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The Research and De®elopment Pipeline management problem has far-reaching eco-
nomic implications for new-product-de®elopment-dri®en industries, such as pharma-
ceutical, biotechnology and agrochemical industries. Effecti®e decision-making is re-
quired with respect to portfolio selection and project task scheduling in the face of
significant uncertainty and an e®er-constrained resource pool. The here-and-now
stochastic optimization problem inherent to the management of an R& D Pipeline is
described in its most general form, as well as a computing architecture, Sim-Opt, that
combines mathematical programming and discrete e®ent system simulation to assess the
uncertainty and control the risk present in the pipeline. The R& D Pipeline management
problem is ®iewed in Sim-Opt as the control problem of a performance-oriented, re-
source-constrained, stochastic, discrete-e®ent, dynamic system. The concept of time lines
is used to study multiple unique realizations of the controlled e®olution of the discrete-
e®ent pipeline system. Four approaches using ®arious degrees of rigor were in®estigated
for the optimization module in Sim-Opt, and their relati®e performance is explored
through an industrially moti®ated case study. Methods are presented to efficiently inte-
grate information across the time lines from this framework. This integration of infor-
mation demonstrated in a case study was used to infer a creati®e operational policy for
the corresponding here-and-now stochastic optimization problem.

Introduction
Planning and scheduling are common to many different

engineering domains. In general, the more constrained the
resources, the more tightly coupled planning and scheduling

Ž .will be. The Research and Development R&D Pipeline
management problem addresses the issues of a new-product-
development pipeline, where several new-product-develop-
ment projects compete for a limited pool of various resource

Ž .types. Each project product usually involves a series of test-
ing tasks prior to product commercialization. If the project
fails any of these tasks, then all the remaining work on that
product is halted and the investment in the previous testing
tasks is wasted. In the context of an R&D Pipeline manage-
ment, planning refers to strategic planning and scheduling
refers to tactical planning. Strategic planning refers to the

Correspondence concerning this article should be addressed to J. F. Pekny.

construction of an attractive portfolio of research projects,
and tactical planning refers to the temporal assignment of
limited resources to tasks that are required for the actual
execution of a portfolio. In its most general form, the deter-
ministic R&D Pipeline management problem asks the follow-
ing question:

Given a set of research projects, each project containing a
set of activities related by generalized precedence constraints
ŽStart-to-Start, Start-to-Finish, Finish-to-Finish, Finish-to-

. Ž .Start , a common pool of limited resources of various finite
kinds and a measurement of performance, what is the best
set of projects to pursue, and further, what is the best way to
assign resources to activities in the chosen projects, such that
the chosen measure of performance is maximized?

Clearly, planning and scheduling are inseparably con-
nected in this context. A more realistic, and practically moti-
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vated, problem is the preceding question in a stochastic con-
text, that is, with uncertainty added in terms of task dura-
tions, task resource requirements, and task successes, task
costs and rewards. Thus, a realistic R&D Pipeline manage-
ment problem is a stochastic optimization problem combin-
ing the features of a project selection problem and general-
ized resource-constrained project-scheduling problem
Ž .RCPSP . The additional complexities are the task success
uncertainty, duration uncertainty, and resource requirement
uncertainty. An extensive review of scheduling as it applies to

Ž .chemical engineering is presented by Reklaitis 1992 . There
also exists a large body of literature on the RCPSP, as noted

Ž .in a recent review article by Brucker et al. 1999 . The exist-
ing literature on the RCPSP addresses both deterministic and
stochastic versions to minimize project completion time, but
the stochastic version is limited to task-duration uncertainty.
Task-success uncertainty, a predominant source of uncer-
tainty in the R&D context, has not been adequately ad-
dressed in the literature, with the noted exception of Schmidt

Ž . Ž .and Grossmann 1996 , Honkomp 1998 , Jain and Gross-
Ž . Ž .mann 1999 , and Blau et al. 2000 . Schmidt and Grossmann

Ž .1996 addressed the problem of a single project with unlim-
ited resources while considering task-success uncertainty, du-
ration uncertainty, and cost uncertainty with discrete stochas-

Ž .tic scenarios. Jain and Grossmann 1999 addressed the prob-
lem of a fixed, predetermined, portfolio of projects with re-
source constraints and task-success uncertainty. Honkomp
Ž .1998 addressed the problem of both project selection and
project scheduling with task-success uncertainty to estimate a
throughput of the R&D pipeline capacity. The last two refer-
ences follow deterministic mathematical programming ap-
proaches, and assume absolutely certain knowledge of the
problem parameters. The failure of a task enters the preced-
ing mathematical programming models in a fractional form.
It enters the objective function, which is expressed as the ex-
pected net present value. Failure of a task also enters in a
fractional form into the resource constraints, as in resource

Ž .overbooking used by Honkomp 1998 . While such fractional
representations of failure yield plans and schedules that ac-
knowledge failure in a broad decision-making sense, it should

Žbe noted that failure occurs in reality in a binary whole,
.FailsrSucceeds fashion, as opposed to something fractional.

Such a realistic, binary representation of failure cannot be
given in any single instance of a mathematical program, be-
cause of the chance-dependent nature of binary failure. This
binary aspect of failure is important for capturing realistic
operational and design possibilities in the pipeline system,
since the failure of a project completely releases resources
that are otherwise committed to the project. Furthermore, all
of the preceding mathematical programming approaches ig-
nore uncertainties in resource requirements and resource
availability, as well as in project rewards, all of which are

Ž .subject to variability in practice. Blau 1997 showed how a
systems engineering approach can be used to significantly re-
duce the time and cost associated with the development pro-

Ž .cess of new agrochemicals. More recently, Blau et al. 2000
presented a probabilistic network simulation model for the
new-product development problem. They propagated uncer-
tainties through the model in a Monte Carlo simulation sense,
while assuming unlimited resources, to track the distributions
of rewards and resource violations. Task scheduling was not

considered within or across projects, since resource con-
straints were not an issue. In their approach, once a project
starts, all of its tasks get executed back-to-back, that is, as
soon as feasible. They applied metrics such as reward-to-risk
ratio to rank-order projects and suggested rank-based stag-
gering of project start times, along with task failure serving as
a trigger event to start projects of lower priority that have not
yet started.

Simulation allows for a realistic representation of failure
and a detailed representation of uncertainty with relative
ease. This research work integrates the merits of both opti-
mization and simulation in a computational architecture
called Sim-Opt. This article is structured as follows: The
here-and-now stochastic optimization problem present in the
management of an R&D Pipeline is described in its general
form. Next, Sim-Opt, a computing architecture that combines
mathematical programming and discrete event system simula-
tion to assess the uncertainty present in the pipeline and to
help decision making is presented. An industrially motivated
case study is used to illustrate the application of Sim-Opt.
Finally, methods are presented to efficiently accumulate in-
formation from this framework, and incorporate this infor-
mation for more effective decision making. The literature that
is related in spirit, in terms of using simulation in the context
of stochastic optimization, includes Kalagnanam and Di-

Ž . Ž .wekar 1997 , Gonzalez and Realff 1998 , and Honkomp et
Ž . Ž .al. 1999 . Kalagnanam and Diwekar 1997 addressed the

parameter-design problem as a stochastic optimization prob-
lem. It involved an optimizer in an outer loop that invoked a
simulation model at each iteration to numerically estimate
the multivariate probability distributions of corresponding

Ž .performance statistics. Gonzalez and Realff 1998 coupled a
discrete event simulator in an open loop to the output of a

Ž .mixed-integer linear-programming MILP scheduling model
for pipeless batch plants to study the sensitivity of the sched-
ule to processing and travel time perturbations. Honkomp et

Ž .al. 1999 developed a framework for directly incorporating
schedules into a batch process simulator for the purposes of
schedule validation and testing of rescheduling methodolo-
gies when stochastic events occur. The current work differs
from these references in that it addresses a product-develop-
ment, planning problem as opposed to a parameter-design
problem or a batch chemical manufacturing problem. Fur-
ther, it develops a framework guided by the discrete-event
dynamic system perspective to introduce the concept of time
lines and the integration of information across these time lines
to gain design and operational insights about the system.

R&D Pipeline System as a Discrete-Event Dynamic
System and the Underlying Stochastic
Optimization Problem

In this section, a basic deterministic optimization formula-
tion for the R&D pipeline problem is presented first to moti-
vate the subsequent discussion on the underlying stochastic
optimization problem and the consideration of the R&D
pipeline as a discrete-event dynamic system. The determinis-
tic optimization formulation is based on the development in

Ž .Honkomp 1998 . A set of research projects is given, each
project consisting of a set of precedence-constrained activi-

Ž .ties also referred to as tasks . There is a finite set of re-
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sources, which are required in a certain combination for any
task to be feasibly scheduled. Each task has an associated
duration, cost, reward, and probability of success. The aim is
to select a portfolio of projects and determine a schedule of

Ž .tasks that maximizes the expected net present value ENPV
and meets resource constraints. Both discrete and continuous
variables are necessary to model the combinatorial decisions
involved in the preceding project selection and scheduling
problem. The variables in the basic uniform time discretiza-

Ž .tion method UDM formulation are:

� 4X g 0,1 � i , 1F tFHy p 1Ž .it it

0FH � F1 � i , i�gT I , 1F tFHy p 2Ž .i , i , t b i i t

0FS FU � r , 1F tFHy1, 3Ž .r t r t

where
X sbinary decision variable, which is 1 if task i is started at timei t

t, and 0 otherwise
Hy1snumber of time periods in the planning horizon

p stime-dependent processing time of task i if it begins at time ti t
H � svariable to allow task i, which follows task i� at time t, toi, i , t

wait before starting
T I sset of tasks that immediately precede task ib i
S samount of available resource r left unused at time tr t
U smaximum amount of resource r available at time t.r t

The allocation and precedence constraints in the formula-
tion are Eqs. 4 and 5, respectively:

Hy pit

X F1 � i 4Ž .Ý it
ts1

H � sH � q X � �y X � ig AND ,Ýi , i , t i , i , ty1 i , t i t in
� �

� ��t t q p s ti t

i�gT I ,t , 5Ž .bi

where AND is a set of tasks that have an in-tree structurein
with AND logical connectivity, that is, tasks with predeces-
sors, all of which need to be completed for feasibility. The
constraints that model the demands on the end of the various
projects are given below. The demands are modeled as hard,
soft forced, and soft. Hard demands require that the task be
completed by the time of the demand for the solution to be
feasible. Soft-forced demands are similar to hard demands in
as much as the task must be completed for the model to be
feasible. However, completion later than the demand date is
permitted with a penalty. The third type of demands, soft
demands, are the weakest set in as much as a task with this
type of demand is not required to be completed for the MILP
to be feasible.

d y pi i t

X s1 � igT 6Ž .Ý it h
ts1

Hy pit

X s1 � igT 7Ž .Ý it f
ts1

d Ey pi i t

X s1 � igT 8Ž .Ý it f
ts1

d Ey pi i t

X F1 � igT , 9Ž .Ý it s
ts1

where
d stime of hard demand for task ii
T sset of tasks with a hard demandh
T sset of tasks with a soft-forced demandf
T sset of tasks with a soft demands

d Estime when the demand for task i expiresi

Resource utilization and capacity is modeled by discount-
ing the requirements of every task by the compounded proba-
bility of successful finish of all corresponding predecessor
tasks. This approach results in resources being scheduled at
their expected usage levels.

p y1N tasks i t
S

� � �P r X FU � r ,t , 10Ž .Ý Ý i i , tyt , t , r i tyt r t
�is1 t s 0

or equivalently,

p y1N tasks i t
S

� � �P r X qS sU � r ,t , 11Ž .Ý Ý i i , tyt , t , r i tyt r t r t
�is1 t s 0

where

P Ss � � � i 12Ž .Łi i
�i gTb i

P Fs � � , � i 13Ž .Ýi i
� � 4i gT � ib i

and
P Ssparameter for the cumulative probability of task i startingi
� �sparameter for the probability of success of task ii
T sset of all tasks prior to task i, with a directed path to task i inb i

Ž . Žthe Activity-on-Node AoN directed graph through linear or
.nonlinear precedence chains ; it excludes tasks in the same

project without a directed path to task i, in the Activity-on-
Node directed graph

Ntaskssset of all tasks
r srequirement for resource r by task i, which starts at time ti, t,c, r

and has completed c units of its duration
The objective function is the expected net present value of

the system, and is modeled as the sum of the following terms:

d Ey pi i t
F Dq P C X � ig T ,T 14� 4 Ž .Ý i it it s f

ts1

d y pi i t
F Dq P C X � igT 15Ž .Ý i it it h

ts1

Hy pit
F Dq P C X � i� T ,T ,T 16� 4 Ž .Ý i it it s f h

ts1

d Ey pi i t
S Ey P C X � ig T ,T 17� 4 Ž .Ý i it it s f

ts1

d y pi i t
S Ey P C X � igT 18Ž .Ý i it it h

ts1
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Hy pit
S Ey P C X � i� T ,T ,T 19� 4 Ž .Ý i it it s f h

ts1

d Ey pi i t
F F Vy P C q tyd C X � ig T ,T , 20� 4 Ž .Ž .Ž .Ý i i i i it s f

ts di

where
P Fsparameter for the cumulative probability of task i finishingi
C Dsparameter for the value of delivering task i at time ti t
C Esparameter for the cost of executing task i at time ti t
C Fsparameter for fixed penalty due to missing demand for task ii
CVsparameter for variable penalty due to missing demand for taski

i.

The solution obtained with the preceding formulation is
not necessarily a nondelay schedule. It may contain a delay
between any two activities belonging to the same project, if,
say, the objective function dictates that a delay be introduced
to let a higher priority project get its resources. The notable
feature in this deterministic formulation is that it accounts
for the possibility of project attrition due to task failure in
the pipeline, by effectively overbooking the resources as
shown in Eqs. 10 and 11. This is different from the formula-

Ž .tion of Jain and Grossmann 1999 , where resource con-
straints are imposed in a conservative fashion without ac-
counting for the possibility of pipeline attrition. It should be
noted that the probabilistic discounting for the resource re-
quirement of any task is done only with respect to the set,
T , which is the set of all tasks that have a directed path tobi

Žtask i, in the AoN directed graph through linear or nonlin-
.ear precedence chains . It excludes parallel tasks in the same

project that do not have a directed path to task i, in the AoN
directed graph. The same argument applies for the proba-
bilistic discounting in the expected costs and expected re-
wards in the objective function terms contained in Eqs. 14 to
20. This is not a serious limitation, as it can be overcome by
expanding the set, T , at every UDM time period, t, to in-bi

Ž .clude tasks in the same project that do not have a directed
path to task i, but have finished before time period t. This is
accomplishable at a cost in terms of increasing the number of
binary variables to determine how to augment the set, T , atbi
every UDM time period, t. The formulation of Jain and

Ž .Grossmann 1999 does not suffer from this limitation. It ac-
counts for the probability of starting any task by considering
all tasks in the same project, whether or not there exist di-
rected paths to the task under question in the AoN graph. It
does so by adding suitable binary variables. But it should be
noted that their formulation considers the probabilistic impli-
cation of any task sequence only in the objective function in
terms of expected costs and expected rewards, and not in the
constraints. The preceding deterministic formulation as well

Ž .as that of Jain and Grossmann 1999 assumes fully perfect
knowledge of all problem parameters.

The practical R&D pipeline problem is complicated by the
presence of significant uncertainties in the estimates of task
processing times, estimates of task resource requirements, es-
timates of the probabilities of successrfailure, and the fore-
casts of market returns and costs of tasks. These sources of
variability, characterized as probability distributions, make the
underlying problem a stochastic optimization problem. The

mathematical programming formulation of this stochastic op-
timization problem consists of objective function and con-
straints that are probabilistic. A typical stochastic program-
ming statement of the practical problem, as a chance-con-

Ž .strained formulation Kall and Wallace, 1994 , can be sum-
marized as below.

Obtain a portfolio and a task schedule over the planning
horizon that: maximizes the expectation of the net present

Ž .value NPV of the pipeline system, subject to,

� Allocation Constraints

Satisfying Pr ecedence Constra int s° ¶~ •� Satisfying Re sourceConstra int sProbability G�¢ ßSatisfying DemandConstra int s

� � 4Probability NPV GM G� , for suitably chosen � , � , and
M.

It should be noted that every constraint in the determinis-
tic formulation that depends on random parameters is now
stipulated to hold jointly only in a probabilistic sense, that is,
with a joint probability of at least � . Precedence constraints
and demand constraints involve random processing times,
while resource constraints involve random resource require-
ments, random processing times, and estimates for the proba-
bilities of success that are themselves random. An additional
constraint that enters the stochastic optimization problem is
the risk constraint. A practical form of the risk constraint is
obtained by insisting that the NPV exceed a value M with a
probability at least �. This constraint enters the problem due
to variability in the estimates of market returns and costs of
activities. While this article does not attempt a mathematical
formulation of the preceding stochastic optimization state-
ment, it helps to note the following about any such stochastic
programming formulation. Capturing all the essentials of the
preceding stochastic optimization problem in a single mathe-
matical program will be in the form of a stochastic integer
program. It will involve constructing mathematical expecta-
tions and higher moments of the net present-value distribu-

Ž .tion objective function and those of the probabilistic risk
constraints and physical constraints. This is an arduous task,

Žrequiring multivariate numerical integration Kall and Wal-
.lace, 1994 . Given the NP-hardness of integer programming

Ž .Garey and Johnson, 1979 and the numerical complexity of
stochastic programming, one monolithic stochastic integer
program for the R&D pipeline problem is arguably outside
the set of effectively solvable problems. Further, such a

Ž .stochastic program can only have a fractional probabilistic
representation of task successrfailure. This is meaningless in
the context of actual implementation, because successrfailure

Ž .is realized in a binary whole sense in the actual implemen-
tation. The output of such a stochastic optimization formula-
tion that satisfies constraints in a probabilistic sense is some-
what disconnected from reality, in the sense that it does not
say anything about any one future that the system could evolve
along. In reality, all constraints would need to be satisfied
exactly in the one and only unknown future that the system
will evolve along. This disparity between a stochastic opti-
mization solution and its realistic implementation needs to
be addressed in a form that is practically useful. This is what
is addressed next with a discrete event dynamic system view
of the R&D pipeline.
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Discrete-e©ent dynamic-system ©iew
The stochastic optimization problem in the context of R&D

Pipeline management is an optimal resource-constrained pro-
ject selection and task-scheduling problem in the face of sig-
nificant uncertainty. The R&D Pipeline management prob-
lem can be viewed as the control problem of a performance-
oriented, resource-constrained, stochastic, discrete-event, dy-

Ž .namic system DEDS . For details about stochastic DEDS,
Ž .refer to Cassandras 1991 . The state space is the set of possi-

ble states of the pipeline, in terms of:
� The set, A, of active tasks, the levels of progress of these

active tasks, the amounts of the various resource types that
these active tasks are engaging, along with

� The set, F, of finished tasks, the success status of these
Ž .finished tasks successful finish or unsuccessful finish , the

amounts of the various resource types that these finished tasks
engaged, their processing times

� The feasible set, U, of tasks that are not active and have
not been started. This feasible set contains tasks that are
technologically feasible, but cannot be started due to re-
source constraints. It contains all such project tasks in the

Ž .pipeline whether in the currently chosen portfolio, or not .
It should be noted that in reality, the set, A, of active tasks

always contains tasks that are simultaneously feasible with
respect to resource constraints. The e®ent space, correspond-
ing to any state, is the set of events representing the finish of
tasks that are active in the system at that state. The occur-
rence of such events is governed by the probability distribu-
tion of the task processing times. The state of the system
changes at discrete points in time on the occurrence of such
events. The changes are governed by the transition probabili-
ties of tasks going from an active status to successful finish or
unsuccessful finish. Such transition probabilities are them-
selves driven by their respective probability distributions. The
action space, corresponding to any state, is the set of deci-

Ž . Žsions corresponding to which feasible task s to start which
Ž . .task s to move from set U to set A , given estimates of the
Ž .task s ’s requirements of various resource types, and the re-

source levels that are available in the system at that state. An
action is taken at the very start of the system’s evolution to
establish an initial state of the system. This action establishes
the portfolio with which the pipeline begins to evolve. Ac-
tions are also taken upon the occurrence of events in the
system, since the finish of an active task implies disengage-
ment of various resource types, and hence implies the capa-
bility to start new feasible tasks. These actions correspond to
either the scheduling of tasks that belong to the current port-
folio, or adding new projects into the portfolio. Further, ac-
tions are influenced by the probability distributions driving
the resource requirements, the processing durations, and fail-
ure probabilities corresponding to the various tasks. Actions
typically change the state of the system, since they change the
set, A, of the active tasks. The goal of the preceding problem
is to establish an initial state of the pipeline, and establish a
policy for taking actions as the pipeline evolves through its
states, as it traverses the stochastic state space subject to the
resource constraints present in the system. Thus, the pipeline
system needs dynamically changing sets of decisions due to
dynamically evolving states. In higher-level terms, this trans-
lates to choosing a portfolio of projects, performing the ac-

tual task scheduling among various projects, and dynamically
revising the portfolio and the schedule upon such a need.

The net present value that results from a given set of dy-
namic decisions, made at the here-and-now with respect to
portfolio selection and task scheduling, is an indicator of the
quality of decision making in the system. Uncertainties in the
task processing times, task survival probabilities, task re-
source requirements and task rewards lead to a probabilistic
distribution of the net present value of the pipeline system,
for any given set of planning and scheduling decisions formed
at the here-and-now. The underlying stochastic optimization
problem, in the discrete event dynamic system, seeks sets of
decisions at the here-and-now that maximize the expected net
present value of the system, that is, maximize the mean of
the distribution just described. This objective function repre-
sents the ‘‘reward’’ obtainable in the system. In addition, it is
also desired to exercise control over the spread of the distri-
bution, that is, control the cumulative probability of realizing
a positive net present value. Clearly, the extent to which the
spread of the distribution can be controlled is defined by the
uncertainties inherent to the pipeline.

Sim-Opt: Computing Architecture
The discrete-event dynamic-system view of the R&D

pipeline was discussed in the previous section as a practically
useful way to address the differences between stochastic pro-
gramming formulations of the R&D Pipeline problem and
the implementation of the system in reality. In this section, a
computing architecture, Sim-Opt, is presented that captures
the discrete-event dynamic-system view by integrating combi-
natorial optimization and discrete-event system simulation.
The different elements that combine and interact to create
this architecture are described next, first as a general con-
cept, and then followed by the particulars of our implementa-
tion. The optimizer, or the decision-making module, is the
first element. To begin with, it establishes an initial state of
the pipeline system by solving a suitably simplified determin-
istic version of the here-and-now stochastic optimization
problem. This could be done with the use of mathematical
programming or with the use of heuristics. The evolution of
this initial state of the pipeline is tracked in a discrete-event
system simulation module, which forms the second element.
The uncertainties associated with the task processing times,
task resource requirements, and task successes are modeled
with appropriate probability distributions. Resource con-
straints are enforced in the system evolution at every point,
as are the physics of the pipeline portfolio in terms of prece-
dence relationships. As the system evolves in the constrained
simulation mode to generate an artificial history, two kinds of
possibilities are encountered. The first is that of a resource
conflict among tasks that are simultaneously feasible within
and across projects, and the second is that of a task failure
that leads to attrition of projects in the pipeline. The simula-
tion module is not equipped for resolving these possibilities.
In terms of a decision-making response, it helps to think of
the former as regulatory control action and the latter as super-
®isory control action. Both regulatory and supervisory control
actions can be determined with the use of mathematical pro-
gramming or with the use of heuristics. When the simulation
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Figure 1. Sim-Opt.

module encounters a need for either of the two types of con-
trol actions, it momentarily suspends itself and communicates
the state of the system to the decision-making module, which
solves a combinatorial problem that is appropriately modified
to account for the current system state. The simulation is
reprimed, with the state resulting from the optimizer, and it
continues marching in time until its subsequent need for a
control action. This architecture is presented in Figure 1. It
should be noted that with respect to the system clock, the
simulation module consumes time, while the optimizer mod-
ule is an instantaneous departure for deciding on a control
action. The simulation module marches in time, with an inde-
terminate number of departures to the optimizer, until a pre-
determined end of the planning horizon is reached, or a pre-
determined state like the exhaustion of all tasks in the
pipeline is reached.

One such controlled walk in time through the stochastic
state space constitutes a time line. A time line is thus a con-
trolled trajectory that contains a unique get-together of vari-
ous stochastic realizations present in the pipeline. Further, a
time line contains information about the temporal coexis-
tence of various feasible tasks, both within and across pro-
jects. This information, while being influenced by the nature
of control actions exercised, is largely a function of uncer-
tainty, and is not obtainable a priori from a single monolithic
stochastic program due to uncertainties present in the task
successes that are binary in nature, and those present in task
processing times and task resource requirements. This coexis-
tence information can be further processed to infer and iden-
tify resource types that are binding in the face of uncertainty,
and to evaluate the worth of augmenting such resource types.
It can also be used to obtain information about the relative

Ž .tendencies of projects and tasks to crowd out other projects
Ž .and tasks due to the associated variations in their resource
needs. All the information that is obtained from the frame-
work could be potentially incorporated in a suitable manner
to bias the deterministic optimization formulation for the
purposes of portfolio selection. Finally, multiple time lines
can be explored in a Monte Carlo fashion to accumulate sev-
eral unique combinations of realizations of uncertainty.

Figure 2 depicts such multiple time lines in the form of a
stochastic tree. The root node can be thought to represent
the initial state of the pipeline system. The internal nodes in

Figure 2. Multiple Monte Carlo time lines.

the tree can be thought to represent calls that are triggered
to the optimizer. The leaves of the tree can be thought to
represent the end of the planning horizon. Furthermore, ev-
ery unique path from the root node to a leaf node can be

Ž .thought to represent one unique time line a unique future
along which the R&D Pipeline could live through. Ordinary
resource-constrained simulations like those implemented in

Ž .packages such as Extend Imagine That Inc. and Awesim!
Ž .Symix Inc. explore multiple stochastic realizations, too. Such
ordinary simulations are not equipped with long-range deci-
sion-making capability. They need to use dispatching rules, in
the form of a prioritized queue or some such queuing ab-
straction to resolve conflicts and to react to events. They are
thus myopic if used alone, since such dispatching rules have
available only local, current information at any decision-mak-
ing point in simulation.

Sim-Opt overcomes this limitation in traditional simulation
by taking the discrete-event dynamic system view of our
stochastic system. Sim-Opt is, in a generic sense, the process
of studying multiple controlled trajectories of a system through
its stochastic state space. The control action within any single
trajectory, or time line, is determined by solving suitable opti-
mization formulations, which depend on the specific states
that are witnessed within the time line. The optimization for-
mulation at any state within any time line can be as simple as
a set of dispatchingrprioritizing rules, as is done in tradi-
tional simulation. At the same time, it can be a sophisticated
mathematical program that takes into account current, local
information, dynamic state-dependent information such as
immediate resource competition, and the long-range effects
of immediate actions by extending its considerations over a
suitable horizon length. Thus traditional simulation can be
viewed as one limit of the Sim-Opt approach; a limit where
decisions are made in a myopic manner with local rules. Each
time line in Sim-Opt is a potential evolution of reality in the
system and is composed of events and corresponding decision
responses that are exercised in a controlled fashion. Sim-Opt
effectively generalizes traditional discrete-event simulation to
embed sophisticated decision-making capability into simula-
tion. Sim-Opt is different in terms of the treatment of the
time lines. It represents a spectrum of decision making that
varies according to the scope of decisions that need to be
made at a given time. Sim-Opt is thus a decomposition-based
approach to obtaining solutions to stochastic optimization
problems. The inner loop, in Figure 1, studies multiple con-
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trolled trajectories of the underlying discrete-event dynamic
system in the face of rigorous uncertainty and realistic imple-
mentation. The information obtained from the multiple time
lines can be integrated to exercise risk control and to obtain
solutions to the underlying stochastic optimization problem.
This is the intent of the outer loop, termed as the risk-control
loop. The outer loop modifies the problem formulation, based
on the knowledge obtained from the inner loop. It attempts
to drive the controlled trajectories in the inner loop toward
improving solutions with respect to probability distribution of
the NPV in the system. A formal treatment of the outer loop
is not conducted in this article, and will be addressed in a
separate study. The inner loop and the accompanying inte-
gration of information is the focus of this study. This is
demonstrated on an industrially motivated case study in a
later section.

It should be noted that the principal benefit accruing from
the application of Sim-Opt to the R&D Pipeline manage-
ment problem is not any particular, single schedule of tasks.
The foremost benefit is the assessment of uncertainty in the
system. Information is obtained in terms of the relative per-
formances of various strategic and tactical policies in the face
of uncertainty and in terms of insights into the interactions
resulting from resource conflicts between tasks, within and
across projects. This information can be used to infer opera-
tional and design solutions for more effective management of
the R&D Pipeline. Some of the questions that can be ad-
dressed with this framework are as follows:

1 What is a good set of projects to pursue?
2. What is a good way to assign resources to activities in

the chosen projects?
3. What is the risk profile present in any answer to the

preceding questions? What is the distribution of portfolio
value?

4. How may the risk profile be ‘‘improved’’?
5. Which Resources are limiting, and at what points in

time?
6. What is the effect of inaccuracies in data estimates?
7. What is the value of outsourcing contracts for re-

sources? When should we augment which type of resources
to get a faster throughput of projects?

The questions that can be addressed with the Sim-Opt
framework range from portfolio selection and scheduling to
risk analysis and control, sensitivity analysis, and design in-
sights.

Sim-Opt Implementation
Sim-Opt has been implemented as an object-oriented, scal-

able architecture using the Cqq programming language. The
computing recipe that the inner-loop implementation of Sim-
Opt follows is given in Figure 3. First, an initial project port-
folio is established. This supervisory control action is taken
by solving a resource-overbooked optimization program based
on the deterministic formulation presented in second section,
wherein all random parameters are set to their respective ex-
pected values. The resulting mixed-integer linear program is
formulated and solved in a Cqq module using a commercial

Žsolver library, MILPqq Advanced Process Combinatorics,
.Inc. . The solution contains a project portfolio and a project

task schedule that is overbooked in terms of resources. While

Figure 3. Sim-Opt computing algorithm.

such a task schedule is nonimplementable due to resource
overbooking, the mathematical program provides decision
making in terms of portfolio selection.

It should be noted that to begin with the set, UsU , is the0
set of all project tasks in the pipeline that have no technolog-
ical predecessors. Subsequently, upon solving the MILP, the
resulting scheduling solution is preprocessed to establish suc-
cessor sets for all project tasks. More specifically, a successor
set for any project task is the union of the set of tasks sched-
uled to start upon the finish of this task, and the set of tasks
defined as technological successors to this task. The union of
the set of tasks that are not members of any such successor
set, and the set of tasks that are technologically feasible and
belong to the chosen portfolio, forms the initial active set,

Ž .As A A :U . This sequencing information, along with1 1 0
the pipeline problem definition, is fed into a discrete-event
simulation module within the same executable. The simula-
tion module is implemented in Cqq using a commercial li-

Ž .brary, CSIM18 Mesquite Software, Inc. . Graph-theoretic
implementation of the generation of the MILP formulation
as well as that of the discrete-event simulation ensures scala-
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bility of the architecture, and is also key to the implementa-
tion of Sim-Opt. This is because the AoN graph data struc-
ture can be conveniently pruned and the information that it
carries can be modified to correctly represent the state of the
system. It can thus be effectively used to generate the corre-
sponding MILP and simulation formulations at program exe-
cution run time.

It should be noted that the generation of the preceding
formulations is determinable only at run time due to its de-
pendence on the state of the system, and cannot be hard-
wired. Four types of regulatory and supervisory control ac-
tions are explored in this article. The type of control action
exercised would constitute a policy for managing the R&D
Pipeline. All four policies start with the initial portfolio being
determined by the MILP described earlier. A description of
the four policies is given below.

Policy 0: using the MILP rigorously
Policy 0 uses the MILP and the resulting scheduling solu-

tion to make both supervisory and regulatory decisions. Upon
the successful finish or failed finish of an active task, that is,
upon the occurrence of every event in the system, first, the
sets A, F, and U are updated. The current state of the sys-
tem is then communicated to the optimizer. The original
MILP formulation is then modified to account for the cur-
rent state of the system. This includes the following:

� Removal of all tasks belonging to projects that have failed
thus far

� Removal of tasks that are contained in the finished set,
F

� Addition of constraints to ensure the selection of on-
going projects

� Addition of constraints to prevent the preempting of
on-going tasks.

� Parameter updating for partially completed tasks in terms
of estimates for processing times and resource requirements.

The solution to the modified MILP is preprocessed to form
successor sets corresponding to the scheduled tasks, as de-
scribed earlier. The union of tasks that are not members of
any successor set, and tasks that are technologically feasible
and belong to the chosen portfolio, form the active set to
begin with, much like how the computing procedure began.
This is conveyed to the simulation module to continue
marching in time. The tasks in the active set, A, get queued
for the various resource types in the simulation program, with
their scheduled starting times serving as a priority key. Tasks
that have the same scheduled starting times are relatively pri-
oritized in terms of the expected NPV associated with their
projects. The expected NPV is based upon the critical path of
the corresponding AoN graph that remains at the current
state of the system. The length of this critical path is calcu-
lated in an expected sense, using expected values of process-
ing times for the AoN graph. An alternative way to calculate
the critical path is to use the technique of computing the
exact overall time distribution of a project with uncertain task

Ž .durations, as developed in Schmidt and Grossmann 2000 .
It should be noted that such an active set may not always

contain tasks that are simultaneously feasible with respect to
resource constraints, and hence not realistic. Resource star-
vation, occurring due to such resource conflicts, is tolerated

for a fixed, nonzero interval of time beyond the scheduled
starting times of such active tasks. Tolerating resource starva-
tion for a nonzero interval of time is needed to prevent the
degeneracy of infinite cycling between the optimizer and the

Ž .simulator, since the optimizer uses nominal mean estimates
of resource requirements for the scheduling problem, while
the simulator uses values that are realized from the corre-
sponding distributions. If starvation continues beyond the
threshold of tolerance just given, it is treated as an event that
needs decision making, and the current state of the system is
communicated to the optimizer.

Policy I: using the MILP for resol©ing resource conflicts
and for reacting to failure

Policy I is very similar to Policy 0 in that it uses the MILP
and the resulting scheduling solution to make both supervi-
sory and regulatory decisions. While Policy 0 makes a depar-
ture to the optimizer upon the occurrence of every event in
the system, Policy I differs in the following manner. First,
upon the successful finish of an active task, the sets A, F,
and U are updated. Policy I augments the active set, A, with

Žthe union of the successor set resulting from the most recent
.departure to the optimizer of such a finished task, and that

subset of the updated set, U, that belongs to the current port-
folio. This updated input is sent to the simulation program
that continues marching in time much like Policy 0. Resource
starvation that may occur due to resource conflicts among
tasks in the active set is handled as in Policy 0. The event of
unsuccessful finish of an active task is handled entirely with
the MILP by solving a formulation that is modified as de-
scribed before. It proceeds much like how the computing
procedure began.

Policy II: using a static knapsack problem for resol©ing
resource conflicts and the MILP for reacting to failure

Policy II uses a combination of heuristics and mathemati-
cal programming to make both regulatory and supervisory
decisions. First, upon the successful finish of an active task,
the sets A, F, and U are updated. Policy II solves a 0�1
knapsack problem on that subset of the updated set, U, that
belongs to the current portfolio. The reward coefficients used

Ž .for the elements tasks of this subset are the expected NPVs
that the tasks will lead to if started at the current state of the
system. This expected NPV is based upon the expected criti-
cal path of the corresponding AoN graph that remains at the
current system state. The amounts of the various resource
types available at the current state of the system serve as
righthand-side coefficients for the knapsack constraints, and
the mean values of resource requirements of the tasks serve
as lefthand-side coefficients. It is ensured that partially com-
pleted tasks are included in the knapsack solution. The tasks
chosen in the knapsack solution get augmented into the ac-
tive set, A, and get queued for the various resource types in
the simulation program, with their reward coefficients serv-
ing as a priority key. Resource starvation that may occur due

Žto uncertainty in the resource requirements since the knap-
sack was solved with mean estimates serving as lefthand-side

.constraint coefficients , is tolerated until resources become
available in an order determined by the priority key given
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earlier, while not permitting any preemption of partially com-
pleted tasks. Task failure is handled entirely with the MILP,
by solving a formulation that is modified as described in Pol-
icy 0.

Policy III: priority emphasis
Policy III uses a ‘‘greedy’’heuristic to make both regulatory

and supervisory decisions. First, upon the successful finish of
any active task, the sets A, F, and U are updated. Policy III

augments the active set, A, with that subset of the updated
set, U, that belongs to the current portfolio. The tasks in the
active set, A, get queued for the various resource types in the
simulation program, with a priority key equal to the
absolute-reward values attached to successful completion of
the corresponding projects. Resource starvation occurring due
to resource conflicts among the tasks in the active set is toler-
ated until resources become available in an order determined
by the priority key, while it does not permit any preemption
of partially completed tasks. When faced with supervisory de-

Table 1. Case Study Task Data

Custom Distribution

Duration RI R2 Triangular Distribution
Ž . Ž . Ž .Weeks Units Units Probability Success

Most
Task Value Probability Value Probability Value Probability Min Likely Max

I1 1 0.295 4 0.29 2 0.28 0.74 0.80 0.86
2 0.375 5 0.44 3 0.44
3 0.190 6 0.21 4 0.28
4 0.110 7 0.06
5 0.030

I2 2 0.10 4 0.06 1 0.22 0.7 0.75 0.8
3 0.18 5 0.21 2 0.56
4 0.44 6 0.46 3 0.16
5 0.18 7 0.21 4 0.06
6 0.10 8 0.06

P1 3 0.32 10 0.06 2 0.29 0.8 0.85 0.9
4 0.40 11 0.12 3 0.44
5 0.18 12 0.55 4 0.21
6 0.10 13 0.21 5 0.06

14 0.06
I3 1 0.335 3 0.05 1 0.23 0.7 0.8 0.85

2 0.415 4 0.20 2 0.52
3 0.166 5 0.45 3 0.20
4 0.084 6 0.25 4 0.05

7 0.05
I4 3 0.123 4 0.23 1 0.23 0.55 0.6 0.65

4 0.203 5 0.52 2 0.55
5 0.335 6 0.20 3 0.16
6 0.228 7 0.05 4 0.06
7 0.111

P2 4 0.32 10 0.23 2 0.23 0.75 0.8 0.85
5 0.44 11 0.55 3 0.53
6 0.16 12 0.16 4 0.16
7 0.08 13 0.06 5 0.08

I5 2 0.26 2 0.23 1 0.23 0.7 0.8 0.85
3 0.54 3 0.55 2 0.53
4 0.14 4 0.15 3 0.17
5 0.06 5 0.07 4 0.07

I6 3 0.10 4 0.23 1 0.225 0.7 0.75 0.8
4 0.20 5 0.53 2 0.565
5 0.36 6 0.17 3 0.155
6 0.28 7 0.07 4 0.055
7 0.06

P3 4 0.32 12 0.225 2 0.225 0.85 0.9 0.95
5 0.40 13 0.555 3 0.555
6 0.18 14 0.160 4 0.160
7 0.10 15 0.060 5 0.060

I7 3 0.335 3 0.23 2 0.23 0.85 0.9 0.95
4 0.415 4 0.55 3 0.55
5 0.165 5 0.15 4 0.15
6 0.085 6 0.07 5 0.07

I8 1 0.335 5 0.23 1 0.23 0.55 0.6 0.65
2 0.415 6 0.57 2 0.57
3 0.165 7 0.15 3 0.15
4 0.085 8 0.05 4 0.05
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( )Table 1. Case Study Tasks Data Continued

Custom Distribution

Duration RI R2 Triangular Distribution
Ž . Ž . Ž .Weeks Units Units Probability Success

Most
Task Value Probability Value Probability Value Probability Min Likely Max

I9 1 0.32 4 0.23 1 0.22 0.65 0.7 0.75
2 0.40 5 0.57 2 0.56
3 0.18 6 0.15 3 0.16
4 0.10 7 0.05 4 0.06

P4 4 0.07 9 0.23 2 0.23 0.75 0.8 0.85
5 0.17 10 0.53 3 0.53
6 0.52 11 0.17 4 0.17
7 0.17 12 0.07 5 0.07
8 0.07

I10 3 0.33 4 0.23 3 0.23 0.7 0.85 0.85
4 0.41 5 0.53 4 0.54
5 0.20 6 0.17 5 0.17
6 0.06 7 0.07 6 0.06

II1 2 0.297 6 0.23 3 0.23 0.38 0.38 0.48
3 0.456 7 0.54 4 0.53
4 0.197 8 0.17 5 0.17
5 0.05 9 0.06 6 0.07

I12 1 0.32 5 0.23 1 0.23 0.38 0.38 0.48
2 0.42 6 0.53 2 0.53
3 0.18 7 0.17 3 0.17
4 0.08 8 0.07 4 0.07

P5 3 0.325 11 0.23 2 0.23 0.7 0.75 0.8
4 0.375 12 0.53 3 0.53
5 0.150 13 0.17 4 0.17
6 0.100 14 0.07 5 0.07
7 0.050

I13 3 0.305 4 0.23 3 0.23 0.7 0.75 0.8
4 0.440 5 0.53 4 0.53
5 0.200 6 0.17 5 0.17
6 0.055 7 0.07 6 0.07

I14 3 0.32 6 0.23 3 0.23 0.4 0.45 0.5
4 0.42 7 0.53 4 0.53
5 0.18 8 0.17 5 0.17
6 0.08 9 0.07 6 0.07

P6 3 0.088 13 0.20 3 0.22 0.6 0.65 0.7
4 0.200 14 0.57 4 0.54
5 0.380 15 0.23 5 0.17
6 0.280 6 0.07
7 0.052

I15 3 0.325 4 0.22 3 0.22 0.7 0.85 0.85
4 0.425 5 0.54 4 0.54
5 0.175 6 0.17 5 0.17
6 0.075 7 0.07 6 0.07

I16 1 0.283 6 0.22 5 0.22 0.45 0.5 0.55
2 0.433 7 0.54 6 0.54
3 0.284 8 0.17 7 0.17

9 0.07 8 0.07
I17 2 0.29 6 0.22 2 0.22 0.3 0.35 0.4

3 0.44 7 0.54 3 0.54
4 0.21 8 0.17 4 0.17
5 0.06 9 0.07 5 0.07

P7 3 0.29 13 0.20 3 0.22 0.45 0.5 0.55
4 0.44 14 0.57 4 0.54
5 0.21 15 0.23 5 0.17
6 0.06 6 0.07

cision making, Policy III augments the current portfolio with
a new project for each failure encountered, in an order de-
termined by the absolute-reward values attached to projects.
The active set, A, is augmented with that subset of the up-

dated set, U, that belongs to the updated current portfolio.
The computing procedure returns to the simulation module
and continues, as before, until the next control action is
needed.
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Figure 4. Case study AoN graph.

Sim-Opt Case Study
The implementation described in the previous section is

demonstrated on an industrially motivated case study
Ž .Honkomp, 1998 in this section. The case comprises seven
projects, with the Finish-to-Start precedence constraints
within each project, as shown in the AoN graph in Figure 4.
There are two renewable resource types, 16 units of type, R1,

Ž .and 8 units of type, R2. The processing times in weeks , the
resource requirements, and the probabilities of success are
given in Table 1 for each of the tasks. The rewards attainable
upon successful completion of each of the projects are given
in Table 2. All the reward is obtained upon successful com-
pletion of the final step. A planning horizon of 14 weeks is
considered in this problem. As the time scale of the problem
is in terms of weeks, a discount value of 1.73% per week is
used for the calculations. Two classes of activities are consid-
ered for the calculation of rewards. For activities that have
finished successfully, their rewards are time discounted to get
a net present value. For activities that belong to on-going
projects in the pipeline that have started but not conclusively

Ž .completed with respect to successrfailure , an expected NPV
is calculated that is based upon the critical path of the corre-
sponding AoN graph that remains at the state of the system
corresponding to the end of the planning horizon.

Triangular distributions are used in the case study because
they are the easiest estimates to obtain from practitioners,
who tend to have an idea about the maximum, minimum, most
likely values of parameters that are open to variability. Cus-
tom distributions are also practically useful, as they can be
constructed to represent historical information. Figures 5, 6,
7 and 8 show the frequency plots of rewards that are attain-
able from 15,000 time lines if the decision-making module
adopts Policy 0, Policy I, Policy II, and Policy III, respec-

Žtively. Using the idea of common random numbers Law and

Table 2. Project Reward Data

Ž .Project Reward $

P1 30,000
P2 20,000
P3 15,000
P4 40,000
P5 50,000
P6 40,000
P7 60,000

Figure 5. Results with Policy 0.

.Kelton, 1991 , it is exactly guaranteed that the same unique
15,000 sets of random numbers are used for all four policies
to ensure comparability. The computing times required for
the four runs on a Windows NT Workstation with a Pentium
II Processor, 256 MB RAM, and 450-MHz processor speed
are �79 h for Policy 0, �32 h for Policy I, �17 h for Policy
II, and �1.1 h for Policy III. An interesting piece of infor-
mation available with Sim-Opt is the Value with Perfect In-

Ž .formation VPI . The VPI is defined as the value of the sys-
tem assuming perfect prediction, that is, taking decisions with
perfect knowledge of the future. This is done in Sim-Opt in
any single time line by using the sampled values from various
distributions for all sources of randomness, in the decision-
making module. Clearly, if a project were to be fated to fail
in any time line, it would not even be considered for portfolio
selection and task scheduling in the case of VPI. The fre-
quency plot of VPI is shown in Figure 9. It was noted before
that the reward corresponding to any time line is obtained at
the finish of the planning horizon from two terms: first, the

Figure 6. Results with Policy I.
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Figure 7. Results with Policy II.

realized value of successfully finished projects, and second,
the expected value of on-going projects that have not com-
pleted conclusively with respect to success or failure.

The frequency of zero reward is notably lower in the distri-
butions in Figures 5, 6, 7 and 8, as compared to Figure 9, due
to the second term that is considered in the evaluation of the
reward. For example, consider a time line that has upon the
finish of the planning horizon an on-going project that has
not completed conclusively, and is fated to fail in that time
line. Such a project would not even be present in the case of

Ž .VPI it contributes a reward of zero , but will contribute an
expected reward value in the case of Policies 0, I, II, and III.
The frequency of zero reward in the VPI distribution repre-
sents the probability of all projects failing in the pipeline sys-
tem. The distribution of VPI represents the variability inher-
ent to the performance of the pipeline, and also represents
an upper bound to the best performance obtainable from the
pipeline.

Figure 8. Results with Policy III.

Figure 9. Reward distribution, value with perfect infor-
mation.

Cumulative frequency plots are shown in Figure 10 for the
rewards obtained from 15,000 time lines using Policies 0, I,
II, III and VPI, respectively. At any reward value, the plot
shows the frequentist cumulative probability of obtaining re-
wards less than or equal to that reward value. It can be seen
that the greedy policy, Policy III, performs poorly as com-
pared to the other policies when viewed in terms of the first

Ž .moment mean , as well as in terms of the cumulative proba-
bilities. In terms of the mean, Policy 0 is better than Policy I,
which in turn is better than Policy II. In terms of the cumula-
tive probabilities, Policy 0 marginally outperforms Policy I,
which in turn marginally outperforms Policy II.

Policies 0, I, II and III clearly differ in the amount of infor-
mation that they use in determining the control action as a
function of the corresponding state. Policy 0 differs from Pol-
icy I in the frequency with which reactive planning is done
with the entire planning horizon taken into consideration.

Figure 10. Cumulative frequency plots of rewards.
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With respect to regulatory action, Policy 0 and Policy I differ
from Policy II in that they consider the entire planning hori-
zon in addition to the immediate resource competition among
tasks that are feasible at the current state. In other words,
they consider the temporal aspect in determining the control
action, by considering the potential future implications of the
current action in an expected sense. This is done by means of
the horizon-length, resource-constrained, MILP. Policy II ig-
nores this temporal aspect for determining control action,
while considering only the immediate resource competition
among feasible tasks by means of the knapsack formulation.
With respect to supervisory action, Policies 0, I, and II are
identical. Policy III ignores both the temporal aspect and the
resource competition aspect in determining both types of
control actions by making decisions in a ‘‘greedy’’ sense. Pol-
icy II is clearly appealing from the combined point of view of
both computational effort and system performance.

Sim-Opt Information
In this section, we present methods for accumulating infor-

mation from time lines. The information that can be re-
trieved from a time line centers on the coexistence in time of
various feasible tasks, both within and across projects. This
information, while being influenced by the nature of decision
making that is exercised, is a function of uncertainty as well.

ŽInformation can be obtained about which constraints on re-
.source types are binding at which periods in time, before we

can investigate the worth of augmenting such resource types.
Figure 11 shows the tasks that coexist in time, that is, tasks

that have a nonzero, overlapping interval. Consider the fol-
lowing notation. Let set R be the set of renewable resource
types, r and � be the maximum amount of renewable re-r
source of type r, � rgR. Define L as,

w xL t ,t s t y t , 21Ž .Ž .l h h l

that is, L gives the length of a time interval, where t and th l
represent the higher and lower termini of the time interval,
respectively. Let A be an activity that attains technologicalj
feasibility at time, t , and has its processing finished at time,l, A j

t , while requiring resource amounts, � , � rgR, and leth, A r , Aj j

Figure 11. Coexisting tasks.

set, J, be the index set of such activities. If the length of the
w xtime line is restricted to a fixed planning horizon, 0, H ,

there could be activities, A , that attain feasibility within thej
w x Ž .interval 0, H , but do not finish or even start within the
w xinterval 0, H . This would be due to incomplete availability

of the combination of resource types that the activity would
need. For such activities, we use t sH, for the purposesh, A j

of integrating the resource-binding information across the
time lines. It should be noted that the attainment of feasibil-
ity of an activity coincides with the successful finish of its
predecessor if it has predecessors, and coincides with the start
of the planning horizon if it has no predecessors. Further, let
A be an activity that starts processing at time, t , and fin-i l, A i

ishes at time, t , while engaging resource amounts, � ,h, A r , Ai i

� rgR, and let set, I, be the index set of such activities.
wThere could be activities, A , that start within the interval 0,i

x w xH , but do not finish within the interval 0, H because of
their processing duration. For such activities, we use t sh, A i

H, for the purposes of integrating the resource information
across the time lines.

Define sets B s, B f, B , and C such that,J J J J

s �B s t jg J 22Ž .� 4J l , A j

f �B s t jg J 23Ž .� 4J h , A j

B sB s� B f 24Ž .J J J

� �� 4C s 1, 2, 3, . . . , 2 J . 25Ž .J

Let f :C ™B be a map such that f is a one-to-one map-J J J J
Ž . Ž . Ž � �.ping and f 1 F f 2 F ��� F f 2 J . Note that f sorts theJ J J J

elements of set B in an ascending order. Let S be an or-J J
dered set of intervals such that

�S s f i , f iq1 f i , f iq1 igC , iq1gC ,w xŽ . Ž . Ž . Ž .�J J J J J J J

L f i , f iq1 �0 , 26w xŽ . Ž . Ž .4Ž .J J

and the ordering is a sorting with respect to the left terminus
of the intervals. Note that set S contains intervals that de-J
marcate resource engagement and disengagement. Let AD

s
be sets of activities such that

D �A s A jg J , L s� t ,t �0 �sgS . 27Ž .Ž .½ 5s j l , A h , A Jj j

We define a resource profile, termed as ‘‘desired profile,’’ as
a map D :S ™� , � rgR, where � is the set of real num-r J
bers given as

D s s � , 28Ž . Ž .Ýr r , A
DAg A s

where AD is defined in Eq. 27. We also define a resources
profile termed as ‘‘utilized resource profile’’ as a map U :Sr I
™� ,� rgR in an identical manner by using set I, instead of
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set J in Eqs. 22�28. This is given as

U s s � , 29Ž . Ž .Ýr r , A
UAg A s

where AU is defined ass

U �A s A ig I , L s� t ,t �0 , �sgS . 30Ž .� 4Ž .s i l , A h , A Ii i

Note that the definition of the ‘‘desired resource profile’’given
earlier is an estimate of the resource profile that we would
ideally desire if we were to adopt the corresponding policy in
the face of uncertainty, in order to push projects ‘‘as-fast-as-
possible’’ for a given time line. The ‘‘utilized resource profile’’
is the actually engaged resource profile if we were to adopt
the corresponding policy. Profiles D and U , � rgR can ber r
accumulated across the time lines, and subsequently aver-
aged to get mean ‘‘desired resource profiles’’ and ‘‘utilized
resource profiles.’’

The Sim-Opt architecture tracks a fairly involved amount
of information. This is needed, both within a time line to
manage the temporal march that is punctuated by moving
information backward and forward between the simulation
and decision-making modules, and across time lines to man-
age the integration of time-line information. This necessi-
tates efficient data structures to keep both the time complex-
ity and space complexity of the implementation within con-
trol. The state of the discrete-event system is tracked with a

Žset data structure that is implemented as a search tree Cor-
.men et al., 1990 to support operations Insert, Delete, and

Ž .Member with time O log n , operations Empty and Size with
Ž . Ž .time O 1 , and operation Clear with time O n , where n is

the current size of the set. The construction of resource pro-
files for the purposes of time-line integration from the
Gantt-chart information that is obtained from a time line is
done as follows. The Gantt-chart schedule is a collection of

Figure 12. Resource profiles integrated across 15,000
time lines using Policy I.

Figure 13. Resource profiles integrated across 15,000
time lines using Policy II.

segments that carry information about the amounts of vari-
ous resource types that they need. This is viewed as a collec-

Ž .tion of points in a two-dimensional 2-D space that has as
Ž .axes or components the left terminus and the right terminus

of the corresponding segment. Information required in Eq.
27 or Eq. 30 is obtained by storing these 2-D points in a

Žgeometric data structure, namely, the 2-D range tree Van
.Kreveld et al., 1997 , and by making a sequence of orthogo-

nal range queries. Operations Insert, Lookup, and Delete take
Ž 2 . Žtime O log n , operation Intersection takes time O kq

2 .log n , where k is the size of the returned list, and operation
Ž .Clear takes time O n log n , where n is the current size of

the range tree. This data structure is also used to create the
successor sets corresponding to any activity from the schedul-
ing solution that results from the optimizer, as described in
the fourth section. An alternative geometric data structure
for efficiently finding all intervals that overlap a point is the

Ž .interval skip list, as developed in Hanson 1991 . It should be
noted that the interval skip list is a randomized data struc-
ture with an expected performance guarantee, while the 2-D
range tree is a deterministic data structure with a determinis-
tic performance guarantee. Further, the simulation module

Ž .carries in memory or implements only the technologically
feasible portions of the R&D pipeline, that is, it simulates
only tasks that are technologically feasible at any given point
in time. This helps both the time and space complexities of
the simulation module.

Integrating time-line information for resource profiles
We present results for the ‘‘desired resource profiles’’ and

the ‘‘utilized resource profiles’’ that are accumulated and av-
eraged across the 15,000 time lines for the example case study.
Figures 12 and 13 show the profiles for the two resource types,
R1 and R2, corresponding to Policy I and Policy II. It should
be noted that the area between the system limit and the aver-
age utilized profile represents a measure of idle resources
due to resource interaction and conflicts across projects.
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Figure 14. Average difference in resource utilization
between Policy I and Policy II.

The plots in Figures 12 and 13 show the dynamics of com-
binatorial interaction between activities across projects in the
portfolio. This interaction is due to resource competition. It
can be seen that with respect to resource type, R1, the aver-
age ‘‘desired profile’’ stays within the system limit of 16 units
during the earlier time periods in the planning horizon. But
the actual utilization of resource type, R1, is below the de-
sired level, as exhibited by the ‘‘utilized profile.’’ While this
may appear counterintuitive, it is because during the corre-
sponding time periods, the average ‘‘desired profile’’ with re-
spect to resource type R2 is well above the system limit of
eight units. This prevents effective resource utilization, since
the two resource types are required in the right combination.
Activities in the pipeline are eligible for active processing only
if the resource types R1 and R2 are available in the right
combination of amounts. The plots can thus be viewed as the
dynamics of interaction between resource types R1 and R2.
During earlier time periods, resource type R2 is binding, while
at later time periods, resource type R1 becomes binding as
well. This combinatorial interaction at the current levels of
availability of the resource types leads to poor utilization of
the system resource levels. This knowledge can be incorpo-
rated to plan more effectively from both a design perspective
and an operational perspective. The latter is illustrated with
an example in the following section. Figure 14 highlights an-
other subtle difference between Policy I and Policy II. Policy
I gives a slightly better resource utilization on average, when
compared with Policy II, as a result of the increased amount
of information that it uses in terms of the temporal aspect to
resource interaction between activities, in deciding on regula-
tory control action.

Example of using the information integrated across time
lines

The resource profile information integrated across the time
lines in Figures 12 and 13 revealed the underutilization of
the resource types R1 and R2 due to their combinatorial in-
teraction and how this interaction evolves in time. Having

Figure 15. Results with Policy IV.

gained this insight, we can evaluate creative operational deci-
sions, such as accumulating underutilized resource levels of a
resource type from lean periods, and utilizing them for tight
periods when the constraint on that resource type becomes
binding. This is like underworking a resource type for some
time periods, in return for overworking the same resource
type for some other time periods. It is feasible under certain
industrial circumstances, such as the use of contracted re-
sources. Underutilized contracts can be utilized suitably at
later points in time. We implement this operational strategy
in Policy IV, which is same as Policy II in all other aspects. In
Policy IV, accumulated resource levels are assigned to tasks

Ž .along with actually present resource levels if any , only if
such an assignment fully satisfies the actual resource needs of
the task for its entire processing duration. In particular, we
accumulate underutilized resource levels, corresponding to
resource types R1 and R2, in units of R1-Weeks and R2-
Weeks, respectively. Figure 15 shows the frequency plot of
rewards obtained from 15,000 time lines corresponding to the
same unique 15,000 sets of random numbers, as used before.
A cumulative frequency plot of the rewards obtained using
Policy IV is shown in Figure 16, along with that correspond-

Žing to Policy II for comparison purposes. Note that Policy IV
can be thought of as Policy II implemented with an addi-

.tional operational strategy, as described earlier. Policy IV
outperforms Policy II in terms of the mean as well as in terms
of the cumulative frequencies. Figure 17 shows the ‘‘desired
resource profiles’’ and the ‘‘utilized resource profiles’’ that are
accumulated, and averaged across the 15,000 time lines ex-
plored using Policy IV. While the dynamics of combinatorial
interaction between the resource types at the current re-
source levels in the system continue to prevent effective uti-
lization of the available resource levels, the extent of under-
utilization has improved significantly over what was wit-

Ž .nessed in Policy II see Figure 13 . This can be seen from
Figure 18, which shows the difference in the average re-
source utilization between Policy IV and Policy II. This is an
example of how the insight obtained with the integration of
information across time lines can be utilized effectively to
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Figure 16. Cumulative frequency plots of rewards for
Policy IV and Policy II.

influence and improve the quality of time lines that the
pipeline system can witness.

Conclusions and Future Study
The here-and-now stochastic optimization problem inher-

ent to the management of an R&D Pipeline has been de-
scribed in its most general form as the control problem of a
performance-oriented, resource-constrained, stochastic, dis-

Ž .crete-event, dynamic system DEDS . With the preceding
perspective serving as guidance, a computing architecture,
Sim-Opt, has been developed that combines combinatorial
optimization and discrete-event system simulation to assess
the uncertainty and control the risk present in the pipeline.
The concept of time lines that studies multiple, unique real-

Figure 17. Resource profiles integrated across 15,000
time lines using Policy IV.

Figure 18. Average difference in resource utilization
between Policy IV and Policy II.

izations of the controlled evolution of the discrete-event
pipeline system has been described. Sim-Opt presents a de-
composition-based, practical approach to obtaining realistic
solutions to effectively managing the underlying stochastic
discrete-event system. It effectively generalizes traditional
discrete-event simulation by adding sophisticated decision-
making capability to simulation. Four different implementa-
tions of the determination of regulatory and supervisory con-
trol actions in Sim-Opt have been described and studied
through an example case study. Finally, methods have been
presented to integrate information across the time lines from
this computing apparatus, in terms of binding resource types
that present bottlenecks. An example has been presented that
evaluates operational decisions, such as accumulating under-
utilized resource levels of a resource type from lean periods,
and utilizing them for tight periods when that resource type
becomes binding. This is like underworking a resource type
for some periods in return for overworking the same re-
source-type for some other periods. With the help of the pre-
ceding time line integration, we can identify time periods
when a certain resource type becomes binding. We can evalu-
ate design decisions, such as the value of acquisition of any

Ž .resource type s , the value of entering into outsourcing con-
tracts for binding resource types. and estimate the timing of
these future contracts at the here-and-now. Operational deci-
sions such as partially satisfying the resource needs of re-
source-starved activities, accompanied by a proportional in-
crease in their processing times, can also be studied with the
time-line integration within the Sim-Opt architecture. Fi-
nally, all such information can be utilized toward more effec-
tive decision making in order to improve the quality of time
lines that the pipeline system can witness.
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