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Highly regulated industries such as pharmaceuticals and agrochemicals face the

challenge of maintaining a 0continuous stream of new products. This is difficult

because of low probabilities of technical success, high development costs, uncertain

market impact, a scarcity of good new product ideas, and limited human and capital

resources available to develop them. The problem of evaluating and selecting which

new products to develop and then of sequencing or of scheduling them is complicated

further by the presence of dependencies between products both in the market place

and in the development process itself.

This study proposes a portfolio management approach that selects a sequence

of projects, which maximizes the expected economic returns at an acceptable level

of risk for a given level of resources in a new product development pipeline. A

probabilistic network model of distinct activities is used to capture all the activities

and resources required in the ‘‘process’’ of developing a new drug. A prioritization

scheme suggesting sequences for developing new independent drug candidates with

unlimited resources is generated with a conventional bubble chart approach. These

sequences initiate a genetic algorithm (GA)-based search for the optimal sequence

in the presence of product dependencies and limited resources. By statistically

evaluating the sequences generated during the GA search using a discrete event

simulation model, it is possible to construct an economic reward-risk frontier that

illustrates the trade-offs between expected rewards and risks. The model ideally is

suited to answer various ‘‘what if’’ questions relative to changes in the resource level

on pipeline performance.

The methodology is illustrated with an industrially motivated case study, involv-

ing nine interdependent new product candidates targeting three diseases. The dra-

matic results yield a candidate sequence with an expected return 28 percent higher

than the sequence suggested by the bubble chart approach at almost the same level

of risk. The synergism among the candidate dependencies, pipeline resources, and

economic and technical uncertainties demonstrates the necessity of a computation-

ally intensive approach if the best development strategy is to be realized.

Introduction

R
esearch shows that only around 60 percent

of new products launched are successful

commercially (Griffin, 1997). In addition,

for every seven concepts that enter the new product

development (NPD) process, on average only one is
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successful commercially. Consequently, almost half of

the resources that U.S. industry devotes to NPD are

spent on products that fail or are cancelled. In the

pharmaceutical industry this problem particularly is

challenging because of long development times, low

success rates, high capital requirements for building a

manufacturing facility, and broad uncertainty in sales

estimates (Kahn, 2002). This article will provide a

computational decision support system for managing

a new product pharmaceutical portfolio. The goal is to

maximize expected financial returns at an acceptable

level of risk for a given level of corporate resources.

In the spirit of Adler et al. (1995) and Pisano

(1997), this study’s approach uses models similar to

manufacturing to characterize the highly regulated

product development process in the U.S. pharmaceu-

tical and agrochemical industries. To gain regulatory

approval from government agencies, all new products

follow the same route through the development proc-

ess. The plan for developing each drug mirrors a

house-building plan with definitive precedence rela-

tionships and task durations. A major departure from

the house analogy is that during, or at the end, of some

of these tasks, the development of the new drug may

be terminated. These termination points may occur

because of unwanted side effects, marginal efficacy, or

competition from in-house or competitor candidates.

Once estimates of the termination probabilities and

task duration distributions are supplied, it is possible

to simulate the movement of new product candidates

through the pipeline by using discrete event simulation

techniques (Adler, 1995; Taylor and Moore, 1980).

One additional complication is the need to consider

the interdependent nature of the various drug candi-

dates that arises from competition from both in-house

and competitor products (Roberts, 1999), synergism

between the duration of tasks of related products in

the pipeline, and finally dependencies of technical suc-

cess probabilities of other drug candidates preceding

them in the pipeline. Incorporating these dependencies

into the model of the pipeline represents a significant

advance over the existing literature.

Evolution of New Products in the

Pharmaceutical Industry

There are three major stages in the life cycle of a

pharmaceutical product:

Discovery ! Development ! Launch ðCommercialÞ

Discovery Stage

Literally thousands of molecules are applied to targets

developed to simulate various disease groups. Once an

active molecule—one that has an effect on the tar-

get—is discovered, various permutations of the struc-

ture of the molecule are tested to improve various

properties that predict whether the molecule eventu-

ally will be successful as a drug. The best molecule

from these structure-activity relationships is tested for

toxicological results in whole-body systems. If no par-

ticularly worrisome toxic effects are observed, the

molecule is promoted to the status of ‘‘lead’’ mole-

cule and becomes a candidate for development.

Development Stage

Enormous sums of money and resources are commit-

ted to the lead molecule to observe its behavior in
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healthy volunteers first, then in patients with the dis-

ease, and finally in large-scale clinical studies

conducted in concert with the Food and Drug Admin-

istration (FDA). Coincident with these studies, proc-

ess research and formulations work is conducted

to supply the drug for testing purposes as well as to

design and to construct a commercial plant, if the

product is launched.

Commercial Stage

If the drug is effective in clinical studies, has no un-

acceptable side effects, and is approved by the FDA, it

may be marketed. Target markets are identified for a

staged launch or ‘‘ramp-up’’ of the new compound.

After a few years, a mature sales level usually is

reached and is maintained until patent coverage on

the molecule expires and/or until competition from

generics is realized (Roberts, 1999). Once generics are

available, an attempt usually is made to get approval

of the drug for alternative markets and perhaps in

different dosage forms. In any case, sales diminish

after a patent expires.

This study is concerned with the decision-making

process at the start of the development phase. New

drug candidates are available from the discovery proc-

ess, and management needs to decide which, if any, of

these to select. Once selected, they need to decide how

to sequence them with respect to each other and other

drug candidates that can be supplied from other drug

discovery companies through some type of in-licensing

arrangement. The word sequencing means that when

conflicts arise, due to resource constraints, for exam-

ple, the earlier appearing candidate is processed first.

Details of the Drug Development/

Commercialization Process

Once a new candidate molecule is promoted to the

status of lead molecule, it follows the steps shown in

the flow diagram of Figure 1. All activities or tasks are

described by rectangles and the precedence relation-

ships between tasks by arrows. Key termination

points are presented as diamonds and are not truly

activities but rather are the consequence of the pre-

ceding activities. The entire flow diagram is referred to

as a probabilistic network model to distinguish it from

the traditional critical path method (CPM) or project

evaluation and review technique (PERT) representa-

tion (Elmaghraby, 1977).

First Human Dose Preparation (FHD)

This is a planning activity in preparation for admin-

istration to healthy volunteers. This includes various

pharmaco-kinetic studies including adsorption, distri-

bution, metabolism, and excretion from the body as

well as suitable dose levels.

Phase I

This includes the first clinical trials in which the drug

is administered to healthy human volunteers. Acute/

chronic and reproductive studies in animals (mice/

rats) also are conducted simultaneously. Positive

results indicate acceptable absorption, distribution,

or elimination patterns. Unacceptable behavior in hu-

man and animal studies can terminate the study.

Molecule 
Lead from 
Discovery

First Human 
Dose 

Preparation 

Sample Prep 

Phase I
Trials

Phase II
Trials

Phase III
Trials

FSAPrelaunch
Ramp Up 

Sales 
MATURE 
SALES 

Build Plant

Design 
Plant

Failure During Phase 
I Clinical Trials 

?

Process 
Development

?

?

First Submission 
For Approval 

Failure During Phase 
II Clinical Trials 

Failure During Phase 
III Clinical Trials 

Figure 1. Flow Diagram of the Activities Involved in the Development and Commercialization of a New Drug Candidate
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Phase II

The compound is administered to human patients

with the disease by using the results of dosing stud-

ies from Phase I. Coincident with these studies are

long-term oncogenic toxicological studies in animals

and market research to obtain sales estimates. If the

compound fails to treat the disease or is inferior to

competitive products, it is destaged or is returned to

the discovery phase for modification.

Phase III

This phase includes large-scale clinical studies on

humans with the disease. The FDA is involved and

indicates benchmarks for giving their approval. In

addition to confirming the efficacy, these studies iden-

tify drug–drug interactions, human demographics,

and so forth. This most expensive phase of the devel-

opment process requires extensive global coordina-

tion and cooperation. The results should confirm

what was learned in Phase II but on a much larger

scale; otherwise, the compound may be terminated.

First Submission for Approval (FSA)

All information (e.g., efficacy, toxicology, process,

drug–drug interactions, side effects) is combined and

is submitted to the FDA. Simultaneously, the mar-

keting strategy is evolving, price negotiations are

being conducted with suppliers/distributors, and pro-

motional materials are being developed. The con-

struction of a commercial plant is in progress.

Approval for selling the new drug is the anticipated

outcome.

Prelaunch Activities

This is the final stage before launch: Approval has

been received from the FDA; a global penetration

strategy has been completed; the commercial plant

has been built and has been started up; and a promo-

tional campaign has been launched. This phase ends

when the new drug is distributed.

Launch Activities

The compound is launched over a period of years in

various global markets until mature sales levels are

realized—the ramp-up period. Mature sales are main-

tained until patents expire or until competition is re-

alized either from competitors or from planned

cannibalization.

Product Supply Chain Activities

Sample preparation, process research, process devel-

opment, process design, and plant construction occur

simultaneously with other development activities

(Figure 1). Initial focus is on preparing sufficient sam-

ple material for various animal/human studies. Once

the launch prospects appear promising, the emphasis

changes to developing a process for commercialization.

This includes a pilot plant that provides data for plant

design as well as the larger quantities of material need-

ed for Phase III clinical trials. During Phase III clinical

trials, the new plant is designed, or other arrangements

for product manufacture are made. Once phase III tri-

als are successful, plans are launched to build a new

plant, to modify existing facilities, or to find a suitable

source of the materials needed for launch.

The Portfolio Management Problem

Managing the new product pipeline is a series of trade-

offs among maximizing expected economic returns,

minimizing risk, and maintaining diversity in the prod-

uct mix for a given level of renewable and nonrenew-

able corporate resources. Uncertainty and resource

limitations make this a challenging problem. For ex-

ample, there is a very high attrition rate as candidates

move through the pipeline. Twenty percent of the can-

didates drop out after Phase I, while 80 percent of the

remaining candidates drop out after Phase II human

efficacy testing (Rodriguez, 1998). As the drug moves

down the pipeline from Phase I to III, the financial

costs and resources required for testing dramatically

increase. Investments close to $500MM may be re-

quired just for the opportunity to launch the drug.

The portfolio must be selected in such a way that

the competition among drug candidates for limited

resources does not result in unusually long average

product development times and hence late commer-

cialization (Gupta and Wilemon, 1996). Further, the

portfolio must be large enough to compensate for

product failures yet must not be too large to over-

extend resources. The problem is complicated further

by the presence of product dependencies.Much like the
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exploitation of negative correlations between individ-

ual asset returns in managing a portfolio of financial

assets (Markowitz, 1991), the structure of correlations

and dependencies among development activity dura-

tions, capital investments, resource requirements, clin-

ical success probabilities, and marketplace perform-

ance can be used in managing a portfolio of new drugs.

However, unlike financial portfolio management, ex-

ploiting product dependencies requires prudent selec-

tion of drug candidates within a product portfolio and

the sequence in which the drugs are developed.

We propose a rational and computationally feasi-

ble approach that incorporates these complicating un-

certainties, product dependencies, and combinatorial

decisions into a single framework. This study’s overall

framework is built upon a unique combination of dis-

crete event simulation (Law and Kelton, 2000) and a

specially designed genetic algorithm (GA) (Holland,

1975). The essence of this approach lies in capturing

the probabilistic behavior of the drug product pipeline

within the discrete event simulation model, under se-

lection and sequencing decisions imposed by the GA.

The GA makes various feasible drug selection and

sequencing decisions that are evaluated by using the

discrete event simulator. The probability distributions

generated by the discrete event simulator then are

evaluated to determine an optimized decision.

Review of Literature on Pharmaceutical

Portfolio Management

The earliest portfolio management techniques applied

in the pharmaceutical industry were based on eco-

nomic analysis (Chapman and Ward, 1996). The dis-

counted cash flow (DCF) method remains the most

commonly used technique (Krishnan and Ulrich,

2001). However, it is based on expected values of un-

certain parameters and is unable to generate quanti-

tative details about the risk associated with a given

drug candidate (Poh, Ang, and Bai, 2001). Economic

analysis methods also have been criticized for their

rigid focus on single criteria decision-making versus

more realistic multiple criteria decision-making

(Linton, Walsh, and Morabito, 2002).

These concerns have been addressed by decision

theoretic methods (Morgan and Henrion, 1990). De-

cision theory formalizes the key concepts of risk and

return by defining the decision-maker’s utility function

(Markowitz, 1991). Using this formalism, decision the-

ory provides comprehensive portfolio management

methods such as decision trees that allow management

to undertake complex resource allocation decisions

among competing drug candidates with full consider-

ation to the possibilities of drug failures (Sharpe and

Keelin, 1994). The decision tree method also has ad-

dressed portfolio management issues such as how

many projects to pursue and how many projects to

terminate (Ding and Eliashberg, 2002). Unfortunately,

decision tree methods have come under criticism for

occurrence of unmanageably large decision trees, due

to significantly rapid increase in the number of selec-

tion and sequencing decisions with the size of the port-

folio (Copeland and Antikarov, 2001).

Real option valuation (ROV) has been promoted

as a substitute to the decision tree method (Amram

and Kulatilaka, 1999). While there is a large literature

on pharmaceutical portfolio management using ROV

(e.g., Loch and Bode-Greuel, 2001), in practice the

method has been used effectively only to evaluate sin-

gle projects (Copeland and Antikarov, 2001). Other

methods such as the stage-gatet process (O’Connor,

1994) appear mainly focused on tactical decisions

such as regulating the flow of work in the pipeline

rather than on strategic decisions such as project se-

lection and sequencing.

In contrast to this, Monte Carlo/discrete event sim-

ulation methods (Law and Kelton, 2000) readily ac-

commodate uncertainties and alternative performance

criteria in a computationally feasible manner (Blau and

Bunch, 2002). Simulation-based methods have been

employed by Adler et al. (1995) to analyze a relatively

complex engineering design process, by Blau et al.

(2000) in simulating an industrial-scale pharmaceuti-

cal NPD pipeline, by Repenning (2001) in modeling

the control and dynamics of a two-stage NPD system,

and by Subramanian, Pekny, and Reklaitis (2003) in

studying the effect of activity rescheduling on portfolio

performance. However, to date no simulation-based

method optimizes project selection and sequencing de-

cisions jointly. This study will address project selection

and sequencing decisions for the product development

pipeline against product launch decisions (Hultink

et al., 1997), which emphasize such issues as market

introduction and advertising campaigns.

Modeling Uncertainties in Pharmaceutical

Research and Development

Any attempts at detailed product portfolio anal-

ysis must begin by characterizing all uncertainties
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associated with parameters of all development activ-

ities, manufacturing costs, and marketplace returns

with probability distributions. For the flow diagram

shown in Figure 1, historical data at a major phar-

maceutical company were used to represent the pa-

rameters with a triangular distribution. The data are

presented in Table 1. For example, the time required

for Phase I testing ranges from minimum (min) of 225

days to a maximum (max) of 375 days with a most

likely (ML) value of 300 days. Costs are not distrib-

uted between manpower and equipment/clinical costs.

This type of detailed physical resource-based data is

available and could be used for future resource plan-

ning but is beyond the scope of this article.

There is a relationship between activity times and

costs in Table 1 for specific drug candidates. For ex-

ample, new drugs from a class of chemistries or bio-

tech products would require activity resource levels

closer to the maximum of the triangular time and cost

distributions than those familiar to a company. This

relationship is captured with a simple parameter

called the degree of difficulty (DoD). Subjective esti-

mates of DoD can be obtained from the various prin-

cipal investigators, although the values may be

different between work processes. However, since

the focus of this article is on project selection and se-

quencing rather than resource planning, the analysis

can be simplified by using a single value of DoD

ranging from 1 (very easy) to 10 (very difficult).

Table 2 lists DoD for a set of new product candi-

dates. The reported DoD values are used as follows:

(1) The minimum and maximum of the triangular

distribution remain the same as the values shown in

Table 1 for all the drug candidates; while (2) the most

likely value of the distribution is proportional to

DoD. If DoD is one, for example, the most likely

value is set equal to the minimum of the triangular

distribution while the maximum remains the same.

Conversely, if DoD is 10 the most likely value is set to

the maximum while the minimum remains the same.

Table 1. Probability Distributions for the NPD Pipeline Activities for Figure 1

Activity

Duration (days) Cost ($MM) Total
Available

Resource ($MM)Min ML Max Min ML Max

FHD Prep 300 400 500 72 80 88 275
Phase I 225 300 375 70 80 90 350
Phase II 375 500 625 75 80 85 175
Phase III 575 775 975 150 200 250 250
FSA 275 375 475 18 20 22 100
Prelaunch 75 100 125 45 50 55 550
Ramp Up 1 (RU1) 250 350 450 9 12 15 25
Ramp Up 2 (RU2) 250 350 450 19 22 25 50
Ramp Up 3 (RU3) 250 350 450 35 40 45 100
Mature Sales (Mat Sales) 250 350 450 46 53 60 150
Sample Prep 300 400 500 1.8 2 2.2 10
Process Development 1 (ProcDev1) 600 800 1000 7 10 13 16
Process Development 2 (ProcDev2) 600 800 1000 7 10 13 16
Design Plant (Des Plant) 550 750 950 8 10 12 12
Build Plant 600 750 900 52 62 72 120

Table 2. Example Data for Nine New Drug Candidates

Drug Name
Disease
Type

Success Probabilities Capital Cost (MM$) Mature Sales (MM$)

Degree of
f DifficultyPhase1 Phase2 Phase3 Min ML Max Min ML Max

D1 III 0.9 0.3 0.9 40 50 60 800 900 1000 5
D2 I 0.85 0.2 0.85 20 30 40 400 500 900 2
D3 I 0.95 0.35 0.95 30 45 60 600 750 850 8
D4 II 0.87 0.22 0.80 28 34 40 700 1000 1200 9
D5 II 0.97 0.36 0.99 25 40 75 1000 1200 1600 3
D6 I 0.83 0.18 0.86 50 60 70 500 650 800 7
D7 I 0.94 0.4 0.94 65 75 90 400 475 800 1
D8 II 0.86 0.2 0.88 60 65 90 1000 1500 1700 4
D9 II 0.98 0.34 0.92 52 62 72 1000 1200 1300 10
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For intermediate values of DoD, the most likely val-

ues are linearly scaled by their values above or below

DoD equal to five, the value used to generate the most

likely values in Table 1. This scaling procedure is

shown in Figure 2. More sophisticated scaling is pos-

sible but probably is not justified because of the extent

of the other uncertainties involved.

Although there is considerable uncertainty in spec-

ifying the resource requirements for individual activ-

ities, there is little or no uncertainty in specifying the

‘‘total’’ level of resources available to the decision-

maker at any point in time in the pipeline. The re-

source availabilities for each activity are given in the

last column of Table 1. The types of complex inter-

action between skill sets of the various teams, as con-

sidered by Adler et al. (1995), are less important in the

drug development environment where the process fol-

lows a well-defined, predetermined path.

The remainder of the uncertainties in the NPD

process is associated with the individual drug candi-

dates themselves. These include the success probabil-

ities in the three phases of clinical trials, the capital

required to manufacture the drug, and the sales at

maturity. Although the drug candidates never have

undergone any actual testing beyond the discovery

stage, it often is possible to extract subjective proba-

bility estimates of their anticipated performance from

the personnel involved (Morgan and Henrion, 1990;

Nutt, 1998). Clinical directors, for example, generally

have an opinion on anticipated behavior of the drug

in clinical trials based on its performance in discovery

research and their experience with similar drugs. En-

gineers are trained to estimate the capital required for

manufacturing a candidate drug from the structure of

the molecule and the chemical or biological process

used to manufacture discovery samples. Finally,

market research studies and forecasting practices

(Cooper, Edgett, and Kleinschmidt, 1999; Kahn,

2002) provide price and sales estimates for the prod-

uct at some launch date in the future. In all three of

these situations, the uncertainty in the estimates is

quite large, ranging from 50 to 100 percent of the

most likely values.

Types of Product Dependencies

Individual product returns frequently are influenced

by other products in the pipeline and by competitor

products (Roberts, 1999). In some instances, it may be

even advantageous to prioritize and to schedule a

candidate drug for early development despite unat-

tractive financials and low technical success probabil-

ities, because it will provide a knowledge base to

forecast the success better for dependent drug candi-

dates later in the product sequence.

In this article, four frequently occurring types of

dependencies are considered: (1) resource dependen-

cies (Verma and Sinha, 2002); (2) manufacturing cost

dependencies; (3) financial return dependencies; and

(4) technical success dependencies. Learning curve

effects frequently lead to resource dependencies. A

common example occurs when the development times

are reduced for the trailing candidate of two func-

tionally similar drug types. Cost dependencies occur

when the combined cost of a development activity for

two drug candidates is less than the sum of the indi-

vidual costs because of resource sharing. For example,

it may be possible to use the same production facilities

for two chemically or biologically similar drug candi-

dates. Financial return dependencies occur when

there is synergism or antagonism in the marketplace

(Roberts, 1999). For example, cannibalization can oc-

cur when two drug candidates are aimed at developing

products that compete with one other in the market-

place. Alternatively, several candidates can comple-

ment one another such that sales of one actually may

enhance the sales of another. Technical dependencies

occur when the technical success or failure of a drug

candidate affects the probability of technical success

of an as-yet-untested trailing drug candidate. For ex-

ample, two drug candidates might be developed to

release an active ingredient in a controlled fashion. If

the precedent candidate is successful, the probability

of success of the as-yet-untested second candidate will

be increased.
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A Pipeline Portfolio Case Study

Blau and Sinclair (2001) introduced an example prob-

lem for managing the portfolio of nine new drug can-

didates. Building on this example to accommodate

interdependencies, the problem case study shown in

Tables 2 and 3 was selected. The problem is large

enough to ensure that at least one drug will be

launched yet is small enough to illustrate that the im-

pact of the various dependencies. The uncertainty

data associated with the drug candidates, simply iden-

tified as D1 through D9 and targeted to treat three

different diseases, is shown in Table 2. The technical

success probabilities in each of the three clinical trial

stages are given as simple point estimates, while the

manufacturing costs of designing and building the

manufacturing facilities are represented by triangular

probability distributions. Although it is impossible to

estimate the sales ramp-up five or six years into the

future, market research can supply triangular proba-

bility distributions for sales estimates at maturity

(Table 2). Additionally, the right-most column of

Table 1 shows the deterministic total resource avail-

ability for each activity of Figure 1. In effect, the

nine drug candidates must compete for this limited

resource pool.

This example may appear restrictive in the sense

that all candidates enter the pipeline at the same place:

Table 3. Dependency Data for Nine-Drug Example of Table 2

Disease Drugs Type of Dependency Explanation of the Dependency

Disease I D2, D3, D6, D7 Financial Dependency Here sales are dependent on development sequence. If two drugs
for Disease I are successfully developed then sales for each
candidate are 0.85 of the independent sales of individual value
shown in Table 2, if three drugs for Disease I make it through the
pipeline successfully, then sales are 0.75 of the independent sales, if
all four drugs make it through successfully, then sales of each
candidate is 0.6 times the independent sales figures from Table 2.

Technical Dependency If the first drug in the sequence of drugs targeted for Disease I fails,
the probability of technical success for all succeeding drugs
decreases by 50%. On the other hand, if the first in the sequence
for testing Disease I succeeds, the probability of technical success
for all succeeding drugs for Disease I increases by 10%.

Manufacturing Cost Dependency For any sequence of drugs for Disease I, the 1st drug uses full
capital shown in Table 2, the 2nd drug in the sequence uses 1

2
of its

individual capital, the 3rd drug uses 1
3
of its capital cost, while the

4th drug uses 1
4
of its capital shown in Table 2.

Resource Dependency The time reduction by virtue of learning curve experience is
translated into a degree of difficulty reduction of 20% of the
values shown in Table 2 for every drug in the sequence for
Disease I.

Disease II D4, D5, D8, D9 Financial Dependency Total market for the drugs of Disease II is fixed at 9000 million
dollars.

Technical Dependency If the first drug in the sequence targeted for Disease II fails, the
probability of technical success for all succeeding drugs for Disease II
decreases by 50% from the values shown in Table 2. On the other
hand, if the first drug in the sequence targeted for Disease II succeeds,
the probability of technical success of all succeeding drugs for
Disease II increases by 10% of the values shown in Table 2.

Manufacturing Cost Dependency For any sequence of drugs for Disease II, the 1st drug uses full
capital listed in Table 2, the 2nd drug in sequence uses 1/2 of its
individual capital, the 3rd drug uses 1/3 of its given in Table 2.

Resource Dependency The time reduction by virtue of learning curve experience is
translated into a degree of difficulty reduction of 20% of the
value shown in Table 2 for every drug in sequence targeted for
Disease II.

Disease III D1 No Dependencies
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the start of development. In reality, candidates can

enter at different points along the pipeline to accom-

modate in-licensing and outsourcing options as well

as existing product line extensions. Figure 3, taken

from Blau and Bunch (2002), shows these various op-

tions. Such an analysis is beyond the scope of the

current article, although it is accommodated readily

with the methodology that will be described.

For the nine-drug-candidate example introduced in

Table 2, a realistic set of dependencies is shown in

Table 3. The financial return dependencies are differ-

ent for two of the three targeted diseases; however, the

technical, manufacturing cost, and resource depend-

encies are the same. In both cases the financial return

from developing more than one candidate is less than

the sum of developing the drugs alone. However, for

candidates targeting disease II the total market is

fixed, while for disease I the total market increases

to accommodate the additional candidates, although

at a slower rate. The probabilities of technical success,

resource, and cost dependencies all depend on the

development sequence. Consequently, until this se-

quence has been defined, it is not possible to calculate

the required resources, returns, or the success pro-

babilities.

In summary, the portfolio-planning problem asso-

ciated with this case study is to decide which of the

nine new drugs to select for development and, once

selected, the sequence to move them through the NPD

pipeline to maximize the return at the least possible

risk for the given resource capacities. The methodol-

ogy for solving this problem will be described next.

Discrete Event Simulation, Bubble Charts, and

Valuation of New Drug Candidates

The network of activities shown in Figure 1 and the

probability-based data shown in Table 1 together

constitute a probabilistic network model. Such a

network is an extension of the PERT network formu-

lation (Elmaghraby, 1977) to accommodate the con-

ditional nature of the product path following an

activity. For example, consider the simple network

shown in Figure 4, consisting of two activities fol-

lowed by a decision point. Once activities A and B are

completed, a decision must be made either to advance

to activity C, to return to a previous activity, or

terminate the development effort. Since the decision

depends on the uncertain outputs of A and B, the

network is said to be probabilistic.

A discrete event simulation program, CSIM (2000),

was used to simulate the pharmaceutical pipeline

shown in Figure 1. Given a set of drugs and the se-

quence by which they enter the pipeline, the program

simulates the behavior of the drug pipeline for

randomly selected values drawn from the probability
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distributions of Tables 1 and 2. As these drugs move

through the pipeline they accumulate development

costs, including costs of building a manufacturing

facility, until they enter the market place where the

product is ramped up until mature sales are realized.

The total resource levels specified in Table 1 are treat-

ed as inviolate; consequently, queues of drugs at the

various activities may occur. These queues slow the

development process, and, consequently, the time to

launch the various candidate drugs will be lengthened.

If a drug is terminated during development, no re-

turns are obtained, and all development costs are lost.

By selecting a sufficient number of different ‘‘samples

of values’’ at random from the probability distribu-

tions (Monte Carlo trials), performing the simula-

tions, and gathering the results, it is possible to de-

termine probability distributions for various econom-

ic returns and risk indicators.

Before considering a portfolio of products, it is in-

formative to examine the behavior of each individual

drug candidate. Using net present value (NPV) with

an internal rate of return of 15 percent as the eco-

nomic criterion, the behavior of each drug can be

simulated by using the discrete event simulation

program. The NPV distribution for D1 is shown in

Figure 5 following a sufficiently large number of

Monte Carlo trials. This two-peaked distribution is

typical of a new drug candidate in the pharmaceutical

industry. The first peak corresponds to the loss of

money in those instances when D1 fails to pass all the

clinical trials. That is, D1 technically is unsuccessful.

The second distribution corresponds to the returns

following a successful product launch. For D1, the

mean ‘‘loss’’ for those trials in which the product

failed to advance to the launch state is $214MM. The

primary variation around this value is due to the stage

at which the product failed. The mean ‘‘reward’’ fol-

lowing launches is $3887MM. The mean value or

expected net present value (ENPV) of the overall

distribution, which is $1425MM, lies somewhere be-

tween the mean loss and mean reward and truly is

meaningless since it never can occur. This is a pro-

found result. It is remarkable that anyone would use a

single, deterministic, meaningless ENPV value to de-

scribe the anticipated return from a drug. Yet this is

frequently the case in pharmaceutical and other NPD

companies in order to simplify calculations or to

avoid the reluctance of dealing with uncertainties.

To overcome the limitations of the ENPV measure,

the mean ‘‘reward’’ is described in this study in terms

of expected positive net present value (EPNPV),

which is defined as the expected value over the pos-

itive axis of the NPV distribution. The information

about the negative part of the distribution will be

conveyed by using a risk measure called probability of

losing money—the area under the negative axis of the

NPV distribution.

Blau et al. (2000) and Blau and Sinclair (2002) in-

troduced the concept of a reward/risk ratio, obtained

by dividing the mean reward by the mean loss, to

measure the attractiveness of new product candidates.

Intuitively, drug candidates with high reward/risk

ratios would be more attractive than those with low

reward/risk ratios. For D1 this ratio is 18.2, the ex-

pected reward (or return) for every dollar expected to

be lost in the NPD. Here risk is defined as the prob-

ability of losing money.1 The risk of losing money for

D1 is 24 percent, which is the area under the curve in

Figure 5 from an NPV of � infinity to zero. Since
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losses only can occur because of failure of the clinical

trials, risk is simply the complement of the product of

the probabilities of the drug successfully passing the

three clinical trials, or 76 percent for D1.

Individual reward/risk ratios can be determined for

all the drugs in Table 2. By plotting these values ver-

sus an independent factor, the probability of success-

fully navigating the pipeline (i.e., probability of

technical success), the bubble diagram in Figure 6 is

obtained. The size of the bubble in Figure 6 is the ex-

pected capital cost of building a manufacturing facil-

ity, and the shading of the bubble corresponds to the

target disease being treated. Intuitively, the most at-

tractive drug candidates are in the upper-right quad-

rant where both the reward/risk ratios and probability

of technical success are high. Within this quadrant

smaller bubbles are preferred over larger ones since

the capital requirements are less. In the same way,

large bubbles for drug candidates in the lower-left

quadrant are the least attractive since they have a low

reward/risk ratio and low probability of technical

success and are expensive to manufacture. Using

such intuitive arguments, D5 and D9 should be giv-

en preferential treatment whereas D2 and D6 are un-

attractive. It is less clear what to do with the drug

candidates from the other two quadrants. They in-

volve tradeoffs among reward/risk ratios, the proba-

bilities of technical success, and the size of the bubble.

The disease being targeted frequently can help in this

selection process. For example, in Figure 6 the four

drugs targeted to treat disease type II have higher re-

ward/risk ratios than the four drugs targeted to treat

disease type I. If another criterion were a desire to

maintain diversity in the portfolio, it would make

sense to develop D3 and D7 ahead of D4 and D8.

By using this type of reasoning for the four criteria

(reward/risk ratio, probability of technical success,

manufacturing cost, and a diverse product mix), an

intuitively appealing relative ranking for the nine can-

didates would be D5, D9, D3, D7, D1, D4, D8, D2,

and D6.

In practice, such an intuitive prioritized approach

is too simplistic. It includes uncertainties and deals

with multiple criteria but does not handle dependen-

cies between drug candidates, nor does it consider re-

source conflicts. However, it serves as a good heuristic

and starting point for the more comprehensive selec-

tion and sequencing process described in the next

section.

Optimizing a Portfolio of Interdependent

New Drug Candidates

A formal statement of the portfolio optimization

problem is as follows: Select a set of new drug candi-

dates, and sequence them for the development process

in such a way that the economic return expressed as

the expected positive new present value (EPNPV) is

maximized for a given level of risk measured as the

probability of losing money. Stated as a mathematical

program the portfolio optimization problem is to

Figure 6. Bubble Diagram for Nine New Candidate Drugs of Table 2
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Maximize EPNPV (over all available drug selections

and sequences)

Subject to

P(NPVo0)ob (Risk Constraint)

where b, the risk of losing money, may be set at 5

percent, 10 percent, or any other value coincident with

the risk tolerance level of management for their NPD

efforts. Decreasing b below a certain level (i.e., being

excessively risk averse) will reduce the EPNPV signif-

icantly, while high levels of b will introduce excessive

risk into a portfolio.

In order to find the ‘‘optimal’’ selection and

sequence of drugs, this conceptual mathematical

programming model needs to be transformed into a

quantitative model. It is important to note that a high-

ly combinatorial and statistically complex decision

problem such as research and development (R&D)

portfolio management cannot be formulated by using

traditional differential equation or mathematical pro-

gramming models without making unrealistic assump-

tions. As an alternative, a ‘‘computational model’’ is

presented that is built out of the aforementioned bub-

ble charts, a discrete event simulator, and a genetic

algorithm. The term sequence will encompass not only

information on the order in which drugs are devel-

oped—their priorities—but also on which drugs are

included in the portfolio: their selection. The method-

ology can be summarized as follows:

(1) An initial list of 10 sequences of drug candidates

is generated, some from the bubble chart using

individual drug analysis and others at random

(Table 4). In Table 4 the ‘‘0’’ indicates that a can-

didate was not selected, and a positive integer in-

dicates the position of the drug in the sequence.

(2) For every sequence, the probability distributions

associated with the activities for each of its select-

ed drug candidates are modified or are ‘‘pre-

processed’’ to account for the dependencies in

Table 3.

(3) The behavior of each sequence is simulated by

using a discrete event simulator.

(4) The results from these simulations are used by

a genetic algorithm to search for improved drug

sequences.

Table 4. Initial Population for the Genetic Algorithm

Ranking Basis Drug1 Drug2 Drug3 Drug4 Drug5 Drug6 Drug7 Drug8 Drug9
Average NPV
(million $)

Probability of
Losing Money (%)

Bubble Chart 6 0 4 7 1 0 5 3 2 1131.43 33.23
Bubble Chart 3 9 4 7 1 8 5 6 2 1265.66 25.44
Bottleneck 5 2 7 8 3 6 1 4 9 894.228 31.34
Random Order 4 0 2 0 6 5 1 0 3 1045.63 20.84
Random Order 4 1 0 0 0 2 3 5 6 473.222 33.37
Random Order 4 2 1 3 5 0 0 0 0 819.52 25.73
Random Order 5 0 4 0 2 3 6 1 0 1060.48 32.82
Random Order 2 3 0 7 1 6 0 5 4 1179.92 26.7
Random Order 1 0 0 0 4 5 0 3 2 1350.28 29.38
Random Order 1 0 3 0 4 0 6 2 5 1353.62 19.82
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The various steps in the algorithm are presented in

Figure 7. Since the genetic algorithm is the key to

finding improved sequences, its implementation re-

quires some explanation. Genetic algorithms are bi-

ased stochastic search algorithms (Gen and Cheng,

1997; Goldberg, 1989; Holland, 1975) based on anal-

ogies to Darwinian principles of natural selection. As

with evolutionary processes, genetic algorithms are

iterative, gradually evolving from some initial state to

an optimized one. Here, the initial state is the initial

list of drug sequences, with successive iterations im-

proving on previous sequences until a suitably opt-

imized one is found. The GA ‘‘encodes’’ sequence

selection decisions as a rank ordering of drug candi-

dates. In Figure 7, the sample encoding (3, 1, 5, 7, 4, 2,

6, 0, 0) implies that D1 is developed third in priority,

D2 is developed first, D3 is developed fifth, and so on,

with D8 and D9 not developed. A collection of such

encoded sequences is called a population. In our im-

plementation, 10 sequences are maintained per popu-

lation. Thus, 10 sequences generated from the bubble

chart-based procedure and from random selections

were used to initialize the GA procedure. It is impor-

tant to select a good set of sequences from the bubble

chart procedure in order to keep the number of evo-

lutions (i.e., iterations) to realize the optimal sequence

at a computationally reasonable level.

For each of these candidate sequences included

in the initial or subsequent populations, a so-called

‘‘fitness’’ function is assigned, which measures how

closely the sequence not only maximizes economic

performance but also minimizes the probability of

losing money. A fitness function, Zk, is calculated for

each of the k51,2,y,10 candidate sequences in the

current population by normalizing the EPNPV and

risk as follows:

Zk ¼ a
EPNPVk � EPNPVmin

EPNPVmax � EPNPVmin þ g

� �

þ 1� að Þ Riskmax � Riskk

Riskmax � Riskmin þ g

� �
;

where EPNPVmin and EPNPVmax are the minimum

and maximum expected positive NPVs, respectively,

in the current population; Riskmax and Riskmin are the

maximum and minimum risk probabilities in the cur-

rent population; and g is a small positive number that

prevents division by zero. The nonnegative number a
(between zero and one inclusive) is inversely propor-

tional to the cost per unit violation of the risk con-

straint, written at a risk tolerance level of b. Further

quantitative details about a are provided in Appendix

A (see http://atom.ecn.purdue.edu/�varmav/Pharma-

Suite/Appendix.doc).

Thus, any violation of the risk constraint is penal-

ized at a ‘‘cost’’ of (1� a), thereby progressively lead-

ing the GA to sequences feasible with respect to the

risk constraint or at worst violate the risk constraint

to as small a degree as possible. Typically, a is spec-

ified based on the decision maker’s risk aversion. For

instance, a ‘‘speculative’’ pharmaceutical manage-

ment may fix a at a high value, thereby downplaying

the cost of risk. In this study, a was fixed at 0.8, thus

rendering the return as the dominant criterion.

The GA proceeds to find sequences that improve

the fitness function by a process called ‘‘reproduc-

tion,’’ i.e., creation of a population of new sequences

or ‘‘offspring’’ by using sequences in the initial pop-

ulation as ‘‘parents.’’ This procedure is carried out by

employing certain probabilistic transition rules called

genetic operators that modify the encoded infor-

mation of the parents to form offspring. These

rules are discussed in Appendix B (available at

http://atom.ecn.purdue.edu/� varmav/Pharma-Suite/

Appendix.doc).

At the end of this reproduction process, there exists

a population of 10 parent sequences and at most 10

offspring sequences. For each of these offspring se-

quences, the fitness function must be calculated by

using the interdependency preprocessor and the dis-

crete event simulator. The number of Monte Carlo

trials used by the discrete event simulator affects the

quality of the NPV distribution. A relatively small

number of trials (e.g., 100) were adequate to estimate

the EPNPV. However, the estimate of risk required

many more trials (e.g., 10,000) to generate a reason-

able degree of accuracy because it was calculated from

the tail of the distribution. Once the fitness of each

sequence is calculated, the GA selects the 10 fittest

sequences from the expanded population of parent

and offspring sequences, resulting in a new population

of sequences. The remaining less fit sequences ‘‘die.’’

The sequences in the new population then form the

parents for the generation of the next set of sequences,

and the reproduction–selection procedure repeats it-

self until a suitable fit is obtained. The key feature that

makes this search ‘‘intelligent’’ as compared to ‘‘ran-

dom’’ is the selection process. The selection process

favors the mating of the fittest sequences in the

population resulting in more fit populations until

the improvement from population to population is

minimal.
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Initiation of the GA Search Procedure

For the nine-drug candidate example, an initial pop-

ulation of 10 sequences was determined as follows:

(1) Two possible sequences were suggested from the

bubble chart of Figure 6: (D5, D9, D1, D3, D7,

D8, D4) and (D5, D9, D1, D3, D7, D8, D4, D2,

and D6). They differ in that the former does not

include D2 and D6 because they both have very

low probabilities of technical success and also a

low reward/risk ratio. In both sequences D5, with

its high probability of success and reward/risk ra-

tio, is developed first followed by D9 and D1. D3

and D7 are preferred over D8 and D4 because D3

and D7 target disease I with a higher level of

technical success.

(2) By examining the resource availabilities for the

activities described in Table 1 it is apparent that

the Phase III clinical trial is the most limiting re-

source. Furthermore, drug candidates with high

values of DoD (Degree of Difficulty) use more

resources than others. Based on these observa-

tions, Phase III clinical trial resource require-

ments were calculated for all nine drugs from

Table 1. The sequence D7, D2, D3, D8, D1, D6,

D3, D4, D9 was generated by arranging these re-

source requirements in increasing order.

(3) An additional seven sequences were generated at

random, which leads to greater diversity of se-

quences in the initial population of the GA. This

randomization increases the breadth of the search

space from the narrow region defined by deliber-

ately chosen candidates.

Table 4 shows the initial population used for the

genetic algorithm search. The GA was run for a max-

imum of 100 populations (or generations) on a 1 GHz

Intel Pentium III, 256 MB RAM single processor ma-

chine. With 10 sequences per population, the search

explored a total of 1,000 sequences. The total com-

puter processing unit (CPU) time involved in the

search was about 60 hours. Of course, using comput-

ers to perform the calculations simultaneously could

reduce the time dramatically.

Results of the Search Procedure

The return as measured by the EPNPV and the prob-

ability of losing money (portfolio risk) are presented

in Figure 8 for each of the 1,000 sequences generated

by the GA. All points corresponding to the maximum

EPNPV for a given level of risk are joined to form an

approximate return-risk frontier. This frontier indi-

cates that the maximum expected return from the

portfolio first increases and then decreases as the risk

increases, which somewhat is counterintuitive. It

would seem more likely that returns would increase

as the probability of losing money increases: The

greater the risk, the greater the reward (Markowitz,

1991). Such an analogy to conventional portfolio

analysis does not apply in managing a pharmaceuti-

cal portfolio. Basically, three interdependent factors
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are operating here: the length of the sequence, the

available resources, and the impact of drug failures.

Long sequences (eight or nine drugs) cushion the im-

pact of drug failures but strain the available resources,

resulting in long queues at bottleneck activities, which

in turn extend the time before a successful candidate

can be launched. On the other hand, short sequences re-

sult in short times-to-launch since adequate resources

are available, but the impact of a drug failure dra-

matically enhances the probability of losing money.

Even such gross observations of system behavior

are masked by the impact of the dependencies from

Table 3; consequently, computationally intensive cal-

culations such as the GA are necessary to capture the

sequence substructure. The highest point on the re-

turn/risk frontier shown in Figure 8, $2369MM at a

risk of 22 percent, is projected for the five-drug se-

quence D5, D8, D9, D3, D1, with D2, D4, D6, and

D7 not developed. This return is about 6 percent

higher and the risk is about 4 percent less than the best

eight-drug sequence D5, D8, D9, D1, D7, D4, D3,

D2, with D6 not developed. Other sequences on the

frontier, some of which are shown in Figure 8, consist

of five, six, seven, or eight drugs.

Sequence length impact can be understood best by

comparing the best five- and eight-drug sequences.

Figure 9 shows a comparison of the probability of

product launch by year for the best five- and eight-

drug sequences. A significant proportion of the prod-

ucts launched for the eight-drug sequence will occur

after 14 years with only a few years available to

recoup development costs before the product loses
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patent protection. Naturally, successful products

could get to market more quickly and losers could be

eliminated earlier if more resources were available.

Figure 10 displays the average waiting times on re-

sources for the various development activities. The

same activities are bottlenecks for both sequences, but

the waiting times are significantly longer for the eight-

drug versus the five-drug sequences. Another way of

looking at the impact of resources is to plot the av-

erage number of activities in a queue waiting for re-

sources to be made available (Figure 11). Once again

the pipeline has sufficient resources to accommodate

the five-drug sequence more readily than the eight-

drug sequence. The impact of the limiting resources is

to delay the launch of a product by an average of one

year in the eight-drug sequence over the five-drug

sequence and the time to launch the first product

by a half year. All these factors combine to favor the

five-drug sequence over the eight-drug sequence. As a

further demonstration of the utility of the approach

presented here, it is interesting to compare these

GA-generated results with the results from the earli-

er bubble chart analysis. The nine-drug sequence of

D5, D9, D3, D7, D1, D4, D8, D2, D6 is the optimal

sequence obtained from inspection of the bubble chart

(Figure 6). When this sequence is introduced into the

pipeline and the dependencies are accommodated, the

EPNPV for this sequence development is about

$1848MM. However, the maximum EPNPV from

the best eight-and five-drug sequences is about 20
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percent and 28 percent higher, respectively, than the

nine-drug sequence.

Figure 12 is a superposition of the best five-drug

sequence (D5, D8, D9, D3, D1) on the bubble chart of

Figure 6—where all drugs were assumed independent

and the development resources unlimited. The move-

ment of the bubbles quantifies the impact of depend-

encies. For example, the probabilities of success

decrease for all drugs except the first one targeted

for a specific disease, because there is a 50-percent

reduction in the probability of success if the first drug

fails, while there is only a 10-percent increase in the

probability of success if the first drug is launched suc-

cessfully. Further insights can be gained by examining

the impact of the dependencies for the different dis-

ease targets.

For disease II, the best sequence from the GA for

the best five-drug sequence is D5, D8, D9, which is

different than this study’s initial heuristic sequence

D5, D9, D8, and D4 obtained from inspection of the
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bubble diagram. D5, by virtue of its high reward/risk

ratio and high probability of technical success, is de-

veloped first. However, D8 is selected ahead of D9

because the dependency relationship between them

changes the probability of technical success and man-

ufacturing capital requirements of D9.

Among the drugs targeting Disease I, D3 is devel-

oped for the best five-drug sequence, while D7, D6,

and D2 are not developed. On the other hand, the best

eight-drug sequence develops three D3, D7, and D2.

Yet the best eight-drug sequence results in lower ex-

pected return and higher risk than the best five-drug

sequence. This outcome is attributed to the combina-

tion of resource constraints and the sales dependency

effects in which products cannibalize each other’s sales.

Considering the best five-drug portfolio in its en-

tirety, D5 is developed first followed by D8 and D9,

all targeted for Disease II. Clearly, the cost, resource,

and learning curve dependencies are realized to a sig-

nificant degree for this five-drug sequence. Thus, re-

source dependency is likely to significantly reduce

queuing for resources due to lower capital and re-

source requirements when drugs of the same disease

are developed. The five-drug sequence includes D3,

which targets disease I, and D1, which targets Disease

III. Hence, the portfolio is sufficiently diverse, even in

the presence of a limited number of drugs. It is re-

markable that diversity and returns have been bal-

anced without increasing the risk for the five-drug

sequence.

Resource Planning

An important use of the methodology presented here is

to determine the impact of changing resource levels on

the performance of the NPD. Figure 10 can be used to

identify which resources are limiting. However, the

combinatorial nature of the problem makes it difficult

to evolve an optimal strategy to increase these resourc-

es while simultaneously increasing the returns and de-

creasing risk. For example, consider the possibility of

outsourcing all manufacturing activities: sample prep-

aration, process development, plant design, and plant

construction. From Figure 10 there are queues of prod-

ucts waiting to execute these activities. However, when

the optimization procedure was used to determine the

best sequence, there was little change in the expected

returns or risk. The queues behind other resource-lim-

ited activities simply grew in length. However, increas-

ing the resources for the FHD preparation activity in

conjunction with manufacturing outsourcing dramati-

cally increased the returns and reduced risk by making

it possible to develop an eight-drug sequence without

excessive delays versus a five-drug sequence.

This type of analysis is very application specific but

is essential to providing management with valuable

insights into the interaction among the various selec-

tion criteria and the capacity of the pipeline.

The Broad Variance of the NPV Distribution

The NPV distribution for the five-drug optimal se-

quence with 10,000 Monte Carlo trials is shown in

Figure 13. The return ranges from � $1,200 million to

$5,700 million. The distribution does not show a

strong central tendency and seems to be more repre-

sentative of a uniform rather than the intuitively an-

ticipated normal distribution. This variation is

attributable mostly to the failure rates of the drug

candidates. For this sequence six possible outcomes

can occur: 0, 1, 2, 3, 4, or 5 drugs may be successfully

launched. The returns from these six events are dis-

persed widely. When no drugs are launched, the re-

turns are negative, whereas the returns are extremely

large and positive when all five candidates are

launched. Naturally, each of these cases has an asso-

ciated distribution resulting from all the other uncer-

tainties alluded to in this paper. In Figure 14, the

distributions for the first five of the six different cases

(different number of product launches) are distin-

guished. Because of this behavior it is important to

deemphasize the importance of a central tendency

measure such as the mean of the NPV distribution

and instead focus on other characteristics of the dis-

tribution such as risk, capital, and diversity issues.

Conclusion

The paper has demonstrated a novel quantitative ap-

proach to determining an optimal portfolio for the

development of new pharmaceutical compounds. The

method provides a uniform treatment of both project

uncertainties and dependencies, which are inherent to

this industry. Combining discrete event stochastic sim-

ulation with genetic algorithms provides the compu-

tational synergism required to optimize the highly

combinatorial portfolio management problems facing

modern pharmaceutical businesses. This study has

offered a discussion of simple bubble-chart-based
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graphical aids that not only assist management in

understanding the potential rewards and risk for var-

ious resource levels and mix of products but that

also provide ‘‘good’’ starting solutions to the GA.

Although the approach is computationally demand-

ing, the rewards are significant in allowing manage-

ment a vehicle for determining an optimal portfolio as

well as appreciating the robustness of the portfolio to

changing economic conditions, acceptable risk, and

resource levels. Although illustrated for the pharma-

ceutical industry, this work can be extended readily to

any industry such as aerospace, agrochemical, or bio-

technology that is regulated highly and loses new prod-

uct candidates during the development process.
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