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The problem of resource-constrained scheduling of testing tasks for new product development
is addressed. The problem is important because, in some industries like pharmaceutical and
agrochemicals, a new product is required to pass all the tests by federal laws. If a product fails
any of the tests, then all the remaining work on that product is halted and the investment in
the previous tests is wasted. Continuous time mixed-integer linear-programming models based
on two different respresentations of resource constraints are presented to solve this scheduling
problem. These models take into account complex trade-offs and have the capability of deriving
a schedule that satisfies the resource constraints and utilizes the option of outsourcing. It is
demonstrated with the second model, which is based on graph representation and makes use of
logic, that the proper combination of modeling and search strategy can make the difference in
successfully tackling this problem. Finally, it is also shown that it is critical to incorporate
resource constraints along with sequencing of testing tasks to obtain a globally optimal solution.

1. Introduction

New product development usually involves a series
of testing tasks (environmental, safety, etc.) prior to
product commercialization. If a product fails any of the
tests, then all the remaining work on that product is
halted and the investment in the previous tests is
wasted. Recently, Schmidt and Grossmann1 have con-
sidered the problem of optimal sequencing of testing
tasks for new product development, assuming that
unlimited resources are available. For a product involv-
ing a set of testing tasks with given costs, durations,
and probabilities of success, these authors formulated
a mixed-integer linear-programming (MILP) model
based on continuous time representation to determine
the sequence of those testing tasks. The objective of the
model in its more general form is to maximize the
expected net present value (NPV) associated with a
product, while a special case considers the minimization
of cost subject to a time completion constraint. Even
though there may be a number of new products under
consideration, the assumption of unlimited resources
allows the problem, with either of the two objectives, to
be decomposed by each product. In the case of NPV
maximization, the fundamental trade-off is between the
greater sales of products from a shorter, parallel sched-
ule and the lower expected value of the total cost from
a longer, sequential schedule. In this paper, we extend
the work of Schmidt and Grossmann,1 and develop an
MILP model that performs the sequencing and schedul-
ing of testing tasks for new product development under
resource constraints.

As discussed by Schmidt and Grossmann,1 this sched-
uling problem appears not to have been reported previ-
ously in the literature. The only other recent work which
is close in spirit to the problem is that by Honkomp et
al.2 These authors considered the problem of selecting

process development projects from a pool of projects and
scheduling the use of limited resources for development
work to maximize the expected return from research
and development operations. A process development
project requires a specified sequence of tasks, each of
which has a probability of failure. If a task fails, then
the subsequent steps of the project are abandoned and
the resources can be reallocated to other projects.
Honkomp et al.2 developed an MILP model based on a
discrete time representation that uses the idea of
overbooking of resources to solve the problem. It should
be noted that this method cannot be applied to the new
product development problem because it assumes a
fixed sequence of tasks, and furthermore it cannot
handle a continuous time domain.

The scheduling problem considered in this paper has
a number of features in common with typical chemical-
engineering batch-scheduling problems,3-9 especially in
the handling of resource constraints. A major issue in
any scheduling model is the time domain representa-
tion.4 There are two main approaches: the discrete time
representation and the continuous time representation.
In the discrete time representation, the time horizon is
divided into a number of equally sized time intervals
and an activity is forced to start only at the boundaries
of these intervals. In the continuous time representa-
tion, the length of the time intervals is left as a variable.
The advantage of discrete time representation is that
it has a tighter linear-programming (LP) relaxation.
However, for an accurate solution, it may require a large
number of intervals which may lead to extremely large
MILPs. The other body of literature that is somewhat
relevant to this work is on project scheduling, stochastic
scheduling, and stochastic programming. Schmidt and
Grossmann1 have presented a good review on the
related literature in the context of this problem. The
main limitation of previous work in this area is that
sequencing has not been considered along with resource
constraints.

The objective of this paper is to propose two new
MILP models for sequencing and scheduling of testing
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tasks for new product development under resource
constraints. In the next section, we present a small
example problem to provide insights into the trade-offs
in the scheduling problem and the effects of resource
constraints. It is followed by a formal problem statement
and an MILP model formulation for the problem. The
resource constraints associated with the problem are
modeled using the time-slot-based representation as in
Pinto and Grossmann.4 A number of example problems
are considered and computational results are presented.
It is observed that computational performance of that
model is unsatisfactory for larger problems. We then
present a second alternative MILP model that models
resource constraints as conditional arcs in a directed
graph. We revisit the examples considered initially and
solve it using different commercial solvers and different
branching strategies. As shown by the numerical re-
sults, the second MILP model when solved using strong
branching can effectively tackle problems with up to 30
testing tasks.

2. Motivating Example

Consider a trivial example problem that highlights
the important issues associated with the problem dis-
cussed in this paper and the significance of resource
constraints. Let us assume that a company wants to
launch two products, A and B. For product certification,
it is required to complete tests 1 and 2 for product A
and tests 3 and 4 for product B. There is no specific
sequence in which these tests should be performed. The
cost, duration, and probability of success of each task
are listed in Table 1.

Let us first assume that there are unlimited resources
to perform these tests. Hence, the tests associated with
product A can be scheduled independent of the tests
associated with product B. There are three different
ways to sequence the tests associated with each product
(e.g., for product A: test 1 f test 2, test 2 f test 1, and
parallel to each other). To compare the schedules, we
need to determine the NPV of each schedule and choose
the one with the highest NPV. The objective of maxi-
mizing the NPV is equivalent to minimizing the total
cost which is the sum of the expected cost and the
decrease in income because of delay in product com-
mercialization.1 The expected cost for a product is the
sum of expected costs of all the associated testing tasks,
which in turn are products of actual cost and prob-
abilities of success of all the tasks preceding them. The
decrease in income with time is represented by a

piecewise linear function which can be written as

for products A and B, respectively. Here, tA and tB are
the corresponding completion times.

The expected cost (ignoring the time value of money),
completion time, income decrease, and total cost for the
three possible scenarios of each product are listed in
Table 2. Clearly, it is cheapest to perform test 1 before
test 2 for product A and test 3 before test 4 for product
B. The total cost for completing the tests for both the
products using optimal sequencing and with no resource
constraints is $604 000. The MILP model developed by
Schmidt and Grossmann1 is a systematic way of deter-
mining the sequence of testing tasks that minimizes the
total cost.

The above results do not account for resource con-
straints. It might appear that a two step procedure
(strategy 1) that combines the work of Schmidt and
Grossmann1 and Honkomp et al.2 may be used to
perform scheduling under resource constraints. This is
because a project considered by Honkomp et al.2 has the
same form as that of testing for new product develop-
ment. The only difference is that they assume that the
sequence of steps for a project is given. Therefore, if we
combine the two methodologies, we can use the MILP
model of Schmidt and Grossmann1 to do the sequencing
and then use the MILP model of Honkomp et al.2 to do
the scheduling under resource constraints.

Let us reconsider the two-product example presented
earlier in this section. Let us now assume that we have
only two labs available to do the testing. Furthermore,
tests 1 and 3 can only be done in lab 1 and tests 2 and
4 can only be done in lab 2. A schedule derived using
strategy 1 is shown in Figure 1. It uses the optimal

Table 1. Cost, Duration, and Probability of Success for
the Four Tests

test cost (1000 $) duration (months) probability of success

1 200 5 0.60
2 150 6 0.98
3 150 5 0.80
4 150 4 0.90

Table 2. Summary

product sequence of tests expected cost (1000 $)
completion time

(months) income decrease (1000 $) total (1000 $)

A 1 f 2 200 + (0.6)150 ) 290 11 (1)11 + (5)3 + (10)0 ) 26 316
2 f 1 150 + (0.98)200 ) 346 11 (1)11 + (5)3 + (10)0 ) 26 372
parallel 200 + 150 ) 350 6 (1)6 + (5)0 + (10)0 ) 6 356

B 3 f 4 150 + (0.8)150 ) 270 9 (2)9 + (6)0 + (10)0 ) 18 288
4 f 3 150 + (0.9)150 ) 285 9 (2)9 + (6)0 + (10)0 ) 18 303
parallel 150 + 150 ) 300 5 (2)5 + (6)0 + (10)0 ) 10 310

Figure 1. Scheduling after sequencing the tasks.

1000tA + 5000[max{tA - 8, 0}] +
10000[max{tA - 11, 0}]

2000tB + 6000[max{tB - 9, 0}] +
10000[max{tB - 12, 0}]

3014 Ind. Eng. Chem. Res., Vol. 38, No. 8, 1999



sequences of testing tasks for each product and mini-
mizes the total cost. The expected cost of all the testing
tasks remains unchanged because it depends only on
the sequence of testing tasks. However, the income
decrease for product B rises because of the increase in
the completion time. In this scenario, the total cost for
each product is

Hence, the total cost for the testing of both the products
under resource constraints is then $682 000.

One could argue an alternative approach (strategy 2)
that can avoid the income decrease due to delay in
product commercialization by ignoring the step involv-
ing sequencing of tasks for each product and derive a
shorter parallel schedule such as that in Honkomp et
al.2 The optimal schedule obtained with strategy 2 is
shown in Figure 2. The completion times for product B
and product A are 5 and 10 months, respectively.
However, in this case, the expected cost for completing
tests is much higher because we did not exploit the fact
that if a task fails, then we do not have to perform the
subsequent tasks. The total cost for each product is

The total cost for the testing of both the products is
$680 000.

Although the solutions obtained using strategies 1
and 2 appear to be reasonable, the optimal schedule can
only be obtained by considering resource constraints and
sequencing of tasks for all the products, simultaneously.
The optimal schedule, as shown in Figure 3, requires
in fact test 1 to be performed before test 2 and test 4
before test 3. The completion times for product B and
product A are 10 and 11 months, respectively. The total
cost for each product is

The total cost for testing both products is $627 000. This
implies that the total cost is 8.8% higher in the case
when sequencing is done prior to scheduling (strategy
1) and it is 8.4% higher when no sequencing is done
prior to scheduling (strategy 2). The schedules are not
optimal because, with strategy 1, there is a delay in
product commercialization and, with strategy 2, the
stochastic nature of the problem is not exploited while
deriving the schedule.

This example clearly demonstrates the need to simul-
taneously incorporate resource constraints with the
sequencing of testing tasks. The aim of this work is to
develop an effective MILP model to accomplish this goal.

3. Problem Statement

Given is a set of potential products, each of which
must undergo a set of testing tasks. The set of products
is denoted by L and the set of testing tasks correspond-
ing to a product l ∈ L is denoted by Il. Each task i ∈ I,
where I ) ∪l∈LIl and ∩l∈LIl ) φ, has an associated
duration di, cost ci, and probability of success pi. Some
of the testing tasks for a potential new product may
have technological precedence constraints. Let A rep-
resent the set of technological precedences, where (i, i′)
∈ A means that task i must precede task i′. Further-
more, only limited resources are available to complete
the tasks and they are divided into different resource
categories. A set of resources in a particular category r
is denoted by Jr, and Nir units of resources are needed
from resource category r to complete test i. If desired,
an individual test i may be outsourced at a higher cost
cji, and in that case none of the internal resources are
used. Finally, given the income for each product as a
function of the time of product introduction, the aim is
to determine a testing schedule that maximizes the NPV
and meets the resource constraints.

An example problem involving two products is given
in Figure 4. Here, product A requires 5 tests (1-5) and
product B requires 6 tests (6-11). The precedence
between the different tasks of a potential product is
represented using the arrows. The resources available
include 6 technicians and 4 laboratories, and testing
tasks may need resources from one or both the resource
categories.

It is assumed that the resources are discrete in nature
(e.g., number of technicians) and that they can handle
only one task at any instance. These assumptions,
however, do not restrict the modeling capability. Since
continuous resources can be modeled as discrete batches,

Figure 2. Scheduling without sequencing the tasks (strategy 2).

Figure 3. Simultaneous scheduling and sequencing.

product A: [290 + (1)11 + (5)3 + (10)0]103 )
316 000 (same as before)

product B: [270 + (2)15 + (6)6 + (10)3]103 )
366 000 (increase of $78 000)

product A: [350 + (1)10 +
(5)2 + (10)0]103 ) 370 000

product B: [300 + (2)5 +
(2)0 + (10)0]103 ) 310 000

product A: [290 + (1)11 + (5)3 +
(10)0]103 ) 316 000

product B: [285 + (2)11 + (2)2 +
(10)0]103 ) 311 000
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and if a resource can handle more than one task, it can
be decomposed into multiple resources of unit capacity
each. This however might increase the size of the MILP
model. Furthermore, it should be noted that because of
the resource limitations, the schedule maximizing the
total NPV is not equivalent to schedules maximizing
separately the NPV of each individual product.

One of the critical attributes of this problem is to
reschedule the use of all the resources when a product
fails a given test. Recall that each task i has a certain
probability of failure 1 - pi. If any task fails, then the
entire testing of the product is cancelled and subse-
quently scheduled tasks are not performed. This results
in freeing up a resource for other tasks. A strategy based
on overbooking of resources has been proposed by
Honkomp et al.2 to take into account this attribute of
the problem. In this strategy, the resource constraints
are enforced on the expected use of all the resources. The
expected resource requirements for a particular task are
obtained by multiplying the probability of executing the
task with the resource requirements for that task. Note
that, for such a schedule, available resources are not
likely to be sufficient to complete all the tests in the
calculated time horizon if none of the task fails. Nev-
ertheless, this idea can be useful if the duration of the
tasks are very similar. This is because the authors had
used discrete time representation, and if the durations
are similar, then it is very easy to readjust the resource
requirement for all the discrete time intervals. However,
if this is not the case, rescheduling is needed whenever
a test is completed, irrespective of the outcome of the
test.

In this paper, we use an alternative strategy based
on expected cost and the option of outsourcing a test. In
this strategy, instead of enforcing the resource con-
straints on expected resource requirements, they are
enforced on exact resource requirements. The objective
is to minimize the total cost, which is calculated using
the expected cost of each test. Recall that the expected
cost of a test depends on the probability of conducting
that test. If a test with high probability of failure is
scheduled earlier, then it will reduce the expected cost
of all the subsequent tests. This in turn may result in
more tests to be outsourced as the expected outsourcing
cost may not be as high as the actual outsourcing cost
due to the lower probability of conducting the tests. One
major advantage of this strategy over the one by
Honkomp et al.2 is that rescheduling is needed only
when a product fails a test. When no product fails a test,
the schedule is always feasible. Furthermore, as shown

later in this paper, this strategy can be effectively used
for developing scheduling models that are based on
continuous time domain representation. One other
application of this strategy is for the case when a time
limit is specified on the length of the schedule. If
outsourcing is available, feasible solutions are, in prin-
ciple, always possible to obtain. However, if the option
of outsourcing is not available, one can still consider
artificial outsourcing at a very high cost to derive an
initial schedule, which is then updated anytime a
product fails a test. In this case, the proposed strategy
is, in principle, the same as the strategy of overbooking
of resources.

4. Representation

Any solution to the problem stated in the previous
section can be represented using a directed graph and
two Gantt charts. The directed graph, similar to the one
used by Schmidt and Grossmann,1 is an activity on node
representation of tasks and is used to display the
optimal sequence of tasks. Note that for the sake of
clarity we will not show transitive arcs in the graph.
This graph also displays all the tests that have been
outsourced (double circles). The first Gantt chart is from
the perspective of products and is used to present the
durations and start times of all the tasks associated
with a product. The second Gantt chart is from the
perspective of resources and is used to display the use
of each resource over the period of time. As an example,
consider a case where one of the products requires four
tests and resources from two categories (laboratories
and technicians). Using the proposed representation, the
solution to the problem may resemble Figure 5. Note

Figure 4. An example problem with two potential products.

Figure 5. Representation of solution.
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that test 3 is outsourced and does not use any of the
available resources.

There are three main decisions associated with the
solution of the problem: first, the start time of task i,
which is represented by si; second, the sequencing
relation between two tasks, i and i′, which is denoted
by yii′ and yi′i. (Note that yii′ and yi′i are binary variables
and if yii′ is 1, it implies that task i′ is executed after
task i finishes. Conversely, if yi′i is 1, then it implies
that task i is executed after task i′ finishes. If both of
them are zero, then the start and/or end times of both
the tasks may overlap.); third, the decision regarding
the outsourcing of a task, which is denoted by the binary
variable ẑi (If ẑi is 1, then the task is outsourced;
otherwise, it is completed using the available resources.)
To obtain a solution of this form for the problem stated
in the previous section, we now present a mixed-integer
linear-programming (MILP) model.

5. MILP Model

The problem at hand can be modeled as a mathemati-
cal programming problem that corresponds to an MILP
model. The objective function and constraints for the
problem are as follows.

5.1. Objective Function. The objective of this prob-
lem is to maximize the NPV, which in turn is equivalent
to minimizing the sum of the expected cost and the
decrease in income because of delay in product com-
mercialization.1 The expected cost of a testing task is
the cost of completing a test that is adjusted for the time
value of money and stochastic nature of the task. Let
us denote the expected cost of the task i by Ci. The
decrease in income because of delay in commercializa-
tion of product l, as shown in Figure 6, is a piecewise
linear function of completion time of all the required
tests, tl. The function is the same as the one used by
Schmidt and Grossmann.1 The piecewise linear seg-
ments are defined at fixed discrete times bm, where m
is the index of the selected times. The objective function
can be written as

Here, ulm is a nonnegative variable denoting the excess
of completion time of product l, tl, over bm, if any. It can
be evaluated using the following constraint:

It should be noted that if tl is less than blm, then this
inequality is redundant because ulm is a nonnegative
variable; otherwise, this inequality will be satisfied at
equality because of the nature of the objective function.

The parameter flm gives the marginal decrease in income
because of tl exceeding time bm for product l.

The expected cost of completing test i is a function of
an outsourcing decision, probability of conducting the
test, and time value of money. It can be calculated using
the following disjunction:

where the binary variable ẑi denotes whether or not task
i is outsourced. The first term in disjunction (3) models
the case of no outsourcing (¬ẑi) and the second term
models the case of outsourcing (ẑi). Recall that ci is the
cost of conducting test i using available resources and
cji is the cost of conducting test i if it is outsourced. Also,
rj is the interest rate compounded continuously for the
investment with similar risk, si is the start time of task
i, and Li is the product that requires test i. The expected
cost function is very similar to the one used by Schmidt
and Grossmann.1 However, here the option of outsourc-
ing is also included while evaluating the expected cost.
Note that the expected cost is a disjunction over
nonlinear functions. However, it can be linearized by
first using the logarithmic transformation and ap-
proximating the exponential function using a piecewise
linear function and then using the convex hull formula-
tion. It was shown by Schmidt and Grossmann1 that
approximating the exponential function by a piecewise
linear function introduces very little error in the value
of the objective function. First, using the logarithmic
transformation, we rewrite eq 3 as

where

By approximating the exponential function using a
piecewise function we can rewrite eq 4 as

Here, n is the index for grid points, ain are the grid
points, λ̂in are the linearization variables, and Ni is the
set of indices for grid points. Finally, as shown in
Appendix A, by using the convex hull formulation and

Figure 6. Variables for a modeling decrease in income.

min∑
i∈I

Ci + ∑
l∈L

∑
m∈Ml

flmulm (1)

ulm g tl - blm ∀ (l ∈ L), (m ∈ Ml) (2)

( ¬ẑi

Ci ) cie
-rjsi ∏i′*i,i′∈ILi pi′yi′i

) ∨
( ẑi

Ci ) cjie
-rjsi ∏i′*i,i′∈ILi pi′yi′i

) (3)

( ¬ẑi

Ci ) cie
wi ) ∨ ( ẑi

Ci ) cjie
wi ) ∀ (i ∈ I) (4)

wi ) -rjsi + ∑
i′*i,i′∈ILi

ln(pi′)yi′i ∀ (i ∈ I) (5)

( ¬ẑi

Ci ) ci(∑neainλ̂in)
wi ) ∑nainλ̂in

∑nλ̂in ) 1
λ̂in g 0 ∀ n ∈ Ni

) ∨

( ẑi

Ci ) cji(∑neainλ̂in)
wi ) ∑nainλ̂in

∑nλ̂in ) 1
λ̂in g 0 ∀ n ∈ Ni

) ∀ (i ∈ I) (6)
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by eliminating variables, disjunction (6) can be ex-
pressed in mixed-integer form as follows:

It should be noted that if Wi is the lower bound on wi,
then grid points ain lie in the range [Wi, 0]. Equations 5
and 7-11 are the equivalent linearized constraints to
evaluate the value of expected cost.

5.2. Timing Constraints. All the constraints in this
category relate the start time of various tasks and the
completion time of a product. Recall that the decrease
in income because of delay in commercialization of
product l is based on its overall completion, tl. Clearly,
tl must be greater than the completion time of each task
i required for product l,

Furthermore, the start time of a task depends on the
start time of all the tasks that have been scheduled to
finish before it. If Ui is the upper bound on the start
time of task i, then

Note that this is a big-M constraint and is only enforced
if task i′ is executed after i, that is, if yii′ ) 1. As
mentioned in the problem statement, some tasks may
have technological precedence. This can be easily en-
forced by fixing the following variables:

5.3. Logic Cuts. All the constraints in this category
are exactly the same as in Schmidt and Grossmann.1
Although these constraints are not essential, including
them in the model speeds up the search procedure. The
constraints are based on the fact that any solution to
the problem will never have a directed cycle in the
activity-on-node representation (Figure 5) of the solu-
tion. The following constraints eliminate directed cycles
of lengths 2 and 3, respectively:

5.4. Resource Constraints. The constraints pre-
sented so far are sufficient to solve the problem without

resource constraints. However, additional constraints
are needed to model the resource limitations. The first
approach used in this paper is similar to the one
proposed by Pinto and Grossmann4 for short-term
scheduling of batch plants. These authors used the idea
of time slots to model the assignment of an order to a
process unit. They also assumed that only one unit is
needed to complete each step in the manufacturing
process. The same authors, Pinto and Grossmann,5 later
presented another model which took into account ad-
ditional resource constraints such as labor and electric-
ity. The extra resource constraints were handled using
a logic-based algorithm. The algorithm proved to be very
effective because the extra resource constraints had
often few violations in the schedule obtained initially.
A general resource task network (RTN) representation,
in which all the resources are treated uniformly, has
been proposed by Pantelides.10 In this paper, we extend
the slot-based model of Pinto and Grossmann4 to a
general case in which a task may require multiple
resources from one or more resource categories. In the
proposed model, all the resources are treated uniformly
as in Pantelides.10 It is interesting to note that, for a
fixed sequence of tasks, the problem reduces to a short-
term batch-scheduling problem.

The central idea for modeling resource constraints in
this paper is the representation of time. Two different
time coordinates are used to handle the assignment of
resources to a task. The first time coordinate is from
the perspective of a task. It is represented by a continu-
ous variable si that has already been defined. The second
time coordinate is from the perspective of a resource and
is represented through time slots. A time slot represents
a possible use of a resource for a task. The variable Sjk
is used to denote the start time of slot k on resource j.
If slot k of resource j is used for task i, then the length
of the time slot is equal to the duration of task i. The
binary variable xijk is used to denote this decision. It is
1 when slot k of resource j is assigned to task i, and
zero otherwise. Furthermore, when an assignment is
made, the two different time coordinates are mapped
on to each other. Figure 7 illustrates the idea of time

Figure 7. Time slots for resource constraints.

Ci ) ci(∑
n

eainλin) + cji(∑
n

eainλhin) ∀ (i ∈ I) (7)

wi ) ∑
n

ain(λin + λhin) ∀ (i ∈ I) (8)

∑
n

λin ) (1 - ẑi) ∀ (i ∈ I) (9)

∑
n

λhin ) ẑi ∀ (i ∈ I) (10)

λin, λhin g 0 ∀ (i ∈ I), (n ∈ Ni) (11)

si + di e tl ∀ (l ∈ L), (i ∈ Il) (12)

si + di e si′ + Ui(1 - yii′) ∀ (i ∈ I), i′ * i, (i′ ∈ ILi)

(13)

yii′ ) 1, yi′i ) 0 ∀ (i, i′) ∈ A (14)

yii′ + yi′i e 1 ∀ (i ∈ I), (i′ ∈ ILl), i′ > i (15)

yii′ + yi′i′′ + yi′′i e 2

∀ (i ∈ I), (i′ ∈ ILi), (i′′ ∈ ILi), i′′ > i′ > i (16)

yi′i + yii′′ + yi′′i′ e 2

∀ (i ∈ I), (i′ ∈ ILi), (i′′ ∈ ILi), i′′ > i′ > i (17)

3018 Ind. Eng. Chem. Res., Vol. 38, No. 8, 1999



slots and associated variables. The inequalities required
to model the resource constraints using this idea can
be divided into three different subcategories.

5.4.1. Assignment Constraints. The first constraint
in this category ensures that if a task is not outsourced
(ẑi ) 0), then it is allocated the required number of
resources from each category.

Here, x̂ij is a binary variable that is 1 if resource j is
assigned to task i, and zero otherwise. Also, Ji is the
set of resources that can be used to complete task i, R
is the set of resource categories, and Jr is the set of
resources belonging to resource category r. Recall that
Nir is the number of resources required by task i from
category r. The second constraint ensures that if a
particular resource is allocated to a task, then exactly
one slot of that resource is assigned to that task.

Here, Kj is the set of slots defined for resource j. In
principle, |Kj| is equal to the number of tasks that can
be assigned to that resource. However, if there are
multiple resources in each category, then the size of the
model can be reduced by assuming fewer slots. The next
constraint ensures that only one task is assigned to each
slot of every resource.

Here, zjk is a slack variable that is 1 if a slot is empty,
and zero otherwise. Furthermore, Ij is the set of tests
that can potentially be assigned to resource j. The next
constraint is not necessary. However, it reduces the
degeneracy in the model by enforcing that an earlier
slot be used first.

Here, kj
f is the final slot for resource j.

5.4.2. Timing Constraints. This constraint ensures
that if task i is assigned to slot k of resource j, then the
length of slot k is at least equal to the duration of task
i.

5.4.3. Time-Matching Constraints. If task i is
assigned to slot k of resource j, then time-matching
constraints ensure that the start time of task i is the
same as that of slot k of unit j. The following two Big-M
inequalities are sufficient to enforce this constraint.

Alternatively, these time-matching constraints can also

be written as follows:

These constraints are derived from alternative nonlin-
ear time-matching constraints by following a reasoning
similar to the one presented by Pinto and Grossmann.4
The derivation of these constraints is presented in
Appendix B. Here, τijk, âij, and γjk are extra variables
required for reformulation. Furthermore, Ui is the upper
bound on the start time of task i and Uj is the upper
bound on the start time of slots defined for unit j.

5.5. Bounds. The upper bound (Ui) on the start time
of task i and the upper bound (Uj) on the start time of
slots defined for unit j can be calculated as follows:

The lower bound (Wi) on the variable wi can be calcu-
lated using eq 5 as follows:

Bounds on all the variables involved can be summarized
as follows:

The MILP model M1 comprising eq 1 as the objective
and eqs 2, 5, 7-22, and 25-43 as constraints can be
used to solve the problem at hand. This model is very
general because it takes into consideration the option
of outsourcing a testing task. Notice that if the option
of outsourcing is not available, then the desired model

∑
j∈(Ji∩Jr)

x̂ij ) Nir(1 - ẑi) ∀ (i ∈ I), (r ∈ R) (18)

x̂ij ) ∑
k∈Kj

xijk ∀ (i ∈ I), (j ∈ Ji) (19)

∑
i∈Ij

xijk + zjk ) 1 ∀ (j ∈ J), (k ∈ Kj) (20)

zjk e zjk+1 ∀ (j ∈ J), (k ∈ Kj\{kj
f}) (21)

Sjk + ∑
i∈Ij

dixijk e Sj,k+1 ∀ (j ∈ J), (k ∈ Kj\{kj
f})

(22)

Sjk - si g -Ui(1 - xijk) ∀ (j ∈ J), (k ∈ Kj), (i ∈ Ij)

(23)

Sjk - si e Ui(1 - xijk) ∀ (j ∈ J), (k ∈ Kj), (i ∈ Ij)

(24)

si ) ∑
k∈Kj

τijk + âij ∀ (i ∈ I), (j ∈ Ji) (25)

Sjk ) ∑
i∈Ij

τijk + yjk ∀ (j ∈ J), (k ∈ Kj) (26)

0 e τijk e Uixijk ∀ (i ∈ I), (j ∈ Ji), (k ∈ Kj) (27)

0 e âij e Ui(1 - x̂ij) ∀ (i ∈ I), (j ∈ Ji) (28)

0 e γjk e Ujzjk ∀ (j ∈ J), (k ∈ Kj) (29)

Ui ) ∑
i′∈I,i′*i

di′ ∀ (i ∈ I) (30)

Uj ) ∑
i∈I

di - min
i∈Ij

{di} ∀ (j ∈ J) (31)

Wi ) -rjUi + ∑
i′*i,i′∈ILi

ln(pi′) ∀ (i ∈ I) (32)

0 e si e Ui ∀ (i ∈ I) (33)

0 e Sjk e Uj ∀ (j ∈ J) (34)

Wi e wi e 0 ∀ (i ∈ I) (35)

Ci g 0 ∀ (i ∈ I) (36)

0 e tl e ∑
i∈I

di ∀ (l ∈ L) (37)

ulm g 0 ∀ (l ∈ L), (m ∈ Ml) (38)

x̂ij ∈ {0, 1} ∀ (i ∈ I), (j ∈ Ji) (39)

xijk ∈ {0, 1} ∀ (i ∈ I), (j ∈ Ji), (k ∈ Kj) (40)

yii′ ∈ {0, 1} ∀ (i, i′ ∈ I), i * i′ (41)

ẑi ∈ {0, 1} ∀ (i ∈ I) (42)

zjk ∈ {0, 1} ∀ (j ∈ J), (k ∈ Kj) (43)
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can be obtained by just fixing outsourcing variables ẑi
to zero. In the next section, we consider several numer-
ical examples to study the effectiveness of the proposed
model.

6. Numerical Examples

Consider three different products that require 10 tests
each. Let us denote these 3 products by P1, P2, and P3,
respectively. Product P1 requires tests 1-10, product
P2 requires tests 11-20, and product P3 requires tests
21-30. There are 4 different resource categories each
corresponding to a particular class of laboratories. Let
us denote these resource categories by lab 1, lab 2, lab
3, and lab 4. Furthermore, there is 1 laboratory avail-
able in each category. Therefore, each of the resources
can be referred to by the name of the resource category
itself. The in-house costs, outsourcing costs, durations,
probabilities of success, and resource requirements
associated with all the tasks are summarized in Table

3. The technological precedence between the various
tests is shown in Figure 8. The values of the parameters
for the piecewise income decrease functions are sum-
marized in Table 4.

Seven different problems of varying complexity are
generated using this data. First, we can consider the
problem of scheduling testing tasks for each product
individually. Since each product has testing tasks that
require the same resources, deriving an optimal sched-
ule requires incorporating resource constraints. The

Table 3. Problem Data

product test cost (10000 $) cost of outsourcing (10000 $) duration (days) probability of success resource requirement

P1 1 8 16 150 1 lab 1
2 8 16 100 1 lab 2
3 5 10 120 1 lab 3
4 1 2 10 0.84 lab 4
5 49 98 90 0.98 lab 1
6 111 222 180 1 lab 2
7 6 12 30 0.95 lab 3
8 174 348 200 1 lab 4
9 62 124 270 1 lab 1

10 1 2 20 1 lab 2

P2 11 16 32 90 1 lab 1
12 113 226 15 0.87 lab 2
13 1 2 5 0.91 lab 3
14 13 26 90 1 lab 4
15 53 106 60 1 lab 1
16 9 18 30 1 lab 2
17 117 234 90 1 lab 3
18 40 80 90 1 lab 4
19 57 114 150 1 lab 3
20 23 46 90 1 lab 4

P3 21 10 20 30 1 lab 2
22 15 30 25 1 lab 2
23 6 12 60 1 lab 3
24 1 2 10 0.84 lab 4
25 92 184 40 1 lab 1
26 46 92 5 1 lab 2
27 1 2 20 0.95 lab 3
28 38 76 120 1 lab 4
29 1 2 60 0.94 lab 1
30 42 84 15 1 lab 4

Figure 8. Technological precedence for each product.

Table 4. Problem Data

discretization points (m)

parameter product (l) 1 2 3

1 1 5 10
flm ($1000/day) 2 1 5 12

3 1 5 12

1 0 300 600
blm (days) 2 0 300 600

3 0 300 600
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next level of complexity arises when two products have
to undergo testing at the same time. Three different
problems can be generated at this level of complexity.
Finally, the most complex case arises when all three
products have to undergo testing at the same time. Note
that the importance of the resource constraints in-
creases with the number of products to be tested. Details
of the seven different examples generated in this man-
ner have been summarized in Table 5.

First, let us consider the case when only product P1
has to undergo testing (example 1). The problem can
be modeled using the MILP model M1. The optimal
sequence, start times of the associated tasks (1-10), and
use of various resources can be obtained after solving
the MILP model to optimality. The optimal solution is
shown in Figure 9. The completion time for testing is
520 days, the cost of completing the tests is $2 261 413,
and none of the tests are outsourced. It is interesting
to observe that tests 4, 5, and 7 have been scheduled
earlier. This is because these tasks have a non-zero
probability of failure and if any of them fails, then
product P1 has to be abandoned. This will save the
company the expenses for the remaining tests. Also,
note that even though lab 1 is the bottleneck, none of
the tests 1, 5, and 9 have been outsourced. This is
because there is technological precedence between these
tests and outsourcing will not yield any benefits.

Interestingly, there is no arc between tests 1 and 2 even,
though test 2 starts after test 1 finishes. This is because
test 1 has unit probability of success and adding an arc
will not reduce the expected cost of test 2.

The MILP model for this example has 108 binary
variables, 309 continuous variables, and 547 con-
straints. The problem was modeled using GAMS model-
ing language11 and it was solved using two different
commercial solvers, CPLEX 4.012 and XPRESS-MP
10.0.13 It took 239 nodes and 1.1 CPU sec. to solve the
problem using CPLEX 4.0 and took 111 nodes and 1
CPU sec. to solve the problem using XPRESS-MP 10.0
on a HP C110 workstation.

Examples 2-7 can also be modeled using MILP model
M1. The computational results for all the examples are
summarized in Table 6. The largest problem (example
7) has 474 binary variables, 1671 continuous variables,
and 10 104 constraints. Observe that it took less than
2 s in CPU time to solve each of the single-product
scheduling examples (examples 1-3) and the integrality
gap for these example problems was less than 5%.
However, most of the 2-product and 3-product examples
(example 4, example 6, and example 7) could not be
solved to optimality because either the tree size became
more than 256 MB, the computational time of 24 h was
not sufficient, or more than 1 000 000 nodes were
needed for the branch and bound search.

These computational results clearly indicate that the
proposed model is only useful for rigorously solving
small problems. To solve actual industrial-sized prob-
lems, there is a need to explore alternative models and
algorithms. We present an alternative representation
for resource constraints that can be used to model the
problem at hand.

Figure 9. Example 1.

Table 5. Examples Generated

example 1 only product P1 has to be tested
example 2 only product P2 has to be tested
example 3 only product P3 has to be tested
example 4 products P1 and P2 have to be tested
example 5 products P2 and P3 have to be tested
example 6 products P1 and P3 have to be tested
example 7 products P1, P2, and P3 have to be tested
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7. Graph-Based Representation for Resource
Constraints

This representation exploits the fact that any two
tests that need resources from the same resource
category will not violate resource constraints if they do
not share any resources in that category. The feasibility
of the pair of tasks is given when at least one of them
is outsourced or they use different units in that resource
category. However, if they do share the same resources,
then the resource constraints can be enforced by adding
a precedence arc between those two tasks. This can be
clearly seen in Figure 10. In this example, tests 2 and
3 need a unit resource from the same resource category.
In the first 2 graphs, resource constraints are not
violated because, in the first graph, tests 2 and 3 are
not assigned to the same resource, and in the second
graph, test 2 has been outsourced. However, if they are
assigned to the same resource, then we need to add 1
of the 2 dotted arcs between tests 2 and 3 shown in the
third graph. An arc between these two tests enforces
the precedence between them, that is, either test 2 is
before test 3 or test 3 is before test 2.

This observation can now be used to write resource
constraints in mathematical form. The first constraint
ensures that if a test is not outsourced (ẑi ) 0), then
the required number of units from each resource cat-
egory are assigned to that test.

Here, x̂ij is a binary variable and has the same meaning
as defined earlier; that is, it is 1 if resource j is assigned
to test i, and zero otherwise. Recall that Nir is the
number of units needed from resource category r to
perform test i. To model resource constraints using a
graph-based representation, we need to define a new
binary variable, ŷii′. It denotes an arc between the two

tests i and i′ corresponding to two different products. It
should be noted that this arc does not affect the cost
equation (3) in the same manner as an arc between the
tests of the same product that was modeled using the
binary variable yii′. The logical relationship that enforces
the resource constraints can be stated as follows (refer
to Figure 10 with i ) 3 and i′ ) 2): If test i is not
outsourced and is assigned to resource j, then for resource
constraints to hold, any other test i′ is either outsourced
or is not assigned to resource j or there is an arc between
tests i and i′.

This relationship can be very easily written using
logic propositions. The following two logic propositions
enforce this relationship:

The first logic proposition is for the tests needed for the
same product, and the second logic proposition is for the
tests required for two different products. These logical
relationships can be rewritten as linear inequalities
using the transformation presented by Raman and
Grossmann.14 Hence,

Finally, the following constraint is needed to enforce
the sequence that is implied by an arc between two tests
that do not correspond to the same product.

Note that a similar constraint (eq 13) has already been
defined for the tests needed for the same product. Hence,

Table 6. Computational Results

products bin. var., cont. var., constraints LP relxation ($10 000) solver best solution ($10 000) nodes CPU time (s)a

P1 108/309/547 218.616 CPLEX 226.141b 239 1.1
XPRESS-MP 226.141b 111 1

P2 108/309/547 157.361 CPLEX 167.489b 282 1.62
XPRESS-MP 167.489b 137 1

P3 110/307/547 62.629 CPLEX 65.7995b 210 1.36
XPRESS-MP 65.7995b 385 1

P1, P2 264/865/3249 454.881 CPLEX 589.91c 489000 16804.82
XPRESS-MP 490.9723d 1000000 23544

P2, P3 268/865/3251 230.651 CPLEX 259.11 208838 4592.69
XPRESS-MP 259.11b 868634 12623

P1, P3 268/865/3251 321.750 CPLEX 350.89c 663000 19723.39
XPRESS-MP 347.432c 1000000 29888

P1, P2, P3 474/1671/10104 677.129 CPLEX 923.935c 304000 37167.10
XPRESS-MP 812.204c 5900 603

a On a HP 9000/C110 workstation. b Optimal solution. c Suboptimal solution. d Optimal solution but optimality could not be proved.

Figure 10. Resolving resource constraints using a graph.

∑
j∈(Ji∩Jr)

x̂ij ) Nir(1 - ẑi) ∀ (i ∈ I), (r ∈ R) (44)

¬ẑi ∧ x̂ij w ẑi′ ∨ ¬x̂i′j ∨ yii′ ∨ yi′i

∀ j ∈ J, i ∈ Ij, i′ ∈ (Ij ∩ ILi), i′ > i (45)

¬ẑi ∧ x̂ij w ẑi′ ∨ ¬x̂i′j ∨ ŷii′ ∨ ŷi′i

∀ j ∈ J, i ∈ Ij, i′ ∈ Ij\ILi, i′ > i (46)

x̂ij + x̂i′j - yii′ - yi′i - ẑi - ẑi′ e 1

∀ j ∈ J, i ∈ Ij, i′ ∈ (Ij ∩ ILi), i′ > i (47)

x̂ij + x̂i′j - ŷii′ - ŷi′i - ẑi - ẑi′ e 1

∀ j ∈ J, i ∈ Ij, i′ ∈ Ij\ILi, i′ > i (48)

ŷii′ ∈ {0, 1} (49)

si + di e si′ + Ui(1 - ŷii′) ∀ r, i ∈ Ir, i′ ∈ Ir\ILi

(50)
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the MILP model M2 comprising eq 1 as the objective
and eqs 2, 5, 7-17, 44, 47-50, 30-33, 35-39, and 41-
42 as constraints can be used to solve the problem at
hand.

8. Examples Revisited

In this section, we resolve all the examples using the
alternative model M2. The computational results for all
the example problems are summarized in Table 7. Using
the alternative model, we were able to solve all the
single-product and two-product examples to optimality.
However, the three-product example (example 7) was
still unsolvable to optimality with default choices of the
branch-and-bound search. The tree size became more
than 256 MB in the case of CPLEX and more than
100 000 nodes were needed in the case of XPRESS-MP.
The linear-programming relaxations for all 7 examples
were the same as before. Furthermore, for all 7 ex-
amples, the size of the model is comparable to the size
of the earlier model. Even though model M2 is compu-
tationally faster than model M1, the computational
performance is not good enough because the largest
problem is still unsolvable.

However, one of the advantages of the alternative
model M2 is that the sequencing, assignment, and
outsourcing variables are very strongly interrelated
because of the graph-based representation. This fact can
be used to our advantage by changing the variable
selection rule of the branch-and-bound method for
solving the MILP model. So far, we have used the
default variable selection strategy (branching based on
pseudo reduced costs) to solve the model. One of the
variable selection strategies available in CPLEX is
strong branching.12 The key feature of this strategy is
that it first evaluates the effects of setting a variable to
a certain value and then branches on the variable that

looks most promising. In some cases, inferences can be
drawn about the infeasibility and optimality of a branch-
and-bound node, while the effects of fixing a variable
to a certain value are evaluated. If a model helps in
drawing such inferences, then the solution time can be
significantly reduced because bounds improve much
more rapidly and the optimal solution can be found
earlier in the branch-and-bound search. The computa-
tional results for solving all seven examples using model
M2 with the strong branching variable selection strat-
egy in CPLEX are summarized in Table 8. Comparing
with the computational results in Table 6, it is clear that
solutions obtained for larger problems using model M1
were indeed suboptimal. All the examples in Table 8
were solved to optimality, and the computational times
with CPLEX are an order of magnitude lower in some
cases: It is worth emphasizing that it is the combination
of the modeling and the strong branching solution
strategy that yields such results. For example, if we
solve all the examples with model M1 using the strong
branching search strategy, not only all the examples
that were unsolvable initially (Table 6) remain unsolv-
able, but also it takes even more time to solve the
examples that were solvable to optimality. Note that
XPRESS-MP does not have strong branching.

The details of the optimal solution obtained for the
largest problem, example 7, are as follows. The schedule
is as shown in Figure 11. First of all, it should be noted
that the sequence of tasks for product P1 in this case is
different from the one obtained for example 1. This is
because resource availability here is dependent on the
testing schedules for products P2 and P3. This does not
come as a surprise because this behavior was also
demonstrated in the motivating example. Another in-
teresting observation that can be made is that in this
example 7 tasks have been outsourced. These tasks are
marked by double circles in the activity-on-node repre-
sentation of the sequence of tasks and with dark blocks

Table 7. Computational Results for the Graph-Based Model

products bin. var., cont. var., constraints LP relaxation ($10 000) solver best solution ($10 000) nodes CPU timea (s)

P1 82/243/457 218.616 CPLEX 226.141b 41 0.24
XPRESS-MP 226.141b 31 0

P2 82/243/457 157.361 CPLEX 167.489b 53 0.38
XPRESS-MP 167.489b 39 0

P3 84/241/457 62.629 CPLEX 65.7995 27 0.26
XPRESS-MP 65.7995b 19 0

P1, P2 212/685/3085 454.881 CPLEX 490.9723b 7511 39.57
XPRESS-MP 490.9723b 106528 671

P2, P3 216/683/3088 230.651 CPLEX 283.335c 517000 3183.24
XPRESS-MP 259.11b 868634 12611

P1, P3 216/683/3088 321.750 CPLEX 344.51b 271728 1260.07
XPRESS-MP 344.51b 941705 13246

P1, P2, P3 396/1325/9891 677.129 CPLEX 778.39c 427000 5245.48
XPRESS-MP 747.188c 1000000 28517

a On a HP 9000/C110 workstation. b Optimal solution. c Suboptimal solution.

Table 8. Computational Results Using Strong Branching Option

products bin. var., cont. var., constraints LP relaxation ($10 000) optimal value ($10 000)
nodes

CPLEX
CPU time (s)

CPLEX

P1 82/243/457 218.616 226.141 16 0.51
P2 82/243/457 157.361 167.489 21 1.04
P3 84/241/457 62.629 67.7995 16 0.60
P1, P2 212/685/3085 454.881 490.9723 412 40.9
P2, P3 216/683/3088 230.651 259.110 411 50.16
P1, P3 216/683/3088 321.750 344.51 727 80.22
P1, P2, P3 396/1325/9891 677.129 728.287 13565 4067.51
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in the Gantt chart. In this example, there are 2 main
reasons for outsourcing. Tests 11, 15, and 29 were
outsourced because they need lab 1 and it is clearly a
bottleneck. However, the same logic does not hold for
tests 10 and 16 as lab 2 is available for the first 240
days of the schedule. They had to be outsourced because
the technological precedence does not allow them to be
scheduled earlier. This example clearly highlights the
complex decision making involved in scheduled testing
for new product development.

9. Conclusions

The problem of resource-constrained scheduling of
testing tasks for new product development has been
addressed in this paper. The problem is important
because in some industries like pharmaceutical and
agrochemicals a new product is required to pass all the
tests by federal laws. If a product fails any of the tests,
then all the remaining work on that product is halted
and the investment in the previous tests is wasted. The
models presented take into account complex trade-offs
and have the capability of deriving a schedule that
satisfies the resource constraints and utilize the option
of outsourcing.

Two different MILP models were developed. The main
difference was in the representation of the resource
constraints. The first MILP model relied on a slot-based
representation to handle the resource constraints. This

model was only useful for solving small problems. The
second MILP model exploited a graph-based represen-
tation for handling resource constraints. This MILP
model, even though similar in size to the first model,
proved to be computationally more efficient, particularly
when combined with a specialized variable selection
strategy (strong branching). Thus, it was demonstrated
that the proper combination of modeling and search
strategy made the difference in successfully tackling
problems with up to 30 testing tasks. It is recognized
that, in practice, a considerably larger number of tasks
may be involved. In such a case, the proposed model
could only be applied either by merging tasks or else
by imposing additional precedence constraints, which
practical problems may exhibit in the first place.15

Finally, it was shown that it is critical to incorporate
resource constraints along with sequencing of testing
tasks to obtain a globally optimal solution.
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Nomenclature

Indices

i, i′, i′′ ) a task
j ) a resource
r ) a resource category

Figure 11. Example 7.
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k ) a slot
kj

f ) the final slot for resource j
l ) a product
m ) linearization point for decrease in income function
n ) linearization point for cost

Sets

I ) the set of tests
J ) the set of resources
L ) the set of products
R ) the set of resource categories
A ) the set of precedence constraints
Ij ) the set of tests that can be scheduled on unit j
Il ) the set of tests corresponding to product l
ILi ) the set of tests that correspond to the product that

has i as one its test
Jr ) the set of resources in category r
Ji ) the set of resources that can be used for test i
Kj ) the set of slots defined for resource j
Ml ) the set of linearization points for a decrease in income

function
Ni ) the set of linearization points for cost function

Parameters

ain ) the location of grid point n for variable wi

blm ) the location of grid point m for the piecewise linear
decrease in income of product l

ci ) the cost of completing the test i by using available
resources

cji ) the cost of outsourcing test i
di ) the duration of test i
flm ) the value of the slope of profit function for product l

at linearization point m
Nir ) the units of resource r required by test i
pi ) the probability of success of test i
rj ) the rate of interest compounded continuously
Ui ) the upper bound on start time of test i
Uj ) the upper bound on start time of any test on unit j
Wi ) the lower bound on the variable wi

Continuous Variables

Ci ) cost for completing test i
ulm ) an extra variable to calculate income
si ) start time of test i
Sjk ) start time of slot k of unit j
tl ) completion time of product l
wi ) an extra variable for piecewise derivation of cost

function
λ̂in ) a piecewise linear variable for test i at point n in λ

formulation of cost function
λin ) a disaggregated piecewise linear variable for test i at

point n in λ formulation of cost function
λhin ) a disaggregated piecewise linear variable for test i at

point n in λ formulation of outsourcing cost function
τijk ) a disaggregated variable in time-matching constraints
âij ) a disaggregated variable in time-matching constraints
γjk ) a disaggregated variable in time-matching constraints

Boolean Variables

xijk ) 1 if test i is assigned to slot k of unit j
x̂ij ) 1 if test i uses unit j
yii′ ) 1 if test i′ is finished after test i
ŷii′ ) 1 if test i′ is finished after test i
ẑi ) 1 if test i is outsourced
zjk ) 1 if slot k of unit j is empty

A. Linearization of Disjunction (6)

Using the convex hull formulation,16,17 disjunction (6)
can be written in mixed-integer form as

Here, Ci
1, Ci

2, wi
1, wi

2, λin, and λhin are reformulation
variables and UCi is the valid upper bound on Ci. It can
be observed that bounding constraints (65) and (67) are
redundant because they are dominated by constraints
(58) and (59), respectively. Furthermore, inequalities
(60)-(63) are also redundant because they are domi-
nated by eqs 54-57, respectively. Also, We can reduce
the equations (51), (54), and (55) by eliminating Ci

1 and
Ci

2. Similarly, eqs 53, 56, and 57 can be reduced by
eliminating wi

1 and wi
2. Finally, eq 52 can be dropped

because there are no other constraints that involve λ̂in.

Ci ) Ci
1 + Ci

2 ∀ (i ∈ I) (51)

λ̂in ) λin + λhin ∀ (i ∈ I), (n ∈ Ni) (52)

wi ) wi
1 + wi

2 ∀ (i ∈ I) (53)

Ci
1 ) ci(∑

n

eainλin) ∀ (i ∈ I) (54)

Ci
2 ) cji(∑

n

eainλhin) ∀ (i ∈ I) (55)

wi
1 ) ∑

n

ainλin ∀ (i ∈ I) (56)

wi
2 ) ∑

n

ainλhin ∀ (i ∈ I) (57)

∑
n

λin ) 1 - ẑi ∀ (i ∈ I) (58)

∑
n

λhin ) ẑi ∀ (i ∈ I) (59)

Ci
1 e UCi(1 - ẑi) ∀ (i ∈ I) (60)

Ci
2 e UCiẑi ∀ (i ∈ I) (61)

Wi(1 - ẑi) e wi
1 e 0 ∀ (i ∈ I) (62)

Wiẑi e wi
2 e 0 ∀ (i ∈ I) (63)

λin g 0 ∀ (i ∈ I), (n ∈ Ni) (64)

λin e (1 - ẑi) ∀ (i ∈ I), (n ∈ Ni) (65)

λhin g 0 ∀ (i ∈ I), (n ∈ Ni) (66)

λhin e ẑi ∀ (i ∈ I), (n ∈ Ni) (67)
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Therefore, the reduced set of constraints is as follows:

B. Reformulation of Time-Matching Constraints

The time-matching constraints (23) and (24) can also
be enforced using the following nonlinear constraint:

This constraint can be rewritten as

Let us introduce a new variable τijk such that

Using (75), we can rewrite (74) as

Adding (75) over the time slots (k) and (76) over the
tests (i ∈ Ij) yields

Equations 77 and 78 can be rewritten by using eqs
19 and 20, respectively:

Adding and subtracting si from the right-hand side
of (79), eqs 79 and 80 can be rewritten as follows,

where âij ) si(1 - x̂ij) and γjk ) Sjkzjk.

Finally, we establish the connections between the
continuous variables τijk, âij, and γjk and the binary
variables xijk, x̂ij, and zjk, respectively:

Hence, the constraints (81)-(85) can be used instead
of constraints (23)-(24) to enforce the time matching.
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Ci ) ci(∑
n

eainλin) + cji(∑
n

eainλhin) ∀ (i ∈ I) (68)

wi ) ∑
n

ain(λin + λhin) ∀ (i ∈ I) (69)

∑
n

λin ) (1 - ẑi) ∀ (i ∈ I) (70)

∑
n

λhin ) ẑi ∀ (i ∈ I) (71)

λin, λhin g 0 ∀ (i ∈ I), (n ∈ Ni) (72)

(si - Sjk)xijk ) 0 ∀ (i ∈ I), (j ∈ Ji), (k ∈ Kj) (73)

sixijk ) Sjkxijk ∀ (i ∈ I), (j ∈ Ji), (k ∈ Kj) (74)

τijk ) sixijk ∀ (i ∈ I), (j ∈ Ji), (k ∈ Kj) (75)

τijk ) Sjkxijk ∀ (i ∈ I), (j ∈ Ji), (k ∈ Kj) (76)

∑
k∈Kj

τijk ) si ∑
k∈Kj

xijk ∀ (i ∈ I), (j ∈ Ji) (77)

∑
i∈Ij

τijk ) Sjk∑
i∈Ij

xijk ∀ (j ∈ J), (k ∈ Kj) (78)

∑
k∈Kj

τijk ) six̂ij ∀ (i ∈ I), (j ∈ Ji) (79)

∑
i∈Ij

τijk ) Sjk(1 - zjk) ∀ (j ∈ J), (k ∈ Kj) (80)

si ) ∑
k∈Kj

τijk + âij ∀ (i ∈ I), (j ∈ Ji) (81)

Sjk ) ∑
i∈Ij

τijk + γjk ∀ (j ∈ J), (k ∈ Kj) (82)

0 e τijk e Uixijk ∀ (i ∈ I), (j ∈ Ji), (k ∈ Kj) (83)

0 e âij e Ui(1 - x̂ij) ∀ (i ∈ I), (j ∈ Ji) (84)

0 e γjk e Ujzjk ∀ (j ∈ J), (k ∈ Kj) (85)
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