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Abstract. In the early 1990s, we proposed the integration of constraint
programming and optimization techniques within the branch-and-bound
framework for the global optimization of nonconvex nonlinear and mixed-
integer nonlinear programs. This approach, referred to as branch-and-
reduce, was subsequently supplemented with a variety of branching and
bounding schemes. In this paper, we review the theory and algorithms
behind branch-and-reduce, its implementation in the BARON software,
and some recent successful applications.

1 Introduction

The integration of constraint programming and mathematical programming
techniques has generated quite some excitement in the operations research and
computer science communities in recent years (cf. [16]). Combining these tech-
niques has been found necessary for the solution of many hard combinatorial
optimization problems. In the context of nonlinear programs (NLPs) and mixed-
integer nonlinear programs (MINLPs), Ryoo and Sahinidis [30, 31] proposed the
first variant of the branch-and-reduce algorithm. This algorithm relied on con-
straints, interval arithmetic, and duality to draw inferences regarding ranges of
integer and continuous variables in an effort to expedite the traditional branch-
and-bound algorithm for the global optimization of NLPs and MINLPs. Subse-
quently, this approach was supplemented with branching schemes that lead to
finite search trees while branching in continuous spaces [37, 2], and a number of
convexification techniques for the construction of relaxations that enjoy tight-
ness along with robustness and computational efficiency [41, 42, 32, 43]. This
methodology has been implemented in the computational system BARON [34]
and used in a variety of applications, including chemical process design and
operation [30, 20], chip layout and design [10], design of just-in-time manufac-
turing systems [15], optimization under uncertainty [19, 2], pooling and blending
problems [1, 44], and molecular design [35, 36].

In Section 2 of this paper, we state the general mixed-integer nonlinear pro-
gram addressed by this line of research and review algorithms for its solution.
Section 3 describes the theoretical and algorithmic components of the branch-
and-reduce approach. The implementation is discussed in Section 4, followed by
selective computational results in Section 5. Conclusions are drawn in Section 6.
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2 Mixed-Integer Nonlinear Programming

We address the problem of finding a globally optimal solution of the following
mixed-integer nonlinear program:

(P) min f(x)
s.t. g(x) ≤ 0

xi ∈ R, i = 1, . . . , nd

xi ∈ Z, i = nd + 1, . . . , n

where f : R
n �→ R and g : R

n �→ R
m.

As special cases of P, one recognizes the classical nonlinear and mixed-integer
linear programs. Since both of these problem classes are NP-hard [25, 27], it fol-
lows that P is also NP-hard. Yet, P is of interest in a large number of applications,
including chemical process synthesis, supply chain management and operation,
and molecular design [26, 5, 44].

Initial attempts at the solution of P dealt mostly with problems that are
convex when integrality restrictions are dropped [14, 11, 6, 7]. A few recent
works have indicated that the application of deterministic branch-and-bound
algorithms to the global optimization of general classes of MINLPs is promis-
ing [30, 39, 13, 38, 44]. Initially developed in the context of combinatorial op-
timization problems [18, 9], branch-and-bound was later extended to the more
general multi-extremal problem P [12, 17]. To solve P, branch-and-bound com-
putes lower and upper bounds on the optimal objective function value over suc-
cessively refined partitions of the search space. Partition elements are generated
and placed on a list of open partition elements. Elements from this list are se-
lected for further processing and further partitioning, and are deleted when their
lower bounds are no lower than the best known upper bound for the problem.

Contrary to the pure integer case, finite termination of this algorithm with
an exact global optimum of P is, in general, not guaranteed when branching
occurs in continuous variable spaces. The algorithm is convergent under fairly
general assumptions on the problem functions [17] and, hence, finitely termi-
nating when an ε-optimal solution is acceptable with ε > 0. Another challenge
associated with solving P with branch-and-bound is the construction of lower
bounds. While it is straightforward to obtain a relaxation of a mixed-integer lin-
ear program by dropping integrality conditions, the development of lower bounds
for P requires the (partial) convexification of functions of continuous variables.
A further potential difficulty in solving P stems from the presence of nonlineari-
ties. While LP technology has yielded robust and efficient software codes capable
of solving large-scale LPs, only much smaller convex NLPs can be solved reliably.
Finally, from the practical point of view, acceptance of MINLP algorithms by
practitioners requires integration of these algorithms with modeling languages,
such as AMPL and GAMS, and necessitates the development of new language
concepts that go well beyond the realm of traditional LP and MILP. The next
section addresses some of these challenges.
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3 Theoretical and Algorithmic Elements
of the Branch-and-Reduce Approach

3.1 Factorable Programming Relaxations

In this subsection, we consider the case of factorable functions f and g, i.e.,
functions that are recursive sums and products of univariate functions. This
class of functions suffices to describe most application areas of interest [24]. Ex-
amples of factorable functions include f(x, y) = xy, f(x, y) = x/y, f(x, y, z, w) =√

exp(xy + z lnw)z3, f(x, y, z, w) =
(
x2y0.3z

)
/w2 + exp

(
x2w/y

)− xy, f(x) =∑n
i=1 lni(xi), and f(x) =

∑T
i=1

∏pi

j=1

(
c0ij + cijx

)
with x ∈ R

n, cij ∈ R
n and

c0ij ∈ R (i = 1, . . . , T ; j = 1, . . . , pi).
In his seminar work, McCormick [23] developed bounding techniques for fac-

torable programs. These techniques currently play a central role in many branch-
and-bound implementations for problem P. The main observation is that a fac-
torable NLP can be converted to an equivalent separable NLP after the recursive
introduction of new variables and constraints [22]. The separable NLP can be
relaxed through suitable under- and overestimators of the univariate functions
involved. For example, the function f(x, y, z, w) =

√
exp(xy + z lnw)z3, can be

decomposed into an almost separable formulation as follows:

x1 = xy x5 = exp(x4)
x2 = ln(w) x6 = z3

x3 = zx2 x7 = x5x6

x4 = x1 + x3 f =
√
x7

It is straightforward to outer-approximate the univariate functions ln , exp , and√ over bounded intervals. Bilinear terms can be outer-approximated through
their convex and concave envelopes over a rectangle [23, 3]:

x1 ≥ convenv[xL,xU ]×[yL,yU ] = max{yLx + xLy − yLxL, yUx + xUy − yUxU}
x1 ≤ concenv[xL,xU ]×[yL,yU ] = min{yLx + xUy − yLxU , yUx + xLy − yUxL}

Several variants of the factorable approach exist. For example, additional
variables need not be explicitly introduced. In addition, the decomposition need
not proceed until the problem becomes entirely separable. For the example above,
non-separabilities in terms of bilinearities were retained. In general, it suffices to
proceed only to the extent that the resultant problem can be outer-approximated
by a convex feasible set.

3.2 Convexification via Convex Extensions

While factorable programming techniques lead to a completely automatable pro-
cedure for the construction of convex lower bounding problems for nonconvex
NLPs and MINLPs, these bounding problems often exhibit a large relaxation
gap. From the point of view of relaxation quality, it is always advantageous to
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convexify the original problem functions and constraints to the extent possible.
The theory of convex extensions of Tawarmalani and Sahinidis [43] provides
a systematic methodology for constructing the closed-form expression of con-
vex envelopes of multidimensional, lower semi-continuous (l.s.c.) functions. This
theory provides the capability to construct the convex and concave envelopes of
continuous functions. In the sequel, R̄ denotes R ∪ {+∞}.
Definition 1 ([43]). Let C be a convex set and X ⊆ C. A convex extension
of a function φ : X �→ R̄ over C is any convex function η : C �→ R̄ such that
η(x) = φ(x) for all x ∈ X.

In other words, an extension is a convex function that agrees with a given
(nonconvex) function at each of a predetermined set of points in the domain of
definition of both functions. Depending on the original function and this set of
points, a convex extension may or may not exist. Furthermore, when a convex
extension exists, it need not be unique. In [43], we provide necessary and sufficient
conditions for the constructibility of convex extensions.

Key to the development of convex and concave envelopes is the observation
that these envelopes are often generated by finitely many sets of points. For
instance, in the case of a concave univariate function over an interval, knowledge
of the function values at the two endpoints suffices to completely characterize
the convex envelope of the function over the interval. This envelope is nothing
else but the tightest convex extension of the concave function restricted to the
two endpoints. In general, we will refer to this restricted set of points as the
generating set . One needs to be able to identify the tightest convex extension
over this set in order to construct the convex envelope. Working with the convex
hull of the epigraph of the convex envelope, allows the latter construction to be
easily achieved through disjunctive programming techniques [28], thus leading to
the convex envelope in closed-form. This discussion suggests the following two-
step procedure for the construction of the convex envelope of a given function:

1. Identify the generating set.
2. Use disjunctive programming to construct the envelope in closed-form.

The main question then becomes how to identify the generating set. We restrict
the discussion to functions with compact domains. Let f(x) be the convex en-
velope of φ(x) over C, and let F be the epigraph of f . We will use vert(F ) to
denote the vertex set of F . Then, the convex envelope of φ over C is completely
specified by the following set:

Gepi
C (φ) =

{
x | (x, f(x)) ∈ vert(F )

}
.

This set is the generating set of the epigraph of function φ. The following result
characterizes points that do not belong to the generating set:

Theorem 1 ([43]). Let φ(x) be a l.s.c. function on a compact convex set C.
Consider a point x0 ∈ C. Then, x0 �∈ Gepi

C (φ) if and only if there exists a convex
subset X of C such that x0 ∈ X and x0 �∈ Gepi

X (φ). In particular, if for an
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ε-neighbourhood Nε ⊂ C of x0 it can be shown that x0 �∈ Gepi
Nε

(φ), then x0 �∈
Gepi

C (φ).

We now illustrate the above process in the context of the multilinear function
φ(x) =

∑
t at

∏pt

i=1 xi, where −∞ < li ≤ xi ≤ ui < ∞ for i = 1, . . . , n. When all
but one of the n variables are fixed, one is left with a line segment over which
φ is linear. Hence, only the two endpoints of the line segment may belong to
the generating set of the convex as well as concave envelope of φ. Applying this
argument recursively to all variables and using Theorem 1, it follows [43] that
the generating set of the convex as well as concave envelope of φ is nothing
else but the set of extreme points of the hyperrectangle. Let these points be
denoted by pk, k = 1, . . . , 2n, and let φk be the corresponding values of φ at
these points. The polyhedral description of the convex outer-approximator of φ
follows trivially from polyhedral representation theorems (cf. Theorem 4.8, p. 96
in [27]):

x =
∑2n

k=1 λkpk, φ =
∑2n

k=1 λkφk,
∑2n

k=1 λk = 1

λk ≥ 0, k = 1, . . . , 2n

The above approach can be readily applied to obtain the convex and concave
envelopes of functions of the following forms:

– φ(x, y) = M(x1, x2, . . . , xn)/(ya1
1 , ya2

2 , . . . , yam
m ) over a hyperrectangle, where

M is a multilinear expression, y1, . . . , ym �= 0, and a1, . . . , am ≥ 0. For
example, consider (x1x2 + x3x4)/(y1y2y3).

– φ(x, y) = f(x)
∑n

i=1

∑k
j=−p aijy

j
i over a hyperrectangle, where f is con-

cave, aij ≥ 0 for i = 1, . . . , n; j = −p, . . . , k, and yi > 0. For example,
consider x/y + 3x + 4xy + 2xy2.

Additional examples and generalizations of this methodology can be found in [42,
43]. In [44], the theory of convex extensions was used to show that a particular
relaxation of the pooling problem dominates earlier ones in the literature. An
additional application of this theory is described next.

3.3 Convexification via Product Disaggregation

Throughout this subsection, we consider the following function:

φ(x; y1, . . . , yn) = a0 +
n∑

k=1

akyk + xb0 + x
n∑

k=1

bkyk

where ak and bk (k = 0, . . . , n) are given constants, x ∈ [xL, xU ], and yk ∈
[yL

k , yU
k ]. The convex extensions theory can be used to prove the following result:

Theorem 2 ([40]). Let H = [xL, xU ]×∏n
k=1[y

L
k , yU

k ]. Then:

convenvH φ = a0 +
∑n

k=1 akyk + xb0 +
∑n

k=1 convenv[yL
k ,yU

k ]×[xL×xU ](bkykx).
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The standard way to bound φ is to substitute w for
∑n

k=1 bkyk and then
relax xw using the bilinear envelopes of Subsection 3.1. The required bounds
on w follow by maximizing/minimizing

∑n
k=1 bkyk over

∏n
k=1[y

L
k , yU

k ]. While
commonplace, such a construction does not yield the convex envelope of φ(x, y).
Consider, for example, x(2y1 + 3y2) over [0, 1]3. At x = 0.5, y1 = 1, and y2 = 0,
the convex envelope equals x(2y1 + 3y2) with a value of 1 whereas the standard
lower bounding procedure gives a value of 0. Just like the standard lower bound-
ing procedure, the convex envelope of Theorem 2 also makes use of the bilinear
convex envelope formula of Subsection 3.1. However, the bilinear envelopes are
invoked only after the product is distributed over the summation.

Distribution of the product over the summation results in disaggregating
xw into

∑n
k=1 bkzk, where zk = xyk. This procedure was termed product disag-

gregation in [40] as it is reminiscent of variable disaggregation, a procedure that
provides tight linear relaxations of mixed-integer linear programs [27]. In [40], we
provide a number of applications of product disaggregation, including fractional
programs and certain optimization problems that arise from the discretization
of dynamic systems.

Theorem 3 ([40]). Let f(x; y1, . . . , yn) be the convex envelope of φ(x; y1, . . . ,
yn) over [xL, xU ]×∏n

k=1[y
L
k , yU

k ] and let fr(x; y1, . . . , yn) be the convex envelope
of φ(x; y1, . . . , yn) over [xL, xU

r ]×∏n
k=1[y

L
k , yU

k ], where xU
r < xU . Let K+ = {k |

bk > 0} and K− = {k | bk < 0}. Then, fr(x0; y0
1 , . . . , y

0
n) > f(x0; y0

1 , . . . , y
0
n) if

and only if (x0; y0
1 , . . . , y

0
n) ∈ S where S is given by:

S =⋃
k∈K+

{
(x, y) | (yU

k − yL
k )x + (xU

r − xL)yk − xU
r yU

k + xLyL
k > 0, yk < yU

k

} ∪⋃
k∈K−

{
(x, y) | (yU

k − yL
k )x + (xL − xU

r )yk + xU
r yL

k − xLyU
k > 0, yk > yL

k

}
.

A similar result is presented in [40] when the lower bound on x is improved.
These results highlight the importance of reducing bounds on x as much as
possible when one is interested in deriving convex outer-approximators.

3.4 Polyhedral Outer-Approximation

The current state-of-the-art in linear programming permits the reliable solu-
tion of very large-scale LPs in reasonable computational times. On the contrary,
nonlinear programs are harder to solve. As a result, it is often advantageous to
use polyhedral instead of other convex relaxations in branch-and-bound, even
when the latter relaxations are tighter. For this reason, Tawarmalani and Sahini-
dis [41] developed a polyhedral outer-approximation scheme that generates an
entirely linear programming relaxation. The starting point of this approach is
a convex nonlinear relaxation obtained by factorable programming and/or con-
vex extensions techniques. Subsequently, a sandwich algorithm is used to provide
a polyhedral outer-approximation of the nonlinear functions.

The sandwich algorithm is a template of outer-approximation schemes [8, 29].
At a given iteration, this algorithm begins with a number of points at which
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tangential outer-approximations of the convex function have been constructed.
Then, at every iterative step, the algorithm identifies the interval with the max-
imum outer-approximation error and subdivides it at a suitably chosen point.

Let G(f) denote the set of points (x, y) such that y = f(x). Let φo(x) be the
outer-approximation of φ(x), and consider the projective error measure:

εp = sup
pφo∈G(φo)

inf
pφ∈G(φ)

{‖pφ − pφo‖}.
Given a number of outer-approximators, the strategy developed in [41] con-
structs the next outer-approximator as the line supporting φ at a point where
the maximum projective error occurs. This scheme converges quadratically:

Theorem 4 ([41]). Consider the univariate function φ : [xL, xU ] �→ R. Let
R =

(
xL, φ(xL)

)
and S =

(
xU , φ(xU )

)
. Assume that the tangents at R and S

intersect at O. Let θ be π−∠ROS, and L = |RO|+ |OS|. Let k = Lθ/εp, where
εp is the maximum allowable projective error. Then, the algorithm needs at most
�√k − 2� supporting lines to achieve the required accuracy.

3.5 Branch-and-Reduce

The previous subsections have illustrated that the quality of the relaxations
thus obtained is a strong function of the bounds of variables that participate in
nonlinear relationships. Thus, tighter variable bounds imply tighter relaxations
and can be expected to lead to faster convergence of branch-and-bound. Our
approach to global optimization places a strong emphasis on the derivation of
tight bounds for all problem variables. In each node of the search tree, con-
straint programming techniques are utilized in a preprocessing step to reduce
ranges of problem variables before a relaxation is constructed. Once the relax-
ation is solved, a postprocessing step utilizes the solution of the relaxed problem
in an attempt to further reduce ranges of variables before branching occurs. Pre-
cisely because so much emphasis is placed on the reduction of ranges of problem
variables, we refer to the overall algorithm as a branch-and-reduce approach.
The main reduction strategies used in our framework are outlined next.

3.6 Drawing Inferences from Constraints:
Feasibility-Based Range Reduction

Feasibility-based tightening, or feasibility-based range reduction, is a process
that relies on the problem constraints to cut-off infeasible portions of the solu-
tion space. Assume, for example, that the following constraints are part of the
problem to be solved at a given node:

n∑
j=1

aijxj ≤ bi, i = 1, ...,m.
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To tighten variable bounds based on these linear constraints, one could simply
solve the 2n LPs:

min±xk s.t.
n∑

j=1

aijxj ≤ bi, i = 1, . . . ,m


 , k = 1, . . . , n, (1)

which would provide tightening that is optimal, albeit computationally expen-
sive. An alternative approach is based on the observation that one of the con-
straints 


xh ≤ 1

aih

(
bi −

∑
j �=h

min
{
aijx

U
j , aijx

L
j

})
, aih > 0

xh ≥ 1
aih

(
bi −

∑
j �=h

min
{
aijx

U
j , aijx

L
j

})
, aih < 0

(2)

is also valid for each pair (i, h) that satisfies aih �= 0. The constraints in (2)
function as “poor man’s linear programs,” particularly when they are applied
iteratively, looping over the set of variables several times. Constraints (2) have
been used extensively in the constraint programming literature [16] as well as
in the mixed-integer linear programming literature [4]. There are well-known
pathological situations in which these constraints do not provide optimal or even
any tightening. Shectman and Sahinidis [37] experimented with these constraints
in the context of concave minimization over polytopes demonstrating that these
constraints often provide optimal tightening, particularly when the full LPs (1)
are solved once at the root node of the search tree. Our current approach is to
solve, at every node of the search tree, the full LPs (1) for a few judiciously
selected variables and aggressively apply the approximate strategy (2) to all
variables.

The above approach can be extended to the case of nonlinear constraints,
giving rise to “poor man’s nonlinear programs,” an approach particularly easy
to implement in the context of factorable and separable nonlinear programs.

3.7 Drawing Inferences from Optimal Solutions:
Optimality-Based Range Reduction

Optimality-based range reduction recognizes that dual solutions of the relaxation
solved at any node of the search tree provide information about the shape of the
value function of the relaxed problem. This information can be used to construct
an underestimator of the value function of the relaxed problem that, in turn,
underestimates the value function of the nonconvex problem. Requiring the so-
constructed underestimator to take values below that of the current best known
solution, leads to inferences regarding inferior parts of the search space.

In their simplest form, optimality-based inferences can be drawn about vari-
able ranges as shown by Ryoo and Sahinidis [30]. Assume that the simple range
constraint x ≤ xU is active at a relaxed problem solution with a corresponding
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Lagrange multiplier of λ > 0. Let L and U denote the objective function val-
ues of the relaxed problem’s solution and the incumbent, respectively. Clearly,
then, L−λ(x−xU) provides a first-order underestimator of the relaxation value
function. Requiring this underestimator to take better values than U , gives the
simplest optimality-based range reduction cut:

x ≥ xU − U − L

λ
.

Similar inferences can be drawn about variables that, at the relaxed problem
solution, go to their lower bounds. If a variable is at neither of its bounds in
the relaxed problem solution, we can probe its bounds by temporarily fixing this
variable at (or close to) its lower (upper) bound, constructing the linear under-
estimator of the value function, and contracting the range of the variable using
the dual solution thus obtained. This process requires the solution of additional
relaxations and, in certain cases, is less advantageous than solving the full range
contraction LPs or NLPs discussed in the previous section.

In [30, 31], the above process of range contraction is extended to arbitrary
constraints of the type g(x) ≤ 0, or even to sets of constraints that may or
may not be active at the relaxed problem solution. One is then able to infer
valid inequalities, some of which may be nonconvex. Although they may exclude
solutions that are feasible to P, these inequalities do not exclude any solutions
of P with objective function values better than U .

3.8 A Unified Framework for Constraint Inferencing

The range reduction schemes of the two previous subsections involve the solution
of some optimization problem. In the case of feasibility-based reduction, an op-
timization problem such as (1) is solved either approximately or exactly. In the
case of optimality-based reduction, one solves a relaxation. Observe that these
optimization problems are very closely related. In the simple case of a linearly
constrained global optimization problem, the feasible space of these optimization
problems is identical. Thus, any feasible dual solution of the relaxation is also
dual feasible to the range reduction problem (1) and vice versa. Hence, solutions
obtained for one problem can be used for range reduction in the other problem.
In Chapter 6 of [44], Tawarmalani and Sahinidis build on this observation to
provide a unified range reduction theory that subsumes the feasibility-based and
optimality-based range reduction schemes of the two previous subsections as well
as a variety of such schemes from the literature [21, 4, 30, 31, 46].

3.9 Node Selection and Branching

In contrast to branching on 0−1 variables, branching on continuous variables
may not lead to finite partitioning. Consequently, the lower and upper bounding
sequences generated by the algorithm are, in general, only convergent in the
latter case. To ensure convergence, we use a bound-improving node selection rule
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by selecting a partition element with the current lowest bound every finitely
many iterations. In addition, by periodically bisecting the longest edge amongst
all nonlinear variables, we ensure an exhaustive partitioning scheme, i.e., one
that guarantees that partition elements converge to points or other sets over
which P is easily solvable. This strategy guarantees convergence of the overall
algorithm [17]. We have shown that, when applied to concave minimization over
polytopes, this algorithm is finite as long as one branches on the incumbent
solution when possible. For two-stage stochastic programs with integer variables
in the second stage, we have shown that branching in the space of the “tender
variables” renders this algorithm finite for this problem class as well [2].

We rely exclusively on rectangular partitioning. A variable is chosen and
its range partitioned at the relaxation solution—unless bisection is required for
convergence or branching on the incumbent is possible. Note, however, that
when factorable relaxations are used, the problem is reformulated in a higher
dimensional space. Branching on the reformulation variables may then result
to partitions that are not rectangular in the original problem space. Finally,
we note that the process for selecting the branching variable accounts for all
deviations of outer-approximators from original nonlinear problem functions for
which a variable is responsible for. Further, we account for the current relaxation
problem solution and potential for its improvement as detailed in Chapter 6
of [44] in order to compute branching priorities. The variables with the largest
branching priorities are considered candidates for probing.

3.10 Finding the K Best or All Feasible Solutions

Consider an optimization problem with k integer variables, xi, i = 1, . . . , k. For
simplicity, we assume 0 ≤ xi ≤ xU

i , i = 1, . . . , k. It is common practice to identify
multiple solutions of such a problem in one of the two following ways:

– Given a solution x∗, introduce the following nonlinear cut:∑
i

(x∗
i − xi)2 ≥ 1.

– Reformulate the problem by introducing binary variables:

xi =
�log2(x

U
i )�∑

j=1

2j−1yij , i = 1, . . . , k

The solution y∗ can be excluded by the well-known linear integer cut:∑
(i,j)∈B∗

yij −
∑

(i,j)∈N∗
yij ≤ |B∗| − 1

where B∗ = {(i, j)|y∗ij = 1} and N ∗ = {(i, j)|y∗ij = 0}.
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Several solutions of the problem can then be obtained by solving a series of
models in which integer cuts are successively introduced to exclude the previous
models’ optimal solutions from further consideration. However, such an approach
requires the search of a number of branch-and-bound trees.

Instead of using the integer cuts above, we modify the standard node fath-
oming step of the algorithm. Instead of deleting all inferior nodes when a feasible
solution is found, we delete only the current node when it becomes infeasible or
a point. Nodes where feasible solutions are identified are branched further until
they become points in the search space or infeasible. All feasible solutions can
be identified through a single application of branch-and-reduce.

Once the fathoming step of the algorithm has been modified as above, the
optimality-based range reduction and probing techniques of Subsection 3.7 must
also be modified. These techniques require an appropriate upper bound for
optimality-based fathoming. Instead of using the upper bounds provided by fea-
sible solutions identified during the search, we make use of a bound obtained by
solving a linear relaxation of the problem.

Note that it is straightforward to modify this algorithm to provide only the K
best solutions and that this scheme will work well in continuous spaces provided
that the sought-after solutions are isolated (separated by a certain distance).

4 The BARON Computational System

The Branch-And-Reduce Optimization Navigator (BARON) implements the al-
gorithms described above by combining branch-and-bound with constraint prop-
agation and duality techniques for reducing ranges of variables in the course
of the algorithm. From the very beginning, BARON was developed as a user-
configurable system that could be easily modified by users to allow experimen-
tation with different lower bounding, branching, and other algorithmic options.

The first version of BARON was merely 1800 lines of code written in the
GAMS modeling language in 1991-93. The software evolved into 10,000 lines of
FORTRAN 77 in 1994-95. Currently, BARON is a mix of about 42,000 lines in
FORTRAN 90 and 24,000 lines in C. It still serves as a system that facilitates
experimentation with novel branch-and-bound algorithms for global optimiza-
tion. In addition, it provides a modeling language and a completely automated
way for solving NLPs and MINLPs to global optimality. The latter option is also
offered under the GAMS modeling system as illustrated in Chapter 11 of [44].
Other components of the system include an automatic function evaluator and
differentiator, sparse matrix utilities, data manager, and links to solvers for the
solution of LP, NLP, and SDP subproblems. While no complete rounding error
control is currently attempted, an IEEE exception handler has been fully devel-
oped for objective and constraint function calculations for local search and lower
bounding purposes.
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5 Computations

Extensive computations with the proposed algorithm on over 500 problems are
reported in [44]. Table 1 presents computational results with selected problems
on a 332 MHz RS/6000 Model 43P with 128MB RAM and a LINPACK score of
59.9. For all problems solved, we report the total CPU seconds taken to solve the
problem (Ttot), the total number of nodes in the branch-and-reduce tree (Ntot),
and the maximum number of nodes that had to be stored in memory during the
search (Nmem). Computations were carried out with an absolute termination
tolerance (difference between upper and lower bounds) of 10−6.

The problems of Table 1 include pooling problems (adhya1 to adhya4), a non-
linear fixed-charge problem (e27), a reliability problem (e29), a mechanical fix-
ture design problem (e31), a heat exchanger network synthesis problem (e35),
a pressure design problem (e38), a truss design problem (e40), a problem from
the design of just-in-time manufacturing systems (jit), a particulary challenging
molecular design problem (primary), and two difficult problems from discretiza-
tion of dynamical systems (tiny, catmix).

Finally, Figure 1 shows results for the robot problem [45], a set of 8 quadratic
equations in 8 unknowns. We utilize BARON’s numsol option to identify so-
lutions within an isolation tolerance of 10−4. For numsol = 1, the algorithm
requires 10 nodes to obtain the solution. For numsol = 16, 334 nodes are re-
quired, i.e., approximately 21 nodes per solution found. For numsol ≥ 17, only
16 solutions are obtained thus proving that this problem has exactly 16 solutions.

Table 1. Selected computational results for problems from [44]

Problem Obj. m n nd Ttot Ntot Nmem

e27 2.00 2 1 1 0.02 3 2
e40 30.41 7 4 3 0.15 24 6
e29 -0.94 6 2 2 0.18 47 11
e38 7197.73 3 4 2 0.38 5 2
jit 173,983 33 26 4 0.67 63 10

adhya1 -549.80 52 13 0 1.20 5 1
adhya4 -877.65 67 18 0 1.35 1 1
adhya2 -549.80 69 13 0 1.75 11 1
adhya3 -561.05 78 20 0 1.95 5 1

e36 -246.00 2 2 1 2.59 768 72
e31 -2.00 135 112 24 3.75 351 56
e32 -1.43 18 35 19 13.7 906 146
e35 64868.10 39 32 7 16.4 465 57

primary -1.2880 164 82 58 375 15930 1054
tiny 1.00594 96 71 16 1110 3728 244

catalyst -0.01637 32 33 0 3540 3477 480
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Fig. 1. BARON nodes per solution for the robot problem for different numsol
values

6 Conclusions

The problems in Table 1 have been sorted in order of increasing time. Looking
at this table, one observes that size alone is not a good indicator of problem
difficulty. Nor is the number of integer variables. From the results of this table,
it is clear that problems with up to a few hundred variables and constraints
are solvable with the general-purpose BARON system. In [20, 37, 33, 44], we
report computational results on problems with up to a few thousand variables
with specialized implementations of branch-and-reduce. The problems of Table 1
are coming from a very wide variety of applications, demonstrating the broad
applicability of the algorithms described in this paper.
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