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– Applications
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– Convexification
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– Applications
– BARON software

OPTIMIZATION UNDER 
UNCERTAINTY

1. Models of uncertainty
– Stochastic programming
– Probabilistic programming
– Fuzzy programming

2. Stochastic programming
– Linear
– Integer

3. Approximations
– Capacity expansion of 

chemical processes

PART 1:  INTRODUCTION

• Optimization basics
– Optimality conditions
– Convex sets and functions
– The shape of typical modeling functions

• What is global optimization?
• Why do we need it?

– Applications

THE MULTIPLE-MINIMA DIFFICULTY

• Classical optimality conditions are necessary but 
not sufficient

• Classical optimization provides the local 
minimum “closest” to the starting point used
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CONVEX AND NONCONVEX SETS
A set is convex if, for every pair of points in 
the set, the line segment joining these two 
points belongs to the set

CONVEX & NONCONVEX SETS
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CONVEX AND NONCONVEX FUNCTIONS
A function is convex if its epigraph is convex

PROPERTIES OF CONVEX FUNCTIONS

• Any positive combination of two convex 
functions is convex

• The maximum of two convex functions is convex

• All tangents of a differential convex function lie 
below the function

PROPERTIES OF CONVEX SETS

• The intersection of convex sets is convex

• Linear transformations 
such as projection 
preserve convexity

CONVEX FUNCTIONS AND SETS

• The lower level set g(x)≤α
is convex if g(x) is a 
convex function

• The upper level set g(x)≥α
may be nonvonvex

COMMON FUNCTIONS IN MODELING COMMON FUNCTIONS IN MODELING



COMMON FUNCTIONS IN MODELING COMMON FUNCTIONS IN MODELING

COMMON FUNCTIONS IN MODELING A CONVEX FUNCTION

HEAT EXCHANGER 
NETWORK SYNTHESIS

Energy balances introduce nonconvexities 
(conservation of flow * temperature)
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REACTOR NETWORK DESIGN
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BLENDING AND POOLING

Flow * Property must be preserved: 
nonconvex property balances

Pool Blend X

Blend Y

A

B
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$15
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min − 9 x 5 − 15 x 9 + 6 x 1 + 16 x 2 + 10 x 6

s.t. x1 + x 2 = x 3 + x 4

x 3 + x 7 = x5

x 4 + x 8 = x 9

x 7 + x 8 = x 6

x10 x 3 + 2 x 7 ≤ 2 . 5 x 5
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3 x1 + x 2 = x10 ( x 3 + x 4 )
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POOLING MODEL

Reactor

Fractionator

Isobutane Recycle  

Olefin

Isobutane

Fresh Acid

Spent Acid

Hydro Carbons
Alkylate 
Product

ALKYLATION PROCESS OPTIMIZATION

Regression identifies nonconvex process models
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MOLECULAR STRUCTURE PREDICTION
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INFORMATICS PROBLEMS IN 
CHEMISTRY, BIOLOGY, AND MEDICINE

• Design of automotive 
refrigerants

• Molecular structure 
determination via X-ray 
crystallography

• Breast cancer diagnosis

• Technology selection
• Facility location
• Capacity expansion
• Blending and pooling
• Uncertainty
• Portfolio optimization
• Very large-scale 

decision making 
problems

SUPPLY CHAIN
DESIGN & 

OPERATIONS

NUCLEAR REACTOR FUEL MANAGEMENT

Water

Fuel Element

Reactor Loading Patterns

Fuel Element Age

Fresh
One year old
Two year old
Three year old

DRUG RELEASE CONTROL

Drug Concentration

None
Low
Medium
High

• Which parts of the tumor to cut?
− Integer decision variables

• What is the optimal concentration profile?
– Continuous decision variables

APPLICATIONS
OF GLOBAL OPTIMIZATION

• Engineering design & manufacturing:
– Product & process design
– Production planning-scheduling-logistics

• Computational chemical sciences:
– Chemical & phase equilibria
– Molecular design

• Informatics problems in biology and medicine
– Molecular structure prediction
– Diagnosis

Global optimization is an empowering
technology in science and engineering



PART 2:  
ALGORITHMS FOR 

GLOBAL OPTIMIZATION
• Computational complexity

– Is it easy or difficult to find global optima?

• Deterministic vs. stochastic
• Branch-and-bound

– Relaxations
– Branching 
– Finiteness issues

• Convexification
– Convex hulls and envelopes
– Sandwich algorithm for polyhedral relaxations

• Range reduction
– Optimality-based
– Feasibility-based

POLYNOMIAL vs. EXPONENTIAL 
COMPUTATIONAL REQUIREMENTS

Microseconds
in one day

Microseconds
since “Big Bang”

C
PU
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im

e

n: problem size

1

1E+12

1E+24

1E+36

2 4 8 16 32 64 128 256 512

5n
n**3
2**n

P

NP

NP-hard

NP-hard
in the strong sense

Heat Exchanger 
Network Synthesis

Chemical Process Planning

GLOBAL OPTIMIZATION 
PROBLEMS ARE NP-HARD

Integer Programming

Linear Programming

Quadratic Programming

NONCONVEX FUNCTIONS—
MOUNTAINS

Taken from http://www.ti3.tu-harburg.de/english/globopt.html

NONCONVEX FUNCTIONS—
PLATEAUS

Taken from http://www.ti3.tu-harburg.de/english/globopt.html

NONCONVEX FUNCTIONS—
DETAILS OF PLATEAUS

Taken from http://www.ti3.tu-harburg.de/english/globopt.html



NONCONVEX FUNCTIONS—
DARTBAORD WITH ARROW

Taken from http://www.ti3.tu-harburg.de/english/globopt.html

NONCONVEX FUNCTIONS—
BRYCE CANYON

Taken from http://www.ti3.tu-harburg.de/english/globopt.html

NONCONVEX FUNCTIONS—
LEVY’S BENT EGG CARDBOARD

Taken from http://www.ti3.tu-harburg.de/english/globopt.html

MIXED-INTEGER NONLINEAR 
PROGRAMMING (MINLP)
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• Integer variables
• Nonlinearities in the objective and 

constraints
• Nonconvexity even when integrality is 

relaxed

CHALLENGES IN MIXED-INTEGER 
NONLINEAR PROGRAMMING

pn ZyRx
yxg
yxf

∈∈
≤

  ,
0),(s.t.

),(min

),( yxf ),( yxf

),( yxf

Multimodal objective Integrality conditions Nonconvex constraints

GLOBAL OPTIMIZATION METHODS
• STOCHASTIC

– Involve random elements (e.g., Monte Carlo Simulations)
• Do forever:

– Generate Starting Point
– Local Search

– Converge to global optimum with a probability that approaches 1 
as their running time approaches infinity

• DETERMINISTIC
– No random elements required
– Finite termination with ε-global optimum (ε>0)



DETERMINISTIC GLOBAL 
OPTIMIZATION

• BRANCH-AND-BOUND
– Implicit enumeration via a tree search
– Divide-and-conquer idea

• CONVEXIFICATION
– Outer-approximate nonconvex space by increasingly more 

accurate convex programs

• DECOMPOSITION
– Temporarily fix some variables to exploit problem structure

Horst & Tuy (1996)
Kluwer’s (now Springer’s) series on “Nonconvex 
Optimization & Its Applications”

ALGORITHMIC BUILDING BLOCKS

• Outer approximations of feasible sets
– Convex hulls

• Under- and over-estimators of objective functions
– Convex and concave envelopes

• Partitioning of feasible set

CONVEX OUTER APPROXIMATION CONVEX HULL

The convex hull is the tightest possible convex outer 
approximation of a set

CONVEX UNDERESTIMATOR CONVEX ENVELOPE

The convex envelope is the tightest possible convex 
underestimator of a function



PARTITIONS PARTITIONING METHODS

Before partitioning After partitioning

Rectangular

Conical

Simplicial

BRANCH-AND-BOUND BRANCH-AND-BOUND

BRANCH-AND-BOUND
BRANCH-AND-BOUND



FROM PROTOTYPE TO 
ALGORITHMS

• Branch-and-bound is a strategy
• To obtain a specific branch-and-bound algorithm, 

one must specify:
– Relaxation technique
– Branching strategy
– Node selection rule

CONVERGENCE
• Consistent partitioning

– Any open partition can be further refined
– As refinement progresses, the lower bound converges to the 

nonconvex problem value

• Bound improving node selection rule
– Every finite number of steps, a node with the least lower bound is 

selected

• A branch-and-bound algorithm with a consistent 
partitioning scheme and a bound improving node 
selection rule, converges to a global optimum

• Exhaustiveness
– For every sequence of partitions, the feasible region reduces to a 

point
– Not necessary for convergence but most branch-and-bound 

algorithms satisfy it

BOUNDING METHODS

• Separable Programming
• Factorable Programming
• Lagrangian Relaxation
• Lipschitzian Bounds
• Interval Arithmetic
• D.C. Programming
• Convex Extensions/Envelopes

BOUNDS VIA SEPARABLE 
PROGRAMMING TECHNIQUES
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SEPARABLE REFORMULATION
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CONVEX RELAXATION

89.6,89.0,6 21 −=== Lxx
U = −6.67

Solution:

Local search from this starting point:

SELECTION OF BRANCHING VARIABLE

• We must branch on x2.
• Why?

BRANCH-AND-BOUND TREE

We now solve the left as well as the right child

AFTER BRANCHING

2 2

FURTHER BRANCHING

211

BRANCH-AND-BOUND TREE



PROCEDURE FOR BOUNDING 
SEPARABLE PROGRAMS

• A function is separable if it can be expressed as a 
sum of univariate functions

• An optimization problem is separable if all its 
constraints and objective function are separable

• Bounding procedure:
– Construct underestimators of each of the univariate functions

• Often an easy task
– A convex function underestimates itself
– A concave function can be underestimated over an interval 

by a secant
– For a concavoconvex function, first identify a point of 

inflection
– Sum up these underestimators to obtain an underestimator of the 

original separable function

PROCEDURE FOR BOUNDING 
FACTORABLE PROGRAMS

Introduce variables for intermediate quantities 
whose envelopes are not known

ENVELOPES FOR BILINEAR TERMS
• Convex envelope

• Concave envelope

• Separable reformulation

RELAXING BILINEAR TERMS

MCCORMICK’S PROCEDURE FOR 
BOUNDING FACTORABLE 

PROGRAMS

• Use the above procedure for bounding factorable 
programs with one exception:
– Do not introduce intermediate variables

• Leads to non-differentiable lower bounding program 
that may be weaker than the one obtained after 
introduction of intermediate variables

INTERVAL ARITHMETIC



BOUNDS BASED ON 
INTERVAL ARITHMETIC

D.C. PROGRAMMING BOUNDS

BOUNDS FROM LAGRANGIAN DUAL CONVEX/CONCAVE ENVELOPES 
OFTEN FINITELY GENERATED

x x

Concave 
over-estimator

Convex 
under-estimator

)(xf )(xf Concave envelope

Convex envelope

)(xf

x

TWO-STEP CONVEX 
ENVELOPE CONSTRUCTION

VIA CONVEX EXENSIONS
1. Identify generating set (Tawarmalani and 

Sahinidis, 2002):
• Key result:  A point in set X is not in the 

generating set if it is not in the generating set 
over a neighborhood of X that contains it

2. Use disjunctive programming 
techniques to construct epigraph over 
the generating set
• Rockafellar (1970)
• Balas (1974)

RATIO: FACTORABLE RELAXATION



RATIO:  THE GENERATING SET ENVELOPES OF 
MULTILINEAR FUNCTIONS

• Multilinear function over a box

• Generating set

• Polyhedral convex encloser follows trivially from 
polyhedral representation theorems
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Disaggregated formulations are tighter

• Convex NLP solvers are not as robust as LP solvers
• Linear programs can be solved efficiently
• Outer-approximate convex relaxation by polyhedron

Enjoys quadratic convergence

POLYHEDRAL
OUTER APPROXIMATION

TANGENT LOCATION RULES

• Polyhedral relaxations of univariate functions 
facilitate reliable lower bounding via fast LP routines

• Outstanding issues:
– Lower bound itself weakens
– Effect of functional decomposition
– Polyhedral relaxations of convex multivariate functions

• Gruber (1993), Böröczky and Reitzner (2004)

EXPLOITING CONVEXITY



RECURSIVE FUNCTIONAL 
COMPOSITIONS

• Consider h=g(f), where 
– g and f are multivariate convex functions 
– g is non-decreasing in the range of each nonlinear 

component of f

• h is convex
• Two outer approximations of the composite 

function h:
– S1: a single-step procedure that constructs supporting 

hyperplanes of h at a predetermined number of points
– S2: a two-step procedure that constructs supporting 

hyperplanes for g and f at corresponding points

• Theorem: S2 is contained in S1
– If f is affine, S2=S1
– In general, the inclusion is strict

STRICT INCLUSION

224 )(xx =

4 and 1at   ingapproximat-Outer 4 == xxx

OUTER APPROXIMATION OF x2+y2

+

TWO-STEP IS BETTER

• Theorem: An exponential number of 
supporting hyperplanes in S1 may be 
required to cover S2

h = f1(x1) + … + fm(xm) where each fi is strictly convex

• Separable functions are quite common in 
nonconvex optimization

• S2 has the potential of providing much tighter 
polyhedral outer approximations than S1 with 
a comparable number of supporting 
hyperplanes

AUTOMATIC DETECTION AND 
EXPLOITATION OF CONVEXITY
• Composition rule: h = g(f), where 

– g and f are multivariate convex functions 
– g is non-decreasing in the range of each nonlinear 

component of f

• Subsumes many known rules for detecting 
convexity/concavity

– g univariate convex, f linear
– g=max{f1(x), …, fm(x)}, each fi convex
– g=exp(f(x))
– …

• Automatic exploitation of convexity is not 
essential for constructing polyhedral outer 
approximations in these cases

– However, logexp(x) = log(ex1 + … + exn)
– CONVEX_EQUATIONS modeling language construct



BRANCHING ON THE ENCUMBENT

Termination after first branching
0.890.89

FINITE VERSUS CONVERGENT 
BRANCH-AND-BOUND ALGORITHMS

Finite sequences

A potentially infinite sequence

SEPARABLE CONCAVE MINIMIZATION

f k (xk ) concave, ∀k.

min f (x) = f k(xk )
k
∑

Ax ≤ b

xL ≤ x ≤ xU

s.t.

Consider

FINITE BRANCHING RULE

• Branching variable selection:
– Typically, select variable with largest underestimating gap
– Occasionally, select variable corresponding to largest edge

• Branching point selection:
– Typically, at the midpoint (exhaustiveness)
– When possible, at the best currently known solution

• Makes underestimators exact at the candidate solutions
• Finite isolation of global optimum
• Ascend directions of LP also ascend directions of QP

x*
xx∗

f(x)

COMPOUND RULES

BISECTION MODIFIED
BISECTIONOMEGA MODIFIED

OMEGA

X2

1X
1X

X2
X2 X2

1X *=X

1X *=X

B&B HISTORICAL NOTES

• Branch-and-bound
– Land and Doig (1960); Dakin (1965)
– Falk and Soland (1969)
– Horst and Tuy (1996)

• Separable programming bounds
– Falk and Soland (1969)

• Factorable programming bounds
– McCormick (1976); non-differentiable
– Ryoo and Sahinidis (1995, 1996); differentiable

• Extensions, sandwich relaxations, cuts
– Tawarmalani and Sahinidis (2004, 2005)

• Finite branching rules
– Shectman and Sahinidis (1998)



PART 3:  BRANCH-AND-REDUCE

• The smaller the domain, the faster branch-and-
bound converges
– Tighter lower bounds
– Fewer partitions

• Range reduction techniques
– Based on marginals
– Based on probing

• Fixing variables at bounds, followed by marginals-based 
reduction

• Solving LPs/NLPs to minimize/maximize problem variables 
over the feasible region or an outer approximation of it

– Via interval arithmetic operations on the problem constraints

MARGINALS-BASED REDUCTION

• Economic interpretation of LP duals
• Economic interpretation of Lagrange multipliers
• Value function of LP
• Value function of convex NLP
• Derivation of reduction test

MARGINALS-BASED 
RANGE REDUCTION

If a variable goes to its upper bound at the 
relaxed problem solution, this variable’s 
lower bound can be improved

Relaxed Value Function

z

x
xUxL

U
L

PROBING

What if a variable does not go to a bound?
Use probing: temporarily fix variable at a 
bound or minimize/maximize this variable 
over the problem constraints

x
xUx L

U

x*

z UzL

Relaxed Value Function

Q.
A.

ILLUSTRATIVE EXAMPLE

min f = −x1 − x2
s.t. x1x2 ≤ 4

0 ≤ x1 ≤ 6
0 ≤ x2 ≤ 4

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

(P)

x1

x2

4

0 6

f = −5

f = −6.67

Reformulation:
min f = −x1 − x2
s.t. x3

2 − x1
2 − x2

2 ≤ 8
x3 = x1 + x2
0 ≤ x1 ≤ 6
0 ≤ x2 ≤ 4
0 ≤ x3 ≤ 10

Relaxation:
min −x1 − x2
s.t. x3

2 − 6x1 − 4x2 ≤ 8
x3 = x1 + x2
0 ≤ x1 ≤ 6
0 ≤ x2 ≤ 4
0 ≤ x3 ≤ 10

⎫

⎬ 

⎪
⎪
⎪

⎭ 

⎪
⎪
⎪

(R)

ILLUSTRATIVE EXAMPLE

Solution of R :  x1 = 6, x2 = 0.89,L = −6.89,λ1 = 0.2

Local Solution of P with MINOS :   U = −6.67

Range reduction :  x1
L ← x1

U − (U − L) / λ1 = 4.86

Probing (Solve R with x2 ≤ 0) :  L = −6,λ2 = 1 ⇒ x2
L = 0.67

Update R with x1 ≥ 4.86, x2 ≥ 0.67
Solution is : L = −6.67

∴ Proof of globality with NO Branching!!

x1

x2

4

0 6

f = −5

f = −6.67



FEASIBILITY-BASED REDUCTION
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FEASIBILITY-BASED REDUCTION
• Minimize and maximize each problem variable over 

the constraint set
– Requires the solution of 2n problems
– Each problem may be a nonconvex NLP

• Use interval arithmetic operations on one nonlinear 
constraint and one variable at a time (“poor man’s”
NLPs)
– Propagate bounds of variables
– Constraint satisfaction techniques

• Solve minimization/maximization problems over a 
polyhedral outer approximation of the constraint set
– May still be expensive

• Solve minimization/maximization LPs approximately 
(“poor man’s LPs”)

POOR MAN’S LPs AND NLPs

f.

c.

e.

b.
a.

d.

DOMAIN REDUCTION THEORY
in T&S book (2002)

• Draw inferences about several reduction 
problems from solutions of problems solved 
in the course of branch-and-bound

• Implied results:
– Monotone complementarity bounds for convex programs

• Mangasarian and McLinden, 1985
– Linearity-based tightening in integer programming

• Andersen and Andersen, 1995
– Marginals-based reduction

• Ryoo and Sahinidis, 1995
– Branch and Contract

• Zamora and Grossmann, 1999

• New reduction strategies
– Learning heuristic improves branching decisions

BRANCH-AND-REDUCE

STOP

START

Multistart search and reduction

Nodes? N

Y
Select Node

Lower Bound

Inferior? Delete
Node

Y

N

Preprocess

Upper Bound

Postprocess

Reduced?
N

Y

Branch

Feasibility-based 
reduction

Optimality-based 
reduction

TINY TEST PROBLEMS
Ex. Cons. Vars. Source/In Description
1 1 2 Sahinidis & Grossmann bilinear constraint
2 3 3 Liebman et al. (GINO) design of a water pumping system
3 7 10 Liebman et al. (GINO) alkylation process optimization
4 1 3 Liebman et al. (GINO) design of insulated tank
5 3 5 Liebman et al. (GINO) heat exchanger network design
6 3 3 Liebman et al. (GINO) chemical equilibrium
7 7 10 Liebman et al. (GINO) pooling problem
8 2 2 Swaney bilinear and quadratic constraints
9 1 2 Swaney bilinear constraints and objective
10 1 2 Soland nonlinear equality constraint
11 2 3 Westerberg & Shah bilinearities, economies of scale
12 3 4 Stephanopoulos & Westerberg design of two-stage process systems
13 3 2 Kocis & Grossmann MINLP, process synthesis
14 10 7 Yuan et al. MINLP, process synthesis
15 6 5 Kocis & Grossmann MINLP, process synthesis
16 9 12 Floudas & Ciric heat exchanger network synthesis
17 2 2 GINO design of a reinforced concrete beam
18 4 2 Visweswaran & Floudas quadratically constrained LP
19 2 2 Manousiouthakis & Sourlas quadratically constrained QP
20 6 5 Manousiouthakis & Sourlas reactor network design
21 6 5 Stephanopoulos & Westerberg design of three-stage process system
22 5 2 Kalantari & Rosen linearly constrained concave QP
23 2 2 Al-Khayyal & Falk biconvex program
24 4 2 Thakur linearly constrained concave QP
25 4 2 Falk & Soland nonlinear fixed charge problem



STANDARD BRANCH-AND-BOUND
Ex. Ntot Nopt Nmem T
1 3 1 2 0.8
2 1007 1 200 210
3 2122* 1 113* 1245*
4 17 1 5 6.7
5 1000* 1 1000* 417*
6 1 1 1 0.3 Ntot Total number of nodes
7 205 1 37 43 Nopt Node where optimum found
8 43 1 8 1 Nmem Max. no. nodes in memory
9 2192* 1 1000* 330* T CPU sec (SPARC 2)
10 1 1 1 0.4
11 81 1 24 19
12 3 1 2 0.6
13 7 2 3 1.3
14 7 3 3 3.4
15 15 8 5 3.4
16 2323* 1 348* 1211*
17 1000* 1 1001* 166*
18 1 1 1 0.5
19 85 1 14 11.4
20 3162* 1 1001* 778*
21 7 1 4 1.2
22 9 1 4 1.2
23 75 6 13 11.7
24 7 3 2 1.5
25 17 9 9 2.9
*: Did not converge within limits of

T    1200 (=20 min), and Nmem 1000 nodes.≤ ≤

• Standard branch-and-bound 
converges very slowly

• It is not necessarily finite
• Tighter relaxations needed

REDUCTION BENEFITS
BRANCH-AND-BOUND BRANCH-AND-REDUCE

No probing With Probing
Ex. Ntot Nopt Nmem T Ntot Nopt Nmem T Ntot Nopt Nmem T
1 3 1 2 0.8 1 1 1 0.5 1 1 1 0.7
2 1007 1 200 210 1 1 1 0.2 1 1 1 0.3
3 2122* 1 113* 1245* 31 1 7 20 9 1 5 48
4 17 1 5 6.7 3 1 2 0.4 1 1 1 0.3
5 1000* 1 1000* 417* 5 1 3 1.5 5 1 3 2.4
6 1 1 1 0.3 1 1 1 0.3 1 1 1 0.3
7 205 1 37 43 25 1 8 5.4 7 1 2 5.8
8 43 1 8 10 1 1 1 0.8 1 1 1 0.8
9 2192* 1 1000* 330* 19 1 8 5.4 13 1 4 7
10 1 1 1 0.4 1 1 1 0.4 1 1 1 0.4
11 81 1 24 19 3 1 2 0.6 1 1 1 0.7
12 3 1 2 0.6 1 1 1 0.2 1 1 1 0.2
13 7 2 3 1.3 3 1 2 0.7 1 1 1 0.7
14 7 3 3 3.4 7 3 3 2.7 3 3 2 3
15 15 8 5 3.4 1 1 1 0.3 1 1 1 0.3
16 2323* 1 348* 1211* 1 1 1 2.2 1 1 1 2.4
17 1000* 1 1001* 166* 1 1 1 3.7 1 1 1 4
18 1 1 1 0.5 1 1 1 0.5 1 1 1 0.6
19 85 1 14 11.4 9 1 4 1.8 1 1 1 1.4
20 3162* 1 1001* 778* 47 1 12 16.7 23 1 5 15.4
21 7 1 4 1.2 1 1 1 0.5 1 1 1 0.5
22 9 1 4 1.2 3 1 2 0.4 3 1 2 0.5
23 75 6 13 11.7 47 1 9 6.5 7 1 4 5
24 7 3 2 1.5 3 1 2 0.5 3 1 2 0.6
25 17 9 9 2.9 5 1 3 0.8 5 1 3 1

Convexification x*

Finiteness

BRANCH-AND-REDUCE

Range Reduction

Search Tree

Partition

Discard

Branch-And-Reduce Optimization Navigator

• First on the Internet in March 1995
• On-line solver between October 1999 and May 2003

– Solved eight problems a day
• Available under GAMS and AIMMS

Components
• Modeling language
• Preprocessor
• Data organizer
• I/O handler
• Range reduction
• Solver links
• Interval arithmetic
• Sparse matrix routines
• Automatic differentiator
• IEEE exception handler
• Debugging facilities

Capabilities
• Core module

– Application-independent
– Expandable

• Fully automated MINLP 
solver

• Application modules
– Multiplicative programs
– Indefinite QPs
– Fixed-charge programs
– Mixed-integer SDPs
– …

• Solve relaxations using
– CPLEX, MINOS, SNOPT, 

OSL, SDPA, …

// Design of an insulated tank

OPTIONS{
nlpdolin: 1;
dolocal: 0; numloc: 3;
brvarstra: 1; nodesel: 0; 
nlpsol: 4; lpsol: 3;
pdo: 1; pxdo: 1; mdo: 1;
}
MODULE: NLP; 

// INTEGER_VARIABLE y1; 
POSITIVE_VARIABLES x1, x2, x4;
VARIABLE x3;

LOWER_BOUNDS{x2:14.7;  x3:-459.67;}

UPPER_BOUNDS{
x1:   15.1;  x2:   94.2;
x3:   80.0;  x4: 5371.0;
}

EQUATIONS e1, e2;                   
e1: x4*x1 - 144*(80-x3) >= 0;
e2: x2-exp(-3950/(x3+460)+11.86) == 0 ;
OBJ: minimize 400*x1^0.9 + 1000 

+ 22*(x2-14.7)^1.2+x4;

Relaxation Strategy
Local Search Options

Domain Reduction Options

Solver Links

B&B options

BARON MODELING LANGUAGE
// mixed-integer nonlinear program
// Source:  M. Duran & I.E. Grossmann,
// "An outer approximation algorithm for a class of mixed integer nonlinear
//  programs," Mathematical Programming, 36:307-339, 1986.

MODULE: NLP;

BINARY_VARIABLES y1, y2, y3;

POSITIVE_VARIABLES x1, x2, x3;

UPPER_BOUNDS{ x1: 2 ;  x2: 2 ;  x3: 1 ; }

EQUATIONS c1, c2, c3, c4, c5, c6;

c1: 0.8*log(x2 + 1) + 0.96*log(x1 - x2 + 1) - 0.8*x3 >= 0 ;
c2: log(x2 + 1) + 1.2*log(x1 - x2 + 1) - x3 - 2*y3 >= -2 ;
c3: x2 - x1 <= 0 ;
c4: x2 - 2*y1 <= 0 ;
c5: x1 - x2 - 2*y2 <= 0 ;
c6: y1 + y2 <= 1 ;

OBJ: minimize
5*y1 + 6*y2 + 8*y3 + 10*x1 - 7*x3 - 18*log(x2 + 1)  - 19.2*log(x1 - x2 + 1) + 10;

SAMPLE INPUT FILE



SEPARABLE CONCAVE MINIMIZATION

f k (xk ) concave, ∀k.

min f (x) = f k(xk )
k
∑

Ax ≤ b

xL ≤ x ≤ xU

s.t.

Consider

PHILLIPS AND ROSEN PROBLEMS
        GOP (1993) P&R (1990) BARON (1996) 
   E=1%  

(relative) 
E=0.1%  
(relative) 

ε=.000001  
(absolute) 

   HP 730 CRAY 2  
(parallel) 

IBM RS/6000  
Power PC 

m n k avg std dev min avg max min avg max 
20 25 0 0.5 0.01 1 2 4 0.3 0.4 0.5 
20 25 50 2 2 1 1 1 1 1 1 
20 25 100 17 20 1 2 3 1 2 3 
20 25 200 33 28 2 7 17 2 4 6 
20 25 400 82 58 7 14 32 4 10 16 
20 50 0 0.6 0.01 3 6 13 1 1 1 
20 50 50 17 31 1 2 3 2 2.5 3 
20 50 100 47 49 2 5 14 2 4 7 
20 50 200 109 80 4 9 28 4 8 19 
20 50 400   20 32 45 11 20 48 
40 25 0 0.5 0.02    0.3 0.4 0.4 
40 25 50 1 0.6    1 1 1 
40 25 100 3 4    1 2 3 
40 25 200 25 26    2 4 5 
40 25 400      6 15 22 
50 100 0      6 7 14 
50 100 50      8 12 18 
50 100 100      9 17 27 
50 100 200      14 65 160 
50 100 400      131 345 663 

 

• (m, n/k) = number 
of constraints, 
concave/linear 
variables.

• HP 730 is 3-4 times 
faster than IBM 
RS/6000 Power PC.

• CRAY 2 is 10+ 
times faster than 
IBM RS/6000 
Power PC.

MULTIPLICATIVE PROGRAMS
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1 1
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PRACTICAL APPLICATIONS

• Micro-economics (Henderson and Quandt, 1971)

• Plant Layout Design (Quesada and Grossman, 
1994)

• Multi-stage Financial Planning (Maranas et al., 
1997)

• Multiple Objective Decision Making (Lai and 
Hwang, 1994)

• Data Mining/Pattern Recognition (Bennet and 
Mangasarian, 1994)

• Global Tree Optimization (Bennet, 1994)

SPECIAL CASES of GLMP

• Linear Multiplicative Programs (LMP):

• Quadratic Programs (QP):

• Bilinear Programs (BLP):

f ( x ) = x T Qx + c T x + d

= a ii x i
2 + 2 a ij x i x j + c T x + d

j > i
∑

i = 1

n − 1
∑

i = 1

n
∑

f ( x ) = p T x + x T Qy + q T y + d

= p T x + a ij x i x j
J = 1

M
∑ + q T y + d

i = 1

n
∑

f ( x ) = f j ( x )
j = 1

p

∏



0-1 MULTILINEAR PROGRAMS

• Applications in:
– Capital Budgeting (Laughlunn, 1970; Peterson and 

Laughlunn, 1971)
– Media Selection (Zangwill, 1965)
– Cluster Analysis (Rao, 1971;Torki et al., 1996)
– Asset Allocation (Perold and Sharpe, 1988)
– Multi-project scheduling (Pritsker et al., 1969)
– Vision Loss Testing (Kolesar, 1980)

  

min f0(x) = ck xj
j∈N0k

∏
k=1

p0

∑

s.t. fi(x) = aik xj
j∈Nik
∏

k=1

pi
∑ ≥ bi , i = 1,K ,m

x∈{0,1}n,
where Nik ⊆ N = {1,2,K ,n}, ck ,aik ,bi ∈R, ∀i,k

COMPUTATIONAL RESULTS FOR LMP
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m ×n

p

COMPARATIVE RESULTS FOR LMP

Kuno et al. BARON

Platform Sun 4/75 IBM RS/6000 43P

Tolerance 10-5 10-6

p (m,n) CPU sec CPU sec

3 (200,180) 914 110

4 (120,120) 1155
(150,150) 43

5 (20,30) 1170
(200,200) 250

RS/6000 is 1.5 times faster than Sun 4/75

COMPARATIVE RESULTS FOR GLMP

Konno et al. BARON

Platform SunSPARC2 IBM RS/6000 43P

Tolerance 10-5 10-6

p t (m,n) CPU sec CPU sec

2 2 (30,50) 26 2
(70,50) 56 7

(100,100) 28

3 (30,50) 203 31
(70,50) 1088 54

(100,100) 143
4 (30,50) 3898 69

(70,50) 272
(100,100) 1109

3 3 (70,50) 3497

4 2 (70,50) 2821

RS/6000 is 1.5 times faster than Sun SPARC2

TRAINING OF NEURAL NETWORKS

Given:
– The Structure of the Network
– An Error Function
– Training Sets
– Target Sets

Find:
– The values of the weights and the thresholds which minimize 

the error function

OPTIMIZATION MODEL
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SIMULATION OF 2x

Training Set 0.2 0.4 0.6 .8 1

Target Set 0.04 0.16 0.36 0.64 1

1000 Random Local Searches using MINOS

231w

221w

211w 311w

312w

313w

31θ
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23θ

22θ
x 2x
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OBJECTIVE RELAXATION

Outer-linearization of the convex objective allows fast solution of descendant 
nodes at the expense of a weaker relaxation.

SIGMOIDAL RELAXATION

Concave Convex

Neither convex nor concave
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LOWER BOUNDING LP

Objective linearization

Sigmoidal linearization

McCormick  linearization

EXAMPLE:
POLLUTION PREDICTION

• Source:
“A new approach for finding the global minimum of error function of neural 
network”, Neural Networks, 2:367-373, 1989.

• Eight input nodes:
– SO2 density at 10 a.m.
– (SO2 density at 10 a.m.) - (SO2 density at 7 a.m.)
– Wind velocity at 10 a.m.
– Wind velocity at 8 a.m.
– SO2 density at 9 a.m.
– (SO2 density at 9 a.m.) - (SO2 density at 8 a.m.)
– SO2 density at noon last week.
– (average SO2 density between 8 a.m. and 10 a.m.) - (SO2 density at 10 a.m.)

• One logical output node:
– Value of 1 (alarm) when SO2 density exceeds 5 pphm
– Value of 0 when SO2 density is below 5 pphm

RESULTS FOR POLLUTION 
PREDICTION

Literature solution Global solution



CUTTING PLANE GENERATION
• Use supporting hyperplanes (outer approximation) 

of convex functions from:
– Univariate convex functions of original problem
– Univariate convex functions obtained from functional 

decomposition of multivariate functions
– Convex envelopes of nonconvex functions
– Multivariate functions identified by CONVEX_EQUATIONS 

modeling language construct by the user

• Supporting hyperplanes generated only if they are 
violated by LP solution

• Process:
– Start with a rough outer approximation
– Solve LP
– Add some cuts
– Repeat process at current node

Solution -1118 
at (34.3, 31.8)

Cutting planes 
reduce root-node
gap by 86%

With cuts: 7 nodes
Without: 47 nodes

ILLUSTRATIVE EXAMPLE 1:  
CUTS FROM CONVEX ENVELOPES

Solution 83.28 

Cutting planes 
reduce root-node
gap by 99.5%

With cuts: 35 nodes
Without: 1793 nodes

ILLUSTRATIVE EXAMPLE 2:  
CONVEX_EQUATIONS CONSTRUCT ROOT-NODE GAP REDUCTIONS 

FOR PROBLEMS FROM globallib

Range from 0.05% to 100%.  Average 48%.
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ROOT-NODE LOWER BOUND 
IMPROVEMENTS FOR globallib

Up to 2000% improvement
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ROOT-NODE GAP REDUCTIONS 
FOR PROBLEMS FROM minlplib

Average 27%
(excluding problem with worse upper bound).
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ROOT-NODE LOWER BOUND 
IMPROVEMENTS FOR minlplib

Up to 41357% improvement
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SOLUTION TO GLOBALITY--1

SOLUTION TO GLOBALITY--2 SOLUTION TO GLOBALITY--3

EFFECT OF CUTTING PLANES
(26 problems)

26 PROBLEMS FROM 
globallib AND minlplib

9320,430275,163CPU sec

9813,772622,339Nodes in 
memory

99253,75423,031,434Nodes

% reductionWith cutsWithout cuts

634320Discrete 
variables

11510304Variables
765132Constraints

AverageMaximumMinimum

EFFECT OF CUTTING PLANES



BETTER SOLUTION FOR tls4 FINDING THE K-BEST OR 
ALL FEASIBLE SOLUTIONS

Typically found through repetitive 
applications of branch-and-bound 
and generation of “integer cuts”

integer   
4,...,1     ,42s.t.
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BARON finds all solutions:
– No integer cuts
– Fathom nodes that are infeasible or points
– Single search tree
– 511 nodes; 0.56 seconds
– Applicable to discrete and continuous spaces

RELAXATION-ONLY CONSTRAINTS

• Can strengthen relaxation by adding to the 
model:

– Nonlinear reformulations (RLT)
– First-order optimality conditions
– Problem-specific optimality conditions and symmetry-

breaking constraints

• Traditionally, modeling languages for 
optimization pass single model

• RELAXATION_ONLY_EQUATIONS construct 
added to BARON’s modeling language

• Strengthen relaxation without complicating 
local search

POOLING PROBLEM: p-FORMULATION

POOLING PROBLEM: q-FORMULATION RESULTS FOR
POOLING PROBLEMS

FROM THE LITERATURE
Algorithm Foulds’92 Ben-Tal’94 GOP’93 GOP’96 BARON’99
Computer* CDC 4340 HP9000/730 HP9000/730 RS6000/43P
Tolerance* ** 10-6

Problem Iter CPU s Iter Iters CPU s Iter CPU s Iter CPU s
Haverly 1
Haverly 2
Haverly 3

5                0.7 3
3
3

7 0.95
19              3.19

12 0.22
12 0.21
14               0.26

3 0.09
8 0.09
5                 0.13

Foulds 2
Foulds 3
Foulds 4
Foulds 5

9 3
1 10.5
25 125
125           163.6

1 0.10
1 2.33
1 2.59
1                 0.86

Ben-Tal 4
Ben-Tal 5

25
283

47 44.54
42              40.31

7 0.95
0

3                 0.11
1                 1.12

Adhya 1
Adhya 2
Adhya 3
Adhya 4

1869             77
2087            146
7369          1160
157              10

*: Blank entries in this table indicate t hat data were not provided or problems
were not solved by prior approaches.

**: Tolerances used in GOP’96 were 0.05% for Haverly 1, 2, 3;  0.5% for Ben-Tal 4;
and 1% for Ben-Tal 5.



POOLING PROBLEM: pq-FORMULATION LOCAL SEARCH WITH CONOPT

GLOBAL SEARCH WITH BARON CONCLUSIONS
• ALGORITHMS

– Range reduction:
• Easy to implement
• Applicable within any global optimization algorithm

– Finite algorithms for:
• Concave minimization
• Multi-stage stochastic programming

– Lower Bounding:
• Convex extensions provide convex envelopes
• Polyhedral relaxations through sandwich algorithm

• SOFTWARE
– Specialized codes for concave, multiplicative, 

polynomial, fractional, fixed-charge programs ...
– Problems with up to a few thousand variables and 

constraints solvable on conventional computers

• APPLICATIONS
– Engineering design and manufacturing
– Informatics problems in chemistry, biology, medicine, …
– Design of new Runge-Kutta methods for ODEs

OPPORTUNITIES
• Theory and Algorithms

– Finiteness issues
– Convexification
– Probabilistic and worst-case analysis of approximation 

schemes
– Guaranteed approximation schemes

• Applications
– Global optimization of “Differential-Algebraic Systems”
– Global optimization of “Black Boxes”

• Implementations
– Supply chain management
– Engineering design and manufacturing
– Molecular design and analysis
– Finance
– Pattern recognition
– …

BARON MANUAL

• Screen logs
• Missing bounds
• No starting point is required
• Many solutions (numsol) can be found
• Optimality tolerances
• Branching strategies
• Number of outer approximators
• Local search options
• Relaxation_only and Convex equations



RESOURCES

• Springer’s Series on Nonconvex Optimization and 
Its Applications (NOIA):
– http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-

10044-69-33111451-0,00.html

• Journal of Global Optimization:
– http://www.springeronline.com/sgw/cda/frontpage/0,11855,4-

40012-70-35755812-0,00.html

• Neumaier’s Global Optimization web page:
– http://www.mat.univie.ac.at/~neum/glopt.html

OPTIMIZATION UNDER 
UNCERTAINTY

A LONG RECOGNIZED NEED

“Those of us who were doing the planning right 
from the very beginning understood that the 
real problem was to be able to do planning 
under uncertainty.”

G. B. Dantzig, E-Optimization (2001)
Interviewed by Irv Lustig

THE FIRST PAPERS

• Stochastic Programming
– Based on probability distributions for uncertain 

parameters
– Minimize expected costs

» Beale (1955)
» Dantzig (1955)
» Tintner (1955)

– Maximize system’s ability to meet constraints
» Charnes & Cooper’s chance-constraint programming 

(1959)
• Fuzzy Programming

– Optimization over soft constraints
– Bellman & Zadeh (1970)

• Maarten H. van der Vlerk. Stochastic Programming Bibliography. 
http://mally.eco.rug.nl/index.html?spbib.html, last updated on May 2003 

• Over 3840 papers on stochastic programming
– 100 papers per year for the past 30 years

STOCHASTIC PROGRAMMING 
PUBLICATIONS PER YEAR

STILL A NEED

“Planning under uncertainty.  This, I feel, is the 
real field we should all be working on.”

G. B. Dantzig, E-Optimization (2001)



PRESENTATION GOALS

• Illustrate algorithmic challenges 
– Stochastic programming

» Expectation minimization
» Chance-constrained
» Linear, integer, and nonlinear programming

– Fuzzy programming

• Review progress to date
– Computational state-of-the-art

• Introduction to approximation schemes and 
probabilistic analysis

STOCHASTIC PROGRAMS

• Multi-stage optimization problems with 
parameter uncertainties
– Decisions do not affect the uncertainties
– Finite number of decision stages

• Objective: Minimize expected total cost 

Decide
capacity

Observe
demand

Sell or buy
extra capacity

MODELING UNCERTAINTY

• Assume: A finite sample 
space

• Uncertainty is modeled as a
scenario tree

• A scenario is a path from 
the root to a leaf

1=t 2=t 3=t

1=s

2=s

3=s

4=s

TWO-STAGE STOCHASTIC LP
WITH RECOURSE

• Decide     ⇒ Observe scenario ⇒ Decide
– is the vector of first-stage variables
– is the vector of second-stage variables

• Objective: E[total cost]
• Second stage problem depends on first-stage 

decision and scenario realized      

,0
s.t.
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THE CHALLENGE

• Consider 100 uncertain parameters
• Each parameter can take 3 values
• Total number of possible scenarios is

3100 = 5x1047

• Explicit evaluation of the second-stage cost 
function is out of the question

STOCHASTIC LP
• is the value function of a linear program

• Piece-wise linear and convex
• Convex programming methods are applicable

• Properties and algorithms extend to:
• Multi-stage stochastic LP
• First-stage integer variables

• Large scale LP with special structure
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DECOMPOSITION
Primal Methods Dual Methods
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Non-
anticipativity

SAMPLING APPROXIMATIONS

• “Interior” sampling methods
– In each decomposition iteration, sample a few only 

scenarios
– Dantzig and Infanger (1992), Infanger (1994)

• “Exterior” sampling methods
– First sample a few scenarios, then solve stochastic LP 

with sampled scenarios only
– Shapiro (1996)

• Desirable statistical convergence properties

STATE-OF-THE-ART 
IN COMPUTATIONS

• Exact algorithms
– Birge (1997)
– Millions of variables in deterministic equivalent

» 1000 variables
» 10 uncertain parameters, each with 3 possible values

– Parallel computers

• Sampling-based methods
– Linderoth, Shapiro and Wright (2002)
– Computational grid
– Up to 1081 scenarios
– Within an estimated 1% of optimality

• Second stage optimization problem involves 
combinatorial decisions

• Examples:
– Resource acquisition (Dempster et al., 1983):

Acquire machines ⇒ Observe processing times ⇒ Schedule jobs

– Location-Routing (Laporte et al., 1989):
Locate depots ⇒ Observe demand ⇒ Route vehicles

– Crew recovery:
Assign crews ⇒ Observe breakdown ⇒ Recover crews

• is the value function of an integer program

TWO-STAGE STOCHASTIC 
INTEGER PROGRAMMING

)(xQs

FIRST RELATED PAPERS
• Modeling with integer variables under uncertainty

– Ferguson and Dantzig, 1955-1956
» Allocation of aircraft to routes
» Number of aircraft
» Totally unimodular constraint matrices

• Ettinger and Hammer (1972)
– Polynomial chance constraints in 0-1 variables
– Transformation to deterministic equivalent

• Zimmermann and Pollatschek (1972)
– Linear 0-1 programs with stochastic right-hand side
– Find set of feasible right-hand-side values

• Yudin and Tzoy (1973)
– Maximization of expected value of nonlinear stochastic 0-1 

programs
– Reformulation to infinite-dimensional LP
– Relaxation for two-stage 0-1 problems

• Wollmer (1980)
– Two-stage with 0-1 first-stage and continuous second-stage 

variables
– Benders decomposition

• Over 250 papers on stochastic integer programming
• Strong growth in past two decades

STOCHASTIC INTEGER PROGRAMMING 
JOURNAL PAPERS PER YEAR
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TWO-STAGE SIP
WITH CONTINUOUS RECOURSE
• Decide     ⇒ Observe scenario ⇒ Decide

– is the vector of first-stage variables
– is the vector of second-stage variables

• Objective: E[total cost]
• Second stage problem depends on first-stage 

decision and scenario realized      

integer ,0
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• is the value function of a linear program
• Piece-wise linear and convex
• Convex programming methods are applicable

• Large scale ILP with special structure
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TWO-STAGE SIP
WITH CONTINUOUS RECOURSE

DECOMPOSITION
Primal Methods Dual Methods
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Non-
anticipativity

Wollmer (1980) Carøe and Tind (1997), 
Carøe and Schultz (1999)

• Discontinuous

• Highly non-convex

• Many local minima
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THE CHALLENGE: INTEGER RECOURSE

FINITENESS ISSUE

• Branching on continuous 
first-stage variables may not 
be finite 

• Consider rectangular 
partitioning—branching along 
a variable axis

• The polyhedral discontinuous 
pieces cannot be finitely 
isolated by rectangular 
partitions

VARIABLE TRANSFORMATION

Ahmed, Tawarmalani and Sahinidis (2004)
• Solve the problem in the space of the “tender variables”
• Variable transformation aligns discontinuities orthogonal to variable 

axes
• Discontinuities identified based on Blair and Jeroslow (1977) results
• Finite termination

Txχ =



COMPUTATIONAL RESULTS

Problem Binary        Continuous        Constraints
Variables        Variables

SIZES3               40                   260                   142
SIZES5               60                   390                   186
SIZES10           110                   715                     341

TEST PROBLEMS

JORJANI (‘95)                                 CAROE (‘98)                                       BARON
CPLEX B&B B&B with Lagrangian Rel.                   

Problem LB      UB        nodes     CPU           LB        UB      nodes    CPU         LB        UB        nodes      CPU

SIZES3       218.2     224.7     20000     1859.8       224.3   224.5       - 1000        224.4    224.4        260          70.7

SIZES5       220.1     225.6     20000     4195.2       224.3   224.6       - 1000        224.5    224.5     13562       7829.1

SIZES10     218.2     226.9   250000     7715.5       224.3    224.7       - 1000        224.2    224.7     23750     10000.0

¶ *¶

¶ Digital Alpha 500 Mhz

* IBM RS/6000 133 MHz

OTHER WORKS
• Computational algebra

– Schultz et al. (1998)
– Hemmecke and Schultz (2003)

• Convexification/Decomposition
– Sherali and Fraticelli (2002)
– Sen and Higle (2003)
– Sen and Sherali (2004)
– van der Vlerk (2004)

• Superadditive dual
– Kong et al. (2004)

• Reviews
– Klein Haneveld and van der Vlerk (1998)
– Schultz (2003, 2004)
– Louveaux and Schultz (2004)

• Given:
– A network of k facilities
– m product families
– Forecasts of demands and costs 

for n time periods

• Determine
– When and how much  to expand?
– How to allocate capacity?

1

2

k

M

1

2

m

M

MULTISTAGE SIP:
PLANNING IN THE SUPPLY CHAIN

Ahmed and Sahinidis (2003)

PROCESS 
SUPPLY CHAIN

• A network of processes, 
chemicals and markets

• New products and  
processing technology are 
anticipated

• When and how much new 
capacity to bring on-line?

SERVER FARMS

• A network of servers 
hosting WebPages

• When and how much 
new technology to 
install to meet demand 
growth?

• Multi-billion $ industry

• Technology adoption is 
a leading strategic 
concern

ASSUMPTIONS

• Expansion involves a set-up cost  ⇒ Fixed charge cost 
function

• Linear production technology

• No inventories across time periods (can be relaxed)

• Continuous expansion units



THE DETERMINISTIC MILP

[ ]∑
=

++=
n

t
ttttttn WtrYXz

1
)(δβαmin

Expansion
Costs

Allocation
Costs

ttt YUX ≤

∑ =
+≤

t
t XXeW

1τ τ0

tt dAWdiag =)(

k
tY }1,0{∈

mk
t

k
t WX ×

++ ℜ∈ℜ∈ ,

Expansion ≤ Bound:

Production ≤ Capacity:

Production = Demand:

Non-negativity:

Binary Variables:
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UNCERTAINTY

• Significant forecast uncertainty

• Sources:
– Demands
– Costs and prices
– Technology

• Evolves over multiple time periods

• There are integer decision making variables in 
every time period/stage

THE SCENARIO FORMULATION
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Non-anticipativity

• The capacitated lot sizing problem (CLSP) is NP-hard
• Given any CLSP, we can construct an equivalent 

instance of the deterministic capacity expansion 
problem:

COMPLEXITY IN THE TIME DOMAIN

The deterministic capacity expansion is
NP-hard in the number of time periods but…
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EMPIRICAL EVIDENCE

• Liu & Sahinidis (IECR 1995)
• Processing Networks
• LP Relaxation

• Chang & Gavish (OR 1995)
• Telecommunication networks
• Lagrangian Relaxation
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CAPACITY SHIFTING
For the Deterministic Problem

Rounding

Rounding

N.B.:  Naive rounding of LP solution results in too many expansions



3-PHASE HEURISTIC
For the Stochastic Problem

Construct an 
Implementable solution

Construct an 
Admissible solution

Construct a
Feasible solution

• Relax integrality

• Solve as a multi-
stage stochastic LP

• Relax non-anticipativity

• For each scenario,
construct an integral 
solution by capacity 
shifting

• Re-enforce non-
anticipativity by
capacity bundling

ILLUSTRATION

PROBABILISTIC ANALYSIS

• How does the heuristic perform in “most” 
cases?

• Consider instances generated from the 
following probability model:
– Demand in each period is independent with bounded 

first and second moments
– Cost parameters have bounded distributions
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Theorem:

• For “almost all,” “large” sampled instances, the heuristic error
vanishes asymptotically 
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• 38 processes, 24 chemicals
• With 10 time periods and 29 scenarios

― 36,000 binaries, 184,000 continuous variables, 368,000 
constraints

• Limited only by the size of the stochastic LP that 
can be solved

OTHER MULTISTAGE SIP 
APPLICATIONS

• Asset liability management
– Drijver et al. (2002)

• Power production optimization
– Takriti et al. (1996)
– Carøe and Schultz (1999)
– Nowak and Römisch (2000)

• Production planning and scheduling
– Ahmed et al. (2001)
– Lulli and Sen (2002)
– Balasubramanian and Grossmann (2004)



ROBUSTNESS ISSUES
• Recourse model provides first-stage solution that 

optimizes expected second-stage cost
• This solution may be very bad under certain 

conditions

• Robust solutions: remain near-optimal irrespective 
of uncertain outcome

• Mulvey, Vanderbei and Zenios (1995)
– May not lead to optimal second-stage decisions
– King et al. (1997), Sen and Higle (1999)
– Takriti and Ahmed (2002)

• More recent approaches
– Ben-Tal and Nemirovski (2000) 
– Bertsimas (2002)

PROBABILISTIC PROGRAMMING
• Also known as chance-constrained programming
• Focuses on reliability of the system
• LP with chance constraints:
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Consider

0,0

5.0
3

s.t.

min

21

221

121

≥≥

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥+
≥+

xx
bxx
bxx

P

xct

5.0)0,3(
5.0)4,2(

21

21

===
===

bbP
bbP

with

Probabilistic programming is a global optimization problem

FUZZY PROGRAMMING
• Considers uncertain parameters as fuzzy 

numbers
• Treats constraints as fuzzy sets
• Some constraint violation is allowed

• Bellman and Zadeh (1970)
– Minimize largest constraint violation

• Flexible programming
– Right-hand-side and objective uncertainty

• Possibilistic programming
– Constraint coefficient uncertainty
– Nonconvex optimization problem

» Liu and Sahinidis (1997)

• Zimmermann (1991)

• Comparisons needed between SP and FP!

STOCHASTIC PROGRAMMING 
OPPORTUNITIES

• Global optimization algorithms and software 
now available
– Nonconvex stochastic integer programming
– BARON: 100s to 1000s of variables
– Subproblems within decomposition and sampling

• Applications in systems biology and 
bioinformatics
– Metabolic pathway design 
– Protein binding site identification
– DNA sequencing


