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Abstract

We consider a complex scheduling problem in the chemical process industry involving batch production. The application described
comprises a network of production plants with interdependent production schedules, multi-stage production at multi-purpose facilities, and
chain production. The paper addresses three distinct aspects: (i) a scheduling solution obtained from a genetic algorithm (GA) based optimizer,
(ii) a mechanism for collaborative planning among the involved plants, and (iii) a tool for manual updates and schedule changes. The tailor made
optimization algorithm simultaneously considers alternative production paths and facility selection as well as product and resource specific
parameters such as batch sizes, and setup and cleanup times. The collaborative planning concept allows all the plants to work simultaneously
as partners in a supply chain resulting in higher transparency, greater flexibility, and reduced response time as a whole. The user interface
supports monitoring production schedules graphically and provides custom-built utilities for manual changes to the production schedule,
investigation of various what-if scenarios, and marketing queries.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, there is a renewed interest in advanced
planning and scheduling (APS) applications(Stadtler &
Kilger, 2000). This is evident from a range of new gen-
eration APS tools available in the market which combine
the increased computational power with state-of-the-art op-
timization and database management techniques. Having
implemented an enterprise resource planning (ERP) sys-
tem (e.g.Schumann, 1997), many companies are interested
in integrating their supply chain internally and externally
with the aid of the internet-based methodologies (e.g.
Knolmayer, Mertens, & Zeier, 2000; O’Leary, 2000; Tan,
Shaw, & Fulkerson, 2000; Yang, 2000).

Although the scope of applications varies, the primary
needs for implementing APS tools remain the same: To plan
future activities while anticipating the market but at the same
time being flexible enough to handle changes in the short
term and minimizing the effects of these changes on the
long term perspective. The added emphasis on meeting con-
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flicting business objectives, such as reducing response time,
meeting due dates, increasing customer satisfaction, and re-
ducing inventory, is an additional reason for using an APS
tool.

Long term rough-cut planning essentially looks ahead
to plan roughly and prepare the business well in advance
for the upcoming market trends while meeting the primary
goals of the business in terms of improving overall busi-
ness efficiency.Short termscheduling, on the other hand,
considers decisions on production sequencing, minimizing
idle time and due date violations, and keeping the inven-
tory level low, at the same time respecting all production
constraints.

In practice, however, it is often not possible to represent all
the constraints in a mathematical model or to provide a real-
istic estimate of the specific cost effects. Due to uncertainty
in cost and production parameters the methods that strive
for the true optimum are condemned to fail in practice and
hence are rendered less effective in handling industrial appli-
cations. Many production constraints, such as sequence de-
pendencies, lot size restrictions or resource allocations, lead
toNP-hard optimization problems(Monma & Potts, 1989;
Pinedo, 1995), for which cost optimum solutions cannot be
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computed within a reasonable CPU time. Moreover, auto-
mated system solutions without user interface are of little
use in many practical applications. Instead, flexibility based
on qualitative factors such as market and production dynam-
ics and multiple conflicting business objectives is important.
A holistic approach is needed, which combines the compu-
tational power and the flexibility of the modern APS tools
with the possibility of user-driven interactions and manual
interventions.

There are many articles in the scientific literature which
deal with mathematical optimization problems of planning
and scheduling in the chemical industry (e.g.Burkard,
Hujter, Klinz, Rudolf, & Wenning, 1998; Garcia-Flores
& Wang, 2002; Kallrath, 2002a; Westenberger & Kallrath,
1994). Other papers present case study oriented research
contributions (e.g.Blöhmer & Günther, 1998; Grunow,
Günther, & Lehmann, 2002; Mendez & Cerda, 2002) or
focus on specific methodological aspects (e.g.Blömer &
Günther, 2000; Burkard, Kocher, & Rudolf, 1998;
Kallrath, 2002b; Neumann, Schwindt, & Trautmann, 2002;
Timpe, 2002). According to our practical experience at
Bayer AG, a successful planning application, however,
involves three major components: (i) A comprehensive
mathematical backbone to compute an optimized solution
which can then be improved either through further opti-
mization on specific sub-problems or through manual in-
teraction, (ii) a mechanism for transparency, collaboration,
information sharing, and conflict management, and (iii)
a powerful interface for manual interaction and problem
visualization.

This paper emphasizes various aspects of an integrated
planning and scheduling problem occurring in the pro-
cess industry. Problems involving short and long term
scheduling and planning with product chains passing
through multiple batch production plants and consisting
of many intermediate production steps are highlighted in
Section 2. All the three aspects mentioned above were
considered in the industrial application discussed in this
paper: (i) A genetic algorithm (GA) was adopted in-
stead of relying on other optimization techniques such
as MILP or MINLP (e.g. Kolisch & Hartmann, 1998;
Kolisch & Padman, 2001). The mathematical model and
the implemented algorithm are described inSection 3.
(ii) Increased transparency and reduced response time for
changes in the production schedule were achieved by im-
plementing acollaborative planning modelwhich allows
distributed decision making and access to the production
schedule at the various plants involved. Additional system
support for conflict management was provided by intro-
ducing the concept of a so-called “chain planner” who
is authorized to look at production schedules of multi-
ple plants simultaneously. The concept and architecture
are presented inSection 4. (iii) Using a commercial APS
tool, an application specific scheduling model was imple-
mented to allowmanual updates and changes, as described
in Section 5.

2. Problem statement

2.1. Application environment

We consider a network of multi-purpose production
plants that produce a variety of finished products through
multi-stage production processes. The plants are linked by
supplier–customer relations, i.e. one plant may produce in-
termediate goods that are processed further by other plants.
The customer-supplier relations depend on the material
flow given by the recipes of the final products. Furthermore,
each plant interacts with external suppliers and customers.
To fulfill customer orders, a variety of processing steps and
a number of plants have to be considered depending on the
recipes of the final products.

Each plant comprises a large number of multi-purpose
productionfacilities (or equipment units) at which produc-
tion takes place inbatchmode. An ordered set of batches
produced consecutively (without any delay in between) at
the same facility is called acampaign. In general, the size
of a campaign is limited from below.

A product is the outcome of a uniqueprocess. Each pro-
cess involves various types of facilities (e.g. mixers, reac-
tors, dryers) which have to be passed in a given order. The
processing of a campaign at a facility is called anactivity.
Hence, a process can be defined as an ordered set of activ-
ities. Since a campaign consists of a set of batches which
have to be processed one after another, an activity can be
described as an ordered set ofoperations. An operation is
defined as the processing of a batch.

Due to the peculiarity of the process industry the num-
ber of feasible combinations of process-specific equipment
units (routings) is limited. Also the type of equipment
feasible for a specific product is limited. The alternative
product-equipment assignments are defined by a routing
structure which consists of a source and a sink node and
paths indicating the alternative production flows (Fig. 1a).

Before starting a process, the necessary equipment units
have to be assembled, i.e. the various facilities have to be
connected (routed) to each other (as required by the pro-
cess) and to be cleaned. After termination of the process, the
equipment is cleaned again. Therefore, asetuptime before
a process and acleanuptime after a process are required.

The time between the beginning of the first activity and
the beginning of the last activity of a process is defined as
theflow time. The duration of an operation is characterized
by a givencycle timewhich indicates the time span required
to complete a batch at a facility (Fig. 1b). The cycle time
depends on the process and the selected routing, but is iden-
tical for every operation carried out at the routed facilities.

The material flow between production facilities can be
linear, convergent or divergent (due to coupled production).
In the practical application considered here two types of
demand can be distinguished, forecasts and customer orders.
Eachdemand(or requirement) elementis given by a required
quantity of a specific product and a specific due date.
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Fig. 1. Routings, material flow, and campaigns.

2.2. Formal description of the decision problem

2.2.1. Basics
The problem addressed here can be roughly stated as fol-

lows:
Given

• a set of production plants, their production equipment and
corresponding capacities;

• a set of products, that can be processed in each plant,
associated constraints, production parameters, routings,
and bills of material (BOM);

• a set of demand elements (both forecasts and customer
orders); and

• a set of penalties and cost functions.

Provide

1. a feasible schedule which simultaneously ensures that
(a) enough material at each BOM level is produced to

satisfy the demands;
(b) early warnings for shortages of intermediates and raw

materials are provided;
(c) all production constraints, resource availabilities, and

business requirements are respected; and
(d) good solutions in a practical sense with regard to the

multiple conflicting objectives are obtained.
2. a platform and a mechanism allowing

(a) every plant to operate independently, however to be
able to collaborate with other plants for increased
transparency and information sharing;

(b) reduction in response time to any changes in the pro-
duction schedule of a plant acting as the internal sup-
plier or customer;

(c) conflict management and monitoring.

3. a system support and a user friendly tool for
(a) easy visualization of the production schedule;
(b) manual updates and interactive changes of production

schedules;
(c) answering marketing queries;
(d) maintaining latest inventory positions;
(e) maintaining master and transactional data.

Next, with the above explanations in mind, we give
the notation used for the formulation of the optimization
problem.

2.2.2. Problem parameters (master data)
Let X denote the set of multi-purpose, multi-product

plants andF the set of facilities. Each plantx ∈ X in-
volves a setFx ⊆ F of facilities, whereF = ∪x∈XFx

and for x, x′ ∈ X with x �= x′ we haveFx ∩ F ′x = ∅.
P denotes the set of products (raw material, intermediates
or finished goods) that may be produced or consumed by
processes.

The set of all processes is denoted byA. Associated with
each processa ∈ A are a setP−a of input and a setP+a of
output products withP−a ∩ P+a = ∅. For any pairP+a ,P

+
a′

with P+a �= P+a′ we haveP+a ∩ P+a′ = ∅, i.e., each product
p ∈ P is manufactured in a unique way. For productp ∈
P−a (P+a ), δ−a,p (δ+a,p) denotes the input (output) fraction of
productp for processa.

In order to manufacture a final productp ∈ P one has
to produce a setPp ⊆ P of products consisting ofp and
the intermediates according to the recipe ofp. LetAp ⊆ A
denote the corresponding set of processes.

A routing r ⊆ F is an ordered set of facilities that have to
be passed when manufacturing productp by processap. ri is
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theith routed facility. The set of feasible routings associated
with a ∈ A is given byRa.

The sizeb of a batch depends on processa as well as
on the chosen routingr ∈ Ra: b = b(a, r). The same
holds for the minimum campaign sizem = m(a, r), the
cycle time z = z(a, r), the flow time f = f(a, r), the
setup times = s(a, r), and the cleanup timec = c(a, r).
For the sake of simplicity, the dependence ona and r

is omitted in the following if no misunderstanding can
occur.

2.2.3. Instance parameters (transactional data)
The customer orders and forecast demands are reflected

by a setE of requirement elementse = (π, q, td). π ∈ P
is the product required,q the corresponding quantity, and
td denotes the due date. In general, to satisfy demands, a
processa ∈ A has to be performed several times. In order
to distinguish between these occurrences ofa we use the
term chainlinkCa, which denotes a demand-induced set of
batches of processa, all performed in a single campaign
using the same routing. To manufactureπ, each process
a ∈ Aπ, i.e. a corresponding chainlinkCa, has to be per-
formed. According to the recipe ofπ, several processes
a′, a′′, . . . , i.e. chainlinksCa′ , Ca′′ , . . . , have to be per-
formed in a certain order. The resulting (partially) ordered
set{Ca′ , Ca′′ , . . . } of chainlinks is named (product) chainCe.

In the following, we assume that for all points in timet
we havet ≥ 0 wheret is not allowed to exceed a giventime
horizon. Theinventory levelof productp ∈ P is denoted by
i(p, t). i(p,0) is the initial inventory level.

The occupation of a facilityf ∈ F is reflected by are-
source(occupation) objectof = (ts, tc, n, v,w, a, r). ts (tc)
denotes the start (completion) time of chainlinkCa at each
facility f ∈ r or, in other words, the start (completion) time
of the activity at facilityf = r1 (r|r|). n denotes the cam-
paign size.v andw are binary variables indicating whether a
setup or cleanup takes place (v = 1 andw = 1, respectively)
or not (v = 0 andw = 0, respectively). (Later on, we show,
how setup and cleanup can be saved.) Hence, allf ∈ r are
occupied during the time interval [ts− vs, tc+wc[. Besides
the occupation off by a chainlink,of might also reflect the
occupation off by a shutdown(e.g. for maintenance). In
this case, we setn = v = w = a = r = 0.Of denotes the
set of all occupations off and the vectorO = (Of )f∈F is
called (production) schedule.

Upon generating a new schedule one has to consider that
there are some chainlinks and shutdowns, reflected by re-
source objectŝof , which have already been scheduled in
the past and may not be changed. These objects form the
initial scheduleÔ = (Ô)f∈F. Moreover, for some products
p ∈ P a so-calledfrozen zone[0, fp[, i.e. a kind of quaran-
tine time where no scheduling ofCap is allowed, might be
given.

To give a short impression of the size of real-world in-
stances of the optimization problem, some key figures are
listed inTables 1 and 2.

Table 1
Master data

Average value Maximum value

|F| 1000–1300 1300
|A| 600–650 700
|Ra| 2–4 150
|r| 3–8 10
|Ap| 3–6 10
|Ce| 6–25 9000

2.3. Properties of a feasible schedule

A scheduleO is called feasible, if the following con-
ditions hold (with of = (ts, tc, n, v,w, a, r) and o′f =
(t′s, t′c, n′, v′, w′, a′, r′)):

• O containsÔ, i.e.:

Of ⊇ Ô (f ∈ F ). (1)

• At each facility f ∈ F, at most one resource object is
scheduled at a time, i.e., for any pairof , o

′
f with ts ≤ t′s

we have

tc+ wc≤ t′s− v′s′ (of , o
′
f ∈ Of , f ∈ F ). (2)

• The frozen zones [0, fp[ are obeyed, i.e.:

ts− vs≥ fp (p ∈ P; of ∈ Of \Ô, f ∈ F ). (3)

• The minimum campaign sizesm are respected, i.e.:

n ≥ m (of ∈ Of , f ∈ F ). (4)

• The operations of an activity are performed one after an-
other without preemption, i.e.:

tc = ts+ f + nz (of ∈ Of , f ∈ F ). (5)

• Each activity uses a feasible routing, i.e.:

r ∈ Ra (of ∈ Of , f ∈ F ). (6)

• The activities of a chainlink run in parallel and the setup
and cleanup variables take the same values, i.e., for each
pair of , of̃ with o

f̃
= (t̃s, t̃c, ñ, ṽ, w̃, ã, r̃) and f̃ ∈ r we

have

ts = t̃s, tc = t̃c, n = ñ, v = ṽ, w = w̃. (7)

• If two resource objectsof , o′f are scheduled consecutively
at the same facilityf w.r.t. the same processa and routing
r with ts ≤ t′s, the cleanup after the activity corresponding

Table 2
Transactional data

Maximum value

|E| 950
Time horizon 600
Objects inÔ 1200
Inventory changes in̂O 45000
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to of and the setup before the activity corresponding to
o′f can be saved, i.e.:

r = r′ ∧ a = a′ ⇒ v = 0∧ w′ = 0. (8)

• No negative inventory level may occur, i.e.:

i(p, t) ≥ 0 (p ∈ P; t ≥ 0). (9)

2.4. Solution methodology

As mentioned before, the application requirements are
considered in three distinct aspects: (i)optimization, (ii) col-
laborative planning, and (iii) manual interaction.

2.4.1. Optimization
Due to the size and complexity of realistic problem in-

stances, exact solution methods are not applicable. More-
over, the problem structure does not allow to sub-divide the
problem by plants, facilities or manufacturing levels, or to
represent capacities, resources or the planning horizon in an
aggregated way. An optimization method has to be chosen
which quickly computes initial solutions and shows a strong
convergence behavior. Asgenetic algorithmstend to have
this property, it has been decided to use them as a basis for
the implemented solution strategy. For an overview of ge-
netic algorithms and their applications seeGen and Cheng
(2000).

2.4.2. Collaborative planning
Using AspenMIMI© from AspenTech as a commercially

available APS tool and a common client–server network
structure, a platform for collaborative planning was estab-
lished where local models are able to retrieve information
from a central database. The data transfer and data consis-

Fig. 2. Chain with three chainlinks.

tency are realized with the help of remote function calls and
macros.

2.4.3. Manual interaction
A user friendly tool was developed for easy and fast

manual interaction and monitoring the production sched-
ule. Again, AspenMIMI© from AspenTech was used,
which—due to its toolbox structure with graphical user
interface oriented programming—allows a high degree of
freedom in customizing and development. A high level of
user feedback has been considered in developing application
specific utilities.

3. Solution approach

Let e = (π, q, td) ∈ E be a requirement element andRe =
{R1, . . . , Rne} a set ofrouting combinationsR determining
for each processa ∈ Aπ which routingr ∈ Ra to choose:
Ri ∈ ×a∈AπRa (i = 1, . . . , ne), wherene =

∏
a∈Aπ

|Ra|.
Ra denotes the routingr ∈ Ra to be chosen for all processes
a in chainlinkCa. Hence, associated with each routing com-
binationR ∈ Re is a chainCe (Fig. 2).

The set{C1
e, . . . , C

ne
e } of all chains associated withRe is

denoted byΓe. Ce has the following properties:

• Each chainlinkC ∈ Ce uses the routing given byR.
• The output of each chainlinkC ∈ Ce is sufficient to satisfy

the primary demandq and the secondary demands induced
by q.

In the following, we show how the chainsCe ∈ Γe

are generated based on the determination ofRe (cf.
Section 3.1), computed (cf.Section 3.2), and scheduled
(cf. Section 3.3), and how the obtained schedule can be im-
proved (cf.Section 3.4). In Section 3.5, we show how all the
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components of GA work together.Section 3.6is devoted to
the parameter setup and inSection 3.7, the implementation
issues are presented.

3.1. Chain generation

Prior to the computation ofRe andΓe the setsPπ andAπ

as well as the manufacturing levelslp (p ∈ Pπ) of productp
are determined by means ofAlgorithm 1: Here,P ′ denotes
an auxiliary set andle is the maximum manufacturing level
associated withe.

Algorithm 1. Chain generation

Pπ := {π}; Aπ := {aπ}; P ′ := {π}; lπ := 0
WHILE P ′ �= ∅ DO
P ′ := P ′\{p}; Aπ := Aπ ∪ {ap}
FORp′ ∈ P−ap DO

P ′ := P ′ ∪ {p′}; lp ′ := lp + 1
IF p′ /∈ Pπ THEN Pπ := Pπ ∪ {p′}

le := maxp∈Pπ lp

Now, the setRe can be easily obtained by settingRe := ∅
and adding all possible routing combinationsR. A routing
combinationR is yielded by selecting exactly one routing
r ∈ Ra for each processa ∈ Aπ.

3.2. Chain computation

To compute a chainCe w.r.t. routing combinationR the
following computations for each chainlinkCa ∈ Ce have to
be performed.

First, the sizenCa of the campaigns associated with
Ca are determined such that the total (primary and sec-
ondary) demandqp of each productp ∈ Pπ is satisfied (cf.
Algorithm 2, wherer := Ra). Let Pl = {p ∈ Pπ|lp = l} ⊆
Pπ be the set of all products inPπ with manufacturing
level l.

Algorithm 2. Campaign sizes

qπ := q; FORp ∈ Pπ\{π} DO qp := 0
FOR l := 0 TO le DO

FORp ∈ Pl DO
nCa := �max{qp, δ+ap,p mb}/(δ+ap,pb)�
FORp′ ∈ P−ap DO qp′ := qp′ + δ−

ap,p′ bnCa

Second, the set PredCa (SuccCa ) of predecessor(succes-
sor) chainlinks, i.e. chainlinksCa′ (Ca′′ ) with P +

a′ ∩P −
a �=

∅ (P +
a ∩ P−a′′ �= ∅) and the corresponding minimum time

lags ordelaystCa′Ca (tCaCa′′ ) between the start time ofCa′
(Ca) and the start time ofCa (Ca′′ ) have to be determined by
means ofAlgorithm 3 (with r′ := Ra′ , b′ = b′(a′, r′), and
z′ = z′(a′, r′)). Here,np,i denotes the minimum number of
batches to be completed byCa (with a = ap) before theith

batch ofCa′ ∈ SuccCa can be started w.r.t. the demand for
(input) productp ∈ P−

a′ .

Algorithm 3. Chainlinks and delays

FORCa ∈ Ce DO
PredCa := ∅; SuccCa := ∅
FORCa′ ∈ Ce DO

IF P+
a′ ∩ P −

a �= ∅ THEN
PredCa := PredCa ∪ {Ca′ }
SuccCa′ := SuccCa′ ∪ {Ca}

FORCa′ ∈ SuccCa DO
tCaCa′ := 0

FORp ∈ P +
a ∩ P−a′ DO

np.i := min{j ∈ N|δ+a,p bj ≥ δ−
a′,p b′i}

tCaCa′ := max{tCaCa′ ,max{ti|i ∈ {1, . . . , nCa}} + f }
with ti := np.iz− (i− 1)z′

Note that each chainCe ∈ Γe is computed independently
from all other chainsCe′ which have already been sched-
uled, i.e. without consideration of inventory levels at the
start times of the chainlinksC ∈ Ce. Moreover, the min-
imum campaign sizes might lead to overproduction, i.e.
producing more than required to cover total demands. (In
Section 3.4it will be shown how overproduction can be
decreased.)

3.3. Chain scheduling

3.3.1. Strategies
Having explained how chains are generated and com-

puted, it will now be described how they are scheduled. Let
a requirement elemente = (π, q, td) and the corresponding
setsRe andΓe be given. A chainCe ∈ Γe is scheduled into
an existing scheduleO by iteration on the chainlinksCa ∈
Ce. For each chainlinkCa, a start timets is determined in
such a way that

• each facilityf ∈ r := Ra is available within the time
interval [ts− s, ts+ f + nz+ c) with n := nCa ;

• possible savings of setup and cleanup are realized;
• the delaystCa′Ca with Ca′ ∈ PredCa andtCaCa′′ with Ca′′ ∈

SuccCa are respected;
• a violation of due datetd is avoided (if possible);
• activities being performed consecutively at the same fa-

cility are synchronized, i.e. the time lags between their
start times are kept short; and

• the obtained scheduleO′ is feasible (Section 2.3).

After the determination ofts a resource objectof reflect-
ing the occupation off by Ca is created for each facility
f ∈ r and added toOf . Due to material flows between
a chainlink and preceding and subsequent chainlinks, the
chainlinks have to be scheduled in a certain order. We dis-
tinguish between two strategies:
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• Backward scheduling strategy: The chainlinksCa are or-
dered by increasing manufacturing levelslp with p ∈ P +

a .
Starting at timetd, they are scheduled iteratively by this
order.

• Forward scheduling strategy: The chainlinksCa are or-
dered by decreasing manufacturing levelslp with p ∈
P +

a . Starting at time 0, they are scheduled iteratively by
this order.

As it is possible thatCe cannot be scheduled without ex-
ceedingtd, the backward scheduling strategy does not lead
to a feasible scheduleO′ in any case. In these cases, the
forward scheduling strategy generates schedules with ex-
ceeded due dates. Then, both strategies are combined in a
backward-and-reverse scheduling strategy that first tries to
schedule a chain just-in-time using the backward schedul-
ing strategy and, in case of failure, switches to the forward
scheduling strategy.

3.3.2. Scheduling algorithm
A feasible scheduleO is obtained from the initial schedule

Ô by scheduling the chainsCe ∈ Γe (e ∈ E) iteratively fol-
lowing an order given by a permutationε of E. If the surplus
amounti(π, td)−

∑
e′∈E:π′=π H(t′d, td)q

′ of productπ being
available at timetd (with H : R × R → {0,1}, H(t, t′) =
1⇔ t ≤ t′) is not sufficient to satisfyq, the corresponding
chainCe is scheduled w.r.t. a routing combinationR ∈ Re.
R is taken from a vector" of routing combinations. (A de-
tailed description follows inSection 3.5.)

As mentioned above, we first try to scheduleCe accord-
ing to the backward scheduling strategy. Before, thecurrent
scheduleÕ := O is saved and may be called again if the
backward strategy fails and one has to scheduleCe accord-
ing to the forward scheduling strategy.

When a chainlinkCa has been scheduled with start time
ts, the latest start time of each preceding chainlinkCa′ ∈
PredCa with start timet′s is updated as follows: First of all,
the earliest precedence-feasible start time is determined:

t′s := min{t′s, ts− tCa′Ca}. (10)

Afterwards, the resource constraints are taken into account
by setting

t′s := max{t ≤ t′s| [t − s′, t + n′z′ + f ′ + c′[∩
[ts− vs, tc+ wc[= ∅ (of ∈ Of , f ∈ r)} (11)

with n′ := nCa′ andr′ := Ra′ . Provided that

t′s− s′ < 0 or t′s− s′ < max
p′∈P +

a′
fp′ (12)

(i.e. a frozen zone of an output product ofa′ is violated),
the backward scheduling strategy is stopped and the forward
scheduling strategy is restarted withÕ. Else, possible sav-
ings of setup and cleanup are realized: For eachf ∈ r′, let
of reflect the first occupation off after t′s. If a = a′ and
r = r′ hold for each facilityf ∈ r′, then we setw := 0,

v′ := 0, and increase the start timet′s := t′s+ c′ + s. (If the
forward scheduling strategy has been applied, the first oc-
cupation beforet′s is examined and the time spansc ands′
are reduced, if possible.)

Next, a resource objecto′f with t′c := t′s+n′z′+f ′ is added
to Of (f ∈ r′). Moreover, the inventory levels of all input
productsp ∈ P−

a′ and output productsp ∈ P +
a′ are updated.

3.4. Schedule improvement

3.4.1. Order aggregation
As mentioned before, the constraints on minimum cam-

paign sizes may cause overproduction. As the position of
each chain is determined in the scheduling step, inventory
levels cannot be considered in the previous chain computa-
tion step which computes each chainCe independently from
all others. Furthermore, scheduling chainlinks with overpro-
duction (i.e. where the sizen of the corresponding cam-
paigns is too long) may result in a poor synchronization
of the chainlinksCa ∈ Ce because-with increasingn-it be-
comes more difficult to find a feasible start timets for Ca.

To consider these effects, chains are not generated and
computed for single requirement elementse ∈ E. Require-
ment elements for the same finished product are cumulated
until minimum campaign sizes for all the required inter-
mediates are reached. Basically, order aggregation applies
a well-known procedure of material requirements planning
(e.g. Günther & Tempelmeier, 2000), where the total de-
mand for a product is computed using the primary demands
and the matrix of input factors.

At first, all requirement elements w.r.t.π that can be ful-
filled using the initial inventoryi(π,0) are removed fromE
and the inventory level forπ is updated. LetEπ ⊆ E be the
set of all requirement elements forπ ordered by increasing
due dates. Anaggregate order̃e = (π̃, q̃, t̃d) w.r.t. an (or-
dered) subset̃Eπ ⊆ Eπ is given by

π̃ := π, q̃ :=
∑
e′∈Ẽπ

q′, and t̃d := min
e′∈Ẽπ

t′d. (13)

Define the matrixA of (modified) input factors byA :=
(app′)p,p′∈Pπ with app′ := δ−a,p/δ

+
a,p′ . Furthermore, let̂q =

(q̂p)p∈Pπ be the vector ofprimary demandswith q̂p = q̃

for p = π̃ and 0, otherwise. Then, followingGünther and
Tempelmeier (2000), the vector ofq̄ = (q̄p)p∈Pπ of total
demands, can be obtained as follows:

q̄ = (I − A)−1q̂, (14)

whereI denotes theidentity matrix.
To illustrate the calculation of̄q, let us consider the fol-

lowing example.

Example 1. Let three products (numbered from 1 to 3,
where 1 denotes the finished product) and the Gozinto graph
depicted inFig. 3 be given.
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Fig. 3. Gozinto graph.

We assume that, after aggregation at the level of finished
product 1, we havêq1 = 10. This leads to the following
system of equations:

q̄1 = q̂1 (15)

q̄2 = 3 · q̄1 (16)

q̄3 = 2 · q̄1+ 1 · q̄2 (17)

For more complex chains, the calculation ofq̄ can be done
according to(14). With q̂ = (10,0,0),

I =




1 0 0

0 1 0

0 0 1


 , A =




0 0 0

3 0 0

2 1 0


 , and

I − A =




1 0 0

−3 1 0

−2 −1 0


 (18)

we obtain

q̄ := (I − A)−1 · q̂ =




1 0 0

3 1 0

5 1 1


 ·




10

0

0


 =




10

30

50


 .

(19)

To obtain aggregate orders forπ, the first elements ofEπ
are aggregated stepwise until either

q̄p ≥ δ+a,pbm (p ∈ Pπ) (20)

is fulfilled or all requirement elements ofEπ have been ag-
gregated. In the former case, the next aggregated order is
generated by starting with the first element ofEπ that has
not been aggregated yet.

The procedure results in the smallest possible aggregated
requirement element where the minimum campaign sizes for
all intermediates are obeyed. It is important to note that this
aggregation might not coincide with the aggregation needed
for reaching the optimal solution, i.e. that the process of ag-
gregation stops too early. Optimizer, however, can combine
two campaigns subsequently to make a larger campaign at
different levels of BOM. As the optimizer works with the
aggregated requirement elements, we might exclude the op-
timal solution w.r.t. the original requirement elements from
the search space. However, our procedure yields an aggre-
gation leading to a near–optimal solution within a reason-
able amount of time which is very important in the face of

thousands of requirement elements and (on the average) six
levels of BOM.

3.4.2. Campaign reduction
Neither the chain computation nor the order aggregation

considers available inventory for intermediate products.
Furthermore, the order by which requirement elements
are aggregated does not affect the order by which the re-
spective chains are scheduled nor the start times of the
corresponding chainlinks. Therefore, it is necessary not
only to check the campaign size prior to scheduling, but to
adjust it after the scheduling of a chain in order to avoid
overproduction.

After a chainCe is scheduled, it is checked for all chain-
links Ca ∈ Ce if the sizen of the campaigns associated with
Ca can be reduced, starting withCa having the lowest man-
ufacturing level.

To check a chainlinkCa with start timets and completion
time tc, the surplus inventoryi+p being available attc is
determined for each output productp ∈ P +

a :

i+p := min
t≥tc

i(p, t)−
∑

e∈E:π=p

q. (21)

The maximum numbern− by which each campaign cor-
responding toCa can be reduced is given by

n− := min

{
n, min

p∈P +
a

{⌊
i+p /δ

+
a,p b

⌋}}
. (22)

If n− = n, then all campaigns corresponding toCa can
be saved and the resource objectsof (f ∈ r) associated
with Ca can be removed from the schedule. In addition,
for eachf ∈ r, we have a look at the first resource object
o′f (o′′f ) before (after)ts and adjust the setup and cleanup
indicators accordingly:w′ := 1 (v′′ := 1). Then, we check
for campaign reduction w.r.t. the chainlinks associated with
o′f (o′′f ).

If n− < n, then all campaigns corresponding toCa are
reduced by min{n−, n−m} batches. In this case, the com-
pletion timetc of Ca is reduced by min{n−, n−m}z and the
resource objectsof (f ∈ r) associated withCa are adjusted
accordingly. Moreover, for each facilityf ∈ r the setup in-
dicator of the first resource objecto′f after ts is updated by
settingv′ := 1.

After Ca has been reduced, the inventory levels of all in-
put and output productsp ∈ P −

a ∪ P +
a are updated and

campaign reduction is performed for allCa′ ∈ PredCa . Hav-
ing checked the whole chainCe, the delay times between its
chainlinks have to be updated.

3.4.3. Move-algorithm
After a chainCe is scheduled and all campaigns are re-

duced,Ce, i.e. some of its chainlinks, might be moved back-
ward or forward. By moving a chainlink, idle time on the
corresponding facilities is reduced and the synchronization
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of subsequent chainlinks is improved. To move a chainlink,
first the direction of the possible move is determined. In case
the due datetd of the requirement elemente is exceeded,
it is tried to move all chainlinks backward, starting with a
chainlink with the highest manufacturing level. In the other
case, a forward move starting with a chainlink with the low-
est manufacturing level is attempted.

A forward move of a chainlinkCa ∈ Ce begins with the
determination of the latest possible start timet̄s considering
the existing scheduleO, due datetd, and delay timestCaCa′
for all subsequent chainlinksCa′ ∈ SuccCa . After determin-
ing t̄s, it is checked if the inventory levels of all input and
output productsp ∈ P −

a ∪ P +
a remain nonnegative, pro-

vided thatCa is moved fromts to t̄s. In that case, the move
is performed, i.e., the start and completion time of each re-
source objectof (f ∈ r) associated withCa, the inventory
levels of all input and output productsp ∈ P−a ∪ P +

a , and
all affected setups and cleanups are modified accordingly.

3.5. Optimization algorithm

3.5.1. Basics
In the following, starting with an initial schedulêO, a

feasible scheduleO is obtained for an instance of the op-
timization problem using GA.Algorithm 4 shows how all
components of GA work together (withE′ denoting the ini-
tial requirement set).

O is determined w.r.t. a pair (individual) (ε, ") consist-
ing of a permutationε = (ε1, . . . , ε|E|) ∈ E (with E denot-
ing the set of all permutations ofE) and a vector" ∈ P =
{("1, . . . , "|E|)|"e ∈ Re, e = 1, . . . , |E|} of routing combi-
nations (with"e determining the routing combinationR to
be used for chainCe (e = 1, . . . , |E|) andP denoting the set
of all possible vectors of routing combinations).

For eache ∈ E, we determine the routing combination
R := "e to be used for chainCe and computeCe w.r.t. R.
Next, the chainsCε1, Cε2, . . . , Cε|E| are scheduled following
the order induced byε, and a feasible scheduleO = Oε," is
obtained. With an objective functionF defined on the set of
all feasible schedules, a fitness valueF̃ ((ε, ")) := F(Oε,")

can be assigned to each individual(ε, ") ∈ E× P .
Using appropriate methods ofreplication and mutation

of individuals andselectionto choose individuals from a
populationI ⊆ E × P , the strategy of genetic algorithms
can easily be applied to obtain improved feasible schedules.
In a preprocessing step, the setsRe andP are generated.
The optimization starts with a randomly generated initial
population.

A fitness valueF̃ ((ε, ")) assigned to each individual
(ε, ") ∈ I is used to select a setIs ⊆ I of survivorsfrom
the population. By replication and mutation, a new popula-
tion I′ for the next iteration of the GA is generated from
the survivors inIs. The iteration stops if a termination cri-
terion is fulfilled, and the scheduleOε," corresponding to
the individual(ε, ") with the best fitness valuẽF((ε, ")) is
returned.

Algorithm 4. GA

STEP 0 (Initialization)
DetermineE by applyingorder aggregationto E′
DetermineRe (e ∈ E) by chain generation
SelectI ⊆ E× P ; I′ := ∅; O := Ô; F) := ∞
STEP 1 (Determination of new schedule)
IF I �= I ′ THEN

Select(ε, ") ∈ I\I ′; I ′ := I ′ ∪ {(ε, ")}; O := Ô;
i := 1
WHILE i ≤ |E| DO

ComputeCe w.r.t. e := εi andR := "εi ; Õ := O

IF Ce can be scheduledbackward into Õ

THEN O := Õ

ELSE ScheduleCe forward into O

Performcampaign reductionto Ca ∈ Ce
Performmove-algorithmto Ca ∈ Ce
i := i+ 1

F̃ ((ε, ")) := F(Oε,")

IF F̃ ((ε, ")) < F) THEN F) := F̃ ((ε, ")); O) := O

GOTO STEP 1
ELSE

IF Termination criteria fulfilled THEN RETURNO)

ELSE
STEP 2 (Determination of new population)
DetermineIs ⊆ I by selection
DetermineI ′ ⊆ E× P from Is by replication
Performmutationto I ′
I := I ′; I ′ := ∅; GOTO STEP 1

3.5.2. Objective function
In the industrial application considered, the planning

horizon is significantly longer than the time between two
consecutive planning runs. Thus, the distant part of the
schedule will be rescheduled in later planning runs. There-
fore, most terms of the objective functionF are weighted
by a time-dependent factor eωt with a degression parame-
ter ω < 0. As a consequence, the impact of a decision on
the objective function value (e.g. violation of a due date)
depends on the corresponding point in timet.

The first evaluation criterion for a schedule is given by
the development ofinventory levelsover time. With∆t :=
mint′∈T :t′>tt

′ − t (whereT denotes the set of all points in
time t at which i(p, t) changes) and∆i(p,t) = i(p, t) −∑

e∈E:π=p H(td, t)q, the inventory level of a productp ∈ P
can be quantified by∑
t∈T

max{0,∆i(p,t)}∆te
ωt. (23)

For a requirement elemente = (π, q, td), let ts (tc) be the
start (completion) time of chainlinkCa ∈ Ce with a = aπ.
Theearlinessandtardinessfor e are measured by

max{0, td − tc}qeωtd (24)

and

max{0, tc− td}qeωtd, (25)
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respectively. The durations of thesetupsand cleanupsare
measured by

vseω(ts−s) (26)

and

wceω(tc+c) (27)

respectively. Themakespan

max
f∈F

max
of∈Of

(tc + wc) (28)

of scheduleO is also considered. Moreover, without going
into detail, apriority value for each routing has been taken
into account when computingF(O).

With we, wt, wp, ws, wc, andwm denoting weights cor-
responding to earliness, tardiness (product) inventory levels,
setup, cleanup, and makespan, the objective function value
F(O) is computed as follows:

F(O) :=
∑
p∈P

wp × (18)+ we

∑
e∈E

(19)+ wt

∑
e∈E

(20)

+ws

∑
f∈F

∑
of∈Of

(21)+ wc

∑
f∈F

∑
of∈Of

(22)

+wm × (23).

In the following, we show how a new populationI ′ can
be obtained from a given populationI with |I ′| = |I| = λ.

3.5.3. Selection
After determining the fitness valuẽF((ε, ")) of each

individual (ε, ") ∈ I as described above, a setIs ⊆ I
of µ survivors is selected from the populationI or from
the populationsI and the survivorsI′s of the former it-
eration. This selection can be performed either in a de-
terministic manner, choosing the firstµ individuals with
the best fitness value, or in a stochastic manner, choosing
the individuals (ε, ") randomly, each with a probability
F̃ ((ε, "))/

∑
(ε′,"′)∈I F̃ ((ε′, "′)).

The setIs is the basis for the generation ofI ′. The
individuals ofI ′ are yielded by replication and mutation.

3.5.4. Replication
The replication method consists of two strategies:redu-

plication and recombination. The former creates a new
individual (ε, ") by copying one randomly chosen sur-
vivor (ε′, "′) ∈ Is: (ε, ") := (ε′, "′). The latter generates a
new individual(ε, ") from two randomly chosen survivors
(ε′, "′), (ε′′, "′′) ∈ Is.

To recombine(ε′, "′) and(ε′′, "′′), a cross-over position
i ∈ {1, . . . , |E|} is determined randomly. The permutation
ε of the new individual is obtained by copying the first
i elements ofε′ to ε and adding all missing elements of
{1, . . . , |E|} to ε in the order given byε′′. The reduplication
of " is simply done by copying the firsti elements of"′ and
the last|E| − i elements of"′′ to ". The ratio of the number

of elements generated by recombination and the number of
elements generated by reduplication is given byζ ∈ [0,1].

3.5.5. Mutation
The mutation method modifies a replicated individual

(ε, ") to become a different individual(ε′, "′). Severalmu-
tation parametersare assigned to(ε, ") to control the mu-
tation: themutation ratesαε = αε(ε, ") andα" = α"(ε, "),
which determine the number of mutations that will be per-
formed toε and", respectively, themutation step lengthβ =
β(ε, "), and thestrategy selection probabilityγj = γj(ε, "),
which equals the probability for mutatingε by strategyj.
Mutating an individual, these mutation parameters are mu-
tated, too. Note that, if an individual(ε, ") is obtained by
recombination of two individuals(ε′, "′) and (ε′′, "′′), its
mutation parameters equal the arithmetic mean of the pa-
rameters of(ε′, "′) and(ε′′, "′′).

To mutateε, four different mutation strategies are appli-
cable, and in each of theαε mutations, exactly one strategy
j is chosen randomly with probabilityγj:

• The exchange strategyexchanges the elementsεi and
εj at two randomly chosen different positionsi, j ∈
{1, . . . , |E|}.

• Theinversion strategyinverts the order given byε between
two randomly chosen different positionsi ∈ {1, . . . , |E|},
j ∈ {i− β, . . . , i+ β} ∩ {1, . . . , |E|}.

• The insert strategyinserts the elementεi at a randomly
chosen positioni ∈ {1, . . . , |E|} into a randomly chosen
target positionj ∈ {i− β, . . . , i+ β} ∩ {1, . . . , |E|}. This
can be done either byleft insert(i > j) or by right insert
(i < j). The choice between left and right insert is done
randomly with equal probability.

• Themove strategymovesk randomly chosen subsequent
elements ofε to other k randomly chosen subsequent
positions. The positionsi ∈ {1, . . . , |E|} and j ∈ {i −
β, . . . , i + β} ∩ {1, . . . , |E|} as well as the lengthk ∈
{1, . . . , |i− j|} are chosen randomly with equal probabil-
ity. The move strategy can be performed either to the left
or to the right.

To mutate", we first set"′ := ". Then,α" times, an
element"′e is chosen randomly from"′ and changed to
a randomly determined value which is taken from the set
{1, . . . , |Re|}.

The mutation parameters of an individual are mutated by
considering two parametersφ ∈ [0,100] andχ ∈ [0,1].
Each mutation parameter is either increased or decreased by
φ per cent, and the probability for an increase or decrease
equalsχ. Hereafter, the mutated probabilitiesγ ′j are stan-
dardized so that they sum up to 1.

3.6. Calibration of the optimization method

To tune the parameters for optimization properly, two
classes of them have been considered: First, the quality
of the final schedule and the convergence behavior of the
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algorithm can be influenced by theGA parametersand the
way of creating the initial population. Second, theobjective
function parameters(weights) have to be set appropriately
in order to reflect the overall business objectives. To deter-
mine the parameter values, we have defined a reasonable
low and a reasonable high value for each parameter. Af-
terwards, we have chosen a statistical design (Hadamard
3–design,Mason et al. (2003)) consisting of altogether 46
experiments being defined by the low and the high value
for each parameter. (For an overview of statistical design
theory seeBeth et al. (1999)).

3.6.1. GA parameters
As there is a trade-off between the computational time

and the quality of the schedule obtained, the choice of ap-
propriate termination criteria is highly important. We have
experienced that evaluating not more than 200–500 popula-
tions and allowing a maximum computational time of 7200 s
leads to good results for problem instances of realistic size.

Settings ofλ andµ influence the convergence behavior of
the algorithm, possible avoidance of local optima, and com-
putational time for each iteration. A high ratioλ/µ makes it
difficult to find good individuals in an early iteration, i.e. the
algorithm will converge slowly. A low ratioλ/µ makes it
more difficult to leave local optima. Good results have been
obtained by choosingλ/µ ∈ [10,20]. Furthermore, it has
been considered that the absolute values ofλ andµ influ-
ence the computational time spent on each iteration of GA
and therefore the time required for obtaining a first feasi-
ble solution. Numerical experiments revealed that not more
than 40 individuals ought to be evaluated in each iteration.

The generation of aninitial populationcan be performed
by creating each individual either randomly or deterministi-
cally. Tests of both methods show that it is recommendable
to create initial individuals(ε, ") with ε being given by or-
dering the requirement elements inE by increasing due date
td and with" being obtained by choosing a chain using rout-
ings with highest priority. The mutation parameters for each
initial individual are set deterministically, too: The mutation
ratesαε andα" are set to 1, i.e.ε and" are mutated exactly
once. Since the mutation ofε should consider the whole per-
mutation, step lengthβ is set to|E|. Each mutation strategy
should be chosen with equal probability.

For selection, tests have shown that a stochastic selection
strategy has a negative impact on the selection pressure be-
cause individuals with a poor fitness value may be chosen
to survive with a certain probability. For that reason, a de-
terministic strategy has been applied.

For replication, we have found out that better results are
obtained if many individuals contain information given by
two surviving individuals. Therefore, the recombination pa-
rameterζ is set to a rather high value, i.e.ζ ≥ 0.6.

Themutationof an individual(ε, ") can be performed by
either mutating onlyε or " in one single mutation step or by
mutating both. Best results are yielded by deciding randomly
with equal probability if eitherε or " should be mutated,

with the exception that both are mutated in the first iteration.
For the mutation ofε, all four mutation strategies should be
applied. The parametersφ andχ ought to be set in such a
way that the probabilities for the insert and move strategy
slightly increase while that of the invert and exchange strat-
egy slightly decrease. The setting of the mutation parameter
for β should ensure that it is expected to increaseβ by 25
percent. Hence, even in later iterations it is probable that the
whole permutationε is considered during mutation.

3.6.2. Objective function parameters
Good results are obtained with a degression parameter

ω ∈ [1/60,1/80]. The weightsws andwc are taken from
the interval [1000;3000] and the other weights are chosen
from [1,3].

3.7. Implementation issues

The optimization algorithm has been coded in C++ using
a two-processor Intel Pentium machine with 500 MHz clock
pulse and 2 GB memory under the operating system Win-
dows NT© 4.0. The duration of setting up an optimiza-
tion model for a problem instance (with a size as given by
Tables 1 and 2) and of the following optimization run is in
the range of 45 min to 120 min, depending on the parame-
ter settings for the termination criteria and the size of the
problem instance.

It is appealing to implement a GA on computers with
parallel CPUs since each individual of a population can be
treated independently from others. One way to do that (in
an object-oriented manner) is to usethreads (Hughes &
Hughes, 1997). Threads are in some way independent pro-
cesses which use the same memory in the RAM for the
calling process. The key issue in using threads is to avoid
deadlocks. Deadlocks can occur when more than one thread
tries to access the same element in memory. This problem
can be solved by encapsulating elements bysemaphores. A
thread can access an element only by taking its semaphore
before and releasing it after the access. Threads that try to
use the same element at the same time have to wait until the
semaphore is free. The threads, which are thrown in a loop
over all individuals, are scheduled by the dispatcher of the
optimization system.

If there are several CPUs, the threads are scheduled in
parallel at the same time on different CPUs. All terminated
threads are caught in another loop. The next population can
be computed after all threads have been terminated and the
new population has been generated.

4. Collaborative planning

4.1. The approach

The optimization model comprises an integrated schedul-
ing model and is run in a nightly batch job. The solution
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provided by the optimization run, however, is subject to
manual changes and updates (Section 5). Due to the in-
tegrated structure of the production system and interde-
pendencies of plant schedules, changes in one plant affect
multiple other plants, and the ripple effects can increase
the magnitude of changes in downstream plants. In the in-
dustrial application, 11 plants are integrated, and the plant
schedules are highly interdependent. More than 50% of
the end products are produced in chains involving more
than four plants. For this reason, it is important to consider
the latest schedule situation in other plants while making
changes in a given plant. Due to performance and flexibility
issues these changes are carried out locally by the plant
planner. However, a plant planner is allowed to change only
part of the schedule. For this purpose, the integrated model
containing the results of the optimization run is broken
down into plant specific models. Individual plant planners
can use the reduced models for manual changes to the so-
lution proposed by the system. Each sub-model is a copy of
the integrated model with only the plant-specific resources.

From a plant scheduler’s point of view, the studies on the
integrated model brought out the need for a model architec-
ture, where the individual plant scheduler should

• be able to work on a smaller model with the facilities the
planner is allowed to schedule but at the same time be able
to share and view information with and from others plants

• be able to see the schedule changes to the relevant pro-
duction steps in other plants;

• make other plants aware of the schedule changes; and
• with the help of a chain planner, reduce conflicts and find

a mutually agreeable solution for product chains running
through multiple plants.

The model that was implemented in this context is called
collaborative planning model. From the business point of
view, the collaborative planning model serves the following
goals:

• transparency of production schedules and shared informa-
tion among all the plants;

• reduction in response time for reacting to any changes
in the production schedule of upstream or downstream
plants;

• minimization of conflicts among involved plants by si-
multaneously considering the production schedule of a
specific subset of plants; and

• effective use of the global inventory maintained in the
individual plants.

The objectives of shared information can be served by
having one centralized model which can be accessed by the
different plant planners, who are allowed to operate only on
the authorized part of the schedule. However, this approach
was found unacceptable due to the poor system perfor-
mance arising from the projected size and complexity of the
integrated model, selected APS system, and links with the
optimizer. Hence, an alternative approach was adopted. The

approach considers each plant as a separate entity or partner
in a supply chain which needs to be integrated, and all part-
ners work in collaboration. The collaboration is achieved
by sharing the relevant part of the production schedule from
each plant by every other plant. This architecture allows
breaking up of the integrated production schedule model
involving all plants into separate plant specific models.
As the separate model for each plant is a reduced model,
the approach guarantees a good system response time for
manual changes.

The adopted approach required an architecture and a
mechanism to gather information about the latest production
schedule in all other partner plants and to publish produc-
tion schedule changes to the partner plants. This transfer
must maintain the consistency of data and schedule. In ad-
dition, taking advantage of the fact that all the plants are
part of the same organization, a mechanism was also estab-
lished to prepare a virtual plant involving multiple plants to
consider decisions for chain production.

4.2. System architecture

The system architecture is based on a client–server-
concept. It involves plant specific models on the local
client communicating with an integrated model on a server
(Fig. 4).

The architecture consists of the following modules, which
are briefly explained in the following:

• master production model(MM);
• plant production models(PMx);

Fig. 4. Collaborative planning system architecture.
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• master view model(MVM) for monitoring;
• chain planner models(CPMs);
• communication mechanismamong these models; and
• login and authorization conceptfor data consistency and

updates.

4.2.1. Master production model
Themaster production modelcontains information related

to all the master data and the current integrated schedule
from all the plants calledmaster schedule(MS). This model
is updated during the night for the latest data related to (i)
products, (ii) bills of material (BOMs), (iii) demands, (iv)
material receipts, and (v) inventory positions from the ERP
system.

MM is used for the nightly optimization run and for
rolling the production schedule forward each night. Then,
copies of plant specific models are created from it for man-
ual changes. This ensures that the models are synchronized
at the beginning of each day. During the day,MM serves as
a focal point to receive and send latest changes in the sched-
ule and master data in each of the individual plants. This
model is used for communication from and between the
plant and chain scheduler(s). Any changes made within the
plant models or in the chain planner models are broadcast
back toMM. By collecting all the changes during the day, it
provides the latest information on the production schedule
and the master data for all the involved plants. It thus acts
as a central data repository which always holds the most
up-to-date information. By receiving the information from
MM, the plant model remains synchronized and the data
consistency among the models is maintained. The latest in-
formation on the production schedule in the other plants and
other changes in the dynamic data are also received from
MM.

4.2.2. Plant production model
Theplant (production) modelfor plantx (PMx) contains

information related to the schedule of plantx and the rel-
evant master data. Apart from the detailed information on
the production schedule for plantx, it also contains produc-
tion schedule information published by all the other plants
x′ �= x. The PMx are generated daily from theMM after
re-optimizingMS. During the day the plant planner updates
thePMx on the local client machines.

Any plant schedule considers the resources of the cur-
rent plantx. The production schedules from other plants are
shared using a setFv of virtual facilities. For each productp
produced in plantx, a virtual facilityfp ∈ Fv is introduced
in plant x. fp depicts the production schedule information
for productp in plantx. Using the virtual facilities, the pro-
duction schedule is shared without revealing the exact in-
formation about the real facilities used within the plant.

Any schedule or master data relevant changes within a
PMx are broadcast toMM. Other plant planners from the
same plant work with the updatedPMx containing the latest
master data. This way it is avoided that for every change

in the plant master data a completely newPMx is created
from MM. This improves the system performance without
loosing data consistency.

4.2.3. Master view model
Themaster view modelis a reduced model for “view only”

purposes allowing a simplistic overview of the integrated
production schedule. It involves only the virtual facilities,
and it is used by the chain scheduler to monitor the produc-
tion schedule spanning across all the plants. During the day,
the model is constantly updated by receiving the changes in
the production schedule fromMM. No changes are broad-
cast back toMM. MMV is created at the end of a nightly
batch job along with thePMx.

4.2.4. Chain planner model
The chain planner modelis a model for a virtual plant

created from the currentMM involving a selected subset
of plants. The model involves all the master data and the
production schedules for the selected plants with all the
resources in those plants.CPM receives the most current
schedule fromMM, and any schedule changes withinCPM
can be published back toMM. There can be more than one
CPM with different subsets of plants involved. TheCPM
supports schedule modifications involving chain products
and the affected plants and thereby helps to resolve conflicts.

4.2.5. Communication mechanism
The communication mechanism amongMM, thePMxand

the CPMs involves a series of complex macros using re-
mote function calls to send and receive the information. The
type of data that are exchanged between the models can be
broadly classified intomaster data, schedule relevantor dy-
namic data, andauthorization and data consistency relevant
data.

4.2.6. Login and authorization concept
The architecture allows more than one scheduler in a plant

to monitor and analyze the production schedule. Even a sin-
gle user can work with multiple copies of the same model.
To maintain data consistency and to avoid conflicts, the con-
cept of tokenwas introduced. A token is assigned to each
plant in the integratedMM. The process that is currently
allowed to broadcast information is the one which has the
token. This concept ensures that at any given point in time
only one process per plant is authorized to broadcast.

5. Manual planning interaction

5.1. Basics

System-generated schedules need frequent manual
changes. There are many reasons for such manual changes,
such as the breakdown of an equipment, the acceptance of
an unexpected customer order, or the necessity to rework
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some production output. To handle such changes and to
analyze their consequences, an APS system has to allow
manual interaction in the plant. In the industrial appli-
cation considered, the commercially available APS tool
AspenMIMI© from AspenTech was used to represent the
schedule and to enable manual interaction. It allows a high
degree of freedom in customizing and development due to
its toolbox structure with application specific programming.
The tool provides a customizable planning board in form of
a Gantt chart and built-in scheduling functions to support
the development of an application-specific planning and
scheduling system.

The built-in support functions provided by the APS tool
are used both to analyze the schedule and to enable manual
interaction functions. The most important built-in functions
are

• the planning board with a high flexibility for customizing;
• forward and backward tracing of production activities,

which allows the user to follow the production sequences
and material flow; and

• multi-level BOM explosion, which enables viewing the
material consumption even between the plants.

With the support of these scheduling functions, an APS
tool for manual user interaction was developed. Several util-
ities provided by this tool are briefly described below.

5.2. Utilities

5.2.1. ATP and CTP
The available-to-promise(ATP) andcapable-to-produce

(CTP) utilities allow the user to inquire about the availabil-
ity of a product. The user can check the unallocated inven-
tory of a product around a specified date or inquire about
the earliest date for the availability of a specified quantity.
If the product is available at the requested date, an order
can be placed to deliver the product exclusively from inven-
tory (ATP). If the unallocated inventory is not sufficient, the
user can inquire for a capacity check to produce the miss-
ing quantity (CTP). Provided that there is enough capacity,
the order can be placed, and the corresponding chain can be
planned. A major restriction of this utility is that a planner
is allowed to use it only for products or chains which do
not involve other plants. This avoids conflicts arising from
inter-plant planning. The ATP and CTP utilities bring ben-
efits both as an immediate query tool and as a simulation
help.

5.2.2. Manual update of current production
The automatic roll-forward utility updates the plan

overnight and rolls the date forward by one day. However,
this is based on standard production parameters. The plan-
ner revises the status of the current chainlinks using the
manual update utilitywhich allows the planner to enter the
actual production situation into the schedule. This update
of the production is an essential part of the daily manual

planning in the plant and also allows a better inspection of
the problems in the integrated schedule and of the conflicts
between the plants.

5.2.3. Drag and drop of activities
Perhaps one of the most important features of a manual

planning tool is the so-calleddrag and dropof produc-
tion activities in the Gantt chart. However, such a simple
mouse action has its consequences on the capacity uti-
lization and material availability. Therefore, the developed
post-proceduresof moving an activity on the planning
board from one facility to another or from one time slice
to another check the availability of capacity at the target
facility and target time slice. In addition, available routings,
possible parameter changes and requirements for setup and
cleanup are considered during a drag and drop action to
ensure the feasibility of the resulting schedule.

5.2.4. Routing data maintenance
The routing data maintenance utilityprovides a set of

user friendly matrix-based interfaces which help the planner
to create or modify routings, the facilities involved, and the
related production parameters. The aim is to keep this vital
information as compact and simple as possible for process-
ing and easily accessible for the planner.

5.2.5. Batch identification
Each batch of a campaign gets a number which will stay

with it from the actual production until it leaves the shop
floor. Batch numbers assigned to a campaign are consid-
ered when modifying production schedule with other utili-
ties such as drag and drop to ensure that batches still have
ascending numbers.Batch identificationis essential to track-
ing batches from production to shop floor.

6. Conclusions

The paper has demonstrated a practical way of approach-
ing a complex scheduling problem in the chemical process
industry involving batch production. The successful im-
plementation has lead to both quantitative and qualitative
benefits. It has increased overall customer satisfaction and
stability without sacrificing flexibility in production sched-
ule changes. Moreover, it has reduced conflicts, and im-
proved communication among different business functions.

A tailored optimization algorithm has been developed
to handle a network of production plants with interde-
pendent production schedules, multi-stage production with
multi-purpose facilities and chain production. The solution
procedure tends to (i) improve the utilization of available
resources, (ii) reduce projected inventories, and (iii) mini-
mize due date violations. The algorithm considers produc-
tion schedules of all plants involved simultaneously and
thus provides a better overall solution than one obtained by
individually optimizing production schedules.
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A collaborative planning model allows (i) transparency,
(ii) shared information on production schedule, (iii) reduc-
tion in response time for reacting to any changes upstream or
downstream, (iv) system support for conflict management,
(v) monitoring and analyzing the latest production schedule
of the integrated model, and (vi) better use of globally avail-
able inventory. The custom-built tool for manual interactions
provides (i) user friendly utilities for changes in the produc-
tion schedules, (ii) a useful visualization tool for monitor-
ing and analyzing plant specific production schedules, (iii)
a support for generating multiple what-if scenarios, (iv) an-
swers to marketing queries, and (v) a system representing
the current situation in the production plant.

It has been observed that all three aspects, namely (i)
a high quality solution obtained from theoptimizer, (ii)
a mechanism forcollaborative planning, and (iii) a user
friendly tool for manual interaction, were needed within an
integrated framework to realize all the above mentioned ben-
efits and to ensure user acceptance of the APS tool. Con-
centrating on any one of these aspects and achieving the
best result in it but ignoring the others would have lead to a
failure in realizing the full potential for improvements.
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