GLOBAL OPTIMIZATION AND OPTIMIZATION UNDER UNCERTAINTY

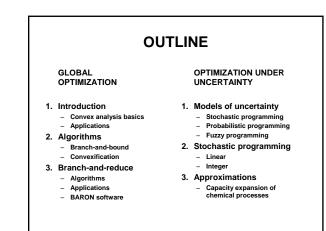
Pan American Study Institute on Process Systems Engineering Iguazu Falls, Argentina 18 August 2005

Nick Sahinidis

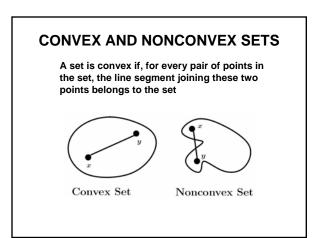
· Optimization basics Optimality conditions - Convex sets and functions

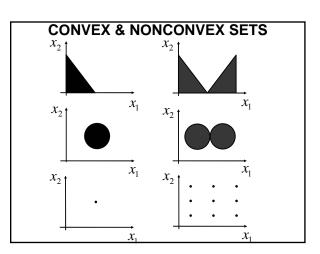
The shape of typical modeling functions What is global optimization? Why do we need it? - Applications

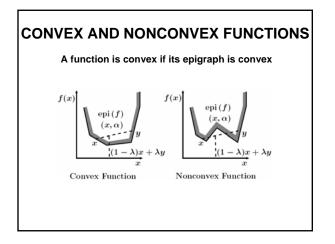
University of Illinois at Urbana-Champaign **Chemical and Biomolecular Engineering**

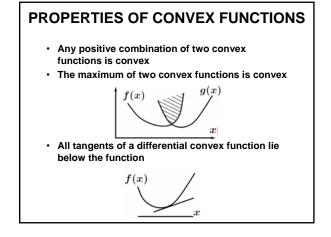


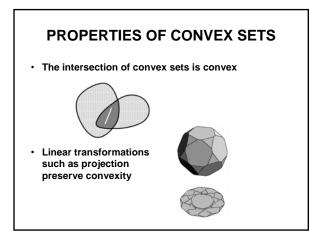
THE MULTIPLE-MINIMA DIFFICULTY **PART 1: INTRODUCTION** х · Classical optimality conditions are necessary but not sufficient **Classical optimization provides the local** minimum "closest" to the starting point used

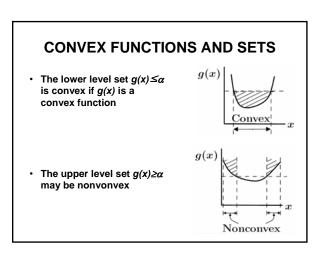


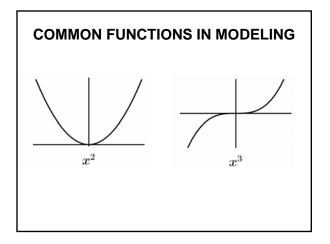


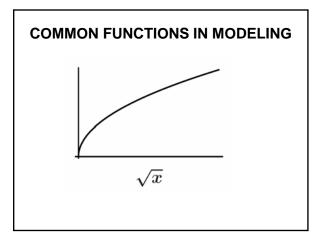


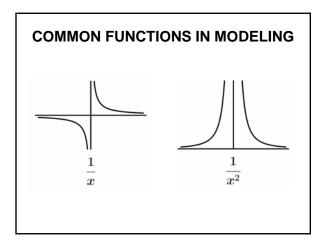


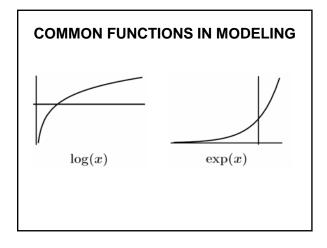


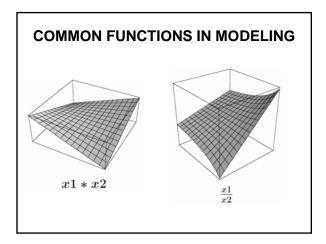


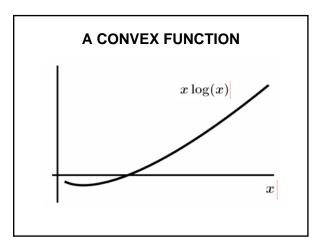


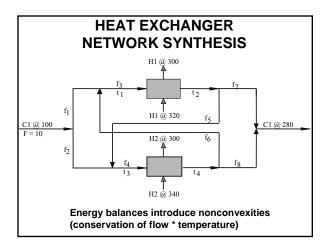


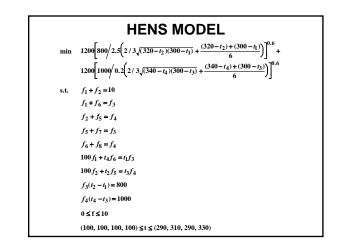


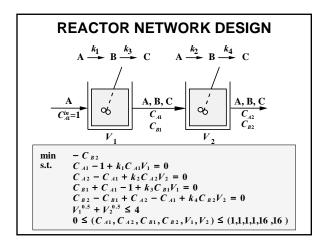


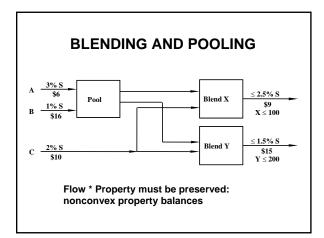


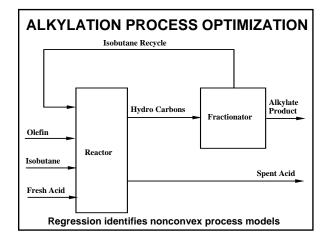






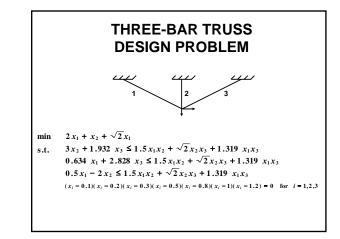


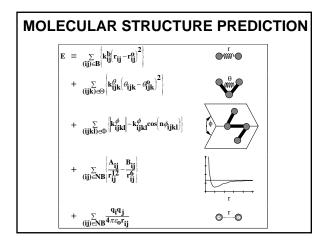


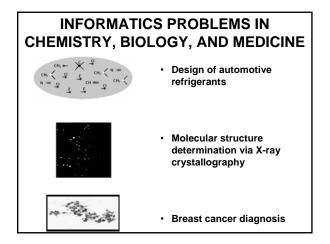


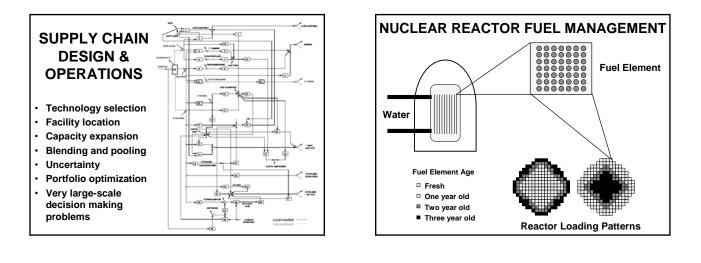
ALKYLATION PROCESS MODEL

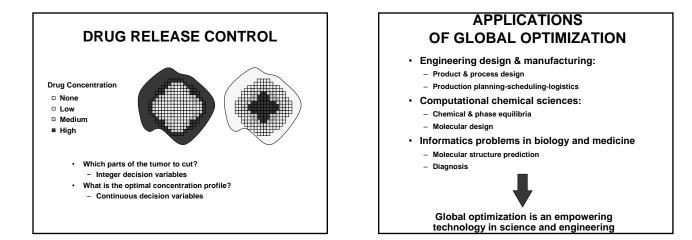
```
 \begin{array}{ll} \min & 5.04 \; x_1 + 0.035 \; x_2 \, + 10 \; x_3 + 3.36 \; x_5 \, - \, 0.063 \; x_4 x_7 \\ \mathrm{s.t.} & x_1 \, = \, 1.22 \; x_4 \, - \; x_5 \\ & x_9 \, + \, 0.222 \; x_{10} \, = \, 35.82 \\ & 3 \; x_7 \, - \; x_{10} \, = \, 133 \\ & x_7 \, = \, 86.35 \, + \, 1.098 \; x_8 \, - \, 0.038 \; x_8^2 \, + \, 0.325 \; (x_8 \, - \, 89 \, ) \\ & x_4 \; x_9 \, + \, 1000 \; x_3 \, = \, 98000 \; x_3 \, / x_6 \\ & x_2 \, + \; x_5 \, = \; x_1 x_8 \\ & 1.12 \, + \, 0.13167 \; x_8 \, - \, 0.00667 \; x_8^2 \, \ge \; x_4 \, / x_1 \\ & (1,1,0,1,0,85,90 \; , 3,1.2,145 \; ) \, \le \; x \\ & x \, \le \; (2000 \; , 16000 \; , 120 \; , 5000 \; , 2000 \; , 93 \; , 95 \; , 12 \; , 4,162 \; ) \end{array}
```



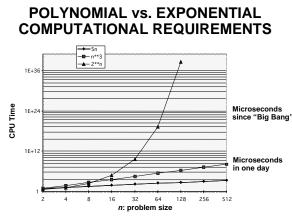


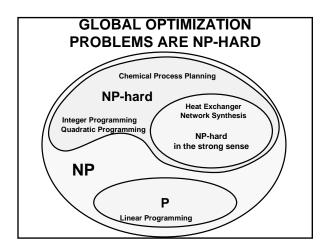


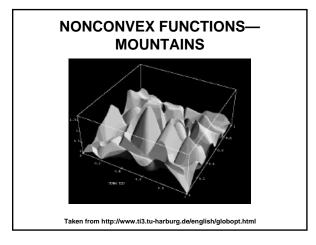


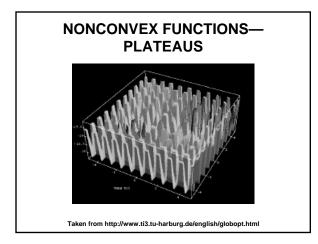


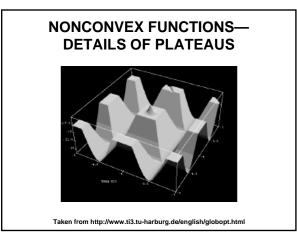
- Optimality-based
- Feasibility-based

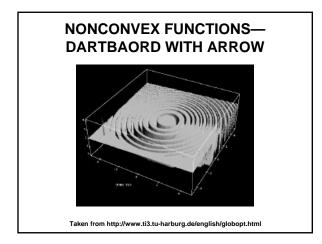


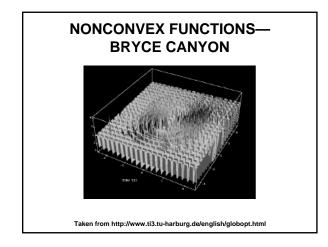


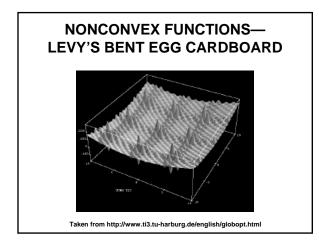


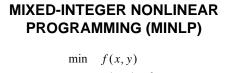




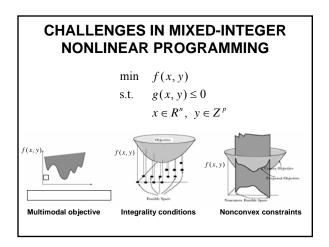


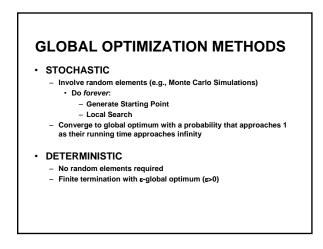






- s.t. $g(x, y) \le 0$ $x \in R^n, y \in Z^p$
- Integer variables
- Nonlinearities in the objective and constraints
- Nonconvexity even when integrality is relaxed



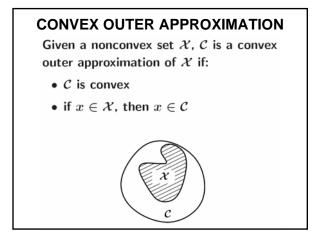


DETERMINISTIC GLOBAL OPTIMIZATION

- BRANCH-AND-BOUND
 - Implicit enumeration via a tree search
 Divide-and-conquer idea
- CONVEXIFICATION
 - Outer-approximate nonconvex space by increasingly more accurate convex programs
- DECOMPOSITION
 - Temporarily fix some variables to exploit problem structure
- ⇔ Horst & Tuy (1996)
- ⇒ Kluwer's (now Springer's) series on "Nonconvex Optimization & Its Applications"

ALGORITHMIC BUILDING BLOCKS

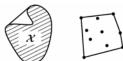
- Outer approximations of feasible sets
 Convex hulls
- Under- and over-estimators of objective functions
 Onvex and concave envelopes
- Partitioning of feasible set



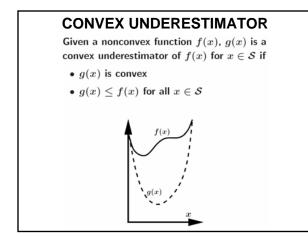
CONVEX HULL

Given a nonconvex set \mathcal{X} , \mathcal{C} is the convex hull of \mathcal{X} if:

- C is convex outer approximation of X
- For every S such that S is convex outer approximation of $\mathcal{X}, C \subseteq S$



The convex hull is the tightest possible convex outer approximation of a set





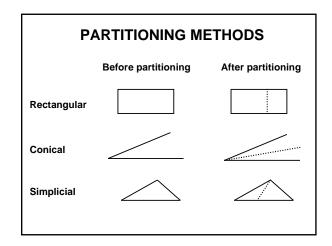
PARTITIONS

Let D be a subset of \mathbb{R}^n and I be a finite set of indices. A set $\{D_i : i \in I\}$ of subsets of D is a partition of D if:

1. $D = \bigcup_{i \in I} D_i$

2. $D_i \cap D_j = \partial D_i \cap \partial D_j \forall i, j, i > j$

where ∂D_i denotes the boundary of D_i relative to D.



BRANCH-AND-BOUND

Problem to solve: $\{\min f(x) \text{ s.t. } x \in D\}$

- 1. Start with a relaxed feasible set $D_0 \supseteq D$ and split (partition) D_0 into finitely many subsets D_i , $i \in I$.
- 2. For each subset D_i , determine a lower bound $\beta(D_i)$ and an upper bound $\alpha(D_i)$, satisfying:

 $\beta(D_i) \leq \inf f(D_i \cap D) \leq \alpha(D_i).$

BRANCH-AND-BOUND

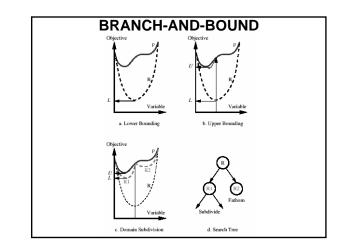
Then, $\beta = \min\{\beta(D_i) : i \in I\}$ and $\alpha = \min\{\alpha(D_i) : i \in I\}$ are overall bounds, that is we have:

$$\beta \le \min f(D) \le \alpha.$$

3. If $\alpha = \beta$ (or $\alpha - \beta \leq \epsilon$, $\epsilon > 0$ prescribed), then stop

BRANCH-AND-BOUND

4. Otherwise, select some subsets D_i and partition these selected subsets further in order to obtain a refined partition of D_0 . Determine new better bounds on the new partition elements and repeat the process.



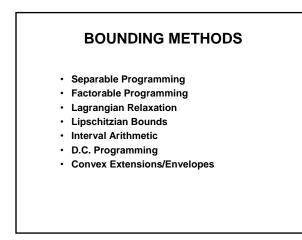
FROM PROTOTYPE TO ALGORITHMS

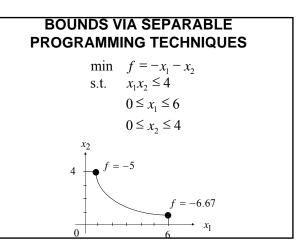
- Branch-and-bound is a strategy •
- To obtain a specific branch-and-bound algorithm, one must specify:
 - Relaxation technique
 - Branching strategy
 - Node selection rule

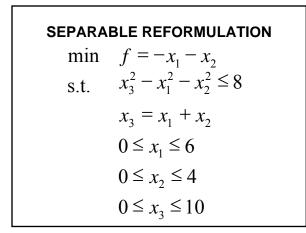
CONVERGENCE

· Consistent partitioning

- Any open partition can be further refined
- As refinement progresses, the lower bound converges to the nonconvex problem value
- Bound improving node selection rule
 - Every finite number of steps, a node with the least lower bound is selected
- A branch-and-bound algorithm with a consistent partitioning scheme and a bound improving node selection rule, converges to a global optimum
- Exhaustiveness
 - For every sequence of partitions, the feasible region reduces to a point
 - Not necessary for convergence but most branch-and-bound algorithms satisfy it

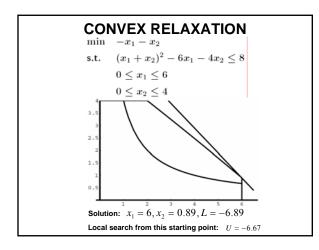


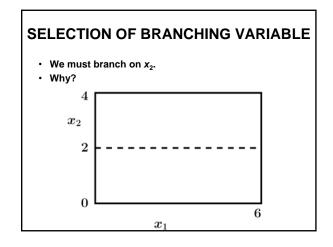


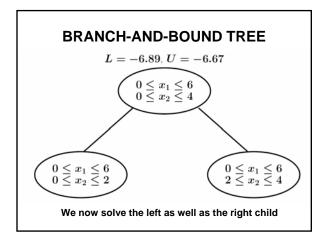


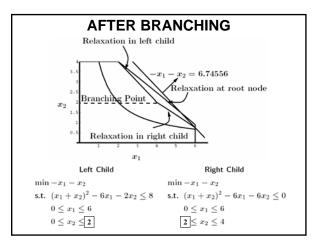
min
$$f = -x_1 - x_2$$

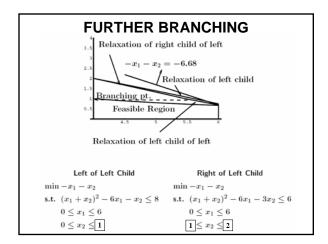
s.t. $(x_1 + x_2)^2 - x_1^2 - x_2^2 \le 8$
 $0 \le x_1 \le 6$
 $0 \le x_2 \le 4$

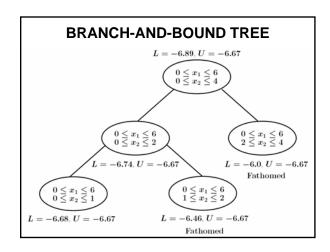






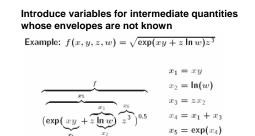






- A function is separable if it can be expressed as a sum of univariate functions
- An optimization problem is separable if all its constraints and objective function are separable
- Bounding procedure:
 - Construct underestimators of each of the univariate functions
 Often an easy task
 - A convex function underestimates itself
 - A concave function can be underestimated over an interval by a secant
 - For a concavoconvex function, first identify a point of inflection
 - Sum up these underestimators to obtain an underestimator of the original separable function

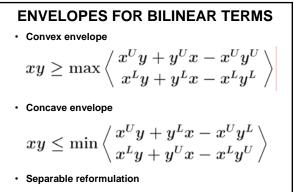
PROCEDURE FOR BOUNDING FACTORABLE PROGRAMS

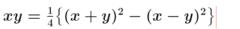


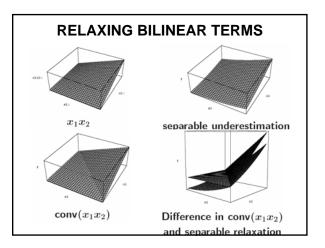
 $x_6 = z^3$

 $x_7 = x_5 x_6$

 $f = \sqrt{x_7}$





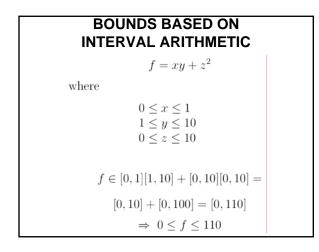


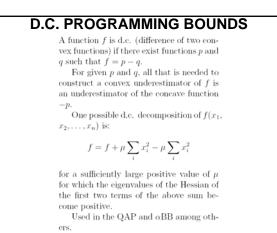
MCCORMICK'S PROCEDURE FOR BOUNDING FACTORABLE PROGRAMS

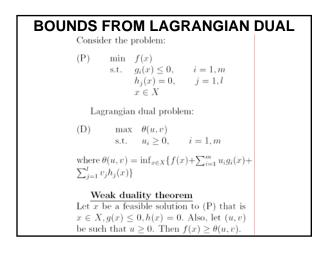
- Use the above procedure for bounding factorable programs with one exception:
 Do not introduce intermediate variables
 - Do not introduce intermediate variables
- Leads to non-differentiable lower bounding program that may be weaker than the one obtained after introduction of intermediate variables

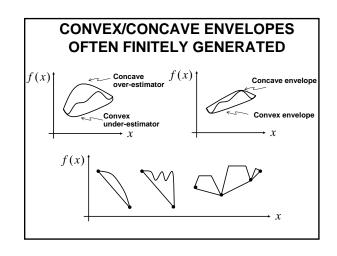
INTERVAL ARITHMETIC

- 1. addition: [a, b] + [c, d] = [a + c, b + d]
- 2. substraction: [a,b] - [c,d] = [a - d, b - c]
- 3. multiplication: $[a,b][c,d] = [\min(ac,ad,bc,bd), \max(ac,ad,bc,bd)]$
- 4. division: $\frac{[a,b]}{[c,d]} = \begin{cases} \infty & \text{if } 0 \in [c,d] \\ [a,b][\frac{1}{d},\frac{1}{c}] & \text{else} \end{cases}$

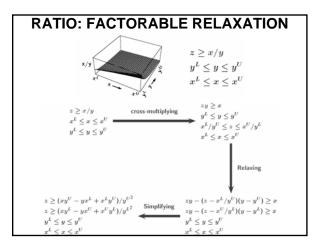


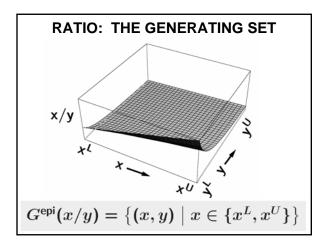


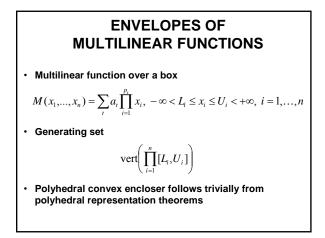


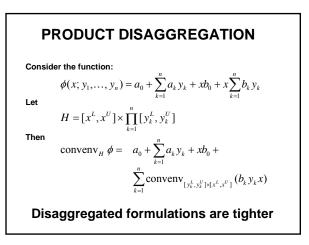


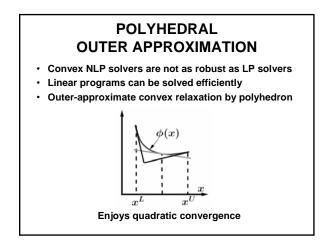
- Key result: A point in set X is not in the generating set if it is not in the generating set
- over a neighborhood of X that contains it
- 2. Use disjunctive programming techniques to construct epigraph over the generating set Rockafellar (1970)
 - Balas (1974)

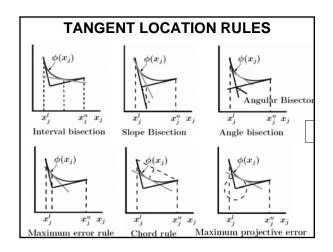


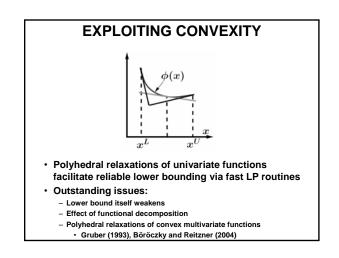


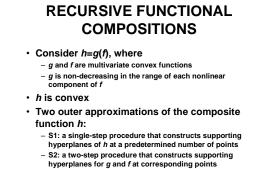


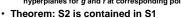




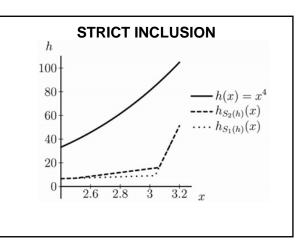


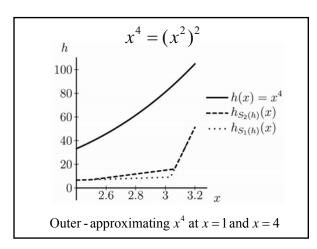


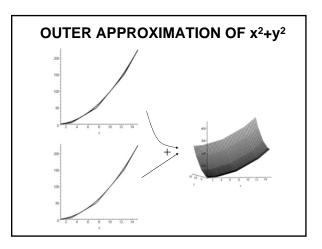




- If f is affine, S2=S1
- In general, the inclusion is strict





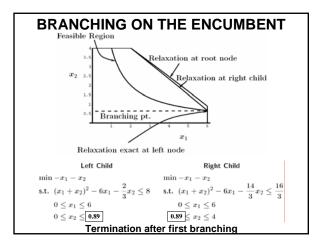


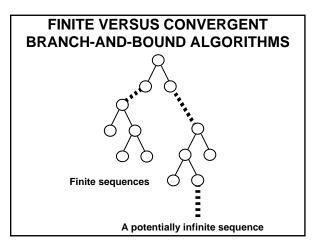
TWO-STEP IS BETTER

- Theorem: An exponential number of supporting hyperplanes in S1 may be required to cover S2
- h = f₁(x₁) + ... + f_m(x_m) where each f_i is strictly convex
 Separable functions are quite common in nonconvex optimization
- S2 has the potential of providing much tighter polyhedral outer approximations than S1 with a comparable number of supporting hyperplanes

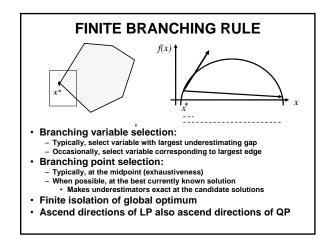
AUTOMATIC DETECTION AND EXPLOITATION OF CONVEXITS Composition rule: h = g(f), where g and f are multivariate convex functions g is non-decreasing in the range of each nonlinear component of f Subsumes many known rules for detecting convexity/concavity g univariate convex, f linear g=max{f₁(x), ..., f_m(x)}, each f₁ convex g=exp(f(x))

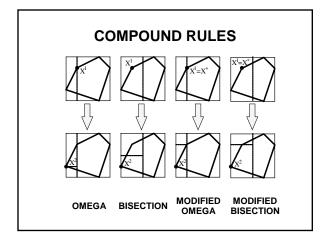
- Automatic exploitation of convexity is not essential for constructing polyhedral outer approximations in these cases
 - However, $logexp(x) = log(e^{x_1} + ... + e^{x_n})$
 - CONVEX_EQUATIONS modeling language construct

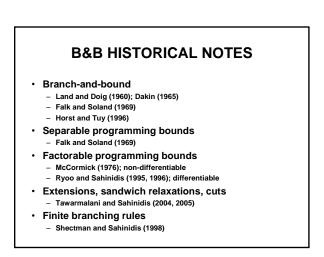










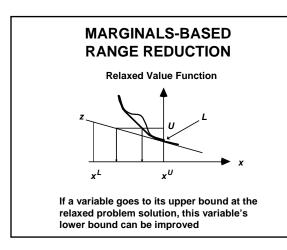


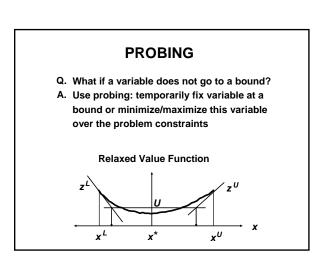
PART 3: BRANCH-AND-REDUCE

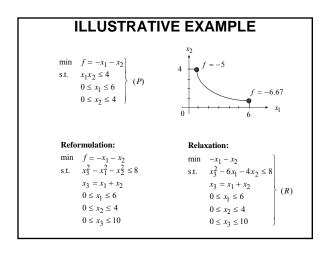
- The smaller the domain, the faster branch-and-
- bound converges
 Tighter lower bounds
- Fewer partitions
- Range reduction techniques
 - Based on marginals
 - Based on probing
 - Fixing variables at bounds, followed by marginals-based reduction
 - Solving LPs/NLPs to minimize/maximize problem variables
 over the feasible region or an outer approximation of it
 - Via interval arithmetic operations on the problem constraints

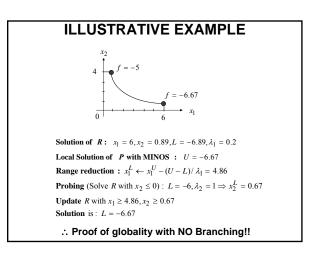
MARGINALS-BASED REDUCTION

- Economic interpretation of LP duals
- Economic interpretation of Lagrange multipliers
- Value function of LP
- Value function of convex NLP
- Derivation of reduction test









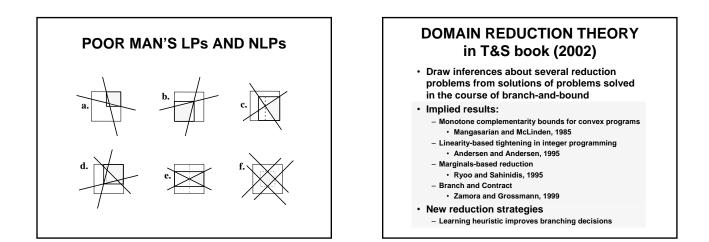
FEASIBILITY-BASED REDUCTION

 $\begin{array}{ll} \min & f = -x_1 - x_2 \\ \text{s.t.} & x_1 x_2 \leq 4 \\ & 1 \leq x_1 \leq 6 \\ & 2 \leq x_2 \leq 4 \end{array}$

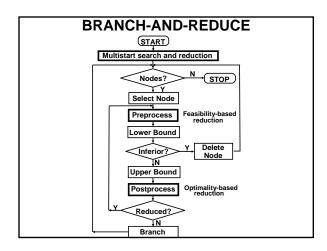
FEASIBILITY-BASED REDUCTION

- Minimize and maximize each problem variable over the constraint set
 - Requires the solution of 2n problems
 - Each problem may be a nonconvex NLP
- Use interval arithmetic operations on one nonlinear constraint and one variable at a time ("poor man's" NLPs)
 - Propagate bounds of variables
 - Constraint satisfaction techniques
- Solve minimization/maximization problems over a polyhedral outer approximation of the constraint set

 May still be expensive
- Solve minimization/maximization LPs approximately ("poor man's LPs")

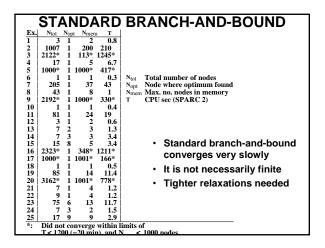


2

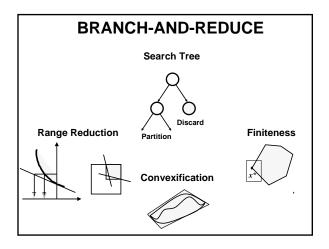


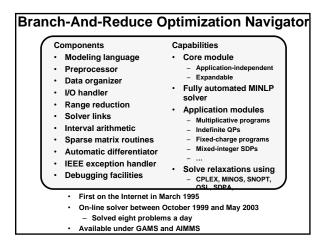
Cons. Vars. Source/In Description 1 2 Sabinidis & Grossmann Dilinear constraint 3 3 Liebman et al. (GINO) bilinear constraint 7 10 Liebman et al. (GINO) design of a water pumping system alkylation process optimization design of insulated tank heat exchanger network design

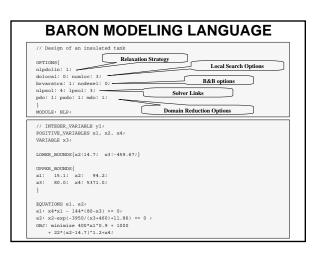
-			Elebinan et al. (OL(O)	design of a water pumping system
3	7	10	Liebman et al. (GINO)	alkylation process optimization design of insulated tank
4 5	1	3	Liebman et al. (GINO)	design of insulated tank
5	3 3	5	Liebman et al. (GINO)	heat exchanger network design
6	3	3	Liebman et al. (GINO)	chemical equilibrium
7	7	10	Liebman et al. (GINO)	pooling problem
8	2	2	Swaney	bilinear and quadratic constraints
9	1	2	Swaney	bilinear constraints and objective
10	1	2 2 3	Soland	nonlinear equality constraint
11	2		Westerberg & Shah	bilinearities, economies of scale
12	3	4	Stephanopoulos & Westerberg	design of two-stage process systems
13	3	27	Kocis & Grossmann	MINLP, process synthesis
14	10		Yuan et al.	MINLP, process synthesis
15	6	5	Kocis & Grossmann	MINLP, process synthesis
16	9	12	Floudas & Ciric	heat exchanger network synthesis
17	2	2	GINO	design of a reinforced concrete beam
18	4 2	2	Visweswaran & Floudas	quadratically constrained LP
19	2	2	Manousiouthakis & Sourlas	quadratically constrained QP
20	6	5	Manousiouthakis & Sourlas	reactor network design
21	6	5	Stephanopoulos & Westerberg	design of three-stage process system
22	5 2	2	Kalantari & Rosen	linearly constrained concave QP
23		2 2 2 2 5 5 2 2 2 2 2	Al-Khayyal & Falk	biconvex program
24	4	2	Thakur	linearly constrained concave QP
25	4	2	Falk & Soland	nonlinear fixed charge problem

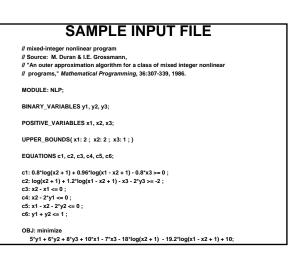


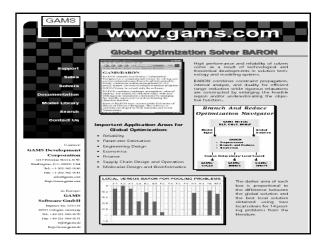
	R	Ξ	DUC	CTIC)N	E	ЗE	N	ĒF	IT	S			
	BRAN	CH-	AND-F	BOUND	E	R/	ANC	H-AN	D-R	ED	UC	Е		
1						lo i	prob	ing	Wi	th 1	Pro	bing		
Ex.	Ntot	Nop	t Nmer	n T				nem T	Ntot	Not	n N	mem T		
1	3	1	2	0.8	1	1	1	0.5	1	1	1	0.7	-	
2	1007	1	200	210	1	1	1	0.2	1	1	1	0.3		
3	2122*	1		1245*	31	1	7	20	9	1	5	48		
4	17	1	5	6.7	3	1	2	0.4	1	1	1	0.3		
5	1000*	1	1000*	417*	5	1	3	1.5	5	1	3	2.4		
6	1	1	1	0.3	1	1	1	0.3	1	1	1	0.3		
7	205	1	37	43	25	1	8	5.4	7	1	2	5.8		
8	43	1	8	10	1	1	1	0.8	1	1	1	0.8		
9	2192*	1	1000*	330*	19	1	8	5.4	13	1	4	7		
10	1	1	1	0.4	1	1	1	0.4	1	1	1	0.4		
11	81	1	24	19	3	1	2	0.6	1	1	1	0.7		
12	3	1	2	0.6	1	1	1	0.2	1	1	1	0.2		
13	7	2	3	1.3	3	1	2	0.7	1	1	1	0.7		
14	7	3	3	3.4	7	3	3	2.7	3	3	2	3		
15	15	8	5	3.4	1	1	1	0.3	1	1	1	0.3		
16	2323*	1	348*	1211*	1	1	1	2.2	1	1	1	2.4		
17	1000*	1	1001*	166*	1	1	1	3.7	1	1	1	4		
18	1	1	1	0.5	1	1	1	0.5	1	1	1	0.6		
19	85	1	14	11.4	9	1	4	1.8	1	1	1	1.4		
20	3162*	1	1001*	778*	47	1	12	16.7	23	1	5	15.4		
21	7	1	4	1.2	1	1	1	0.5	1	1	1	0.5		
22	9	1	4	1.2	3	1	2	0.4	3	1	2	0.5		
23	75	6	13	11.7	47	1	9	6.5	7	1	4	5		
24	7	3	2	1.5	3	1	2	0.5	3	1	2	0.6		
25	17	9	9	2.9	5	1	3	0.8	5	1	3	1		

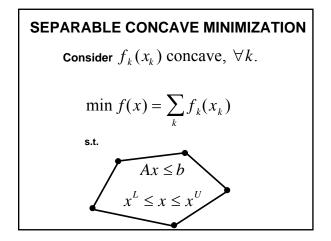




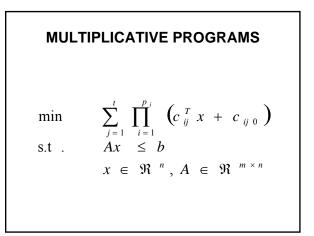








	Р	н		IPS	ΔΝ	-N	PR	OBLEMS			
				. 0							
			E (re	P (1993) =1 % lative)	(&R (199 E=0.1 % relative	; ;)	8	RON (1 =.0000 absolut	01 e)	
			н	P 730		CRAY : paralle	-		M RS/6 Power F		
m	n	k	avg	std dev	min	avg	max	min	avg	max	-
20	25	0	0.5	0.01	1	2	4	0.3	0.4	0.5	
20	25	50	2	2	1	1	1	1	1	1	
20	25	100	17	20	1	2	3	1	2	3	
20	25	200	33	28	2	7	17	2	4	6	 (m, n/k) = number
20	25	400	82	58	7	14	32	4	10	16	of constraints,
20	50	0	0.6	0.01	3	6	13	1	1	1	
20	50	50	17	31	1	2	3	2	2.5	3	concave/linear
20	50	100	47	49	2	5	14	2	4	7	variables.
20	50	200	109	80	4	9	28	4	8	19	• HP 730 is 3-4 times
20	50	400			20	32	45	11	20	48	
40	25	0	0.5	0.02				0.3	0.4	0.4	faster than IBM
40 40	25 25	50 100	1 3	0.6 4				1	1 2	1	RS/6000 Power PC.
40	25 25	200	25	4 26				2	4	5	 CRAY 2 is 10+
40	25 25	400	25	20				6	15	5 22	
40 50	25 100	400		-			-	6	7	14	 times faster than
50	100	50						8	12	18	IBM RS/6000
50	100	100						9	17	27	Power PC.
50	100	200						14	65	160	i ower i C.
50	100	400						131	345	663	



PRACTICAL APPLICATIONS

- Micro-economics (Henderson and Quandt, 1971)
- Plant Layout Design (Quesada and Grossman, 1994)
- Multi-stage Financial Planning (Maranas et al., 1997)
- Multiple Objective Decision Making (Lai and Hwang, 1994)
- Data Mining/Pattern Recognition (Bennet and Mangasarian, 1994)
- Global Tree Optimization (Bennet, 1994)

SPECIAL CASES of GLMP

• Linear Multiplicative Programs (LMP): $f(x) = \prod_{j=1}^{p} f_j(x)$

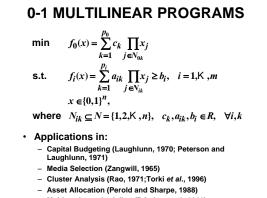
Quadratic Programs (QP):

$$f(x) = x^{T} Qx + c^{T} x + d$$

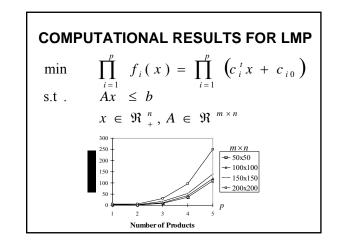
$$= \sum_{i=1}^{n} a_{ii} x_{i}^{2} + \sum_{i=1}^{n-1} \sum_{j>i}^{n-1} 2 a_{ij} x_{i} x_{j} + c^{T} x + d$$

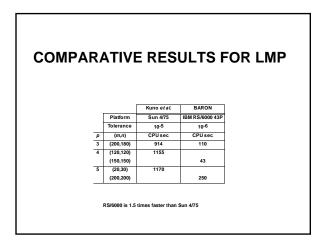
d

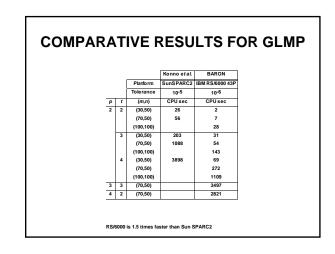
• Bilinear Programs (BLP): $f(x) = p^{T} x + x^{T} Qy + q^{T} y + d$ $= p^{T} x + \sum_{i=1}^{n} \sum_{J=1}^{M} a_{ij} x_{i} x_{j} + q^{T} y + d$

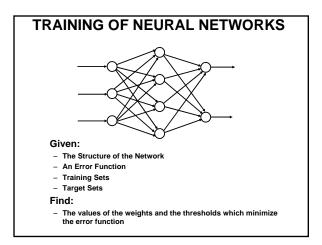


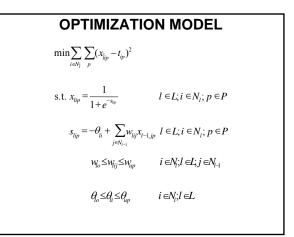
- Multi-project scheduling (Pritsker et al., 1969)
- Vision Loss Testing (Kolesar, 1980)

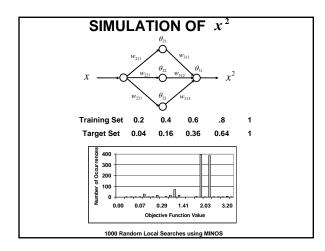


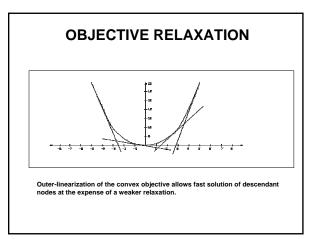


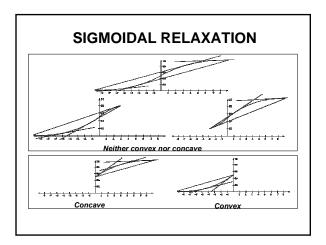


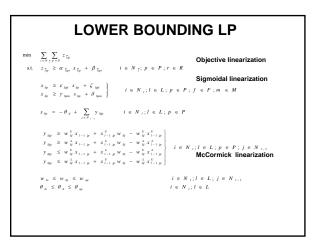










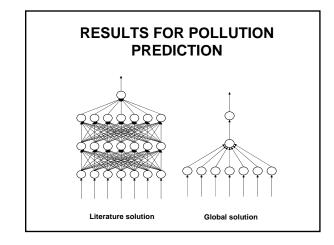


EXAMPLE: POLLUTION PREDICTION

· Source:

"A new approach for finding the global minimum of error function of neural network", *Neural Networks*, 2:367-373, 1989.

- Eight input nodes:
 - SO₂ density at 10 a.m.
 - (SO₂ density at 10 a.m.) (SO₂ density at 7 a.m.)
 - Wind velocity at 10 a.m.
 - Wind velocity at 8 a.m.
 - SO₂ density at 9 a.m.
 - (SO₂ density at 9 a.m.) (SO₂ density at 8 a.m.)
 - SO₂ density at noon last week.
 (average SO₂ density between 8 a.m. and 10 a.m.) (SO₂ density at 10 a.m.)
 - One logical output node:
 - Value of 1 (alarm) when SO₂ density exceeds 5 pphm
 - Value of 0 when SO₂ density is below 5 pphm



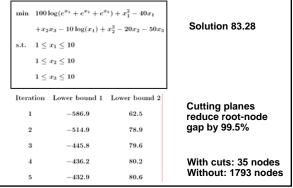
CUTTING PLANE GENERATION

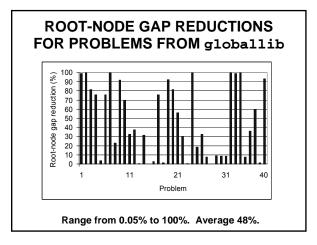
- Use supporting hyperplanes (outer approximation) of convex functions from:
 - Univariate convex functions of original problem
 - Univariate convex functions obtained from functional decomposition of multivariate functions
 - Convex envelopes of nonconvex functions
- Multivariate functions identified by CONVEX_EQUATIONS modeling language construct by the user
- Supporting hyperplanes generated only if they are violated by LP solution
- Process:
- Start with a rough outer approximation
- Solve LP
- Add some cuts
- Repeat process at current node

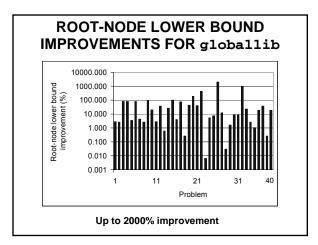
ILLUSTRATIVE EXAMPLE 1: CUTS FROM CONVEX ENVELOPES

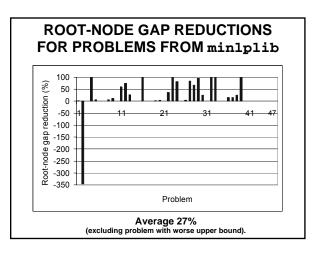
s.t.	$x^{2} - 100x + y^{2}$ $0 \le x \le 1000$ $1 \le y \le 1000$	$-30y+1000rac{x}{y}$	Solution -1118 at (34.3, 31.8)
Iteration	Lower bound	Relaxation optimal	solution
1	-7500.9	$x_1 = (65.3, 66.3)$	5) Cutting planes
2	-3832.2	$x_2 = (33.1, 34.1)$	1) reduce root-node gap by 86%
3	-2839.5	$x_3 = (49.2, 19.2)$	
4	-2325.7	$x_4 = (41.1, 25.0)$	6)
5	-2057.5	$x_5 = (37.1, 22.3)$	
6	-2041.1	$x_6 = (39.1, 23.9)$	9) Without: 47 nodes

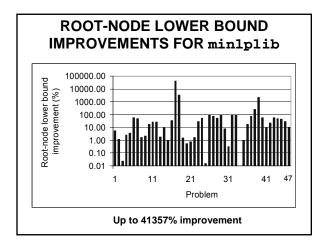
ILLUSTRATIVE EXAMPLE 2: CONVEX_EQUATIONS CONSTRUCT











				Wi	thout cut:	W	With cuts				
Problem	m	n	$n_{\rm d}$	$N_{\rm t}$	$N_{\rm m}$	CPU s	$N_{\rm t}$	$N_{\rm m}$	CPU s		
arki0001	513	1030		261	157	25200	1	1	137		
chakra	41	62		164238	84712	25200	1	1	0		
du-opt	9	20	13	82520	44734	25200	79	25	157		
du-opt5	9	20	12	106299	33954	25200	78	15	92		
elf	38	54	24	866	91	31	698	89	95		
enpro48	215	154	92	4215	434	165	702	92	84		
enpro56	192	128	73	4609	477	182	1354	99	101		
ex1233	64	52	12	28122	652	922	2198	310	1246		
ex5_4_4	19	27		971	93	33	843	80	46		
ex6_2_14	2	4		739	65	7	2713	115	38		

	Without cuts								8
Problem	m	n	$n_{\rm d}$	$N_{\rm t}$	N_{m}	CPU s	$N_{\rm t}$	N_{TH}	CPU s
ex8_4_1	10	22		926853	58084	17864	13	4	4
ex8_4_4	12	17		2655	154	63	101	12	7
ex8_4_7	40	62		12497	7021	25200	10011	6658	1883
fac1	18	22	6	78055	8842	143	1	1	0
fac2	33	66	12	4653901	101202	25200	27	8	1
fac3	33	66	12	11516667	101172	25200	24	7	0
gsg_0001	112	78		145	22	17	89	10	21
gtm	24	63		3229450	87622	25200	1	1	C
himmel16	21	18		1211	152	27	915	116	81
linear	20	24		1904473	19706	24403	59472	955	2772

				Wi	thout cut:	8	V	Vith cut	8
Problem	m	n	$n_{\rm d}$	$N_{\rm t}$	$N_{\rm m}$	$\rm CPU \ s$	$N_{\rm t}$	N_{m}	CPU s
parallel	115	205	25	651	65	198	555	72	194
ravem	186	112	53	778	134	30	246	52	18
sambal	10	17		9279	436	119	1	1	(
spectra2	73	70	30	1963	330	54	43	10	6
stockcycle	98	481	432	108260	67671	25200	1573	231	1155
tls4	64	105	89	191760	4357	4106	172015	4807	1229!
Average	76	115	63	885825	23936	10583	9760	530	786

EFFECT OF C (26 pr	UTTING oblems		ES
Effect of adding cuts	Iterations	Memory	CPU time
Better by a factor at least two	18~(69%)	19(73%)	15~(58%)
Between 30% and 100% better	2(8%)	1 (4%)	3(12%)
Difference smaller than 30%	5(19%)	5~(19%)	2 (8%)
Between 30% and 100% worse	1(4%)	1 (4%)	6(23%)
Worse by a factor at least two	0 (0%)	0 (0%)	0 (0%)

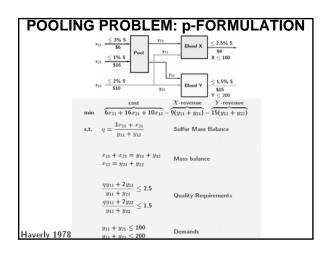
		ROBLE 1ib Al				
		Minimun	1	Maxim	um	Average
Constraints		2		513		76
Variables		4		1030)	115
Discrete variables		0		432		63
EFFEC	T	OF CU	T	TING	Ρl	ANES
	W	ithout cuts	V	Vith cuts	% r	eduction
Nodes	2	23,031,434		253,754		99
Nodes in memory		622,339		13,772		98
CPU sec		275,163		20,430		93

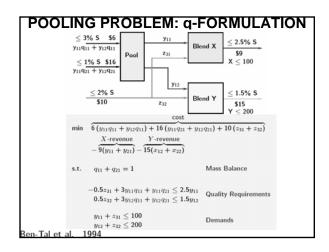
Problem	Objective		Problem	Objective	
arki0001	40.7129	*	fac1	160912612.3500	
chakra	-179.1336	*	fac2	331837498.1770	
du-opt	3.5563		fac3	31982309.8480	
du-opt5	8.0737		gsg_0001	2378.1605	*
elf	0.1917		gtm	543.5651	*
enpro48	187276.7080		himmel16	-0.8660	
enpro56	263427.2212		linear	88.9994	*
ex1233	155010.6713		parallel	924.2956	
ex5_4_4	10077.7754	*	ravem	269589.5584	
ex6_2_14	-0.6954		sambal	3.9682	
ex8_4_1	0.6185	*	spectra2	13.9783	
ex8_4_4	0.2125		stockcycle	119948.6883	
ex8_4_7	28.6032	*	tls4	8.3000	٩

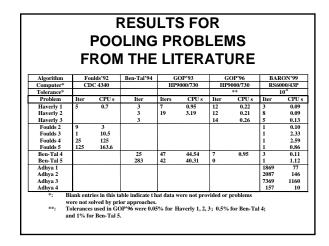
FINDING THE K-BEST OR **ALL FEASIBLE SOLUTIONS** Typically found through repetitive applications of branch-and-bound and generation of "integer cuts" $\vec{\sum} 10^{4-i} x_i$ min 6 21 26 31 36 41 46 51 56 61 66 71 76 $2 \leq x_i \leq 4, \quad i=1,...,4$ s.t. x integer **BARON** finds all solutions: No integer cuts - Fathom nodes that are infeasible or points Single search tree - 511 nodes; 0.56 seconds - Applicable to discrete and continuous spaces

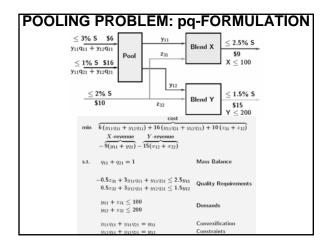
RELAXATION-ONLY CONSTRAINTS

- Can strengthen relaxation by adding to the model:
 - Nonlinear reformulations (RLT)
 - First-order optimality conditions
 - Problem-specific optimality conditions and symmetrybreaking constraints
- Traditionally, modeling languages for optimization pass single model
- RELAXATION_ONLY_EQUATIONS construct added to BARON's modeling language
- Strengthen relaxation without complicating local search









	q-for	mulation		pq-fo	rmulation	
Problem	Objective	$\rm CPU\ s$	Iter	Objective	$\rm CPU \ s$	Iter
adhya1	-68.74	0.01	9	-56.67	0.00	5
adhya2	0.00	0.01	4	0.00	0.01	3
adhya3	-65.00	0.03	12	-57.74	0.02	7
adhya4	-470.83	0.01	9	-470.83	0.02	9
bental4	0.00	0.01	3	0.00	0.00	3
bental5	-2900.00	0.02	9	-2700.00	0.03	18
foulds2	-1000.00	0.00	6	-600.00	0.01	14
foulds3	-6.50	0.04	6	-6.50	0.09	9
foulds4	-6.00	0.04	6	-6.50	0.16	23
foulds5	-7.00	0.04	7	-6.50	0.06	7
haverly1	-400.00	0.00	5	0.00	0.00	3
haverly2	-400.00	0.00	5	0.00	0.01	3
haverly3	-750.00	0.01	8	0.00	0.00	3
rt97	inf	0.00	4	-4330.78	0.01	8
sum	-6074.07*	0.22	89	-3904.74^{*}	0.41	107

Problem		Stra	tegy 1			Str	ategy	2		Str	ategy	3
	$N_{\rm t}$	N_o	$N_{\rm m}$	$\rm CPU\ s$	$N_{\rm t}$	$N_{\rm o}$	$N_{\rm m}$	$\rm CPU \ s$	$N_{\rm t}$	N_{o}	$N_{\rm m}$	CPU
adhya1	573	550	50	17	30	24	7	1	28	24	7	0.
adhya2	501	338	41	20	17	13	4	1	17	13	4	0.
adhya3	9248^{*}	2404	1800^{*}	1200^{*}	31	1	6	1.5	31	1	6	1.
adhya4	6129^{*}	- 1	1620^{*}	1200^{*}	1	1	1	1.5	1	1	1	
bental4	101	101	14	0.5	1	-1	1	0.5	1	-1	1	0.
bental5	6445^{*}	901	3815^{*}	1200^{*}	-1	-1	0	0.5	-1	-1	0	
foulds2	1061	977	106	16	-1	-1	0	0	-1	-1	0	
foulds3	348^{*}	91	260^{*}	1200^{*}	-1	-1	0	1	-1	-1	0	
foulds4	326*	262	246^{*}	1200^{*}	-1	-1	0	1	-1	-1	0	
foulds5	389*	316	287^{*}	1200^{*}	-1	-1	0	1	-1	-1	0	
haverly1	25	6	5	0	1	1	1	0	1	1	1	
haverly2	17	1	5	0	1	1	1	0	1	1	1	
haverly3	3	1	2	0	1	1	1	0	1	1	1	
rt97	5629	2836	609	173.5	13	6	4	0.5	13	6	4	0.
sum	30795	8783	8860	7427	91	42	26	10	89	42	26	1

CONCLUSIONS

ALGORITHMS - Range reduction:

- · Easy to implement
 - · Applicable within any global optimization algorithm
- Finite algorithms for:
- Concave minimization
 - Multi-stage stochastic programming
- Lower Bounding:
- · Polyhedral relaxations through sandwich algorithm

• SOFTWARE

- Specialized codes for concave, multiplicative,
- polynomial, fractional, fixed-charge programs ...
- Problems with up to a few thousand variables and constraints solvable on conventional computers
- APPLICATIONS
- - Engineering design and manufacturing
 - Informatics problems in chemistry, biology, medicine, ... Design of new Runge-Kutta methods for ODEs

OPPORTUNITIES

- Theory and Algorithms
 - Finiteness issues
 - Convexification
 - Probabilistic and worst-case analysis of approximation
 - schemes
 - Guaranteed approximation schemes
- Applications
 - Global optimization of "Differential-Algebraic Systems"
 - Global optimization of "Black Boxes"
- · Implementations
 - Supply chain management
 - Engineering design and manufacturing
 - Molecular design and analysis
 - Finance - Pattern recognition
 - ...

BARON MANUAL

- · Screen logs
- Missing bounds
- No starting point is required ٠
- Many solutions (numsol) can be found ٠
- ٠ **Optimality tolerances**
- **Branching strategies** ٠
- Number of outer approximators ٠
- Local search options ٠
- Relaxation_only and Convex equations •

· Convex extensions provide convex envelopes

RESOURCES

- Springer's Series on Nonconvex Optimization and Its Applications (NOIA):
 - http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-10044-69-33111451-0,00.html
- Journal of Global Optimization: http://www.springeronline.com/sgw/cda/frontpage/0,11855,4-40012-70-35755812-0,00.html
- · Neumaier's Global Optimization web page: http://www.mat.univie.ac.at/~neum/glopt.html

OPTIMIZATION UNDER UNCERTAINTY

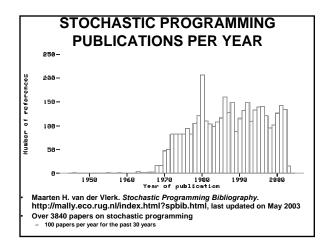
A LONG RECOGNIZED NEED

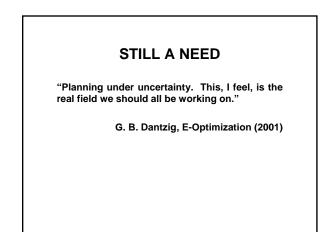
"Those of us who were doing the planning right from the very beginning understood that the real problem was to be able to do planning under uncertainty."

> G. B. Dantzig, E-Optimization (2001) Interviewed by Irv Lustig

THE FIRST PAPERS

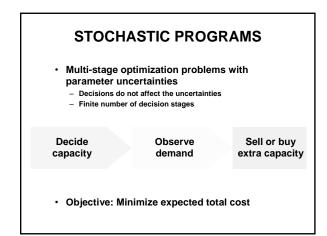
- Stochastic Programming
 - Based on probability distributions for uncertain parameters
 - Minimize expected costs » Beale (1955)
 - » Dantzig (1955)
 - » Tintner (1955)
 - Maximize system's ability to meet constraints » Charnes & Cooper's chance-constraint programming (1959)
- Fuzzy Programming
- Optimization over soft constraints
 Bellman & Zadeh (1970)

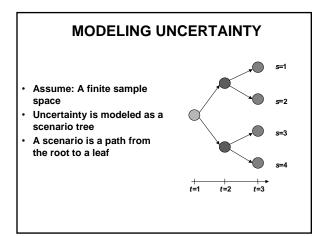




PRESENTATION GOALS

- Illustrate algorithmic challenges
 - Stochastic programming
 - » Expectation minimization
 - » Chance-constrained
 - » Linear, integer, and nonlinear programming
 Fuzzy programming
 - Fuzzy programmin
- Review progress to date
 Computational state-of-the-art
- Introduction to approximation schemes and probabilistic analysis



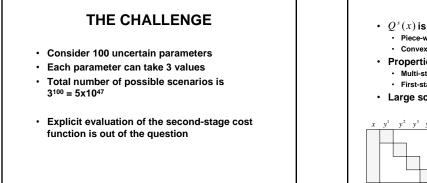


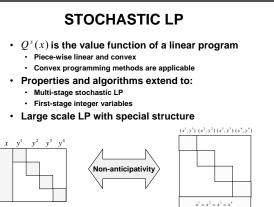
TWO-STAGE STOCHASTIC LP WITH RECOURSE • Decide $X \Rightarrow$ Observe scenario \Rightarrow Decide y- x is the vector of first-stage variables - y is the vector of second-stage variables • Objective: E[total cost] • Second stage problem depends on first-stage decision and scenario realized $\min cx + \sum_{s=1}^{s} p^{s} Q^{s}(x)$

s.t.
$$Ax = b$$

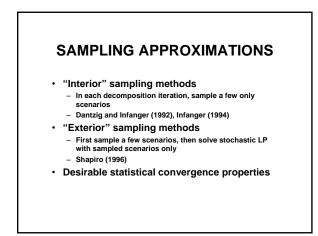
$$x \ge 0$$
,

where
$$Q^s(x) = \min\{f^s y | D^s y \ge h^s + T^s x\}$$





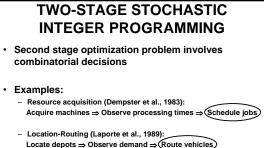




STATE-OF-THE-ART IN COMPUTATIONS

- · Exact algorithms
 - Birge (1997)
 - Millions of variables in deterministic equivalent
 - » 1000 variables
 - » 10 uncertain parameters, each with 3 possible values Parallel computers
- · Sampling-based methods
 - Linderoth, Shapiro and Wright (2002)

 - Computational grid - Up to 10⁸¹ scenarios
 - Within an estimated 1% of optimality



Crew recovery:

Assign crews ⇒ Observe breakdown ⇒ Recover crews • $Q^{s}(x)$ is the value function of an integer program

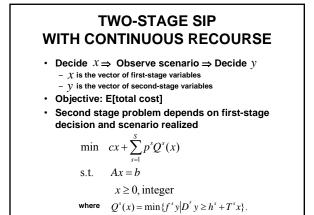
FIRST RELATED PAPERS Modeling with integer variables under uncertainty Ferguson and Dantzig, 1955-1956 Allocation of aircraft to routes » Number of aircraft » Totally unimodular constraint matrices Ettinger and Hammer (1972) Polynomial chance constraints in 0-1 variables Transformation to deterministic equivalent Zimmermann and Pollatschek (1972) Linear 0-1 programs with stochastic right-hand side Find set of feasible right-hand-side values Yudin and Tzoy (1973) Maximization of expected value of nonlinear stochastic 0-1 programs Reformulation to infinite-dimensional LP

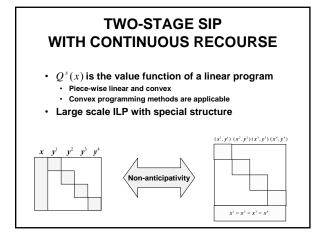
- Relaxation for two-stage 0-1 problems
- Wollmer (1980)
 - Two-stage with 0-1 first-stage and continuous second-stage variables
 - Benders decomposition

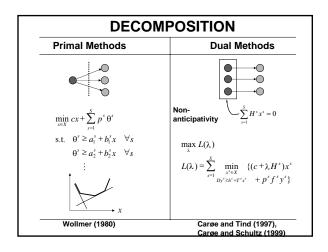
JOURNAL PAPERS PER YEAR 25 20 15 10 5

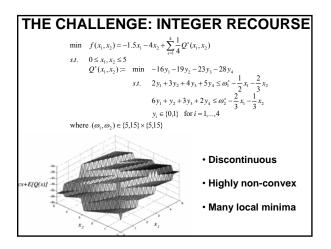
STOCHASTIC INTEGER PROGRAMMING

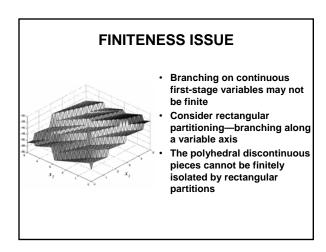
- 1.11.11.111111 0 1970 1975 1980 1985 1990 1995 2000
- · Over 250 papers on stochastic integer programming
- Strong growth in past two decades

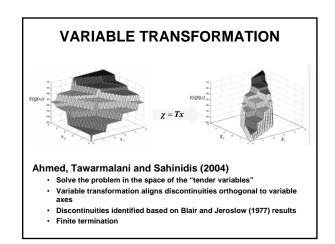




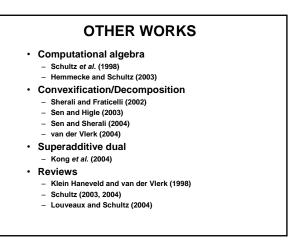


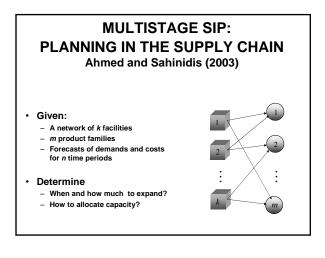


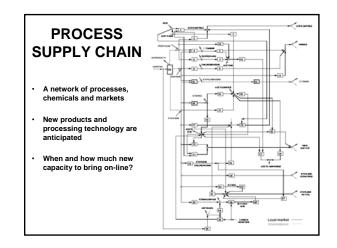


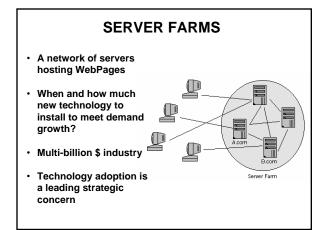


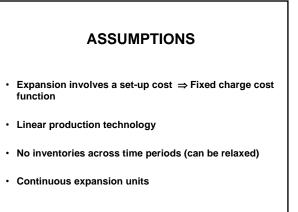
				TE	EST F	RO	BLE	MS				
			Probl	Problem V		Continuous Variables		Constraints				
			SIZES SIZES	55	40 60 110				42 36 41			
			JANI ('95) EX B&B)	CAROE ('98) B&B with Lagrangian			n Rel.		BARON		
Problem	LB	UB	nodes	CPU¶	LB	UB	nodes	CPU¶	LB	UB	nodes	CPU
SIZES3	218.2	224.7	20000	1859.8	224.3	224.5		1000	224.4	224.4	260	70.7
SIZES5	220.1	225.6	20000	4195.2	224.3	224.6	-	1000	224.5	224.5	13562	7829
SIZES10	218.2	226.9	250000	7715.5	224.3	224.7	-	1000	224.2	224.7	23750	10000







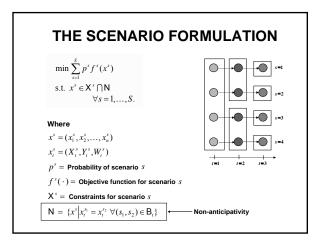




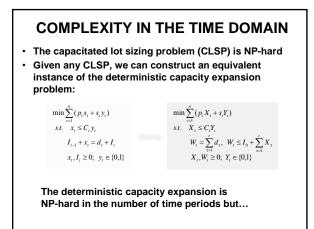
THE DETERMINISTIC MILP							
Exp	$\begin{bmatrix} x + \beta_i Y_i + tr(\delta_i W_i) \end{bmatrix}$ ansion Allocation costs Costs						
Expansion ≤ Bound:	$X_{i} \leq U_{i}Y_{i}$						
Production ≤ Capacity:							
Production = Demand:	$diag(AW_t) = d_t$ $t = 1, \dots, n$						
Non-negativity:	$X_{i} \in \mathfrak{R}^{k}_{i}, W_{i} \in \mathfrak{R}^{k \times m}_{i}$						
Binary Variables:	$\begin{array}{c} T & \downarrow \\ T & \downarrow \\ Y_t \in \{0,1\}^k \end{array}$						

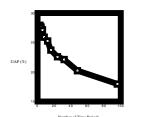
UNCERTAINTY

- Significant forecast uncertainty
- · Sources:
 - Demands - Costs and prices
 - Technology
- · Evolves over multiple time periods
- · There are integer decision making variables in every time period/stage

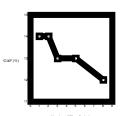


EMPIRICAL EVIDENCE

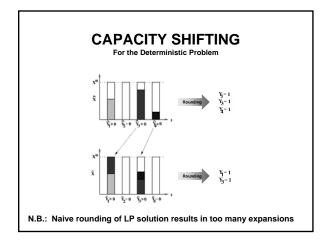


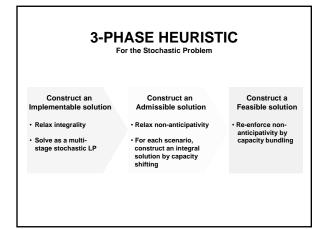


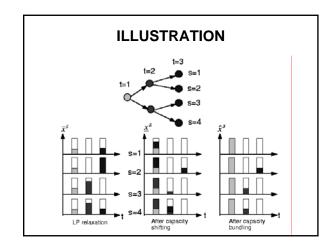
- · Liu & Sahinidis (IECR 1995) Processing Networks
- LP Relaxation

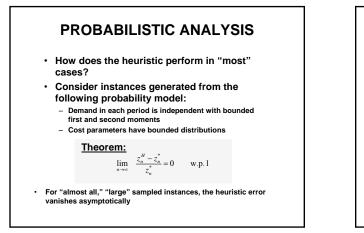


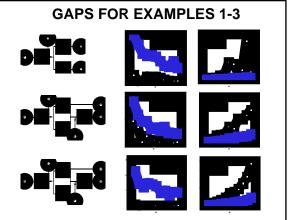
- Chang & Gavish (OR 1995) Telecommunication networks
- Lagrangian Relaxation

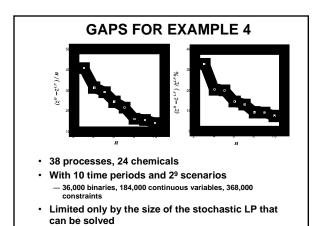










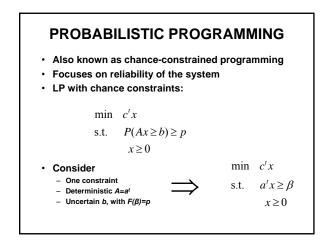


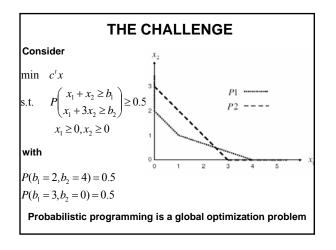
OTHER MULTISTAGE SIP APPLICATIONS

- Asset liability management
 Drijver et al. (2002)
- Power production optimization
 - Takriti et al. (1996)
 - Carøe and Schultz (1999)
 - Nowak and Römisch (2000)
- Production planning and scheduling
 - Ahmed et al. (2001)
 - Lulli and Sen (2002)
 - Balasubramanian and Grossmann (2004)

ROBUSTNESS ISSUES

- Recourse model provides first-stage solution that optimizes expected second-stage cost
- This solution may be very bad under certain conditions
- Robust solutions: remain near-optimal irrespective
 of uncertain outcome
- Mulvey, Vanderbei and Zenios (1995)
 - May not lead to optimal second-stage decisions
 - King et al. (1997), Sen and Higle (1999)
 Takriti and Ahmed (2002)
- Takriti and Anmed (2002)
- More recent approaches – Ben-Tal and Nemirovski (2000)
 - Bertsimas (2002)





FUZZY PROGRAMMING

- Considers uncertain parameters as fuzzy numbers
- Treats constraints as fuzzy sets
- Some constraint violation is allowed
- Bellman and Zadeh (1970)
 Minimize largest constraint violation
- Flexible programming
- Right-hand-side and objective uncertainty
 Possibilistic programming
 - Constraint coefficient uncertainty
 - Nonconvex optimization problem
 » Liu and Sahinidis (1997)
- Zimmermann (1991)
- · Comparisons needed between SP and FP!

STOCHASTIC PROGRAMMING OPPORTUNITIES

- Global optimization algorithms and software now available
 - Nonconvex stochastic integer programming
 - BARON: 100s to 1000s of variables
 - Subproblems within decomposition and sampling
- Applications in systems biology and bioinformatics
 - Metabolic pathway design
 - Protein binding site identification
 - DNA sequencing