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Modeling support for dynamic simulation of chemical-process flowsheets, which is of
significant ®alue for plantwide dynamic simulation using differential ] algebraic model
formulations, is to date ®ery limited when one or more unit models include partial
differential equations. Se®eral new techniques that pro®ide modeling support for such
simulations are presented. These techniques are based on a generalized characteristic
analysis and a differentiation index analysis of partial differential] algebraic models.
They can be used to unco®er systems that cannot be sol®ed as part of a dynamic simula-
tion, and to determine whether or not the initial and boundary conditions supplied by
the modeler form a well-posed problem. In a network flow context, they can further be
used to select, enforce, and adapt the boundary conditions as required to maintain
automatically a mathematically well-posed problem. Each of these pro®ides time-sa®ing
support to the system modeler.

Introduction

Significant research over the past twenty years has pro-
duced several highly developed software packages that are
designed specifically for plantwide dynamic simulation. Ex-

Ž .amples include SpeedUp Perkins and Sargent, 1982 , DIVA
Ž . ŽMarquardt et al., 1987 , gPROMS Barton and Pantelides,

. Ž .1994 , and ABACUSS Allgor et al., 1996 . These packages
facilitate large-scale system simulation by isolating the engi-
neer from numerical algorithms, code generation, and debug-
ging, thereby leaving him or her free to concentrate on model
formulation and application. The feasibility of dynamic simu-
lation-based activities such as optimal batch policy synthesis,
parametric sensitivity studies, safety interlock design verifica-
tion, control system design, and start-uprchangeoverrshut-
down studies in an industrial setting often depends on the

Žproductivity gains provided by this modeling support Long-
.well, 1993 .

These existing packages deal very effectively with the dif-
Ž .ferential]algebraic equation DAE formulation of a plant

model, which arises when spatial variations of dependent
variables in the unit operations are ignored. This formulation
admits a fairly general dynamic description of a chemical
processing system. Given such a model, a modern simulation

Correspondence concerning this article should be addressed to P. I. Barton.
Present address of W. S. Martinson: Cargill Central Research, Cargill Inc., Min-

neapolis, MN 55440.

package typically advances the solution to the entire flow-
wsheet using a single integration method such as DASSL

Ž . Ž .Petzold, 1982 , DASOLV Jarvis, 1992 , or the DASSL vari-
Ž .ant DSL48S Feehery et al., 1997 , which employ a Gear-type

.xvariable stepsize, variable-order BDF method . Modern soft-
ware packages also automatically perform calculations to, for

Žexample, locate state eventsrimplicit discontinuities Park and
.Barton, 1996 , reinitialize the system after a state event

Ž .Mayer et al., 1995 , and integrate high-index systems
Ž .Feehery and Barton, 1996 .

Sometimes a finer degree of detail is required than can be
provided by the DAE, or lumped, formulation. For example,
when the spatial variations of some dependent variables
across a processing unit are important, that unit must be de-
scribed by partial differential equations. Similarly, population
balances or polymer chain-length distributions in an other-
wise lumped system also give rise to partial differential equa-
tions. A model that includes partial differential equations, and
possibly ordinary differential and algebraic equations as well,
is referred to as a partial differential]algebraic equation
Ž .PDAE , or distributed model.

Efforts to provide modeling support for distributed models
in network simulations have so far focused on generating and
analyzing a discretization of the partial differential equa-
tions. Oh and Pantelides have addressed semidiscretization
in the context of network flow simulations by developing an
input language for generating discrete equations on rectangu-
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Ž .lar domains Oh and Pantelides, 1996 . This input language
forms part of the larger gPROMS dynamic simulation soft-
ware mentioned earlier. The language allows the user to de-
fine spatial coordinate axes and represent derivatives in each
coordinate direction using either finite differences or colloca-
tion on a monospaced grid along each axis. gPROMS then
uses the specified grid and method to substitute an approxi-
mating set of DAEs for the original PDEs, couples them to
the rest of the flow-sheet equations, and solves the entire
system in the same manner as a purely lumped model.

ŽTRIFIT is a mesh-generation language van der Wijngaart,
.1994 . It consists of a set of operators for several common

manipulations of unstructured triangular two-dimensional
grids. These operators can be used to refine or smooth such
grids. Discrete approximations to partial differential equa-
tions can also be expressed compactly using the operators.
The language, like the mesh-generation syntax in gPROMs,
is designed to reduce the time required to generate a discrete
scheme for solving systems of PDEs. However, it is not inte-
grated into a large simulation environment.

ŽThe GRIDOP package Liska and Shashkov, 1991; Liska
.et al., 1994 provides similar tools for generation of conserva-

tive finite difference schemes on logically rectangular do-
mains in an arbitrary number of independent variables. The
package takes as input a user-supplied definition of function
spaces and associated scalar products, together with user-
supplied definitions of grid operators as finite difference
schemes. The user may then provide partial differential
equations in terms of the defined grid operators or the ad-
joints of those operators, and the package returns the finite
difference equations.

These tools are all designed to generate or evaluate a dis-
cretization scheme for solving a distributed model. The even-
tual goal is for these tools and others like them to advance to
the point where an engineer simply provides a distributed
model, and the simulator will generate a numerical solution
along with rigorous guarantees of its accuracy. This would
correspond to the current capabilities of process simulators
for dealing with lumped models.

One step on the path toward such full support of dis-
tributed models by dynamic process simulators is automated
screening for models that the simulator cannot solve. It is
somewhat unreasonable to expect a simulator to solve a model
that is mathematically ill-posed, for example. Similarly, DAEs
that are high index are not amenable to numeric integration
by standard integration codes. This article will focus on ways
for a process simulator to examine models generated by an
engineer and identify ones that are mathematically ill-posed
or may be expected to lead to high-index DAEs in method-
of-lines solution techniques.

Possibly the first step toward development of a tool of this
nature was taken by Marquardt and coworkers, who have
demonstrated PDEDIS, a software package for rapid con-
struction and evaluation of method-of-lines semidiscretiza-

Žtions for one-dimensional PDE systems Pfeiffer and Mar-
.quardt, 1993 . The software accepts as input a system of at

most second-order spatial derivatives and first-order time
derivatives. It can symbolically discretize the spatial deriva-
tive terms using either a finite difference or a weighted resid-
ual method, retaining grid spacings or function weights as un-

knowns. This symbolic form can be easily evaluated, given a
grid and values for any parameters and dependent variables
required to calculate the coefficient matrices. This informa-
tion is then output to a file and submitted to MATLAB, where
temporal eigenvalues are calculated. Any positive real part of
an eigenvalue indicates an unstable discretization.

As part of the preprocessing capabilities, PDEDIS is able
to characterize the system as hyperbolic, parabolic, or ellip-
tic; provide characteristic directions for purely hyperbolic sys-
tems; identify self-adjoint spatial operators; and perform sev-
eral other classifications of the equations. This information
allows consistency of the model to be evaluated, although only

Žbasic consistency checks which are not detailed in the arti-
.cle are implemented. However, this automated analysis of

the model equations as provided by the engineer is precisely
the type of technology that will be explored and developed in
this article.

The question of well-posedness of systems of parabolic and
Žhyperbolic type is very well understood Courant and Hilbert,

.1962 . Recent work has extended some of the classic analysis
to more general linear PDAEs of neither hyperbolic nor
parabolic type, that may include purely algebraic equations
Ž .Martinson and Barton, 2001 . The notion of the index of
differential]algebraic systems has evolved steadily over the

Žpast decade, and is also well understood Campbell, 1982;
.Brenan et al., 1989 . The concept of the index of a system of

partial differential equations has been the subject of a grow-
Žing amount of research Campbell and Marszalek, 1997; Mar-
.tinson and Barton, 2000 .

The article will begin with several motivating examples of
difficulties with particular dynamic simulation problems, fol-
lowed by a very brief review of some current work in the
areas of index analysis and well-posedness of PDAEs. Calcu-
lations that can be performed by a simulator and the implica-
tions of the results will then be presented. These calculations
will be applied to the examples in the following section, and
the results examined. The article will conclude with a discus-
sion of directions for future work.

Motivating Examples
The following examples illustrate some of the difficulties

that may arise when trying to perform a dynamic simulation
using models that involve partial differential equations. The
flowsheet sections are simple and are chosen to illustrate
specific problems; they are not intended to be large-scale case
studies.

Pressure-swing adsorption
Consider greenhouse gas removal from a nitrogen gas

stream by a two-column pressure-swing adsorption process.
Part of the process flowsheet appears in Figure 1. A continu-
ous high-pressure feed to the system is directed through one
of the columns, where greenhouse gases are removed from
the nitrogen stream by adsorption onto a zeolite packing. At
the same time, a low-pressure nitrogen stream is blown
through the other columns to remove the adsorbed species
and carry them to another treatment unit. When the packing
in the high-pressure column approaches saturation, the
high-pressure feed is switched over to the second column,
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and the low-pressure stream is switched to the first column.
The process in repeated.

Here the engineer’s overall task is to improve the operating
policy for the process, using dynamic simulation for as much
preliminary work as possible, because the system cannot be
taken off-line without major expense. Laboratory experi-
ments have provided good values for the parameters in the
Kikkinides and Yang model of pressure-swing adsorption

Ž .processes Kikkinides and Yang, 1991 , which describes col-
umn behavior under the assumptions of isothermal opera-
tion, negligible axial dispersion and pressure drop, plug flow,
instantaneous solid]gas phase equilibrium, and perfect gas
behavior, all of which are judged to be reasonable for this
process.

Under this model, the adsorbate concentration on the solid
q , mole fractions in the gas phase of adsorbate yis1 . . . 3 is1 . . . 3
and inert y , and flow velocity u are related by the following4
system of equations over time t and axial position in the ab-
sorber z. Pressure P, pressurization rate P , temperature T ,t
bed void fraction e , bed density r , gas constant R, satura-B
tion loadings qsat , and load-relation correlation constantsis1 . . . 3
n and B are parameters. The values of these pa-is1 . . . 3 is1 . . . 3
rameters have been experimentally validated for this process

3r RT eB
q q P qu s0Ý i t ztP Pis1

r RT e yB i
e y q q q P q uy s0, is1 ??? 3Ž .i i t i zt tP P

4

y s1Ý i
is1

1rnsat iq B y PŽ .i i i
q y s0, is1 ??? 3. 1Ž .i 1rn j31qÝ B y PŽ .js1 j j

The first equation is the total material balance. The second
equation is the material balance for each adsorbed species.
The third equation forces the mole fractions in the gas phase
to sum to unity. The fourth equation is the loading ratio cor-
relation that gives the equilibrium loading of each adsorbed
component.

The project requires dynamic simulation of the system from
a cold start. Initial conditions for the six differential variables
are

y 0, z s1.0=10y6 , is1 ??? 3Ž .i

q 0, z s0, is1 ??? 3, 2Ž . Ž .i

while boundary conditions at startup are given by the feed
compositions y and velocity u s0f , is1 . . . 3 f

y t , 0 s y , is1 ??? 3Ž .i f , i

u t , 0 su . 3Ž . Ž .f

Partial derivatives with respect to z are discretized using a
first-order upwind finite difference scheme, and an implicit

Figure 1. PSA flowsheet.

BDF integration method is used to advance the solution for-
ward in t. The disappointing results appear in Figure 2. The
simulation fails after a simulated time of 30 s, when the reini-

Figure 2. Simulation results for the PSA process.
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Figure 3. Vessel depressurization flowsheet.

tialization calculation required after the first valve position
change does not converge.

What is wrong? The task facing the engineer is to figure
out what is wrong, and do it as quickly as possible.

Compressible flow
The second example involves simulation of a vessel depres-

surization. The simplified flow sheet for this process consists
of two pressure vessels, two valves, and the process piping,
and appears in Figure 3. The gas is compressible, and if fric-
tion losses, gravity, and radial variations are ignored, and the
gas is assumed ideal, flow is described by the Euler equations
Ž .Jeffrey, 1976; Roe, 1986

r q ru s0Ž . xt

1
2ru q pq ru s0Ž . t ž /2 x

rh q upy ruh s0Ž . Ž .t x

ps g y1 r iŽ .
1

2hs iq u . 4Ž .
2

Here r is the fluid density, u is the flow velocity, p is pres-
sure, h is the specific total energy, and i is the specific inter-
nal energy. The first three model equations are conservation
of mass, momentum, and energy, respectively. The fourth is
the ideal gas law, with a constant fluid heat capacity ratio of
g . The final equation relates total, internal, and kinetic en-
ergy.

The pipe segment under consideration is 10 m in length, so
0F xF10, and also let tG0. The initial and boundary condi-
tions are

r 0, x s79.6 kgrm3Ž .

u 0, x s0.0 mrsŽ .

p 0, x s2.76 MPaŽ .

p t , 0 s f tŽ . Ž .valve1

p t , 10 s f t . 5Ž . Ž . Ž .valve2

Figure 4. Pipe pressure profile.

The first scenario of interest is a case where the pressure in
the pipe is initially slightly higher than the pressure in both
vessels. The pressure in one vessel is significantly higher than
the other.

Again, the problem will be solved using a first-order up-
Ž .wind finite difference scheme Strikwerda, 1989 . Initially,

flow out of both ends of the pipe is expected, followed by
establishment of a steady pressure gradient and flow from
the high-pressure vessel to the low-pressure vessel.

Simulation results, specifically the pressure profile along
the pipe, appear in Figure 4. Clearly, something is wrong.
The calculated pressure profile blows up at the right end-
point. One would expect a rarefaction to enter the pipe from
both ends, followed by establishment of a steady pressure
gradient between the two ends. Instead, the calculated solu-
tion blows up after less than 0.3 simulated seconds.

Possible problems include improper boundary conditions,
an improper discretization scheme, a time step or mesh spac-
ing that is too large, and simple code bugs. The engineer again
faces the task of uncovering the root of the problem and cor-
recting it.

Electric power transmission
Next, consider simulations of 420-kV power transmission

lines in an electric power distribution grid. Current flow I
and voltage with respect to ground u over a transmission line
are described by the following simple system of two equa-
tions, which are known as the telegrapher’s equations

0 L u 1 0 u 0 R uq q s0. 6Ž .
C 0 I 0 1 I G 0 It x

Here L, C, R, and G are the inductance, capacitance, re-
sistance, and conductance of the line per unit length.

The scenario of interest is a 1% increase in current de-
mand occurring over 0.5 s, to be delivered over a 10-km line.
For this particular line, Ls0.0046 V ? srkm, Cs6.5 nFrkm,
Gs33.3 1rV ?km, and Rs0.030 Vrkm.
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Measured values at the substation are 380 kV at 50 Hz,
with a typical current demand of 3,160 A. These values will
be used for boundary conditions. The current demand will be
given as a sinusoid increase from 3,160 to 3,192 over 0.5 s

u 0, t s190,000)sin 50p tŽ . Ž .
w xI 0, t s 1.0q0.005 1.0qsin p 2 tq1.5 3,160. 7� 4Ž . Ž . Ž .Ž .

The domain is a 10-Km line, and the simulation will cover
the surge in demand, so 0F xF10 and 0F tF0.5.

Here, the engineer wants to build the complexity of the
simulation slowly, and therefore begins with a simplified form
Ž .Massobrio and Antognetti, 1993 of the telegrapher’s equa-
tions that neglects the line inductance, resistance, and con-
ductance

0 0 u 1 0 uq s0. 8Ž .
C 0 I 0 1 It x

While these assumptions behind this simplification are not
valid for this system, experience with chemical process simu-
lations has taught the engineer to start with simplified mod-
els, and move to simulations based on more rigorous models
once the simulation based on a simplified model is working.

The partial derivative terms in x are discretized using cen-
tered finite differences, and the line voltage is initialized to
190 kV. Simulation results for the simplified model appear in
Figure 5. The results look good, so the engineer proceeds to
the full model.

The partial derivative of current with respect to time, while
absent from the simplified model, is present in the full model.
The engineer initializes the current in the line to its nominal
demand of 3160 A. Results for the full current delivery model
appear in Figure 6. The simulation blows up immediately.
Once again, the task is to determine what is causing the sim-
ulation to fail.

Review
We consider a first-order PDAE system with u the depen-

dent variables, and two independent variables x and t.
The differentiation index with respect to t, n , or simply thet

Ž .index with respect to t, is defined Martinson and Barton, 2000
as the minimum number of times some or all of the equations
must be differentiated in order to determine u as a continu-t
ous function of u, x, and t. The index with respect to x is
defined in an analogous manner.

wThis particular definition of the index as opposed to per-
Žturbation, modal, or algebraic indices Campbell and Marsza-

.xlek, 1997 is a natural generalization of the differentiation
Ž .index of a DAE Brenan et al., 1989 . As such, the index with

respect to t provides insight into the expected index of any
DAE that is generated by a method of lines semidiscretiza-
tion. It also allows algorithms based on the index of a DAE

Žto be applied with only minor modification to PDEs Martin-
.son and Barton, 2001 . The index is important because high

Ž .index 2 or greater DAEs cannot be solved accurately by
Ž .standard numeric integration codes Brenan et al., 1989 ; the

calculated solution may fail or, worse, drift away from the
true solution with no indication that specified error toler-
ances had been violated. Index analysis may also be used to
assist with the task of proper Cauchy data formulation

Figure 5. Simulation results for simplified elec-
trical-current model.

Ž .Martinson and Barton, 2000 . No classic analysis exists for
this problem, because it is trivial in the case of a strictly hy-
perbolic or parabolic system; however, it can become signifi-
cantly more complex for the general PDAE models consid-
ered in this article.

A PDE system is said to be well-posed if it has a unique
Žsolution that depends continuously on its data Lieberstein,

.1972 . The model equations typically admit a family of solu-
tions, and proper initial and boundary conditions must be
provided in order to specify a unique member of that family.
If no solution exists, or it is not possible to determine a unique
solution, one cannot expect a standard numerical code to
generate meaningful results. If the solution does not depend
continuously on its data, tiny errors in initial or boundary
conditions may govern the computed solution. Models that
do not depend continuously on their data are therefore not
suitable for dynamic simulation.

Consider a first-order linear PDE system over two inde-
pendent variables t and x of the form

Au q Bu qCus f t , x 9Ž . Ž .t x
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Figure 6. Simulation results for full electrical-current
model.

on the semi-infinite domain aF xF b, tG0, with A, B, C g
R n=n, ugR n, and f :R2 ™R n.

If A is invertible, multiplication on the left by Ay1 pro-
duces

u q Bu qCus f t , x . 10Ž . Ž .t x

The solution to such a system depends continuously on its
w Ž .xdata and is hyperbolic Courant and Hilbert, 1962 if B is

Ždiagonalizable with strictly real eigenvalues Kreiss and
.Lorenz, 1989 .

Let L be a matrix that consists of the left eigenvectors of
B, and let L be a diagonal matrix that contains the corre-

y1sponding eigenvalues, so that LBL s L . If Cs0, multipli-
cation of the system on the left by L and introduction of new

Žvariables ©s Lu produces a system of decoupled for C/0,
the equations are coupled, but the implications for boundary

.condition placement are unchanged equations of the form

ˆ® q l ® s f t , x , 11Ž . Ž .i i i it x

which is equivalent to an ODE along dxrdts l . As such, ani
initial condition on ® determines a unique solution. This isi
the characteristic form of the hyperbolic system.

Let there be n eigenvalues of B greater than zero, and n1 2
less than zero. The solution to a hyperbolic system exists and
is unique if n independent initial conditions are provided at
ts0, n independent boundary conditions are provided on1
xs a, and n independent boundary conditions are specified2
on xs b.

This analysis can provide information on all three compo-
nents of well-posedness, and furthermore because it relies
only on calculation of eigenvalues and eigenvectors of a ma-
trix, it is amenable to implementation in a chemical-process
simulator. However, the analysis applies only to systems with
A invertible and B diagonalizable. This precludes analysis of
more general, nonhyperbolic systems. In particular, algebraic
equations or equations that only involve partial derivatives
with respect to x make a system nonhyperbolic.

Ž .More recent work Martinson and Barton, 2001 has ex-
tended this analysis to a much broader class of nonhyperbolic
systems. First, it has been proven that a system of the form

Ž .given earlier Eq. 9 depends continuously on its data if all
Ž .generalized eigenvalues of the matrix pair A, B are strictly

real and have geometric multiplicity 1. The proof also allows
local consideration of quasi-linear systems by freezing the co-
efficient matrices. If some generalized eigenvalues of the ma-
trix pair are strictly real, but infinite and of geometric multi-
plicity 2, the solution has also been shown to depend continu-
ously on its data.

This work also developed a canonical form that may be
thought of as a generalization of the characteristic form of a
hyperbolic system. If the coefficient matrix pair forms a regu-
lar pencil, then the system is equivalent to one of the form

© ©1 1J I
N © I ©q1 2 2

N2I © ©3 3t x

f t , xŽ .1
U f t , xŽ .qC us , 12Ž .2

f t , xŽ .3

where J is a lower Jordan matrix, and N and N are lower1 2
Jordan matrices of nilpotencies n and n , respectively.1 2

Each subblock in one of the three block rows has been
shown to be equivalent to an ODE system along a particular

Ž .direction in the t, x plane. The direction is given by the
Ž .generalized eigenvalue t , r that corresponds to the sub-i i

block. For the first block row, called the hyperbolic part, the
number of boundary conditions that are required on xs a
and xs b are again equal to the number of positive and neg-
ative generalized eigenvalues, respectively, that are associ-
ated with the hyperbolic part. The number of initial condi-
tions is equal to the dimension of the hyperbolic part. If any
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associated generalized eigenvalues have nonzero degeneracy,
which is defined as one less than the geometric multiplicity
Žthe geometric multiplicity of a generalized eigenvalue is de-
fined as the dimension of the associated Jordan block; also,
the overall degeneracy of the system is defined as the maxi-

.mum degeneracy of any generalized eigenvalue , the system
does not depend continuously on its data.

No boundary conditions are required for the third block
row, which is called the differential part. The number of initial
conditions is equal to the dimension of the differential part.
If any associated generalized eigenvalues have nonzero de-
generacy, the system again fails to depend continuously on its
data.

The total number of boundary conditions that are required
for the second block row, which is the parabolic part, is equal
to its dimension. The boundary condition associated with a
generalized eigenvalue of degeneracy zero in the parabolic
part can be enforced at either xs a or xs b. No initial con-
dition is required for a subblock associated with a general-
ized eigenvalue of degeneracy zero. For a generalized eigen-
value of degeneracy one in the parabolic part, if the index of
the entire system with respect to t is less than two, the solu-
tion can depend continuously on its data and the problem
can be well posed only if the two associated boundary condi-
tions for the subblock are not enforced at the same point,
and an initial condition is also specified.

Ž .A system for which the coefficient matrix pair A, B does
Žnot form a regular pencil such as in the presence of alge-

.braic equations , but that is equivalent to an algebraic system
coupled to a PDE with a regular coefficient matrix pencil

A 0 u B 0 u C 0 u11 1 11 1 11 1
q q

A 0 u B 0 u C C u21 2 21 2 21 22 2t x

f1
s , 13Ž .

f 2

Ž . Ž Ž ..where dim C s ny r, r s max rank A q lB , with22 lg R

Ž .A , B regular and C invertible, can be handled in the11 11 22
same manner as one with a regular pencil. Because the first
block row involves only u , it can be considered independ-1
ently of the second block row. Again assuming a dynamic
simulation based on a time-evolution method, the first block
row provides the same information regarding dependence on
and location of data given by generalized characteristic analy-
sis in the regular coefficient matrix pencil case. Once the first
block row is solved for u , no additional data are required to1
uniquely determine u . The second block row is therefore2
called the algebraic part of the system.

A differential system that is equivalent to an algebraic sys-
tem can also be coupled to a regular PDE and handled in the
same way. Let N and N be two conforming nonzero nilpo-1 2
tent matrices, both either strictly upper triangular or strictly
lower triangular

A 0 u B 0 u C 0 u11 1 11 1 11 1
q q

A N u B N u C I u21 1 2 21 2 2 21 2t x

f1
s . 14Ž .

f 2

An important special case is systems that contain one or
more strictly algebraic equations. An algebraic equation con-
strains the dependent variables on e®ery surface in the inde-
pendent variable space, so a system that contains an alge-
braic equation can be viewed as one for which every surface
is characteristic. This corresponds to A s B s0 in the21 21

Ž .form just considered Eq. 13 .
If an algebraic equation is differentiated once with respect

to time, it becomes an ordinary differential equation. This is
an interior partial differential equation on surfaces of the
form xsconstant, such as the domain boundaries. In other
words, differentiation with respect to t transforms an alge-
braic equation, which constrains the solution on all surfaces,
to one that constrains the solution on domain boundaries of
the form xsconstant. If one is interested in the equations
that partially determine the solution u on a domain bound-
ary, the original and differentiated algebraic equations are
equivalent. Because it may be difficult to identify what vari-
ables belong to the algebraic part, differentiating all alge-
braic equations once and analyzing the resulting system is a
viable alternative if it produces a regular coefficient matrix

Ž .pencil. It has been proven Martinson and Barton, 2001 that
if the differentiation index with respect to either t or x is
zero, or equal to one subject to a mild rank condition, that
differentiating the algebraic equations indeed regularizes the
coefficient matrix pencil.

For semilinear and quasi-linear systems, boundary condi-
tion requirements, dependence on data, and the index are
local properties that may change with different values of x, t,
or u. The boundary-condition requirements can be deter-

Ž .mined by evaluating or freezing the coefficient matrices at
Ž .some nominal value u , x , t of interest, and examining0 0 0

the canonical form of the resulting linear system. If the sys-
tem has a parabolic part, additional assumptions are re-
quired, because the boundary-condition analysis is inherently

Ž .nonlocal. It has been proven Martinson and Barton, 2001
that the local dependence on data also can be determined by
the generalized eigenvalues of the frozen coefficient system.

Implementation
The goal of this work is to automate the analyses of the

previous sections as much as possible. In particular, determi-
nation of the index, degeneracy, characteristic directions, and
variables associated with the subsystems of the canonical form
will allow a simulator to verify initial and boundary condi-
tions, identify systems of high index with respect to the evolu-
tion variable t, and detect some ill-posed systems.

Difficulties with direct calculation of the canonical form of
Ž .a DAE Bujakiewicz, 1994 and a desire to develop methods

that can be used for nonlinear problems have led to the de-
Žvelopment of structural index algorithms Kroner et al., 1992;¨

.Pantelides, 1988 . These algorithms work with the occurrence
information to determine the minimum number of differenti-

Ž .ations required to produce a low-index zero or one system.
It is well known that DAEs of high index due to numerical
singularities may escape detection by structural algorithms.

Ž .Recent work Reisszig et al., 2000 has highlighted the fact
that structural algorithms may also o®erestimate the number
of differentiations required to produce a low-index system.
However, the low computational cost of these algorithms and
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their applicability to nonlinear and large, sparse systems al-
lows them to be used with considerable success in practical

Žapplications if new algorithms emerge that provably perform
this analysis properly, then they can be applied directly and

.the answer will be unambiguous .
A second algorithm, called the method of dummy deriva-

Ž .tives Mattsson and Soderlind, 1993 , has been used success-¨
fully in conjunction with Pantelides’ algorithm to generate
automatically a low index system that is mathematically

Ž .equivalent at least locally to the original system and explic-
itly preserves all constraints. From this dummy reformulation
of the original system, one can obtain the dynamic degrees of
freedom, which is equal to the number of differential vari-
ables. Note that this number may be correct even in the case
where the number of differentiations has been overstated by
the structural algorithm.

Both algorithms can be applied in an extremely straightfor-
ward manner to PDEs. The index with respect to t, for exam-
ple, is determined by considering all interior partial differen-
tial operators together with algebraic operators. The inci-
dence matrix for t-algebraic occurrences of the dependent
variables is formed by simply merging the incidence matrices
for u and u. Once this has been done, the two algorithmsx

Ž .will in the absence of numerical singularities produce an
equivalent system of index 0 or 1 with respect to t that re-
flects the true number of t-differential variables. The number
of initial conditions required in order to determine a unique
solution is equal to the number of t-differential variables in
the t-dummy reformulation. An analogous x-dummy refor-
mation is evident.

The most basic necessary condition for well-posedness of a
linear system is the regularity condition of Campbell and

Ž .Marszalek 1997 . A system that does not possess an output
set assignment will not satisfy this necessary condition. Pan-
telides’ algorithm also identifies systems that fail to meet this
necessary condition as a result of structural singularity, as a
preprocessing step that guarantees the algorithm has finite
termination. If the system is linear and has the general form

Ž .considered earlier Eq. 9 with Cs0, and if any generalized
eigenvalues of the coefficient matrix pair are given by 0r0,
the system also fails the regularity condition.

Routines that calculate the generalized eigenvalues and
their degeneracies for regular coefficient matrix pairs are

Žreadily available Golub and van Loan, 1989; Demmel and
.Kagstrom, 1993 . If any generalized eigenvalues are complex,˚ ¨

the system is ill-posed. Otherwise, if the degeneracy of the
system is zero, the solution depends continuously on its data.
If the degeneracy of the system is nonzero but the forcing is
simple, the system is weakly well-posed. For linear forcing
and nonzero degeneracy, it is not in general possible at
present to distinguish between weakly well-posed and strongly
ill-posed systems.

Index analysis can be used to identify the total number of
boundary conditions required to determine a unique solu-
tion. Just as index analysis with respect to t gives the number
of dynamic degrees of freedom on surfaces of the form ts
const., index analysis with respect to x gives the number of
dynamic degrees of freedom on surfaces of the form xs
const. In a dynamic simulation with t as the evolution vari-
able, all such degrees of freedom on surfaces of the form
tsconst. must be specified as initial conditions, while dy-

namic degrees of freedom on surfaces of the form xsconst.
can be specified on either xs a or xs b.

The distribution of these boundary conditions between the
boundaries xs a and xs b can be ascertained from the gen-
eralized eigenvalues. Each block in the hyperbolic subsystem
was shown to be equivalent to an ODE along a particular

Ž .direction in the x, t plane, given by dxrdtst rr . Because ai i
dynamic simulation in t is assumed, data provided at t may2
not be used to specify a unique solution at t - t , so initial1 2
conditions for these ODEs must be provided as boundary
conditions on x s a for ODEs along dxrdt ) 0, and as
boundary conditions on xs b for ODEs along dxrdt-0.

Blocks in the parabolic subsystem are equivalent to ODEs
in x, or along the direction dtrdxs0. An initial condition for
such an ODE can in general be given at either domain
boundary in x. In particular, a parabolic block of dimension
1 requires a boundary condition at either xs a or xs b.

If the only blocks with nonzero degeneracy are part of the
parabolic subsystem and of dimension 2, and the index of the
system with respect to t is 1, the solution to the parabolic
blocks will not depend continuously on their data if those
data are enforced at a single side of the domain in x. Such a
problem may still be well-posed as an evolution problem in t
if one boundary condition is enforced at each side of the do-
main in x for every parabolic block of degeneracy 1.

By the same approach but with the roles of t and x re-
versed, if the only blocks with nonzero degeneracy are part of
the differential subsystem and the index of the system with
respect to x is 1, the solution will not depend continuously
on its data if those data are enforced at a single surface. As
an evolution problem in t, the problem is therefore ill-posed.

It is possible to move beyond simply counting the number
of required boundary conditions and to identify the informa-
tion that those boundary conditions must provide. The matri-
ces P and Q that transform the system to its generalized
characteristic form can be computed stably only when the de-
generacy of the system is zero; when the degeneracy is
nonzero, stable similarity transforms exist that take both A

Žand B to upper triangular matrices Demmel and Kagstrom,˚ ¨
.1993 . While not the characteristic form of the system, this

generalized upper triangular form can be used in the same
manner as the characteristic form for a more detailed bound-
ary-condition analysis.

Consider now a linear system in generalized upper triangu-
Žlar form the generalized characteristic form can be used in-

.stead if available

PAQ© q PBQ© sy PCQ©q Pf t , x . 15Ž . Ž .t x

Ž . Ž .Let r s PAQ and t s PBQ . Because the coefficienti ii i ii
matrix pencil is assumed regular, it is not possible for r sti i
s0, and thus an output set assignment of ® to equation i isi
implied. Given this output set assignment, each dependent

Ž .variable is given as the solution to a possibly degenerate
one-way wave.

A dynamic simulation implies advancing a solution forward
in t. The values of the dependent variables ® , for which thei
associated characteristic direction r rt is nonpositive, arei i
determined at xs a by the outward-directed characteristics.
Similarly, values associated with characteristics that have

June 2001 Vol. 47, No. 6AIChE Journal 1379



speeds greater than or equal to 0 are determined at xs b.
Once the value of a dependent variable associated with an
infinite-speed characteristic is specified at one domain
boundary, it is determined at the other as well. Initial condi-
tions on ts0 determine the variables associated with charac-
teristics of speed 0 on the boundaries at all later times.

Let © , © , © , and © be the variables associated with infi-p r l d
nite-, positive-, negative-, and zero-speed characteristics, re-
spectively. The values of the dependent variables that are de-
termined by characteristics at each boundary may be written
as the solution to a system of the following form

© a, tŽ .p

© a, tŽ .lI 0 0 0 I 0 0 0p p © a, tŽ .r
0 I 0 0l © a, tŽ .d0 0 0 I s g t , x .Ž .d © b , tŽ .p0 0 I 0r

© b , tŽ .l0 0 0 Id
© b , tŽ .r

© b , tŽ .d

16Ž .

This system represents the parts of the solution that are
fully determined at xs a and xs b by characteristics; it is
not in general possible to give the righthand side analytically.
It can, however, be used to evaluate the information con-
tained in the boundary conditions. Each dependent variable
® in the generalized upper triangular form is a linear combi-i
nation of the original variables u. Transforming back to these
original variables, the system becomes

C Cp p

Cl u a, tŽ .
C s f t , x . 17Ž . Ž .d u b , tŽ .

Cr

Cd

Suppose the boundary conditions to be enforced at xs a
Ž . Ž .are given by G us h t , and at xs b by G us h t . Thea 1 b 2

boundary conditions determine a unique solution if

C Cp p

Cl

Cd

Cdet /0. 18Ž .r

Cd

Ga

Gb

If the boundary conditions are Dirichlet conditions, then Ga
and G are real matrices, and this determinant can be evalu-b
ated numerically. For Neumann and Robin conditions, the
coefficient matrix for the boundary conditions is operator val-

ued, which makes evaluation of the determinant a symbolic
calculation.

Finally, consider systems with a singular coefficient matrix
pencil. The cost of verifying the conditions under which dif-
ferentiation of algebraic equations with respect to t is guar-
anteed to produce a regular coefficient matrix pencil is greater
than the cost of simply performing the necessary differentia-
tions. After differentiation, the generalized upper triangular
form will reveal whether or not the differentiations produced
a regular pencil.

This analysis and implementation can be summarized as
follows:

1. Use Pantelides’ algorithm to obtain an estimate of the
index of the system with respect to both t and x. In the ab-
sence of numerical singularities of the relevant matrices, the
algorithm will return the true indices.

2. Use the information returned by Pantelides’ algorithm
with the method of dummy derivatives to produce two refor-
mulated systems that are by construction low index with re-

Ž .spect to t and with respect to x index 0 or 1 .
3. Differentiate any algebraic equations once with respect

to t. Calculate the generalized eigenvalues of this new coeffi-
cient matrix pair. Calculate the matrices P and Q that trans-
form the coefficient matrix pair to either its canonical form
or its generalized upper triangular form.

The results of the preceding three calculations provides a
great deal of information regarding the index and well-posed-
ness of a particular unit model. In the absence of numerical
singularities, Pantelides’ algorithm returns the index of the
system with respect to t directly. If n G2, any reasonablei
method of lines semidiscretization in t will produce a high-
index DAE.

Well-posedness information based on the results of these
three calculations can be summarized as follows:

1. If Pantelides’ algorithm terminates because it is unable
to generate a transversal with respect to all occurrences of
the dependent variables, a unique solution does not exist and
the problem is ill-posed.

2. If any generalized eigenvalues of the coefficient matrix
pair are complex, the solution does not depend continuously
on its data, and the problem is ill-posed.

3. If Cs0 and any generalized eigenvalues of the coeffi-
cient matrix pair are given by 0r0, the system fails the regu-
larity condition, so the solution is not unique and the prob-
lem is ill-posed.

4. If the number of initial conditions is less than the num-
ber of t-differential variables in the t-dummy reformulation,
the solution is not unique, and the problem is ill-posed. If the
number of initial conditions is greater than the number of
t-differential variables in the t-dummy reformulation, the
problem is overdetermined. It may be redundant or incon-
sistent; in the latter case, no solution exists and the problem
is ill-posed.

5. If the total number of boundary conditions is less than
the number of x-differential variables in the x-dummy refor-
mulation, the solution is not unique, and the problem is ill-
posed. If the number of boundary conditions is greater than
the number of x-differential variables in the x-dummy refor-
mulation, the problem is overdetermined. It may be redun-
dant or inconsistent; in the latter case, no solution exists and
the problem is ill-posed.
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6. If the number of boundary conditions at xs a is less
than the number of positive generalized eigenvalues, or the
number of boundary conditions at xs b is less than the num-
ber of negative generalized eigenvalues, the solution is not
unique, and the problem is ill-posed.

7. If any eigenvalue given by trr, r /0 has degeneracy 1,
and n -2, the solution does not depend continuously on itsx
data, and the problem is ill-posed.

8. If any generalized eigenvalue given by trr, r s0 has
degeneracy 2, and n -2, the solution may depend continu-t
ously on its data only if one boundary condition for the corre-
sponding block is enforced at each domain endpoint, and an
initial condition is also specified.

Again note that this analysis applies rigorously only to lin-
ear systems. Extensions based on local linearization can be
made to semilinear and quasi-linear systems, but very few
general statements can be made about truly nonlinear dis-
tributed unit models.

Demonstrations
Pressure-swing adsorption

Could the analyses outlined in the previous section enable
a simulator to provide some insight into the cause of the dif-
ficulties with the pressure-swing adsorption simulations? The
first step is estimation of the index. Pantelides’ algorithm dif-
ferentiates the isotherm once before terminating, indicating
that the index of the system with respect to t is 2, and thus
immediately pointing to the underlying cause of the simula-
tion failure. The original system had a high index with re-
spect to t, which was preserved by the method-of-lines
semidiscretization, and thus produced a high-index DAE.

The simulator could provide an equivalent dummy refor-
mulation of the original PDE that had index 1 with respect to
t. There are two possible dummy reformulations; one is

3r RT eB Xq q P qu s0Ý i t zP Pis1

r RT e yB iXe y q q q P q uy s0, is1 ??? 3Ž .i i t i zt P P

4

y s1Ý i
is1

1rnsat iq B y PŽ .i i i
q y s0, is1 ??? 3 19Ž .i 1rn j31qÝ B y PŽ .js1 j j

3 3
1rn Xj 1rn sat 1rnj i1q B y P q q q B P y q B PŽ .Ý Ýj j i i j i iž / ž /js1 js1

1
w1rŽn y1.xi= y y s0, is1 . . . 3.i i tž /ni

By item 3 in the analysis of the equations, only three initial
conditions should be enforced.

Discretizing this system using the same upwind finite dif-
ference scheme and employing the same BDF integrator in

Ž .time produces a low-index DAE. Once the redundant initial

Figure 7. Simulation results for reformulated problem.

conditions on q are eliminated, the solution proceedsis1 . . . 3
normally. Results for the first few operating cycles appear in
Figure 7.

In this case automated model analysis is able to immedi-
ately identify the root cause of the simulation failure. Fur-
thermore, a simulator would be able to correct the underly-
ing problem automatically, with no intervention on the engi-
neer’s part.

Compressible flow
What about the difficulties with the compressible flow sim-

ulation? Can a process simulator use these tools to help get
this simulation working?

In quasi-linear form, the model equations are

1 0 0 0 0 r
u r 0 0 0 u
h 0 0 r 0 p
0 0 0 0 0 h
0 0 0 0 0 i t

u r 0 0 0 r
2u 2 ru 1 0 0 u

q pyuh py rh u y ru 0
h0 0 0 0 0
i0 0 0 0 0 x

0
0
0

s . 20Ž .py g y1 r iŽ .
1

2iy hq u
2
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Pantelides’ algorithm, applied to determine the index with
respect to t, locates no structurally singular subsets of equa-
tions. The index with respect to t is in fact 1. No dummy
reformulation is necessary.

Differentiating the algebraic equations with respect to t
produces

1 0 0 0 0 r
u r 0 0 0 u
h 0 0 r 0 p

1yg i 0 1 0 1yg rŽ . Ž . h
i0 u 0 y1 1 t

u r 0 0 0 r 0
2u 2 ru 1 0 0 u 0

q s .p 0yuh py rh u y ru 0
0h0 0 0 0 0
0i0 0 0 0 0 x

21Ž .

The system is quasi-linear, so the coefficient matrices must
be frozen at a point of interest. Consider the domain bound-
ary at xs10, and let conditions at xs10 be r s79.6 kgrm3,
us0.00 mrs, ps2.76 MPa, hs86.6 kJ, and is86.6 kJ. The
frozen-coefficient matrices are submitted to an eigensolver,
such as the LAPACK routine dgegv. The result is three char-
acteristic directions parallel to the t coordinate axis and two
complex characteristic directions.

The system is thus ill-posed in a neighborhood of these
nominal values, and cannot be solved by a simulator as part
of a dynamic simulation. A process simulator could then ad-
vise the engineer that the equations, as entered, are ill-posed,
at least in the vicinity of the initial conditions. On review of

Ž .the input, the sign error made in the energy balance Eq. 4
should be corrected

rh q ruhqup s0. 22Ž . Ž . Ž .t x

The analysis can then be repeated for the corrected sys-
tem. Now, all generalized eigenvalues are strictly real. Three
are zero: the other two are "220.3. The corrected problem is
well-posed.

Simulation results for the corrected problem appear in Fig-
ure 8. As expected, a rarefaction enters the pipe from both
ends. This time, the simulation failure was the result of a
simple sign error on the engineer’s part. This sign error pro-
duced a strongly ill-posed system, which can be detected by a
process simulator through the use of the analyses developed
in this article.

Electric power transmission
Could the automatable analyses presented in this article

help uncover the cause of the electric power-line simulation
failure? The index of the system with respect to both t and x
is zero; Pantelides’ algorithm would correctly return no dif-
ferentiations. Therefore, no reformulation is necessary. The
coefficient matrices are linear and have two generalized
eigenvalues, "182,879, each of geometric multiplicity 1. The

Figure 8. Corrected pipe pressure profile.

problem, as the engineer has defined it, is thus ill-posed, be-
cause the two boundary conditions enforced at the substation
do not determine a unique solution. In this case, it means
that the engineer must obtain data from another substation
at the other end of the line, in order to provide the required
boundary condition at that end of the domain.

Also, once these measurements have been taken, the char-
acteristic speeds give a time-step size restriction. For a finite
difference scheme, the time step must be limited by a CFL

Ž .condition Strikwerda, 1989 . Here, that restriction is D tF
D xr182,879.

Why, then, did the simplified model work so well? Analysis
of the simplified model shows that the index with respect to t
is 2. No initial conditions may be arbitrarily specified. Initial-
izing u at an inconsistent value caused the small initial jump
in current shown in the simulation results. So, there was in
fact a problem with the simplified model, but it was less seri-
ous than the outright failure that befell the simulation based
on the full model. Also, the canonical form of the simplified
system consists of a single degenerate parabolic block with
simple forcing. Two boundary conditions at the same domain
endpoint therefore do determine a unique solution of the
simplified model. Finally, there is no CFL condition limiting
the time step.

The generalized eigenvectors form the transformation ma-
trices P and Q

y1.19Ey3 1.00Ps
1.19Ey3 1.00

y4.21 Eq2 4.21 Eq2Qs 23Ž .5.00 Ey1 5.00 Ey1

that take the system to its canonical form

y5.47Ey6 1© q ©t x5.47Ey6 1

y1.40 Eq4 1.40 Eq4q ©s0. 24Ž .
y1.40 Eq4 1.40 Eq4
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Several things are apparent from the canonical form. As
noted from the eigenvalues, one boundary condition must be
enforced at each end of the domain. Furthermore, the math-
ematical properties of the simplified model are very different
from those of the full model. The simplified model is parabolic
and equivalent to an ODE in x, while the full model is hy-
perbolic. The analyses uncover these differences, and can be
used to provide very understandable feedback to the engi-
neer; specifically, that one boundary condition at the left do-
main endpoint must be removed, and one boundary condi-
tion must be enforced at the right endpoint. This means go-
ing out into the field and obtaining a new set of measure-
ments at a new location, or inferring new information from
existing data.

Compressible flow re©isited: Adapti©e boundary conditions
The boundary-condition evaluation method described ear-
Ž .lier Eq. 18 can be modified slightly to create a method by

which a simulator could automatically adapt boundary condi-
tions as required to form a well-posed problem.

Ž . ŽThe Courant-Isaacson-Rees CIR scheme Courant et al.,
.1952 solves hyperbolic partial differential equations using a

linear finite difference approximation to the characteristic
form of the model equations. Consider a quasi-linear hyper-
bolic system in t and x over the domain 0F xF1, tG0:

u q B u , t , x u s f u , t , x . 25Ž . Ž . Ž .t x

Let the domain be discretized into a set X of equispaced
points, and let x g X be a particular point in that set. Initiali

Ž .data give the values of the dependent variables u x , 0 .i
This scheme evaluates the coefficient matrix B at each

node. For example, consider the ith node in Figure 9. The
frozen coefficient system is

u q B u 0, x , 0, x u s f u 0, x , 0, x . 26w x w x Ž .Ž . Ž .t i i x i i

Now, let L and L contain the left eigenvectors and the
w Ž . xeigenvalues of B u 0, x , 0, x , respectively, so the charac-i i

Figure 9. Stencil for CIR scheme.

teristic form of the frozen coefficient system is

du
L s Lf u 0, x , 0, x along diag Idxw x Ž .Ž .i idt

sdiag L dt . 27Ž . Ž .

Ž .This system Eq. 27 is then used as an approximation to
the system after a small increment h in time t. Using the
explicit Euler finite difference approximation to the direc-
tional derivative along each characteristic given equations of
the form

u h , x y uUŽ .i i
l s l f u 0, x , 0, x , 28w x Ž .Ž .i i i iž /h

where uU is the vector of values of u at the foot of the ithi
characteristics of the frozen coefficient system, calculated by
interpolation between values at grid points on ts0. For ex-

U Ž .ample, in Figure 9, u s u x , 0 is the value at the foot ofa a
characteristic a.

U Ž U .Let ® s l u and g s l f u , 0, x . Then the equationsi i i i i i i i
Ž .that give the value of u x , h arei

Lu x , h s©q hg . 29Ž .Ž .i

This is the CIR scheme. For linear systems with simple or
linear forcing, the coefficients on the left- and righthand sides
are constant, so calculating new values after a time step at
each node only requires solving the same system with multi-
ple righthand sides.

Performing the same approximation at a boundary node,
but retaining only the outward-directed characteristics, pro-
duces the system that partially determines the solution at that

Ž .boundary Eq. 18 . If the characteristics associated with each
line in that system are traced back from the next time tq h
to the current time t, and interpolation is used to determine
the values at the feet of those characteristics, the righthand
side is given in the same manner as in the CIR scheme, and
is depicted graphically in Figure 10.

Performing Gauss elimination with row and column pivot-
Ž .ing on this possibly underdetermined system gives a number

of pivot variables that are determined by the characteristic
information. The simulator could take this information, to-

Figure 10. Modified CIR scheme for boundary point.
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gether with the flowsheet topology and a specification of what
variables refer to the same quantities in different unit models
Žfor example, r in the pipe model refers to the same quantity

.as r in the model for valve 1 , and attempt to set DirichletA
conditions on the remaining variables by equating values at
the boundary to those in the adjacent unit, in order to form a
fully determined system.

For this problem, consider use of this adaptive boundary-
condition scheme at the pipe ends, together with a Godunov

Ž .scheme Godunov et al., 1962 using Roe’s Riemann solver
Ž .Roe, 1986 on the domain interior. Using the LAPACK rou-
tine rgg to solve the generalized eigenvalue problem, and al-
lowing the quantities that appear in both the pipe and the
valve models to be u, r, p, and i, the method described is
able to adapt the boundary conditions as needed to maintain
a well-posed problem.

Possible characteristic directions at the domain endpoints
and corresponding boundary-condition regimes appear in
Figure 11. Three characteristics directed into the domain
correspond to supersonic flow into the pipe at that end, and
three boundary conditions are required. Two characteristics
directed inward and one outward occurs when flow enters
the pipe at subsonic conditions, and two boundary conditions
are required. One characteristic directed inward corresponds
to subsonic flow out of the pipe, which requires one bound-
ary condition. Finally, no inward characteristics represents

Ž .supersonic or choked flow out of the pipe, and no boundary
conditions are required. The conditions at the two ends of
the pipe may occur independently in any combination. Be-
cause it is based on the characteristics, the modified CIR
scheme at the boundary together with the boundary condi-
tion selection method can correctly adapt to any combination
of these flow regimes.

The pressure profile appears in Figure 12. The dual rar-
efaction shown earlier in the short-time profile is replaced
quickly by the evolving quasi-steady pressure gradient.

Ž .The boundary condition changes at the left end xs0 ap-
pear in Figure 13. The short-time results appear in the bot-
tom frame, and results for the entire simulation appear in the

Ž .upper frame. The method correctly adapts from one r to
Ž .two r and i boundary conditions after the flow reversal. It

correctly adjusts again when a sonic transition occurs, and
Ž .enforces a third p boundary condition.

Boundary-condition changes enforced by the method at the
Ž .right end xs10 appear in Figure 14. No flow reversal oc-

curs, and the method correctly enforces a single boundary
condition on r until the sonic transition at approximately 0.1
s. The method removes this boundary condition when it is no
longer needed, and obtains the solution at the boundary en-
tirely from characteristic information after the sonic transi-
tion.

Without any intervention from the engineer, or even any
knowledge of the mathematical changes in the boundary-con-
dition requirements for well-posedness that occur at flow re-
versals and sonic transitions, a simulator employing this
method could successfully adapt the boundary conditions. The
engineer need only provide information regarding what vari-
ables refer to the same physical quantities in the different
unit models.

Boundary-condition placement, stability, and continuous
dependence on data

Boundary-condition placement for partial differential
equation models is typically motivated by the need to formu-
late a well-posed problem. Split boundary conditions for or-
dinary differential and differential]algebraic models are of-
ten motivated by stability considerations. These two analyses
are very different, even when they produce the same results.

For example, consider a material balance for a single reac-
tive species in a PFR in the presence of dispersion. For
incompressible flow with a constant superficial velocity,

Figure 11. Characteristics and boundary-condition requirements for Euler equations of compressible flow.
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Figure 12. Pressure profile.

isothermal operation, irreversible reaction, and a first-order
Žrate law, the material balance written as a first-order sys-

.tem is simply

C s D V yUV y kCt a z

0sC yV , 30Ž .z

where C is the concentration of the species of interest, V is
the first partial derivative of C with respect to position z
along the length of the reactor, U is the superficial velocity,
D is the diffusivity, and k is the reaction rate constant.a

Figure 13. Results at left end of pipe.

Figure 14. Results at right end of Pipe.

In canonical form, the system is

U U0 0 C 1 0 Cq
1 0 V 0 1 Vt z

0 y1
UCUq s0, 31Ž .k y VDa

where CU syCrD . It consists of a single degeneratea
parabolic block, much like the simplified telegrapher’s equa-
tions. However, here n s1, so if two boundary conditionst
are enforced at the same side of the domain, the problem
will be ill-posed, because it does not depend continuously on
its data. One boundary condition must therefore be enforced
at each side of the domain.

At steady state, the system is

0 y1
1 0 C Ck Uq s0. 32Ž .y y0 1 V Vz Da Da

The stability of this system as an evolution problem in z is
determined by the eigenvalues of the coefficient matrix, which
are

2U 1 U 4k
lsy " q . 33Ž .( 22 D 2 DDa aa

2 2 Ž .Because D ,k)0, U rD q 4krD ) UrD , and thus' Ž .Ž .a a a a

there is one positive and one negative eigenvalue. This means
that the system is unstable as an evolution problem in both
the forward and backward z-directions, and should instead
be formulated as a split boundary-value problem.

Given a reaction zone of length L, and assuming that the
reaction zone is fed by and flows into well-mixed vessels, the
well-known closed-closed Danckwerts boundary conditions

Da
C sy C qCvessel zU

C s0 34Ž .z

produce both a well-posed initial-boundary value problem and
a stable steady-state problem.
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Conclusions
Modeling support and automated analysis tools have

proven crucial for flow-sheet-scale dynamic simulation. Most
existing tools are limited to models that consist only of ordi-
nary differential and algebraic equations. This article out-
lines new model analysis tools that can be applied to models
that include partial differential equations. In particular, they
allow a simulator to identify models that are ill-posed due to
model inconsistency or incorrect initial or boundary condi-
tions. These tools also identify some models that do not de-
pend continuously on their data, possibly as a result of a sim-
ple sign error on the part of the engineer. Finally, they can
identify some models that are high index with respect to t. In
each case, numerical method-of-lines solution methods can-
not be expected to generate meaningful results. The tools
therefore allow a simulator to screen models and identify the
true cause of a simulation failure that results from the funda-
mental properties of the model equations themselves.
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