot FRLCO_{t} + CR \cdot FRASFM + \sum_{s=1}^{I} (CINVI_{i} \cdot VI_{i,t}) + \sum_{q=1}^{Q} (CINVQ_{q} \cdot VQ_{q,t}) + \sum_{d=1}^{D} (CINVD_{d} \cdot VQ_{d,t}) + \sum_{s=1}^{I} \sum_{o=1}^{O} (CB_{i} \cdot FID_{i,o,t}) \right] + \sum_{o=1}^{O} \sum_{p=1}^{P} \sum_{n=1}^{N} (TRAN_{o,p,n} \cdot CHANGE_{p,n})$$

Subject to:

Material Balance Constraints:

volume in i at t' = initial volume in i + [inputs in i up to t' - (outputs from i up to t')] the volume capacities of all tanks are also subject to bounds

Demand Supply of Plant Products

Operating Rules for the Plant:

at each *t*, the plant production must be stored in one single tank

$$\sum_{i=1}^{I} (XIC_{i,t}) + \sum_{q=1}^{Q} (XQC_{q,t}) = 1 \qquad t = 1, ..., T$$

FO area UVO

UVO/asphalt area

simultaneous tank loading and unloading is not allowed (exception: HG storage tank)

$$XIC_{i,t} + \sum_{o=1}^{O} (XID_{i,o,t}) \le 1$$
 $i = 1, ..., I; t = 1, ..., T$ **FO area**

Operating Rules for the Plant (continuation):

UVO / Asphalt may be sent to truck terminals only between 6:00 a.m. and 6:00 p.m.

 $\begin{aligned} XQD_{q,t} &\leq HT_b \\ b &= 1, \dots, [T/(12/DT)]; \quad (12/DT) \cdot (b-1) + 1 \leq t \leq (12/DT) \cdot b; \quad q = 1, \dots, Q \end{aligned}$

while a asphalt is produced, the RASF diluent must be HG

$$\sum_{q=5}^{8} (XQC_{q,t}) - XDRASF_{1,t} = 0 \qquad t = 1, ..., T$$

while asphalt is produced, the OCC stream from UFCC must be directed to storage in TK-42208

$$XDRASF_{l,t} + (1 - XZ_t) \le 1$$
 $t = 1, ..., T$

Material Flow Constraints:

flowrates to oil-pipelines must obey pump limitations

$$0 \le FID_{i,o,t} \le XID_{i,o,t} \cdot FID^{max}$$
 $i = 1,...,I; o = 1,...,O; t = 1,...,T$

flowrates to truck terminals must obey pump limitations

$$0 \le FQD_{q,t} \le XQD_{q,t} \cdot FQD^{max} \qquad q = 1, \dots, Q; \ t = 1, \dots, T$$

Viscosity Constraints:

at each *t*, the viscosity adjustment must be done regarding the kind of product

$$VISC_t = \sum_{q=l}^{Q} \sum_{v \in V_q} (MIUV_v \cdot XQC_{q,t}) + \sum_{i=l}^{I} \sum_{p \in P_i} (MIFO_p \cdot XIC_{i,t}) \quad t = 1, \dots, T$$

also, the availability of diluents should be considered

$$\frac{\{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3}\right]}{\left[\left(\sum_{d=1}^{D}(FDRASF_{d,t}) + FRASFU_{t} + FOCCR_{t} + FRLCO_{t}\right)\right]\}} = VISC_{t}$$

or

 $\{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3}\right] = \{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3}\right] = \{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3}\right] = \{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3}\right] = \{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3}\right] = \{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3}\right] = \{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3}\right] = \{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3}\right] = \{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3}\right] = \{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MIRASF + FOCCR_{t} \cdot MID_{3}\right] = \{\left[\sum_{d=1}^{D}\sum_{s\in S_{d}}^{s\leq 2}(FDRASF_{d,t} \cdot MID_{s}) + FRASFU_{t} \cdot MID_{s}\right] + FRASFU_{t} \cdot MID_{s} \cdot MID_{s}\right] + FRASFU_{t} \cdot MID_{s} \cdot MID_{s} \cdot MID_{s} \cdot MID_{s}\right\}$

$$= VISC_t \cdot \left[\left(\sum_{d=1}^{D} (FDRASF_{d,t}) + FRASFU_t + FOCCR_t + FRLCO_t \right) \right]$$
 $t = 1, ..., T$

5 bilinear products

EXACT MILP MODEL

Characteristics:

- Similar MINLP model structure;
- More continuous variables than MINLP model;
- More constraints than MINLP model;
- Combinatorial feature of the MINLP model **preserved**.

<u>Structure:</u>

non-convex

MILP Model = MINLP Model +

- Nonlinear Viscosity Constraints
- + Linearized Constraints

CONSTRAINTS FOR LINEAR TRANSFORMATION

Material Balance

$$VIK_{i,t'} = VIZ_{i} \cdot MI_{i} + \sum_{t=1}^{t'} [FIRASFK_{i,t} - \sum_{o=1}^{O} (FIDK_{i,o,t})] \quad i = 1,...,l; \ t' = 1,...,T \quad (46)$$

$$VQK_{q,t'} = VQZ_{q} \cdot MQ_{q} + \sum_{t=1}^{t'} (FQRASFK_{q,t} - FQDK_{q,t}) \quad q = 1,...,Q; \ t' = 1,...,T \quad (47)$$

$$FRASFU_{t} \cdot MIRASF + \sum_{d=1}^{D} \sum_{s \in S_{d}}^{s \leq 2} (FDRASFK_{d,t} \cdot MID_{s}) + FOCCR_{t} \cdot MID_{2} + FRLCO_{t} \cdot MID_{3} = \sum_{i=1}^{l} (FIRASFK_{i,i}) + \sum_{q=1}^{O} (FQRASFK_{q,i}) \quad t = 1,...,T \quad (48)$$

$$FIRASFK_{i,t} \leq XIC_{i,t} \cdot U \quad U = constant \quad i = 1,...,I; \ t = 1,...,T \quad (49)$$

$$FQRASFK_{q,i} \leq XQC_{q,i} \cdot U \quad U = constant \quad q = 1,...,Q; \ t = 1,...,T \quad (51)$$

$$VQ_{q,i} \cdot MQ_{q} = VQK_{q,i} \quad q = 1,...,Q; \ t = 1,...,T \quad (52)$$

$$FID_{i,o,t} \cdot MI_{i} = FIDK_{i,o,t} \quad i = 1,...,I; \ o = 1,...,O; \ t = 1,...,T \quad (53)$$

$$FQD_{q,t} \cdot MQ_{q} = FQDK_{q,t} \quad q = 1,...,Q; \ t = 1,...,T \quad (54)$$

REAL-WORLD EXAMPLE

START

PRODUCTION SCHEDULE AND STORAGE INFORMATION

END

Schedule of diluents in the mixer

Volume (x 10^{-3} m³) in product storage tanks

Transfer schedule for fuel oils

Dispatch schedule for ultra-viscous oil

TRANSITION PROCESS IN OIL-PIPELINES

case	MIP model	nodes	iterations	CPU time (s)	objective
А	MILP	937	15674	570.46	969.61
	MINLP	-	13815	335.36	966.99
В	MILP	1296	16626	711.01	965.72
	MINLP	-	15508	391.45	961.14
С	MILP	764	13086	490.86	954.99
	MINLP	-	23792	531.98	956.99
D	MILP	1197	23080	851.78	950.65
	MINLP	-	12845	299.30	959.49

OUTLINE

- Introduction
- *Planning Models* – refinery diesel production
- Scheduling models
 - crude oil scheduling
 - fuel oil / asphalt area
- Logistics
 - oil supply model
- Conclusions

CRUDE OIL SUPPLY PROBLEM

• Solution of oil supply problems among crude oil terminals and refineries

MOTIVATION

- Increasing utilization of the system
 - Larger crude oil demand for crude oil in refineries
 - Outsource of transportation
- Potential economic impact
 - No systematic scheduling
 - Operations involve high costs and aggregated values
- Petrobras distribution complex
 - 4 refineries in the State of Sao Paulo

PETROBRAS DISTRIBUTION COMPLEX

Determined by the petroleum origin

Approximately 42 types of crude oil may be processed

Sets of crude oil types with similar properties

Necessary due to limited amount of tanks

7 classes

Transport types of crude oil

Overstay incurs in additional costs US\$ 10 k to US\$ 20 k per day

Different capacities

Store classes of crude oil

Minimum storage levels

Settling time between loading and unloading operations

Flow rate at each pipeline limited by the density of the heaviest crude oil class

Possible to connect to at most one tank at every time

Buffer operations between terminal and refineries

Store difference in flow rate between inlet and outlet pipelines

OBJECTIVES

- Operating constraints
- Initial inventory
- Costs
- Possible allocations

- Schedules
 - Allocation of crude oil types to classes
 - Assignment of tankers to piers
 - Loading
 - Unloading
 - Settling

- Decomposition of the problem in three formulations
 - Port Model
 - Substation Model
 - Algorithm to adjust timing of pipelines

Port Model

Port

- Results
 - Allocation of tankers to piers
 - Loading and unloading profiles of tanks
 - Loading of pipelines
 - Timing of interfaces in pipelines

MATHEMATICAL FORMULATION

- MILP model formulation
- Time representation
 - Continuous
 - Based on events

PROPOSED MODEL - VARIABLES

- Binary variables Decisions
 - Assignment of ship *n* to pier *p*:
 - Unloading of ship *n* to tank *t*:
 - Unloading of tank *t* to oil pipeline *o*:

 $A_{n,p}$ $LT_{n,t,e}$ $UT_{t,o,e}$

- Continuous variables
 - Timing
 - Inventory
 - Flowrates
 - Operating profit

MODEL ASSUMPTIONS AND OPERATING RULES

- Ships with earlier arrival date unload first in the same pier
- Each ship unloads to only one tank at any time
- Each pipeline receives crude oil from at most one tank at any time
- Each refinery is connected to the docking stations from one and only one oil pipeline
- The same crude oil class has constant flowrates

PROPOSED MODEL - TIMING

- Ships, tanks and pipelines
 - Timing variables in each time event
 - Initial
 - Final
- Matching of the timing variables
 - Unloading from ship n to tank t

$$TN_{n,e}^{s} = TT_{t,e}^{s} \qquad TN_{n,e}^{f} = TT_{t,e}^{f}$$
– Unloading from tank *t* to pipeline *o*

$$TT_{t,e}^{s} = TD_{o,e}^{s} \qquad TT_{t,e}^{f} = TD_{o,e}^{f}$$

PORT MODEL - CONSTRAINTS

- Decisions
 - Assignment of tanker *n*:
 - Operation of tank *t*:
 - Operation of tanker *n*:

$$\sum_{p \in P_n} A_{n,p} = 1$$

$$\sum_{n \in N_t} LT_{n,t,e} + \sum_{o \in O_t} UT_{t,o,e} \le 1$$

$$\sum_{t \in T_n} LT_{n,t,e} \le 1$$

 $\sum UT_{t,o,e} \leq 1$

 $t \in T_{o}$

– Operation of oil pipeline *o*:

PROPOSED MODEL – CONSTRAINTS

- Material balances
 - Tanks, Refineries
- Operational constraints
 - Ships and tanks: flowrate bounds
- Timing

- Ships

$$TN_{n,e}^{s} \ge \sum_{p \in P_{n}} \left(\tau_{n,p}^{start} + A_{n,p} \cdot \theta_{n,p}^{ent} \right) \qquad TN_{n,e}^{s} \ge TN_{n,e-1}^{f}$$
- Tanks

$$TN_{n,e}^{s} \le \sum_{p \in P_{n}} \tau_{n,p}^{end}$$

$$TT_{t,e}^{s} \ge TT_{t,e'}^{f} + \Delta_{t}^{dec} \cdot \left(\sum_{o \in O_{t}} UT_{t,o,e} + \sum_{n \in N_{t}} LT_{n,t,e'} - 1\right)$$
$$TT_{t,e}^{f} \le H \qquad TT_{t,e}^{s} \ge TT_{t,e-1}^{f}$$

PROPOSED MODEL – CONSTRAINTS

- Matching of timing variables
 - Ships \leftrightarrow Tanks

$$TN_{n,e}^{s} - H.(1 - LT_{n,t,e}) \le TT_{t,e}^{s} \le TN_{n,e}^{s} + H.(1 - LT_{n,t,e})$$
$$TN_{n,e}^{f} - H.(1 - LT_{n,t,e}) \le TT_{t,e}^{f} \le TN_{n,e}^{f} + H.(1 - LT_{n,t,e})$$

- Tanks \leftrightarrow Pipelines

$$TT_{t,e}^{s} - H.(1 - UT_{t,o,e}) \le TD_{o,e}^{s} \le TT_{t,e}^{s} + H.(1 - UT_{t,o,e})$$
$$TT_{t,e}^{f} - H.(1 - UT_{t,o,e}) \le TD_{o,e}^{f} \le TT_{t,e}^{f} + H.(1 - UT_{t,o,e})$$

PROPOSED MODEL – OBJECTIVE FUNCTION

$$\max \operatorname{profit} = \sum_{r} \sum_{cl \in CLR_{r}} \operatorname{REVR}_{cl,r}^{class} \left[\sum_{o \in O_{r}} \sum_{t \in (T_{cl} \cap T_{o})} \sum_{e'=1}^{E-1} \operatorname{Qut}_{t,o,e'} \right] \text{ (oil revenue to the refineries)} \\ + \sum_{cl} \operatorname{REVP}_{cl}^{class} \cdot \sum_{t \in T_{cl}} \left(V_{t,E}^{T} - V_{t}^{0} \right) \quad \text{(final - initial oil revenue in the port)} \\ - \sum_{c} \operatorname{COST}_{c}^{crude} \left(\sum_{n \in N_{c}} C_{n,c} \right) \quad \text{(oil cost in the tanks)} \\ - \sum_{p} \operatorname{COST}_{p}^{pier} \left[\sum_{n \in N_{p}} \left(\tau_{n,p}^{end} - \tau_{n,p}^{start} \right) \right] \quad \text{(pier utilization cost)} \\ - \sum_{n} \operatorname{COST}_{n}^{se} \operatorname{T}_{n}^{se} \quad \text{(overstay cost of the oil tankers)} \\ - \sum_{o} \sum_{cl \in CLO_{o}} \sum_{cl' \in CLO_{o}} \operatorname{COST}_{cl,cl'}^{face} \cdot \sum_{e=1}^{E-1} \operatorname{INT}_{cl,cl',o,e} \quad \text{(interface cost)}$$

SUBSTATION MODEL - MAIN ASSUMPTIONS

Tanks cannot be loaded and unloaded simultaneously

- Outlet pipelines cannot be loaded by inlet pipelines and tanks simultaneously
- Substation must receive crude oil at the flow rates generated by the Pot Model
 - Lots of crude oil

SUBSTATION MODEL – SUMMARY

Minimize

Cost = cost of tank loading/unloading + cost of pipeline alignment + cost of interface

Subject to:

- Assumptions of the substation model
- Operating constraints
 - Tank loading/unloading
 - Pipeline operation
- Timing constraints
 - Inlet pipelines
 - Tanks
 - Outlet pipelines

REAL-WORLD PROBLEM

COMPUTATIONAL RESULTS

- Smaller optimality gaps for the Port Model
- Large variation on computational times

	Problem 1	Problem 2	Problem 3	Problem 4
Number of continuous variables	1996	4954	712	703
Number of binary variables	1039	759	66	123
Number of constraints	7203	10337	1158	1682
Relaxed LP solution	21,768.32	23.00	11.00	11.39
Best Integer Objective	20,073.96	42.00	21.00	15.00
Optimality gap	7.78%	82.61%	90.91%	31.74%
Nodes	1118	3784	3921	422
Iterations	62313	74410	19321	5244
CPU time (Pentium III 450MHz)	1,457.51 s	3,602.07 s	134.69 s	28.28 s

Port Model

Substation Models

PROBLEM 1 – TANKERS AND TANKS

PROBLEM 1 – GANTT CHART

PROBLEM 1 – REFINERIES AND PIPELINES

PROBLEM 4 – GANTT CHART

Time (hours)

PROBLEM 4 – TANKERS, REFINERIES AND PIPELINES

OUTLINE

- Introduction
- *Planning Models* – refinery diesel production
- Scheduling models
 - crude oil scheduling
 - fuel oil / asphalt area
- Logistics
 - oil supply model
- Conclusions

CONCLUSIONS

transitions

CONCLUSIONS - CHALLENGES

Large Scale Systems - Main theoretical difficulties:

Complex problems with high combinatorial features;

NP-Complete Problems **Infeasible computational times**

Large Scale Systems - Main practical difficulties

The understanding of the problem itself can constitute the major difficulty;

The cooperation between the modeler level and the plant floor level is essential and remains as the main challenge for the Operational Research

Continuous work necessary due to the dynamic nature of scheduling problems.

ACKNOWLEDGEMENTS

Researchers

Engineers

Financial Support

M. Joly R. Más L. Moro R. Rejowski P. Smania C.A. Gratti M. F. Lehner M.V. Magalhães A.C. Zanin Petrobras

CAPES CNPq FAPESP

General Petroleum Supply Chain

• Van den Heever *et al.* (2000).

Ierapetritou et al. (1999).

• Kosmidis (2002).• Barnes *et al.* (2002).

Refinery -Planning/ Scheduling

- Ponnambalam (1992).
- Bok *et al.* (1998).
- Pinto and Moro (2000).

- Ross (2000). • Iakovou (2001).
 - Magatão *et al*. (2002).
 - Stebel *et al.* (2002).
 - Rejowski and Pinto (2003).

Distribution

©Ron Niebrugge

Development of an optimization model

that is able to represent

a petroleum supply chain

to support the

decision making planning process of supply, production and distribution

Refinery - Processing Unit Model

$$\begin{aligned} QF_{u,t} &= \sum_{(u',s)\in \mathbf{US}_{u}} Q_{u',s,u,t} \\ PF_{u,p,t} &= \frac{\sum_{(u',s)\in \mathbf{US}_{u}} Q_{u',s,u,t} \cdot PS_{u',s,p,t}}{\sum_{(u',s)\in \mathbf{US}_{u}} Q_{u',s,u,t}} \end{aligned}$$
 Feed mixing
$$\begin{aligned} QS_{u,s,t} &= QF_{u,t} \cdot f_{u,s} \left(PF_{u,p,t} \right) + \sum_{u \in \mathbf{VO}_{u}} QGain_{u,s,v} \cdot V_{u,v,t} \\ PS_{u,s,p,t} &= f_{u,s,p} (PF_{u,p,t} \mid p \in \mathbf{PI}_{u}, QF_{u,t}, V_{u,v,t} \mid v \in \mathbf{VO}_{u}) \end{aligned}$$
 Unit model
$$\begin{aligned} QS_{u,s,t} &= \sum_{u' \in \mathbf{UO}_{u,s}} Q_{u,s,u',t} \\ QF_{u}^{L} &\leq QF_{u,t} \leq QF_{u}^{U} \quad V_{u,v}^{L} \leq V_{u,v,t} \leq V_{u,v}^{U} \end{aligned}$$
 Bounds

Supply, Distribution – Storage Model

Supply, Distribution - Pipeline Model

Supply Chain Model

Large Scale MINLP

<u>PSC</u>

$$Max \ Z = \sum_{u \in \mathbf{U}_{dem}} \sum_{t \in \mathbf{T}} Cp_{u,t} \cdot \left(QF_{u,t} - Vol_{u,t}\right) - \sum_{u \in \mathbf{U}_{SB}} \sum_{t \in \mathbf{T}} Cpe_{u,t} \cdot Lot_{u,t}$$

$$-\sum_{u\in\mathbf{U}}\sum_{t\in\mathbf{T}}\left[Cr_{u}+\sum_{v\in\mathbf{VO}_{u}}\left(Cv_{u,v}.V_{u,v,t}\right)\right] .QF_{u,t}-\sum_{u\in\mathbf{U}_{f}}\sum_{t\in\mathbf{T}}Cinv_{u}.Vol_{u,t}$$

$$-\sum_{u\in\mathbf{U}_p}\sum_{t\in\mathbf{T}}Cinv_u.Vol_{u,t} - \sum_{u\in\mathbf{U}_{pipe}}\sum_{t\in\mathbf{T}}Ct_u.QF_{u,t}$$

Supply Chain Model – cont. from previous slide

- subject to the models of:
 processing units {

 e units that compose refinery topology
 e refineries that compose the supply chain
- tank
 petroleum and product tanks that compose refineries
 petroleum and product tanks that compose terminals
 refineries and terminals that compose the supply chain
- pipeline |
 pipeline network for petroleum supply
 pipeline |
 pipeline network for product distribution

 $QF, QS, Q, Vol, Lot \in \Re^+$ $PF, PS, V \in \Re$ $y \in \{0, 1\}$

Supply Chain Components

Petroleum Distribution Overview

Product Distribution Overview

RPBC flowsheet

Intermediate connections

Modeling Example

Tanks and CD1 Model

Refinery Multiperiod Planning – REVAP results

DICOPT (NLP CONOPT++) (MIP OSL, CPLEX)

Demand profile - GLN

Planning under Uncertainty - REVAP results

Proposed Strategies and Results

	Primal subproblem	Dual subproblems	Multipliers update
Strategy 1	Fixed assigment	Lagrangean	Subgradient
Strategy 2	Fixed inventory	Lagrangean	Subgradient
Strategy 3	Fixed inventory	Surrogate	Subgradient
Strategy 4	Fixed inventory	Lagrangean	Modified Subgradient

Supply Chain Example

Cases:

- 1: Complete model
- 2: Pre-selection of some suppliers
- 3: Interruption of pipeline segment SG-RV
- General constraints:
- Planning horizon: one / two time periods
- Supply of 20 oil types
- Generation of 32 products (6 transported with pipelines)

Supply Chain Example – Petroleum Selection

Supply Chain Example – REVAP

Supply Chain Example – RPBC

Supply Chain Example – Oil Supply

Supply Chain Example – Product Supply

Supply Chain Example – Intermediate Streams

Supply Chain Example – Computational Results

Case	Case 1		Cas	Case 2		Case 3	
Number of time periods	1	2	1	2	1	2	
Constraints	2304	4607	2306	4611	2304	4607	
Variables	2544	5087	2544	5087	2544	5087	
Discrete variables	195	390	195	390	195	390	
Solution time (CPU s)	116.8	656.2	152	915.6	157.8	2301	
Objective Value (\$ x10 ⁶)	20.4	41.3	20.3	41.1	18.0	36.3	

Conclusions

>Mathematical programming

- -General refinery topology
- -General petroleum supply chain representation
- -Representation of nonlinear properties and multiple periods
- -Non-convex Large-Scale MINLP

Real-world applications

- -General planning trends along multiple periods
- -Analysis of scenarios (discrete probabilities)
- -Intensive computational effort

Research needs

≻Modeling

✓ Upstream-Downstream Integration

✓ Multi country supply chains (royalties, tariffs)

✓ Modeling of uncertainties

Efficient solution methods

✓ Decomposition (spatial, temporal, functional)

✓ Approaches (Lagrangean Relaxation, Cross Decomposition)