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( )The simulation-based optimization framework Sim-Opt uses a twin-loop computa-
tional architecture, which combines mathematical programming and discrete e®ent sim-
ulation, to address this problem. This article extends our earlier work to present methods

(for integrating information from the inner loop Sim-Opt time lines, reacti®e adjust-
) ( )ment and using it in the outer risk-control loop Stochastic Optimization loop to

obtain statistically significant impro®ements in the solutions to the underlying stochastic
optimization problem. Two classes of information can be obtained from the inner loop
time lines: the first pertaining to portfolio selection and the second resource crowding
associated with the chosen operation policy. Methods presented quantify the informa-
tion on these two classes, and a three-step heuristic incorporates this information in the
outer risk-control loop to dri®e the system toward impro®ing solutions with respect to

( )the mean net present ®alue NPV of the portfolio and the probability of deli®ering a
positi®e NPV. This method was used on a pharmaceutical product de®elopment case
study, consisting of 11 projects, 154 acti®ities, 14 resource types and a 20-year planning
horizon with respect to patent expiration. Basic algorithm engineering efforts are also
described to significantly impro®e the performance of formulation generation, the gener-
ation of a heuristic lower bound and the identification of cut families to effecti®ely apply
branch-and-cut methods.

Introduction
Ž .The research and development R&D pipeline manage-

ment problem addresses the issues of a new-product-develop-
ment pipeline, where several new-product-development pro-
jects compete for a limited pool of various resource types.
Candidate projects are then subjected to a network of testing

Ž Ž .and development activities see Subramanian et al. 2001 for
.a detailed discussion . Furthermore, there is a significant

chance of failure associated with every activity. As soon as a
product fails the requirements, all the remaining work on that
product is halted and the investment in the previous testing
tasks yields no returns.

The R&D pipeline problem is characterized by a sequence
of combinatorial decisions that are made with respect to

Correspondence concerning this article should be addressed to D. Subramanian.

portfolio composition and resource allocation, both of which
depend on the state of the system. Furthermore, the state of
the system is subject to discrete changes upon the occurrence
of events, and evolution in the face of uncertainty. Such se-
quential decision problems have the following key ingredients
Ž .Puterman, 1994 :

� A set of decision epochs
� Ž .A set of system states state space
� Ž .A set of available actions action space
� A set of state and action dependent cost and reward
� Ž .A set of event-based state transitions event space .
The R&D pipeline management problem can, thus, be

viewed as the control problem of resource-constrained, per-
formance-oriented, and stochastic discrete event dynamic sys-
tems. In this view it is desired to know the optimal actions

January 2003 Vol. 49, No. 1 AIChE Journal96



that need to be taken with respect to portfolio composition
and resource allocation corresponding to every state into
which the system could transition via events, with the objec-
tive of optimizing the expected value of a performance mea-
sure that is accumulated and discounted over the problem
horizon. The algorithmic map of states to actions is referred

Ž .to as a policy Cassandras, 1993 . Guided by the above per-
Ž .spective, Subramanian et al. 2001 considered the R&D

pipeline management problem, and presented a two-loop
computational architecture called the simulation-based opti-

Ž .mization framework Sim-Opt with a detailed discussion of
the inner loop. This article extends the above work and pre-
sents methods for integrating information from the inner loop
Ž Ž ..Sim-Opt time lines Subramanian et al., 2001 and using it

Žin the outer risk-control loop Stochastic Optimization loop
Ž ..Subramanian et al., 2001 to obtain improvements in the
solutions to the underlying stochastic optimization problem.

Background and Problem Description
A summary of the literature pertinent to the R&D pipeline

Ž .management problem is given in Subramanian et al. 2001 .
The most notable contributions are those of Schmidt and

Ž . Ž .Grossmann 1996 , Honkomp 1998 , Jain and Grossmann
Ž . Ž . Ž .1999 , Blau et al. 2000 and Blau and Sinclair 2001 . The
problem description is as follows. A set of projects is given,

Ž .where each candidate project product is described in terms
Ž .of an Activity-on-Node AoN graph. The AoN graph corre-

sponding to any project is a directed acyclic graph, where
Ž .nodes represent activities tasks and arcs represent prede-

cessor-successor relationships to capture technical prece-
dence relationships between activities. Each project has a
forecast of commercial worth and a desired due date, partic-
ularly in the pharmaceutical context, where a patent expira-
tion deadline causes a steep decline in commercial value.

ŽGiven for each activity within each project each node within
. Ž . Ž . Ž .each AoN , are: 1 processing time duration ; 2 resource

Ž .requirement of every applicable resource type; 3 probability
Ž .of success to quantify the aspect of failure; 4 cost and re-

Ž .ward information; and 5 due date information, after which
Žactivity loses value especially important in the case of pro-

.jects with patent expiration features .
Also given are the system capacities of the various resource

types, and the discounting factor for financial calculations.
Ž .The expected net present value ENPV is often chosen as a

measure of performance. Uncertainty, in terms of appropri-
ate probability distributions, enters into the problem for each

Ž .activity in each project by way of: 1 activity duration distri-
Ž .bution; 2 activity resource requirement distribution of every

Ž .applicable resource type; 3 activity success probability dis-
Ž .tribution; 4 activity cost distribution and reward distribu-

tion.
A key question is: Given such a problem instance and a

measurement of performance, what is the best set of projects
to pursue, and, furthermore, what is the best way to assign
resources to activities in the chosen projects, such that the
chosen measure of performance is maximized?

Sim-Opt: A Computational Architecture
The details of the motivation and implementation of Sim-

Ž .Opt can be found in Subramanian et. al 2001 . This section

provides a brief summary to motivate the following section
on information integration from the inner loop of Sim-Opt

Ž .time lines Subramanian et al., 2001 . A stochastic program-
Žming formulation as a chance-constrained formulation Kall

.and Wallace, 1995 can be summarized as below. Obtain a
portfolio and a task schedule over the planning horizon that:

Ž .Maximizes the expectation of the net present value NPV
distribution of the pipeline system, subject to:

� Allocation Constraints
Satisfying Precedence Constraints° ¶~ •� Satisfying Resource Constraintsprobability G�¢ ßSatisfying Demand Constraints

� � 4probability NPVGM G� , for suitably chosen � , � ,
and M.

It should be noted that every constraint in the determinis-
Ž .tic formulation Subramanian et al., 2001 that depends on

random parameters is now stipulated to jointly hold in a
probabilistic sense, that is, with a joint probability of at least
� . Precedence constraints and demand constraints involve
random processing times, while resource constraints involve
random resource requirements, random processing times, and
estimates for the probabilities of success that are themselves
random. An additional constraint that enters the stochastic
optimization problem is the risk constraint. A practical form
of the risk constraint is obtained by insisting that the NPV
exceed a value M with a probability of at least �. This con-
straint enters the problem due to variability in the estimates

Žof market returns and costs of activities. Note that a value of
Ms0 represents the positive side of the NPV distribution,

.that is, positive rewards. All the essentials of the above
stochastic optimization problem can be captured in a single
mathematical program, which takes the form of a nonlinear,
stochastic, integer program. It will involve constructing math-
ematical expectations and higher moments of the NPV distri-

Ž .bution objective function and those of the probabilistic risk
constraints and physical constraints. The resulting numerical
complexity of multivariate numerical integration for the

Ž .stochastic moments Kall and Wallace, 1995 combined with
Žthe NP-Hardness of integer programming Garey and John-

.son, 1979 renders such a monolithic program arguably out-
side the set of effectively solvable problems.

Ž .Sim-Opt see Figure 1 addresses this with a discrete event
dynamic system view of the R&D pipeline by integrating

Figure 1. Sim-Opt.
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combinatorial optimization and discrete event system simula-
tion. The role of the inner loop of Sim-Opt is as follows. The
optimizer establishes an initial state of the pipeline system by
solving the resource-overbooked deterministic mixed integer

Ž . Žlinear program MILP formulation discussed in Subra-
.manian et al., 2001 . The evolution of this initial state of the

pipeline is tracked in a discrete event system simulation mod-
ule, which forms the second element. The uncertainties asso-
ciated with the task processing times, task resource require-
ments, task successes, task costs and rewards are modeled
with appropriate probability distributions. Resource con-
straints are enforced in the system evolution at every point in
time, as are the precedence relationships of the activities in
the pipeline portfolio. As the system evolves in the con-
strained simulation mode to generate an artificial history, two
kinds of possibilities are encountered. The first is that of a
resource conflict that must be mediated among tasks that are
simultaneously feasible within and across projects, and the
second is that of the response to task failure that causes attri-
tion of projects in the pipeline. When the simulation module
encounters a need for either of the two types of control ac-
tions, it momentarily suspends itself and communicates the
state of the system to the decision-making module. This solves
a deterministic MILP that is appropriately modified to ac-
count for the current system state. The simulation is re-
primed with the solution resulting from the optimizer, and it
continues marching in time until its subsequent need for a
control action. The simulation module marches in time, with
an indeterminate number of departures to the optimizer, un-
til a predetermined end of the planning horizon is reached,
or a predetermined state like the exhaustion of all tasks in
the pipeline is reached. One such realistic and controlled walk
in time through the stochastic state space constitutes a time
line.

w ŽThe inner loop Sim-Opt time lines Subramanian et al.,
.x2001 of Sim-Opt consists of multiple time lines that are ex-

plored in a Monte-Carlo fashion to accumulate many unique
combinations of realizations of uncertainty. The state-de-
pendent control actions that are taken at different points in
time within a simulated time line of the inner loop are re-
ferred to as ‘‘here-and-now’’ actions corresponding to the
states at which they are taken. Due to the presence of uncer-
tainties, it is important to note the following with respect to
the scheduling solution that results from every deterministic
MILP invocation from within the simulated time line. The
notion of a schedule over a given horizon, as a deterministic,
time-indexed assignment of resources to activities over their
corresponding durations, loses its precision, as soon as its im-
plementation commences in the Sim-module. It should also
be noted that a deterministic time-indexed assignment of re-
sources to activities implies a priority sequence for the sched-
uled activities, with the priority being defined with respect to
the engagement of resources. The earlier an activity is sched-
uled to occur, the higher is its priority in engaging the corre-
sponding resource types. This sequencing priority retains its
meaning in the face of uncertainty, with ties broken suitably.
The decision-making corresponding to assigning priorities to
activities in the various projects at different points in time
Ž .and different corresponding states with respect to engage-
ment of respective resource types, defines the policy of oper-
ation. The objective of the optimization then is to construct a

Ž .project portfolio selection and establish a policy for allocat-

ing limited resources to various activities of the projects in
the chosen portfolio, so as to maximize the mean of the re-
sulting probability distribution of the NPV of the portfolio.
The NPV distribution of the portfolio is composed of nega-
tive and positive values, due to the presence of risk and re-
ward in the system. It is also desired that the chosen portfo-
lio and policy of operation provide an acceptable probability
of achieving a positive NPV. In the inner loop of Sim-Opt,

Ž .the deterministic expected value based optimizer decides the
relative priorities of various activities that compete for re-
sources at different points in time, and the simulation pre-
serves these priorities.

The objective of the outer loop is to learn about the unde-
sirable future effects of taking all ‘‘here-and-now’’ actions at

Ž .various points in time and corresponding to different states ,
with the solution from a deterministic optimizer. The outer
loop’s intent is to reflect this learning in the ‘‘here-and-now’’
action that is implemented at the present, along with the pol-
icy of operation that is chosen for the given system. This is so
that a better solution is obtained with respect to both the
mean of the resulting probability distribution of the NPV of
the portfolio, and the probability of achieving a positive NPV.
There are two classes of information that can be obtained
from the inner loop time lines in the context of the new prod-
uct development problem. The first class of information per-
tains to portfolio selection, and the second class of informa-
tion pertains to resource crowding associated with the chosen
policy of operation. The following section describes the ways
in which valuable information can be integrated from such
inner loop time lines, in the outer loop of Sim-Opt. The in-
formation can be used in the outer loop to drive the inner
loop time lines towards improving solutions. The actual use
of the above items of information will be illustrated in a
pharmaceutical product development case study, consisting
of 11 projects, 154 activities, 14 resource types and a 20 year
planning horizon with respect to patent expiration.

Basic Algorithm and Software Engineering in
Sim-Opt

This section discusses basic algorithm and software engi-
neering issues that are pertinent to a process management
framework, like Sim-Opt. It is evident from the problem de-
scription discussed earlier that the R&D pipeline manage-
ment problem involves a data-intensive abstraction, namely a
set of AoN graphs that describe the activity network of each
candidate project. Furthermore, the hierarchical nature of
data input is clear from the various levels at which data is
required. The pipeline system is comprised of projects, which
are in turn comprised of individual activities, which in turn
are characterized in terms of connectivity and various com-
plex data types for deterministic and stochastic information,
as detailed earlier. A framework like Sim-Opt involves six
steps from the perspective of implementation. These are a
mixture of software engineering and algorithm engineering
opportunities. They are:
Ž .1 A Data Model that models the complex and hierarchi-

cal data needs in the form a structured input language.
Ž .2 A parser that reads and interprets the above language

in order to create an in-memory organization of the data
modeled in Step 1, via suitable data structures.
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Ž .3 Formulation algorithms that act on the data structures
of Step 2 in order to create mathematical programming and

Žsystem simulation formulations at run-time that is, inner loop
.of Sim-Opt .

Ž .4 Solution algorithms that operate on the formulations
created in Step 3. This pertains to every state-dependent
MILP that is solved within any single time line.
Ž .5 Effective means of tracking information from the inner

loop time lines.
Ž .6 Algorithms for utilizing the integrated information to

lead to improving solutions for the underlying stochastic opti-
Ž .mization problem that is, outer loop of Sim-Opt .

The above steps represent a logical progression of data
from input to output with suitable interfaces that operate be-
tween each of these steps to carry out the flow of data. The
choice of implementation of each of these steps has signifi-
cant implications for the complexity of the subsequent steps.
For example, the choice of the data model and its represen-
tation in the form of a language affects the complexity of the
parser that interprets the input. The data structures that act
as the storehouse of all data in memory dictate the complex-
ity of the problem formulation process, which in turn affects
the solution process. Steps 1, 2, 3 and 5 predominantly repre-
sent opportunities for software engineering, that is, use of
effective data structures, while Steps 4 and 6 represent op-
portunities for algorithm work in optimization. Issues per-
taining to the data model and the language for representing

Ž .input are outside the scope of this article Varma et al., 2002 ,
while those pertaining to the time complexity of formulation
generation and solution are discussed in the following sec-
tions.

Every simulated time line in Sim-Opt requires several
state-dependent MILP formulations to be generated at run-
time, and solved to optimality. This makes Sim-Opt a compu-
tationally intensive framework, and, hence, requires time-
complexity that is effective for both formulation generation
and solution. This section describes the efforts undertaken to
achieve significant improvements in the performance of for-
mulation generation, and the generation of a heuristic lower
bound along with the identification of cut families for effec-
tive application of branch-and-cut methods for formulation
solution. The following discussion pertains to the MILP for-

Ž .mulation that is discussed in Subramanian et al. 2001 .

Formulation generation
First, a basic approach to formulation generation, which

pays scant attention to data structures and time complexity,
is described to understand the need for a judicious choice of
data structures. Let n be the number of activities in the prob-
lem across all projects, H be the number of time periods in

Ž .the uniform time discretization UDM , and R be the num-
ber of resource types in the problem. In the basic approach, a

Ž . Ž .binary variable X is generated for every activity i , andit
Ž .corresponding to each time period t in the UDM horizon,

by stepping over all the activities and the time periods. Each
X variable holds its identity in terms of a string literal thatit

Ž .represents the name of the activity i and the index of the
Ž .corresponding time period t . The resulting set of all such

Ž .binary variables, with cardinality O nH , is stored in a single,
linear list with no additional structure. The generation and

Ž .storage of the set of ‘‘hold’’ Subramanian et al., 2001 vari-
w Ž 2 .x w�ables H , cardinality O n H and slack variables S , car-ii t r t

Ž .xdinality O RH are also handled in a similar fashion, with a
single linear list corresponding to each of these two variable
sets. Furthermore, each H � variable holds its identity inii t
terms of two string literals that represent the names of the

Ž �.activities i and i and the index of the corresponding time
Ž .period t and each S variable holds its identity in terms ofr t

a string literal that represents the name of the corresponding
Ž . Ž .resource type r and time period t . The generation time

Ž .complexity in the basic implementation is O nH for the Xit
Ž 2 . Ž � .�variables, O n H for the H variables, and O R H fori ,i ,t

the S variables. Also, all three variable sets are generated inr t
the first step of formulation generation. With respect to con-
straints in the MILP formulation discussed in Subramanian

Ž .et al. 2001 , it should be noted that:
� An allocation constraint and a demand constraint are re-

quired for each activity.
� A material-balance-based precedence constraint is re-

� 4quired for each immediate predecessor, successor pairs of
activities at each time period.

� A renewable resource constraint is required for each re-
source type at each time period.

For the purpose of generation of each of these constraint
families, there is a need to access the variables that partici-
pate in each constraint belonging to each family. For in-
stance, to generate the material-balance-based precedence
constraint corresponding to any given predecessor-successor

� � 4pair of activities i , i at time period t, there is a need to
access the variables, X , H � , H � and X � given�it i ,i ,t i, i , ty1 i ( ty p )i

� � 4the names of activities i , i and the value of t. In this basic
Ž .implementation, an O nH search is required to access any

desired X variable, given the name of activity i, and theit
value of time period t, from a single, simple list of size nH.
Similarly, using the respective variable lists for the hold and

Ž 2 .slack variables, an O n H search is required to access any
desired H � variable, given the names of activities i, and i�,i ,i ,t

Ž .and the value of time period t. Also, an O RH search is
required to access any desired S variable, given the name ofr t
the resource type r, and the value of time period t. The above

Ž 4 2.basic implementation effectively leads to O n H perfor-
mance for the generation of all material-balance-based

Ž 2 .precedence constraints, O n H performance for the genera-
tion of allocation and dem and constraints, and
Ž 2� Ž � 4.� 2 2 2 .O RH Max p n qR H for generation of renewablei

resource constraints. Lastly, the generation of the objective
Ž 2 2.function in the basic approach exhibits an O n H complex-

ity. Such a basic implementation can lead to unacceptable
performances, particularly for a framework like Sim-Opt,
which involves many time lines each requiring multiple
state-dependent MILP formulations. The following section
describes approaches to improving the performance of for-
mulation generation by judiciously choosing data structures
and performing variable domain reduction.

Impro©ements ©ia ©ariable reduction and data structures
The activity-on-node graph data structure corresponding to

each of the candidate projects, which contains a unique name
for each node, is used for variable domain reduction in the
following manner. A variable domain reduction exercise is
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carried out for the X variables, corresponding to each activ-it
Ž .ity node i, in the UDM-based MILP formulation, with re-

w xspect to the default range in the basic formulation, 1, H ,
Ž .where H is the number of time periods indexed from 1 in

the UDM formulation and p is the processing duration ofi
Ž .activity node i, in terms of the number of time periods. First,

a standard critical path based graph algorithm is used to
compute the Earliest Start Time Bucket Index ES , and thei
Latest Start Time Bucket Index LS , corresponding to eachi

Ž . Ž .activity node i in every project AoN graph . The recursive
equations that give the earliest start and the latest start, along
with the boundary conditions, are

� � � � 4 �ES smax ES q p , i gSet of Immediate Predecessori i i i
Nodes of Node, i 1Ž .

ES s1, if i has no predecessor 2Ž .i

� � � 4 �LS smin LS y p , i gSet of Immediate Successori i i i
Nodes of Node, i 3Ž .

LS sHy p q1, if i has no successor 4Ž .i i

The minimal contiguous set of UDM time periods, represent-
ing the reduced variable domain, over which we define a start

Ž . Ž .variable X for the corresponding activity i is identifiedit
w xas t ,t , wherei,min i,max

� � � � 4 �t smin ES q p , i gSet of Immediate Predecessori ,min i i i
Nodes of Node, i 5Ž .

where p � is the processing duration of activity i� in terms ofi
number of time periods and

t sLS 6Ž .i ,max i

Ž .The choice of our lower terminus t from Eq. 5 in thei,min
reduced variable domain of X is a subtle issue, particularlyit
when one notes the following facts:

� It is true in any feasible scheduling solution that the vari-
w xable X may take on a value of 1 only in the range, ES , LS .it i i

� From Eqs. 1 and 5, our choice of t is always smalleri,min
than or equal to ES .i

The above facts imply that our choice of the reduced vari-
w x Ž .able domain t ,t is larger than or at best equal toi,min i,max

w xthe underlying feasible range ES , LS of X . This may in-i i it

Figure 2. Data structure for X variables.it

correctly seem to indicate that we are not performing vari-
able domain reduction to the fullest extent. However, this is
not so, because we still need to define X over the poten-it

w xtially larger range t ,t so that we retain all feasiblei,min i,max
scheduling solutions to all immediate predecessors of activity
Ž .node i. This is due to the material-balance based hold vari-
ables H � that are defined alongside the corresponding Xii t it
variable in the context of every activity i when paired with
each of its immediate predecessors i�. These hold variables
link every activity i to all its immediate predecessors i�. The

w x Žabove domain reduction from 1, H of the basic formula-
. w xtion to t ,t is also valid for the definition of holdi,min i,max

variables H � .ii t
Following the variable reduction, the generation for the Xit

Ž .variables is carried out for each activity i and these vari-
Žables are maintained in a balanced binary search tree Cor-

. Ž .men et al., 1990 that maps the name of each activity node i
to a time-indexed array of the corresponding variables Xit
Ž . Ž .see Figure 2 . This is so that we have an effective O log n
performance guarantee for accessing any variable X in theit

w xcorresponding time bucket range t ,t given the namei,min i,max
w Ž .of the activity i, and time bucket index t O log n to access

Ž .the corresponding variable array, followed by O 1 to access
Ž .any given index. This is far superior to the O nH required

for the basic approach. Following this, the variable genera-
tion for the H � variables is carried out for each activity iii t

w xover the time bucket range t ,t , and paired with eachi,min i,max
of its immediate predecessors i�. A balanced binary search tree

Ž .of balanced binary search trees Cormen et al., 1990 is main-
tained in this context, where the outer tree maps the name of
each activity i to an inner tree, which, in turn, maps the name
of each of the corresponding immediate predecessors i� to a

Ž�time-indexed array of the corresponding variables H seeii t
. Ž .Figure 3 . This is so that we have an effective O log n per-

formance guarantee for accessing any variable H � in theii t
w xcorresponding time bucket range t ,t given the namesi,min i,max

of activity i, its immediate predecessor i� and time bucket
w Ž . Žindex t O log n to access the inner tree, followed by O log

.n to access the corresponding variable array, followed by
Ž . xO 1 to access any given index . This again is far superior to

Ž 2 .the O n H required in the basic approach. Lastly, the gen-
eration of S slack variables is postponed to the constraintr t

Figure 3. Data structure for the hold variables.
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Table 1. Naıve vs. Improved Formulation Generation Complexity¨
Generation Type Naıve Complexity Improved Complexity¨

( ) Ž Ž � 4 � 4..X Variables O nH O n max t ymin ti t i,max i,min
2 2

� Ž . Ž Ž � 4 � 4..H Variables O n H O n max t ymin ti i t i,max i,min
2Ž . Ž .AllocationrDemand Constraints O n H O n log n
4 2 2Ž . Ž Ž � 4 � 4..Material balance based precedence O n H O n log n max t ymin ti,max i,min

constraints
� � �2 2 2 2Ž Ž { } ( ( { 4 � 4. � 4.Renewable resource constraints O RH Max p n qR H O nR log n max t ymin t max pi i,max i,min i

2 2Ž . Ž Ž � 4 � 4..Objective Function O n H O n max t ymin ti,max i,min

generation phase as described below, so that we do not incur
wany time for accessing these variables as opposed to the

Ž . xO RH that was incurred in the basic approach .
The variable generation is followed by stepping over all the

Ž .activities nodes in the AoN graphs corresponding to all can-
didate projects, to generate the objective function, allocation
constraints, material balance based precedence constraints,

Žand demand constraints, all of which benefit from the O log
.n time complexity guaranteed by the above data structures

that contain all the X and H � variables. With respect toit ii t
the generation of renewable resource constraints, it is noted
that if an activity i with a processing duration of p numberi
of time periods is scheduled to start in time bucket index t, it
engages its respective resource types in all time buckets in-

w xdexed in the range, t,tq p y1 . Generation of the renew-i
able resource constraints for each resource type, within each
time bucket in the UDM, requires efficient accumulation of
appropriate X variables into the appropriate time buckets,it
along with their overbooked resource requirement coeffi-
cients of the corresponding resource type. This is done by

Ž .stepping over all the activities nodes , in the context of each
resource type, and using the above data structures to effi-
ciently access the required X variables, given the name ofit
activity i and the appropriate time bucket index t. The gen-

Ž .eration of the resource slack variables S is done at ther t
time of the renewable resource constraint generation, for each
resource type, within each applicable time bucket.

Table 1 shows a comparison of the formulation generation
complexity of the naıve and the improved approaches. All the¨
constructions shown in Table 1 represent significant improve-
ments over the complexities exhibited by the basic approach.
For example, the basic approach exhibits a quadratic com-
plexity with respect to the number of time periods. To illus-
trate this improvement, Table 2 shows the basic and im-
proved generation times for the overall formulation, the ma-
terial balance based precedence constraints and the objective
function for the problem instance, to be discussed later,
against the number of time periods in the UDM formulation
on a Pentium II 400 MHz Windows workstation. In practice,
a reduction of close to 99.5% in the computational time re-

quirement of formulation generation was observed on a Pen-
tium III 800 MHz Windows workstation with the above data
structures, over the basic implementation on problem sizes of
interest to this article. An alternative data structure to store

Ž .�the X and H variables could be a two-dimensional 2-Dit ii t
array and a 3-D array, respectively, and this would exhibit
Ž .O 1 access to any desired variable. However, this would also

involve an auxiliary associative array that maps the names
Ž . wstring literals of activities to integer indices in the range 1,
xn , while also exhibiting a potentially undesirable space com-

Žplexity, since both these arrays would be sparse depending
on variable reduction and the connectivity of the activity net-

.works . Another alternative would be to use symbol table
Ž .hashing Cormen et al., 1990 with linear chaining for ad-

Ždressing collisions when multiple symbols hash to the same
.hash value . The above discussion demonstrates the need for

efficient time complexity behavior of the data structures that
may be used for formulation generation in Sim-Opt.

Heuristic to generate a lower bound for the maximization
MILP

Upon completing the MILP formulation generation, the
generation of a lower bounding heuristic and the addition of
cut families are undertaken to improve the time complexity
of a formulation solution.

First, the Sim-module of Sim-Opt is used as follows to im-
plement a heuristic that yields an integer feasible scheduling
solution to generate a lower bound for the deterministic max-
imization MILP. The Sim-module is used to walk a determin-
istic time line that reflects the MILP formulation in terms of
values for all the problem parameters. This time line involves
no failure of activities, and mirrors the deterministic MILP
through the use of overbooked resource requirement coeffi-
cients, and probability-weighted activity cost and reward co-
efficients from the deterministic MILP formulation. The pol-
icy of operation for this deterministic time line follows the
use of a static resource constrained knapsack problem, as in

Ž .Policy II Subramanian et al., 2001 , adapted in the following
manner. At the very start of the time line, and upon the fin-

Table 2. Generation Times with Basic and Improved Implementations

Overall Precedence Objective
Ž . Ž . Ž .Formulation s Constraints s Function s

Implementing Method of 40 Time 80 Time 40 Time 80 Time 40 Time 80 Time
Formulation Generation Periods Periods Periods Periods Periods Periods

Basic 425.98 1,680.23 57.44 225.89 358.68 1,400.16
Improved 0.98 1.53 0.12 0.18 0.16 0.30
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ish of any active task within the time line, a static knapsack
problem is defined over the set of all activities that are tech-
nologically feasible and have not yet started. The objective
function coefficient corresponding to any such activity i in
the static knapsack problem is obtained as follows. The un-
finished AoN sub-graph of the project corresponding to activ-
ity i is considered at the current system state, without re-
source constraints, and an as-soon-as-technologically-feasible
schedule is computed for all activities that have not yet started
in this project. The objective function coefficients corre-
sponding to the activity starting times in the above schedule
Ž .for each activity in the schedule are collected from the de-
terministic MILP formulation, and are added to produce the
objective function coefficient for activity i in the knapsack
formulation. The knapsack resource constraints, for every re-
source type, are constructed using the overbooked resource
requirement coefficients of the corresponding activities from
the deterministic MILP formulation. The righthand side co-
efficients for the resource constraints, for every resource type,
are obtained by deducting the amounts engaged by partially

Ž .completed ongoing activities, if any, at the corresponding
state, from the system capacity of the corresponding resource
type. This is so that ongoing activities are not upset upon
resuming the deterministic time line in the Sim-module. The
solution of the static knapsack is used to drive the time line
ahead, and this is repeated until either the problem horizon
is reached, or all activities have been scheduled within the
problem horizon, which is when the deterministic time line
concludes.

The schedule that emerges from the above deterministic
time line is modified by the removal of activities correspond-
ing to partially completed projects, if any, leaving the remain-
ing schedule untouched. This modified schedule of pipeline
activities is rated using the MILP formulation’s objective
function coefficients that correspond to the activity starting

Ž .times in the schedule for each activity in the schedule . A
project-centric view of the modified schedule is taken and
the contribution to the overall objective function from each
individual project is computed. All the activities correspond-
ing to projects that contribute negatively to the overall objec-
tive function are dropped from the schedule. The resulting
modified schedule represents a heuristically generated inte-
ger feasible solution, and its objective function value is fur-
nished as a lower bound for the deterministic MILP.

The above heuristic was effective in finding an integer fea-
sible solution within a bound gap of 7% with respect to the
root node linear programming relaxation of the very first
MILP within a Sim-Opt time line, for the case study dis-
cussed in a later section of this article. This helps the node-

Ž .pruning process of the branch-and-bound or cut algorithm
used to solve the MILP. It led to a 70% decrease in the num-

Ž .ber of nodes processed 102 nodes vs. 331 nodes , and a 31%
Ž .decrease in the number of iterations 18,818 vs. 27254 in the

performance of the CPLEX solver on the largest MILP in
the case study.

Rele©ant cut families for the MILP solution
It is observed that the allocation constraints, demand con-

straints, and the renewable resource constraints in the MILP
formulation are knapsack-type constraints with non-negative

coefficients on the lefthand and righthand sides. Knapsack
Ž .cover cuts and generalized upper bound GUB cover cuts

are two families of cuts that have been shown to work well
Ž .with such knapsack-type constraints Bixby et al., 2000 . A

brief discussion on the meaning of these cuts is given below.
A very detailed algorithmic treatment of how to identify

cover cuts and GUB cover cuts in an efficient and effective
Ž . Ž .fashion is found in Gu 1995 , Gu et al. 1998, 1999 . The

resource constraints in the MILP formulation discussed in
Ž .Subramanian et al. 2001 are the candidates for cover cuts,

and the resource constraints along with the allocation and
demand constraints lend themselves to a generation of GUB
cover cuts. These cut families are readily available in ILOG
CPLEX 7.1, and have been shown to work well with such

Ž .knapsack-type constraints Bixby et al., 2000 . They have been
used with aggressive cut-generation of both Knapsack cover
cuts and GUB cover cuts in this study.

Without the use of these cuts or the lower bound, a con-
ventional branch-and-bound strategy for the solution of the

Ž .largest MILP that is, the very first MILP in any time line in
Ž .the case study to be discussed later required upwards of 6 h

Ž .time required over and above that of formulation on a Pen-
tium III 800 MHz and was terminated before completion. The
use of these cut families along with the heuristic lower bound
reduced the cpu time requirement for the above MILP to

Žapproximately 3 min time required over and above that of
.formulation , confirming the effectiveness of cuts due to the

knapsack type constraint structure present in the MILP for-
mulation.

Information Integration from the Time Lines
The time lines, which represent the various controlled fu-

tures along which the system can evolve, contain a wealth of
information. This information can be used to identify improv-
ing solutions to the underlying stochastic optimization prob-
lem. The information that can be retrieved from a time line
centers on the coexistence in time, of various feasible tasks,
both within and across projects. This information, while be-
ing influenced by the nature of decisions that are exercised,
is a function of uncertainty as well. Time lines reveal infor-

Ž .mation about which constraints on resource types are bind-
ing at which periods in time, before we can investigate the
worth of augmenting such resource types. They also contain
information about the relative merits and demerits of inclu-
sion into the portfolio for every individual project. Lastly, in-
formation can be obtained from the time lines about the ef-
fectiveness of the policy chosen for managing the portfolio,
by examining and quantifying the resource crowding effect
and delays that any given project can cause on the rest of the
portfolio. The following sections describe two broad classes
of information that can be obtained from the time lines.
Methods to efficiently accumulate these two types of infor-
mation and their use in obtaining improving solutions via the
outer loop have also been presented.

Class One: information integration with respect to portfolio
selection

In the first class of information, the portfolio is explicitly
viewed as being comprised of individual projects. The perfor-
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mance of every project that is introduced into the portfolio
Žat possibly different points in time, in the simulated time

.lines by the deterministic optimizer is individually tracked
across the inner loop time lines to assess its contribution to
the portfolio NPV in terms of an individual NPV distribu-
tion. The corresponding project is also considered in isola-

Ž .tion without resource competition , and its unconstrained
NPV distribution is calculated. It is important to note that
the NPV distribution of any project in the portfolio is differ-
ent from the NPV distribution of that same project consid-
ered in isolation, because of resource constraints and compe-
tition, and the accompanying delays in task executions of the
project and the resulting shortened patent time window over
which the project can earn commercial rewards. A compari-
son of these two distributions, in terms of the NPV means,
reveals the impact of resource constraints on the project’s
performance, and presents a realistic assessment of the worth
of the project in the portfolio. It also reveals projects that
might be contributing negatively to the portfolio mean NPV.
It should be recalled that the inner loop MILP makes portfo-
lio decisions using a resource-overbooked deterministic for-
mulation that has a limited representation of uncertainty and
a fractional representation of task failure and pipeline attri-

Ž .tion. The probabilistic fractional representation of failure
enters into the objective function, which is expressed as the
expected net present value, and also into the resource con-
straints by way of resource overbooking. While such frac-
tional representations of failure yield plans and schedules that
acknowledge failure in a broad decision-making sense, it
should be noted that failure occurs in reality in a binary
Ž .whole, FailsrSucceeds fashion, as opposed to something
fractional. Such a realistic, binary representation to failure
cannot be given in any single instance of a mathematical pro-
gram, because of the chance-dependent nature of binary fail-
ure. These limitations can lead to portfolio selection deci-
sions that appear attractive to the deterministic formulation
at various ‘‘here-and-now’’ points in time, but which might
contribute negatively when evaluated across the realistic time
lines of Sim-Opt in the face of uncertainty.

Another piece of information that is tracked across the in-
ner loop time lines is the probability of dropping a project at
some point into the future, after having included it in the
portfolio and before taking it to a conclusive finish. The de-
terministic MILP may introduce a project into the portfolio
at a certain here-and-now decision-making point in time

Figure 4. Coexisting tasks within a time line.

within a simulated time line, and incur development costs un-
til some point in time into the future along the time line,
when the corresponding state-defined MILP might discon-
tinue the project. It might be unprofitable to continue with
the project from the corresponding state of the system, under
the current resource setting and patent horizon. Such proba-
bility information can be obtained from a frequency count
across the inner loop time lines. The above probability infor-
mation coupled with the corresponding project’s individual
performance in the portfolio can be used to prevent potential
loss-making projects from being considered for portfolio in-
clusion in the ‘‘here-and-now’’ actions taken at various points
in time.

Class Two: information integration with respect to resource
constraints

It was noted that, within the inner loop, the schedule re-
sulting from the deterministic optimizer is used to assign pri-
orities to activities in the various projects, at different points
in time, with respect to engagement of respective resource
types. In other words the deterministic optimizer defines the
policy of operation, within the inner loop. Such a policy of
operation may prove ineffective with respect to resource
management in the face of uncertainty. This second class of
information helps to systematically identify and quantify such
ineffectiveness that may be introduced by the deterministic
optimizer.

With respect to resource constraints within this class, there
are two categories of information that can be integrated from
the inner loop time lines of Sim-Opt. The first category is

Žwith respect to priority-based resource crowding priorities
.being determined with the deterministic optimizer . Such

crowding may be caused by higher priority activities that block
out lower priority activities, while waiting on resources. The
second category is with respect to resource crowding that may
be caused by higher priority activities that block out lower
priority activities, while actively executing and engaging re-
sources. In the following discussion, let

� RsSet of renewable resource types r.
� Žw x.L t ,t s t y t , the length of a time interval.l h h l
� � � rgR, the resource needs of activity A of resourcer, A ii

type r.
Figure 4 shows tasks that coexist in time, that is, tasks that

have a nonzero, overlapping interval. Furthermore, in the fol-
lowing discussion, a task is said to be technologically feasible,
if all its predecessors have successfully completed.

Category 1: Resource Crowding Caused by Acti®ities that are
waiting on Resources. Resource crowding can be caused by
higher priority activities that are waiting for their resource
requirements to be met. Technologically feasible lower prior-
ity activities that become resource feasible, while the higher
priority activity is waiting as above, get queued in favor of the
waiting higher priority activity. This is so that the higher pri-
ority activity may proceed as soon as possible. This aspect of
priority-based resource crowding that is caused by higher pri-
ority activities on lower priority activities is the subject of in-
vestigation in this section.

ŽConsider a higher priority activity priority decided by the
.activity starting time resulting from the optimizer’s schedule

that has become technologically feasible and is waiting for its
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resource requirements to be satisfied. Let C be the set of1
such activities A that can be fully characterized in terms of:i

� w xThe time interval, t ,t , where t denotes the points f s s fA A Ai i i
in time when activity A becomes technologically feasible, andi
t denotes the point in time when activity A receives re-s iA i
sources and starts executing.

Secondly, consider a technologically feasible, lower priority
Žactivity priority decided by the activity starting time resulting

.from the optimizer’s schedule that becomes resource-feasi-
ble with respect to the free resources in the system, but does
not get these free resources due to the presence of higher
priority activities that are waiting for their resource needs to
be fully satisfied. Let C be the set of such activities A that2 j
can be fully characterized in terms of:

� w xThe time interval, t ,t , where t denotes the pointr f s r fA A Ai j i
in time when the technologically feasible activity A becomesj
resource feasible, and t denotes the point in time whensA i
activity A receives resources and starts executing.j

Ž .Consider every pair, A , A , that satisfiesi j
� A gC ,i 1

� A gC ,j 2

� Žw x w x.L t ,t � t ,t �0, ands f s r f sA A A Ai i j j
� t � t .s sA Ai j

These represent pairs of activities such that a higher prior-
ity activity A causes crowding for a lower priority activity A ,i j
while not even engaging resources. With respect to resource

Ž . � 4blocking, the pair A , A represents a blocker, blocked pair,i j
where A can be thought of as a blocker and A can bei j
thought of as a blocked activity. This crowding behavior re-
sults from relative priorities that are decided by the deter-
ministic, expected value based, inner loop optimizer and rep-
resents ineffective resource utilization. For every such pair,
the information that can be tracked across the inner loop
time lines are:

� Žw xMean duration of the above overlap, L t , ts f sA Ai iw x.� t ,t , averaged across the time lines: This overlap is ar f sA Aj j
measure of the duration of delay caused by activity A gCi 1
on activity A gC .j 2

� Mean resource ratio of the blocked activity to the block-
Ž . Ž .ing activity, defined as � s � r � , � rgR, if bothi j,r r, A r, Aj i

� �0 and � �0: This is averaged across the time lines.r, A r, Aj i

� Ž .Probability of occurrence of the pair A , A that satis-i j
fies the stated conditions: This is obtained as a frequency
count from the inner loop time lines.

This information tells us about the tendency of any activity
Ž .that is, given a high priority by the deterministic optimizer
to cause crowding delays on other activities that could have
gone ahead, if not for the prioritizing suggested by the deter-
ministic optimizer. The information can be considered by
grouping together all activities A gC that get paired withj 2
activity A gC to get the corresponding priority-basedi 1
crowding tendency of any given activity A gC . When con-i 1
sidered in such a fashion, the smaller the ratio � is withi j,r
respect to unity, the higher the probability of occurrence of

Ž .the pair A , A . Also, the higher the mean duration of thei j
Žw x w x.overlap L t ,t � t ,t , the higher is the severity ofs f s r f sA A A Ai i j j

the priority-based crowding caused by activity A gC . Thei 1
information can also be considered by grouping together ac-
tivities A gC that get paired with activity A gC to geti 1 j 2

information about which activities cause priority-based
crowding delays on any given activity A gC . Informationj 2
from Category 1 coupled with information integrated from
the previous class with respect to portfolio selection can be
used to infer a policy of operation that reflects both the above
learning and the priorities decided by the deterministic opti-
mizer. This will be illustrated in a pharmaceutical product
development case study discussed later.

Category 2: Resource Crowding Caused by Acti®ities that are
Žengaging Resources. Consider a higher priority activity prior-

ity decided by the activity starting time resulting from the
.optimizer’s schedule that is actively executing. Let C be the3

set of such activities A that can be fully characterized ini
terms of:

� w xThe time interval, t , t , where t denotes the points f sA A Ai i i
in time when activity A receives resources and starts execut-i
ing, and t denotes the point in time when activity A fin-f iA i

ishes and disengages resources.
Secondly, consider an activity that becomes technologically

feasible, but gets queued for resources due to insufficient
availability. Let C be the set of such activities A that can4 j
be fully characterized in terms of:

� w xThe time interval, t , t , where t denotes the points f f s fA A Aj j j
in time when activity A becomes technologically feasible, andj
t denotes the point in time when activity A receives re-s jA j
sources and starts executing.

Ž .Consider every pair, A , A , that satisfies:i j

� A gC ,i 3

� A gC ,j 4

� Žw x w x.L t ,t � t ,t �0.s f s f sA A A Ai i j j

These represent pairs of activities such that an activity Ai
causes crowding for a lower priority activity A , while activelyj
executing and engaging resources. With respect to resource

Ž . �blocking, the pair A , A again represents a blocker,i j
4blocked pair, where A can be thought of as a blocker andi

A can be thought of a blocked activity. This crowding behav-j
ior results from relative priorities that are decided by the de-
terministic, expected value based inner loop optimizer. For
every such pair, the information that is tracked across the
inner loop time lines is the same as in Category 1, that is, the

Žmean duration of the overlap measure of delay caused by
.blocking on blocked , mean resource ratio of blocked to

blocking activity, and the probability of the occurrence of the
� 4blocking, blocked pair.

This information tells us about the tendency of any activity
to cause crowding delays on other activities that may have
gone ahead, if not for the prioritizing suggested by the deter-
ministic optimizer. It can be considered by grouping together
all activities A gC that get paired with activity A gC toj 4 i 3
get the corresponding crowding tendency of any given activity

Ž .A gC . When considered along with the unconstrainedi 3
Žcharacterization of every project in isolation in terms of the

.project’s unconstrained NPV distribution , this information
Žmay reveal if less promising projects less mean NPV and less

.probability of positive NPV, when considered in isolation
have a tendency to get in the way of more promising projects,
in the solutions produced by the deterministic optimizer. Such
information can be used as a basis to prevent the inclusion of
such projects that cause costly delays on more promising pro-
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jects. The information can also be considered by grouping
together activities A gC that get paired with activity A gi 3 j
C to get information about which activities cause crowding4
delays on any given activity A gC . The use of informationj 4
from Category 2 will be illustrated in a case study in the next
section.

Pharmaceutical Case Study
The methods for information integration from the inner

loop described in the last section are demonstrated on an
industrially motivated pharmaceutical case study in this sec-
tion. The three main stages in pharmaceutical new product

Ž .development, as described in Blau et al. 2000 , are Discov-
ery, Development, and Commercial Launch. In the Discovery
stage, literally thousands of molecules are applied to targets
that are developed to simulate various disease groups. Once

Žan active molecule that is, a molecule that has a curative
.effect on the target is discovered, various permutations of

the structure of the molecule are tested to see if the activity
can be enhanced. Testing for toxicological results in rats or
mice follows, and, if no particular worrisome toxic endpoints
are observed, the molecule becomes a candidate for human
development. In the Development stage, significant costs are
incurred on the candidate to observe its behavior in healthy
volunteers, diseased patients, and, finally, in large-scale clini-
cal studies conducted in concert with the Food and Drug Ad-

Ž .ministration FDA . Coincident with these studies, formula-
tion and process development work are conducted to supply
the drug for testing purposes, and to design and construct a
commercial plant if the product is launched. If the drug is
effective in the clinical studies, has no unacceptable side ef-
fects, and the FDA approves it, it moves to the Commercial
Launch stage. Target markets are identified for a staged
launch or ‘‘ramp-up’’of the new compound. After a few years,
a mature sales level is usually reached and maintained until
patent coverage on the molecule expires, when competition
from generics is realized. Sales are significantly diminished
after expiration of the patent.

The case study comprises eleven projects with the Finish-
to-Start precedence constraints within each project. The Ac-

Ž .tivity-on-Node AoN graph for a representative project is
shown in Figure 5, and this follows the simplified network
flow diagram of the major activities involved in the develop-

Figure 5. Case study activity-on-node graph.

Table 3. Case Study AoN Graph Activity Description

Activity Activity Description
Ž .A1 First human dose preparation FHD

A2 Phase I
A3 Phase II
A4 Phase III
A5 FSA
A6 Prelaunch
A7 Ramp-up 1
A8 Ramp-up 2
A9 Ramp-up 3
A10 Mature sales
A11 Sample preparation
A12 Process development
A13 Design plant
A14 Build plant

ment and commercialization of a new drug candidate, as pre-
Ž .sented in Blau et al. 2000 . The activity descriptions corre-

sponding to the nodes of the AoN graph are given in Table 3.
Uncertainty with respect to task failure is considered for
Phase I, Phase II, and Phase III activities. There are 14 re-
source types in the system, and the triangular distributions
modeling the uncertainties in processing times, resource re-
quirements, probabilities of success, and activity costsrre-
wards are given in Table 4 and Table 5 for one project named
A. Data in an identical format for ten more projects named B

Ž .through K can be found in Subramanian 2002 and Case
Ž .Study 2002 , and is not reproduced here due to space con-

straints. The capacity of the system with respect to each of
the 14 resource types is given in Table 6. An annual discount-
ing rate of 5% is used for discounted cash flow calculations,
with compounding carried out on a weekly basis. The patent
expiration feature is modeled as follows. In both the opti-
mization and simulation formulations, successful projects earn
recurring yearly revenues equal to their mature sales from
the start of the Mature Sales activity until the expiration of
the 20-year horizon, upon which time the project becomes

Ž .worthless. ILOG Concert 1.1rCPLEX 7.1 ILOG, 2002 is
Žused for the optimization module and CSIM18 Mesquite

.Software, 2002 is used for the simulation module.
It is evident from the above tables that decision-making

under uncertainty in R&D pipeline management problems,

Table 4. Project A: Resource Needs and Processing Time

Resource Need Processing Time
Distribution, Units Distribution, Wks.

Activity Resource Type Min. Mode Max. Min. Mode Max.

A1 FHD 72 83 88 52 52 104
A2 Phase I 70 84 90 52 52 104
A3 Phase II 75 82 85 78 78 104
A4 Phase III 150 220 250 104 104 182
A5 FSA 18 20 22 52 52 104
A6 Prelaunch 45 52 55 26 26 26
A7 Ramp-up 1 8 12 15 52 52 52
A8 Ramp-up 2 18 22 25 52 52 52
A9 Ramp-up 3 35 42 45 52 52 52
A10 Mature sales 45 54 60 52 52 52
A11 Formulation 1.8 2 2.2 52 52 78
A12 Development 7 11 13 104 104 130
A13 Design plant 8 11 12 104 104 130
A14 Construction 45 52 55 104 104 104
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Table 5. Project A: Probability, Cost, and Reward

Probability of Cost Distribution, Reward Distribution,
Success MM MM

Distribution Dollars Dollars

Activity Min. Mode Max. Min. Mode Max. Min. Mode Max.

A1 72 83.2 88
A2 0.9 0.925 0.97 70 84 90
A3 0.3 0.325 0.37 75 82 85
A4 0.87 0.895 0.94 150 220 250
A5 18 20.8 22
A6 45 52 55
A7 8 12 15 418.75 450 487.5
A8 18 22 25 837.5 900 975
A9 35 42 45 1256.25 1,350 1,462.5
A10 45 54 60 1,675 1,800 1,950
A11 1.8 2.08 2.2
A12 7 11.2 13
A13 8 10.8 12
A14 45 52 55

such as the above instance, is a very data-intensive exercise.
Such intensive data needs are modeled in an Object Ori-
ented manner in a structured language that has been defined

Ž .using the Extensible Markup Language XML format from
Ž .the W3C Consortium World Wide Web Consortium, 2002 .

The data corresponding to an instance of the R&D pipeline
problem is first modeled in the XML based object oriented
data model, which is then parsed and abstracted into a Cqq
class hierarchy comprising data structures that store all the
model data and facilitate efficient construction of the state-
dependent optimization and simulation formulations. A de-
tailed discussion of the design and implementation of the
XML language and the Cqq class hierarchy is outside the

Ž .scope of this article and can be found in Varma et al. 2002 .

Information that is ©aluable for de©elopment pipeline
management

This section discusses information useful for management
of new-product development pipelines. In the context of the
case study, there is a need to know which projects from the

� 4set A, B, C, D, E, F, G, H, I, J, K should be considered for
inclusion into the portfolio, given the earning potential from
the Mature Sales activity of the various projects. Given the
probabilities of failure and the uncertainty present in various

Table 6. System Capacity

Resource Type System Capacity

FHD 274 Units
Phase I 341 Units
Phase II 180 Units
Phase III 500 Units
FSA 97 Units
Prelaunch 548 Units
Ramp-up 1 25 Units
Ramp-up 2 50 Units
Ramp-up 3 100 Units
Mature sales 150 Units
Formulation 9 Units
Development 27 Units
Design plant 25 Units
Construction 120 Units

( )Figure 6. Unconstrained NPV and probability NPV�0
for projects in isolation.

parameters, listed in the above tables, it is clear that this is-
sue cannot be addressed by looking at the absolute mature
sales driven reward potential alone. As a first step, the indi-
vidual characterization of each of these projects is shown in
Figure 6 in terms of the mean NPV and the probability of
realizing a positive return on each of these projects, com-
puted via network simulation. Since any portfolio will evolve
under resource constraints within the patent interval, there is
a need to address the important issue of resource allocation
at various points in time. This decision-making pertaining to
resource assignment to various competing project activities
Ž .that is, scheduling at different points in time was noted as
the policy of operation. It may often be the case that not all
projects may be pursued under limited resources and yet be
finished within the patent window to earn commercial re-
turns. The questions of interest are:

� � 4Which projects from the set A, ..., K should be re-
moved from portfolio considerations?

� What should be the relative prioritization of the various
project activities that are chosen in the portfolio?

� Should the policy of operation prioritize all activities of
any given project, say Project X, over all other project activi-
ties, given that it may outperform all other projects with re-
spect to both the performance measures noted in Figure 6?
What effect will it have with respect to delaying activities in
other projects and effectively reducing the time-window over
which they may earn commercial returns? The resource re-
quirements of Project X need to be considered vis-a-vis the`
other projects, for answering this question in a quantitative
fashion.

� How should the relative priorities of the various projects
Žchange with time and outcome of activities that is, with states

.of the pipeline ?
The above questions represent important tactical and

strategic questions for the pharmaceutical pipeline manage-
ment case study. Every project usually has a ‘‘project cham-
pion’’ in real-life pharmaceutical pipelines, and answering
some of the above questions is replete with political and or-
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ganizational implications. Systematic integration of informa-
tion from the Sim-Opt time lines helps answer these ques-
tions in a quantitative fashion, and, thus, may be used for
objective conflict resolution. This is illustrated in the follow-
ing sections.

Inner loop policy of operation
The inner loop of Sim-Opt uses the Policy I discussed in

Ž .Subramanian et al. 2001 . Policy I uses the deterministic
MILP and the resulting scheduling solution to make both su-
pervisory and regulatory decisions. The deterministic MILP
uses a time discretization size of 26 weeks, and considers a
horizon of 1,040 weeks, corresponding to the 20-year patent
horizon. As noted earlier, the scheduling solution from the
MILP decides the relative priorities of the scheduled tasks in
the simulation. The earlier an activity is scheduled to occur,
the higher is its priority in engaging the corresponding re-
source types. Tasks that have the same scheduled starting
times are relatively prioritized in terms of the expected un-
constrained NPV associated with their projects. The higher
the expected NPV associated with an activity, the higher is its
priority with respect to engaging resources. The expected
NPV is based upon the critical path of the corresponding Ac-

Ž .tivity-on-Node AoN subgraph that remains at the current
state of the system, when considered without resource con-
straints. Resource starvation, occurring due to resource con-
flicts, is tolerated for a fixed duration of one time bucket
beyond the scheduled starting times of such active tasks. If
starvation continues beyond the above threshold of tolerance,
it is treated as an event that needs decision-making and the
current state of the system is communicated to the optimizer.
The event of an unsuccessful finish of an active task is also
treated as an event that needs decision-making and is han-
dled similarly. The state-dependent MILP formulation re-
flects the current state of the system in terms of

� Removal of all tasks belonging to projects that have failed
thus far

� Removal of tasks that have finished
� Addition of constraints to prevent the preempting of on-

going tasks, and
� Parameter updating for partially completed tasks in terms

of processing times and resource requirements.
It should be noted that no constraints are added to insist

on the continuation of ongoing projects, which may get sus-
pended depending on the optimum of the corresponding
state-dependent MILP.

Inner loop performance and a three-step heuristic based on
information integration

The time lines of Sim-Opt yield the probability distribution
of the NPV of the portfolio. The relative error criterion on
the mean of the portfolio NPV distribution is used to deter-
mine the number of simulation time lines required before
terminating the inner loop. The relative error in the estimate
Ž .X n or random variable X, with true mean � is taken to be

� Ž . � Ž .X n y�rX n , where n is the number of observations. The
Žspecific objective of the following procedure Law and Kel-

.ton, 2000 is to obtain an estimate of � with a relative error
Ž . Ž .of � 0�� �1 , and a confidence level of 100 1y� per-

Figure 7. Inner Loop NPV distribution.

cent. The following steps are done starting with n s1,000,o
and using the t-distribution based confidence-interval half-
length given by

s nŽ .
� n ,� s t 7Ž . Ž .ny1,�r2 'n

where t is the upper 100�r2 percentage point of theny1,�r2
t-distribution with ny1 degrees of freedom.
Ž .1 Run n inner-loop Sim-Opt time lines, and set nsno o
Ž .2 Compute the mean of the portfolio NPV distribution,

Ž . Ž .NPV n , and � n,� from NPV , NPV , ..., NPV .1 2 n

Ž . Ž . � Ž . � Ž . Ž .3 If � n,� rNPV n F�r 1q� , then use NPV n as the
point estimate for the true mean, and stop. Else replace n by
nq1,000, make an additional 1,000 time lines and go to step
1.

Using � s0.025, the above procedure terminates with 5,000
time lines in the inner loop for the pharmaceutical case study.
The portfolio NPV distribution resulting from the inner loop
policy of operation is shown in Figure 7. The mean of the
inner loop NPV distribution is 8343.11 MM $ with a maxi-
mum relative error of 0.025 and a confidence level of 95%.

Ž .The 100 1y� percent, binomial proportion based, confi-
dence interval half-length on the proportion of interest, which

Ž .is that of realizing a positive NPV NPVG0 , is given by

p 1y pŽ .
� n ,� s z 8Ž . Ž .(p �r2 n

where z is the upper �r2 percentage point of the standard�r2
Ž .normal distribution Montgomery and Runger, 1999 , and p

is the proportion of time lines in the random sample of 5,000
time lines that deliver a positive NPV. The inner loop policy
of operation leads to the probability of 0.886 for delivering a
positive NPV, with a confidence interval half-length of 0.0088
at a 95% confidence level. The serial cpu time requirement
for the 5,000 time lines on a Pentium III 800 MHz was ap-

January 2003 Vol. 49, No. 1AIChE Journal 107



Figure 8. Individual project mean NPVs: inner loop per-
formance and unconstrained performance.

proximately 100 hours. A heuristic is presented in the follow-
ing section that attempts to integrate information from the
inner loop time lines to lead to improving solutions for port-
folio performance.

Heuristic Step 1. In Step 1 of the heuristic, a project-centric
view of the inner loop portfolio performance is taken, and
the contribution of every project to the portfolio mean is in-
dividually tracked across the 5,000 inner loop time lines. It
should be noted that the contribution of each project in the
resource-constrained portfolio is determined by the choice of
the portfolio and policy of operation.

Figure 8 shows the comparison of the mean contribution of
each project in the portfolio controlled by the inner loop pol-
icy of operation, against the mean unconstrained contribu-

Žtion of the same project considered in isolation without re-
.source competition . It reveals that projects J and K are con-

tributing negatively to the portfolio mean NPV. The selec-
tion of these projects appears attractive to the deterministic
formulation at various ‘‘here-and-now’’ points in time, but
their negative impact on the portfolio mean performance is
revealed when evaluated across the realistic inner loop time
lines of Sim-Opt. Project E is never included into the portfo-
lio by the deterministic optimizer, as it is found to be unprof-
itable at the given level of system capacity and its patent ex-
piration deadline. Furthermore, Projects J and K exhibit a
2.4% and 9.2% chance of being discontinued after getting
included into the portfolio and before being taken to a con-
clusive finish, while also contributing negatively to the portfo-
lio mean

Step 1 excludes projects that negatively impact the portfo-
lio mean performance, and projects that are never included
Ž .or get included with very small probabilities into the portfo-
lio across the inner loop time lines. As a result, Step 1 pre-
vents the inclusion of projects E, J, and K.

Heuristic Step 2. Figure 8 also shows that Projects B, D, F,
G, and H perform quite poorly when compared to their re-
spective unconstrained performances. This is because of de-
lays that are caused by resource constraints in task execu-
tions of these projects, and the resulting shortened patent
time window over which the project can earn commercial re-

Figure 9. Category 2: crowding caused by Activity F12
from Project F: mean duration of wait.

wards. In other words, this is a direct consequence of the
policy of operation that is adopted in the system, and which
might be ineffective. This leads into Heuristic Steps 2 and 3
that attempt to integrate information to quantify the effec-
tiveness of deterministic scheduling and its implications for
resource management in the face of uncertainty.

Figure 6 shows the unconstrained performance of each of
the projects, in terms of the mean NPV and the probability
of delivering a positive NPV. In the absence of Projects E, J
and K that have been excluded by Step 1, the least promising
project in the portfolio is Project F, when considered in isola-
tion in terms of mean NPV and the probability of delivering

�a positive NPV. Step 2 investigates Category 2 blocker,
4blocked pairs in which activities from Project F appear as

blocker activities. Figure 9 shows the mean duration of wait
caused by activity F12 from Project F, on Process Develop-
ment activities from Projects D, B, H, J, K, G, and I, by con-

� 4 � 4 � 4sidering blocker, blocked pairs F12, D12 , F12, B12 , and
so on, across the 5,000 inner loop time lines. This informa-
tion needs to be coupled with the probability of the above
pairs being realized in the system. Figure 10 shows the proba-

� 4 � 4bility of pairs F12, D12 , F12, B12 , and so on, being real-
ized at the corresponding mean duration of blocking shown

� 4in Figure 9. For instance, the Category 2 pair F12, D12 is
realized with a probability of 60.6% causing a mean blocking
duration of 86 weeks, and a mean resource requirement ratio

Ž .of 0.88 resource needs of D12 over that of F12 . Table 7
summarizes the corresponding information for Category 2
blocking caused by activities F1 and F3. It can be seen that
Project F, the least promising project, causes blocking delays
on a more promising project D, of a mean value of 86 weeks
with a 60.6% chance in Process Development, a mean value
of 54 weeks with a 81% chance in the First Human Dose

Ž .Preparation FHD activity, and a mean value of 80 weeks
with a 54% chance in Phase II. Project F also causes signifi-
cant blocking delays on two other projects that are more

Ž .promising when evaluated in isolation , namely, projects B
Ž .and H Phase II activities with greater than 30% and 20%

probability, respectively. It can be noted from Figure 8 that
Projects B, D and H suffer significantly in terms of their in-
ner loop mean performance in the portfolio, when compared
against their unconstrained potential. Heuristic Step 2 pre-
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Table 7. Category 2: Crowding Caused by Activities F1 and F3 From Project F
Ž . Ž .F1 Category 2 Blocker F3 Category 2 Blocker

Mean Mean Probability Mean Mean Probability
Blocked Resource Duration of of Causing Blocked Resource Duration of of Causing

Ž . Ž .Activity Ratio Wait Wks. the Wait Activity Ratio Wait Wks. the Wait

B1 0.86 52.8 0.25 B3 0.72 76.3 0.31
D1 0.96 54.8 0.81 D3 0.97 80.2 0.54
J1 1.60 53.1 0.31 G3 0.99 72.5 0.01
K1 1.60 57.3 0.46 H3 0.67 77.4 0.22

I3 2.01 90.0 0.01
J3 1.15 65.8 0.18
K3 1.15 79.9 0.42

Figure 10. Category 2: Crowding caused by Activity F12
from Project F: probability of crowding and
mean resource ratio.

Žvents from inclusion the least promising project when evalu-
.ated in isolation if it causes significant Category 2 blocking

delays on more promising projects. As a result, Heuristic Step
2 prevents the inclusion of Project F. Steps 1 and 2, thus,
reassess the decisions made by the deterministic optimizer
with respect to the portfolio selection. This leads into Step 3
that investigates the need to reassess the scheduling decisions
made by the deterministic optimizer with respect to resource
management.

Heuristic Step 3. Step 3 looks into Category 1 resource
crowding that can be caused in the face of uncertainty due to
prioritizing decisions from the deterministic scheduler. This

� 4information is tracked in terms of finding blocker, blocked
pairs that fit the criteria described in the section on Category
1 resource crowding. Such priority based delays caused on
blocked activities can lead to significant degradation in the
performance of their corresponding projects, as lost time is
lost opportunity in the face of a patent horizon. Figure 11
shows the mean duration of such Category 1 delays caused by
activity I11 from Project I, on the Sample Preparation activity

Žin Projects B, D, and H ignoring Project K and Project F
.that have been dropped by Steps 1 and 2 . Figure 12 shows

� 4 � 4 � 4the probability of pairs I11, B11 , I11, D11 and I11, H11
being realized as Category 1 pairs because of the inner loop
policy of operation where priority is decided by the schedul-
ing solution from the deterministic optimizer. Table 8 sum-
marizes the same information in the context of activity I1

Figure 11. Category 1: crowding caused by Activity I11
from Project I: mean duration of wait.

Figure 12. Category 1: crowding caused by Activity I11
from Project I: probability of crowding and
mean resource ratio.

Table 8. Category 1: Crowding Caused by Activity I1 from
Project I

Blocked Mean Resource Mean Duration Probability of
Ž .Activity Ratio of Wait Wks. Causing Wait

B1 0.35 75.3 0.99
D1 0.39 75.5 0.99
F1 0.40 75.5 1
G1 0.40 75.3 0.94
H1 0.38 75.3 0.99
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that effectively blocks the FHD activity from Projects B, D,
G and H. While it can be seen from Figure 6 that Project I is
the most promising project in terms of unconstrained poten-
tial, the priority-based crowding delays that it causes on Pro-
jects B, D, G, and H with very high probability, contribute to
the poor performance of these projects across the inner loop
time lines, as shown in Figure 8, when compared against their
unconstrained potential. This reveals the ineffectiveness of
prioritizing activities with respect to resource engagement,
based on the scheduling solution from the deterministic
scheduler alone. Heuristic Step 3 attempts to correct this in-
effectiveness by using the Sim-module to implement the fol-
lowing policy of operation. The Sim-module preserves the
relative priorities decided by the deterministic optimizer until
a Category 1 resource crowding pair arises. When such a
blocking occurs, the Sim-module overrides the deterministic
optimizer’s solution by allowing the resource-feasible lower
priority activity to go ahead and engage resources, thus over-
riding the higher priority blocker activity. While this is ex-
pected to worsen the performance of Project I, it is also ex-
pected to improve the performances of Projects B, D, G and
H. It should be noted that this overriding decision made
within the Sim-module would be reflected in the subsequent
state-dependent MILP formulation invocations, via the states
that the pipeline system would transition into by virtue of the
above overriding decision. Heuristic 3 is, thus, one of several
ways to reflect the integrated information with respect to
Category 1 resource blocking into the MILP formulation that
is used to take control actions in the pipeline system.

A summary of the three-step heuristic is as follows:
Heuristic Step 1 involves the following steps:
� Project-Centric Tracking of individual project contribu-

tions to Portfolio NPV
� Project-Centric Tracking of the probability of being dis-

continued before conclusive finish, after having been started
� Prevents from inclusion, those projects that contribute

negatively, when assessed across the realistic time lines of
Sim-Opt.

Heuristic Step 2 involves the following steps:
� Characterize every project in the portfolio, in isolation in

an unconstrained mode, in terms of its mean NPV and Prob-
� 4ability NPV�0

� ŽIf the least promising project in terms of the characteri-
.zation in isolation pairs up as a blocker with a more promis-

ing blocked project, in Category 2, with significant probability
and delay duration, prevent its inclusion into the Portfolio.

Heuristic Step 3 involves the following steps:
If Category 1 resource blocking is present in the inner loop

time lines with significant probability and delay duration:
� Preserve the priorities from the Deterministic Opti-

mizer, until a Category 1 blocking arises
� When a Category 1 blocking occurs, allow the resource-

feasible lower priority activity to go ahead and engage re-
sources.

Results with Statistical Significance. The 5,000 inner loop
time lines are run with Steps 1, 2, and 3 in succession, and
Figure 13 shows the portfolio NPV distribution resulting from
the outer loop, after application of Heuristic Steps 1, 2, and
3. The serial cpu time requirement for these steps on a Pen-
tium III 800 MHz workstation was approximately 40 h, ap-
proximately 30h, and approximately 30 h, respectively. The

Figure 13. Outer Loop NPV distribution.

mean of the outer loop NPV distribution is 9012.12 MM $
with a maximum relative error of 0.02 and a confidence level
of 95%. The outer loop also leads to a probability of 0.927
for delivering a positive NPV, with a confidence interval
half-length of 0.0072 at a 95% confidence level. Figure 14
shows the improvement in the system performance in terms
of both the portfolio mean NPV and the probability of the
system delivering a positive NPV, from the inner loop and
across Heuristic steps 1, 2 and 3. Figure 15 shows the individ-
ual performance of each project in the outer loop, compared
against its inner loop and unconstrained performances. It can
be seen that the outer loop three-step heuristic has led to an
improvement in the performance of projects B, D, G, and H,
while it has hurt the performance of Project I, while also
leading to an overall improvement in terms of the portfolio
performance. The statistical significance of the improvement
obtained via information integration from the inner loop is

Ž .quantified as follows. The 100 1-� percent confidence in-

Figure 14. Three-step outer loop heuristic for informa-
tion integration from inner loop.
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Figure 15. Individual Project Mean NPVs: uncon-
strained performance, inner loop perfor-
mance, and outer loop performance

terval half-length on the difference between the mean NPV
Žof the outer loop and the inner loop is given as Montgomery

.and Runger, 1999

2 2� 	1 2
� n ,n ,� s z q 9Ž . Ž .d 1 2 �r2( n n1 2

where n and n are the number of random time lines corre-1 2
sponding to the outer loop and inner loop, respectively; � 2

1
and � 2 are the variances for the two outer loop and inner2
loop distributions, assumed to be known from the corre-
sponding sample variances. This gives a full-length confi-

w xdence interval of 410 MM $, 928 MM $ at the 95% confi-
Ž .dence level, on the improvement difference in the portfolio

mean NPV delivered by the outer loop, with a mean differ-
Ž .ence of 669 MM $. Similarly, the 100 1y� percent, bino-

mial proportion based, confidence interval half-length on the
difference between the outer loop and the inner loop proba-

Žbilities of delivering a positive NPV, is given as Montgomery
.and Runger, 1999

p 1y p p 1y pŽ . Ž .1 1 2 2
� n ,n ,� s z q 10Ž . Ž .d, p 1 2 �r2( n n1 2

where n and n are the number of random time lines corre-1 2
sponding to the outer loop and inner loop, respectively; p1

Ž .and p are the sample proportions of interest NPVG0 from2
the outer loop and inner loop distributions, respectively. This

w xgives a full-length confidence interval of 3.01%, 5.27% at
Ž .the 95% confidence level, on the improvement difference in

the probability of achieving a positive NPV, delivered by the
outer loop, with a mean difference of 4.14%. The above re-
sults show that information integration from the inner loop
time lines that are controlled by the deterministic optimizer,
when incorporated into the policy of operation via the outer
loop leads to statistically significant improvements in the
quality of the solutions that may be obtained for the underly-
ing stochastic optimization problem.

Conclusions
The main conclusion of this article is that it demonstrates

the benefit of explicitly viewing the R&D pipeline as the
control problem of a performance-oriented, resource-con-
strained, stochastic, discrete-event dynamic system. Sim-Opt
Ž .Subramanian et al., 2001 has been shown as a practical ap-
proach for obtaining realistic solutions to effectively manage
the pipeline system. There are two classes of information that
can be obtained from the inner loop time lines, with respect
to portfolio selection and resource crowding associated with
the chosen policy of operation. Quantifying these helps de-
velop intuition for designing heuristics for the system. This
was demonstrated with a three-step heuristic that delivers
improving solutions with respect to the mean net present

Ž .value NPV of the portfolio and the probability of delivering
a positive NPV. The use of the above method was illustrated
on a case study resulting in statistically significant improve-
ments. The integrated information from the inner loop re-
sulted in a mean improvement of 669 MM $ in the average
NPV in the outer loop, with full-length confidence interval of

w ximprovement of 410 MM $, 928 MM $ at the 95% confi-
dence level. It also resulted in a mean improvement of 4.14%
in the probability of achieving a positive NPV in the outer
loop, with a full-length confidence interval of improvement

w xof 3.01%, 5.27% at the 95% confidence level.
The second conclusion is related to basic algorithm and

software engineering that is necessary for realizing the practi-
cal utility of Sim-Opt. The necessity for effective data struc-
tures for controlling the time-complexity of both formulation
generation and solution has been demonstrated. Efforts un-
dertaken to achieve significant improvements in the perfor-
mance of formulation generation, and the generation of a
heuristic lower bound along with identification of cut families
for effective application of branch-and-cut methods for for-
mulation solution have been described. A reduction of close
to 99.5% in the computational time requirement of formula-
tion generation of any single MILP was observed in the case
study with the use of the suggested data structures on a Pen-
tium III 800 MHz Windows workstation. The cut families
along with the heuristic lower bound reduced the cpu time
requirement for the solution of the largest MILP in the case
study to approximately 3 min, against a conventional branch-
and-bound strategy that required upwards of 6 h on a Pen-
tium III 800 MHz. The overall serial cpu time requirement
for 5,000 inner loop time lines and the information integra-
tion was approximately 100 h with the above computational
improvements. Sim-Opt, as a process management tool, is
applicable not only to the R&D pipeline system, but also to
other stochastic process management systems, such as batch
manufacturing and supply chain systems.
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