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Abstract

We consider the dynamic optimization of chemical processes with changes in the number of equilibrium phases. Recent work has shown that
transitions in the number of phases can be modeled as a mathematical program with equilibrium constraints (MPEC). This study generalizes
the MPEC to consider dynamic characteristics. In particular, we describe a simultaneous discretization and solution strategy for dynamic
optimization problems with complementarity constraints. These discretized problems are then solved with IPOPT-C, a recently developed
barrier method for MPEC problems. Our approach is applied to two distillation examples. In the first, we consider the optimal startup of a
binary batch distillation problem. In the second, we consider the dynamic operation of a cryogenic column for the separation of natural gas
liquids. Both cases demonstrate the effectiveness of the approach on large scale MPEC problems.
© 2004 Published by Elsevier Ltd.
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1. Introduction ables(Barton & Park, 1997pr by using complementarity

conditions (with non-negative continuous variahtesnd y

Recent developments in numerical solvers and modeling alternately set to zero). These additional variables can then
platforms have led to widespread interest in the simulation be embedded within optimization problems.
and optimization of dynamic process models. Along with  The incorporation of discrete decisions using either binary
the optimization of dynamic models in process engineering, or integer variables leads to mixed integer optimization prob-
it becomes important to consider the modeling of discrete lems. Here, several studies have considered the solution of
events in many dynamic simulation and optimization prob- Mixed Integer Dynamic Optimization (MIDO) problems. In
lems. In chemical processes, examples of these phenomengatrticular,Avraam, Shah, and Pantelides (19¢#\veloped
include phase changes in vapor-liquid equilibrium systems, a complete discretization of the state and control variables
changes in modes in the operation of safety and relief valves,to form a mixed integer nonlinear program. On the other
vessels running dry or overflowing, discrete decisions made hand,Allgor and Barton (1999apply a sequential strategy
by control systems and explosions due to accidents. Theseand discretize only the control profile. In this case, careful
actions can be reversible or irreversible with the state profiles attention is paid to the calculation of sensitivity information
and should be modeled with appropriate logical constraints. across discrete decisions that are triggered in time.
An interesting presentation on modeling discrete events can In contrast to mixed integer formulations, many discrete
be found inBarton, Allgor, Feehery, and Galan (1998he decisions can be modeled through complementarity rela-
simulation of these events is often triggered by an appropri- tions. These include recent work in modeling dynamic hy-
ate discontinuity function which monitors a change in the brid systems(Heemels, DeSchutter, & Bemporad, 2001;
condition and leads to a change in the state equations. Thes&an der Schaft & Schumacher, 1998y well as the use of
changes can be reformulated either as binary decision vari-complementarity to model disjunctior{Stein, Oldenburg,

& Marquardt, 2004)Introducing complementarity relations
mspondmg author. Telg 1-412-268-2232: leads to a nonline_ar programming formulation withou_t in-
fax: +1-412-268-71309. teger variablesStein et al. (2004gnlso propose alternative

E-mail addressbiegler@cmu.edu (L.T. Biegler). formulations for modeling discrete decisions using comple-
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mentarities. Nevertheless, the introduction of complemen- results presented here are the most extensive dynamic opti-

tarity conditions does introduce additional nonconvexity into mization applications of nonlinear programming algorithms

the problem, which would not be observed, for instance, in with MPEC's.

the NLP subproblems of a mixed integer programming ap- The next section provides the general problem statement

proach. for MPECs that occur in dynamic systems as well as our so-
In leading to a nonlinear programming framework, com- lution strategy for solving these problems.3ection 3 we

plementarity conditions can be handled naturally through ap- outline dynamic optimization problems with complementar-

plication of barrier methoddRaghunathan & Biegler, 2003) ity for the distillation cases that we consider. In addition to

This class of problems can also be generalized to Mathe-a general model that includes vapor holdup we describe a

matical Programs with Equilibrium Constraints (MPECs). simplification with only liquid holdup. IrSections 5 and,6

MPECs represent an exciting new field in mathematical pro- we consider two cases, a batch distillation and a cryogenic

gramming. While applications of MPECs have long been column, respectively. In both cases, the optimal profiles con-

recognized in game theory, transportation planning, eco- tain transitions with changes in the number of phases on all

nomics and engineering design, little work has been done in of the trays. Concluding remarks are then giveSéttion 7

developing efficient algorithms for their solution. A broad

survey of these applications can be foun¢Hiarker & Pang,

1990; Luo, Pang, & Ralph, 1996)n process engineer- 2. Dynamic optimization with complementarity

ing, these problems stem from bilevel and multilevel opti-

mization problemgClark & Westerberg, 1990; Floudas & The general DAE optimization problem can be stated as

Grossmann, 1987; Sahin & Ciric, 19983 well as optimiza-  follows:

tion of hybrid (discrete and continuous) syste(@tein et al., .

2004) Included in this class are optimization problems with Zd(l)’zj(*,}![,‘(,),,f,p

phase equilibrium constraints, as in equilibrium stage pro-

cessegRaghunathan & Biegler, 2003and cellular models ~ St. Semi-explicit DAE model:

based on metabolic pathwafRaghunathan, Perez-Correa, dz,(r)

©(za(ty), za(ty), ulty), ty, p) 1)

& Biegler, 2003) = F(za(D), za(1), u(®), 1, p) ()
In this work, we consider the optimization of differen-

tial algebraic systems with complementarity constraints. 0=G(za(®), za(®), u(®). 1, p) 3)

The complementarity constraints posed here model dis-q _ Zay () Lz, = 0 )

continuous system behavior such as appearance of phases —

and liquid overflows. The dynamic problem is discretized Initial conditions:
in time using collocation on finite elements to yield an 0

MPEC. To solve the MPEC we apply a primal-dual interior 4@ = 2d ()
point approach. The interior point approa@®aghunathan  pgint conditions:

& Biegler, 2003)is particularly useful in the context of

large-scale inequality constrained optimization that often Hs(za(ts), za(ts), u(ts), ts, p) =0 fors € {1,... ,ng} (6)
results from a spatial or temporal discretizatigfliachter,
2002) In particular, we have incorporated the MPEC for-
mulation into the IPOPT cod@Vé&chter, 2002; Wachter & b <za <Y
Biegler, 2004)along with algorithmic modifications to treat zﬁ < 2,00 < Z(lll
the complementarity constraints more efficiently. This code . U

(called IPOPT-C) has been interfaced to the AMPL model- 4~ = u() =u ()

ing system and has been tested on a set of library MPEC pt < p < pV

problems(Leyffer & Fletcher, 200Q) Preliminary results (L < i < U

(Raghunathan & Biegler, 2003how that this implementa- F=0=

tion compares well against competing barrier algorithms. In where¢ is the scalar objective functiorf; the right hand
previous work, we have tested this approach on a numbersides of differential equation constrainis, the algebraic

of steady state process optimization problems with phaseequation constraints; the additional point conditions at
equilibrium constraints. These include distillation optimiza- fixed timesi,, z4 the differential state profile vectors?, the

tion problems with disappearing vapor and liquid phases initial values of differential state profile vectey, assumed

on equilibrium stages. Preliminary resu{Baghunathan & consistent z, the algebraic state profile vectors,; the
Biegler, 2003)show that this approach leads to better and subvector of algebraic state profiles with= 1, 2, u the
more uniform performance than the smoothing approach control profile vectorsp the time-independent parameter
used in our previous studig¢sopal & Biegler, 1999; Lang  vector, and; is the final time.

& Biegler, 2001) We demonstrate the effectiveness of our  Note that bounds on the state variables allow us to handle
approach on two challenging distillation operations. The path constraints without loss of generality. Included among

Bounds:
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the algebraic constraints are complementarity conditfdhs  From (10), the differential variables are required to be con-
betweenz,, andz,, subvectors of the vector of algebraic tinuous over time, while the control and algebraic variables
variablesg, for all timer. We use the ‘L” notation to define are allowed to have discontinuities at the boundaries of the
complementarity between the arguments, i.e., elements. It should be mentioned that with representation
i i i ; (10), the bounds on the differential variables are enforced
Zél) ®, Zéz) 0 =0 Z‘(ll) (I)ZgZ) =0 (8) directly at element boundaries; however, they can be en-
for each of the componentf the subvectors and all time ~ forced at all collocation points by writing appropriate point
. In the above!” refers to theth component of,,,. Finally ~ constraints(6). N
we assume that for specified valueszgf#), u(r) and p, For this study, we assume that the number of flnlt_e gle—
the algebraic equations and complementarity constraints carfMentsne and their lengths are pre-determined. Substitution
always be solved for the the algebraic variablgss). This of Egs. (9)—~(12)into (1)—(7) leads to the MPEC problem

is analogous to thindex 1property for the DAE. given by:
This DAE op?imiz.ation problem is convert(_ed to algebra_ic min fx, w, y) (13)
form by approximating state and control profiles by a family xeR",weR™, yeR"
of polynomials on finite elementsp(< 11 < -+ < the =
st. ,w,y) =0, ,w,y>0 14
tr). Here, we use a monomial basis representgfiaer & cx w, ) Y (14)
Ascher, 1987Yor the differential profiles, as follows: whyD =0, i=1...,m (15)
neol t—t1\ [dzg where we now consider an augmented set of variables
za(t) = za,i—1 + hi Z 2 (h—> (E) (x, w, y) andw® refers toith component ofv. For simplic-
q=1 ! b4 ity of presentation, we assume only simple bounds on the

tiig <t<t (9) variables. General inequality constraints can be easily con-
) ) ] ) verted to the above form by addition of slack variables. In
wherez, ;-1 is the value of the differential variable at the be-  1he apove formulation, we identify, y with the discretiza-
ginning of element, 1; the length of element (dzy/dn); 4 is tion of z,,, z, respectively. The discretization of the differ-
the value of its first derivative in elemenat the collocation ential variablez,, algebraic variables, with the exception
pointg, ands2, is the polynomial of order ncol, satisfying o ;.. the controls: and the parameter vectprconsti-
2,0 =0 forg=1,... ncol tute t_h_e vector. Note that 'Fhe a_ldd|t|on of complementarity
conditions(15) leads to a violation of convergence assump-

2 =34 forg,r=1,...,ncol _ ) _ )
a(Pr) @r 1 tions for most nonlinear programming algorithms (e.g.,

wheres, . is the Kronecker delta ang, is the location of linear independence of the constraint gradients) and can
therth collocation point within each element. Continuity of cause these algorithms to fallnitescu (2001 andFletcher,
the differential profiles is enforced by Leyffer, Ralph, and Scholtes (200Bave shown theoreti-
ncol cal evidence for good local convergence behavioadfve
ti—ti-1\ (dzq setNLP algorithms on MPECs. Sequential Quadratic Pro-
T Q. ——=)(=£ . 10 . : -
2di =2di-1+ l; "( hi ) ( dr >i’q (10) gramming (SQP) algorithms such as filter-S@Retcher,

Gould, Leyffer, Toint, & Wachter, 1999nd SNOPT(Gill,
Here, Radau collocation points are used because they allowMurray, & Saunders, 2002dre some examples aictive
us to set constraints easily at the end of each element andsetalgorithms that exhibit favorable convergence behavior
they stabilize the system more efficiently if high index DAEs on MPECs. However, active set algorithms are prone to in-
are present. In addition, the control and algebraic profiles areefficiencies on large-scale inequality constrained problems.
approximated using a similar monomial basis representationThis is largely due to the combinatorially intensive subprob-

which takes the form: lem that arises when identifying tlaetiveconstraints at the
ncol solution. Instead, recent work on interior point algorithms

() = qu (%) Zaig (11) fqr NLPs h_as shown that th_e)_/ greatly_reduce this defi-
=1 i ciency, paving the way for efficient solution of large-scale

nonlinear programming problems. The effectiveness of in-
neol t—tiq terior point methods has been demonstrated on a number of
u@) =y Yy ( e ) Uig 12) process engineering problerf@Gervantes & Biegler, 1998;
q=1

Cervantes, Wachter, Tutlncu, & Biegler, 2000; Wachter,
Herez,,;, andu; , represent the values of the algebraic and 2002) This has been our motivation in looking to an inte-
control variables, respectively, in elemenat collocation

rior point algorithm for solving MPECs. More recently, a
point g. v, is the Lagrange polynomial of order ncol satis-

large scale interior point algorithm, IPORWa&chter, 2002;

fying Wachter & Biegler, 2004has been developed with proven
convergence behavidiwachter & Biegler, 2004and fa-

Yy(pr) =84, forg,r=1,..., ncol vorable practical performand@Véachter, 2002pn a large
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class of problems. In the remainder of the subsection we guarantee to a smooth solution of the MPEC. A brief sum-
present an extension of interior point methods for handling mary of the properties of the algorithm applied to the relaxed
complementarity constraints and also discuss the issue ofproblem will be provided in the following. We can restate
incorporating this extension within an NLP interior point the barrier problem by addition of non-negative slack vari-

algorithm such as IPOPT. ables,s € R™ for the inequality relaxation of the comple-
mentarity constraints and appending the logarithmic barrier
2.1. NLP interior point method term to the objective as follows:

A naive application of the NLP interior point algorithm g e yerm serm fix, w, y)

reformulates the MPEC proble¢h5) by replacing the bound ' ' m ,
constraints with logarithmic barrier terms as, —u (Z?zl In(x®) + 371 In(w®) + Z |n(y(’)))
i=1
min flx, w, y) —u " Inis®)

xeR" weR™ yeR™

- ) = o - 0 st. cx,w,y)=0
- (; In(x®) + ; In(w®) + ; In(y )) (16) Wy+ s = 8. -

St. clrw, ) =0 Introducing multipliers for variable bounds leads to the fol-

Wy=0 lowing optimality conditions of17):
where © > 0 is the barrier parameter an := Vi flx, w, ¥) + Vic(x, w, YA — A, =0
diagw®, ..., w™) is m x m diagonal matrix with COM- ¢, f(x. w, y) + Vye(x, w, Yhe + Yice — b = 0

ponents ofy on the diagonal. The algorithm is initialized
with © > 0 and solved to a tolerance that is proportional
to u. Subsequently, the barrier parameteis reduced and XAy —pen =0

a sequence of problems is solved for decreasing values of Wi,, — ue,, =0 (18)
. The limit of the solutions ag. — 0 can be shownto  y, _ . —0

be the solution to the original problem under reasonable .~
assumptions. For a positive value of the barrier parameter,
none of the variables can lie at their bound as this will ¢(x) =0

result in an unbounded objective value. Hence, solutions Wy+s —éu =0

lying at a bound can only be obtained in the limit & 0). . . .

Refer toFiacco and McCormick (1968)ndForsgren, Gil, ~ Wheree, is a vector of all ones of dimension A, Aw, 4y,
and Wright (2002)for existence of barrier solutions and “*cc & the multipliers for the nonnegativity bounds on vari-
convergence of barrier solutions to a solution of the NLP. @blesx, w,y, s respectively and.c are multipliers for the
Unfortunately, the complementarity constraints in the above constraintc. The above approach of relaxing the comple-
barrier problen(16) requires at least one af® andy® to mentarity constraints can b_e eaglly mcorporg_ted.wnhm most
vanish, and results in a problem that has no interior feasible INt€rior point algorithms with minimal modifications. The
points. This might be considered as a limitation in using a Proposed framework for solving MPECs has been incorpo-
NLP barrier algorithm for the solution of MPECS which rated within such an NLP interior point algorithm, IPOPT.

require the eX|ster_10e of a s{nctly feasible '”“?”0“ In the 2.3. IPOPT-C—extension to IPOPT for solving MPECs
following we describe a modification to the barrier problem

Vy flx, w, y) + Vye(x, w, ic + Whee — 4y, =0

Sheec — mem =0

that avoids this limitation. IPOPT (Wéchter, 2002; Wachter & Biegler, 200&) a
. large-scale interior point algorithm for solving NLPs. The
2.2. Relaxed barrier problem algorithm solves the problei17) approximately for a fixed

o . ] barrier parametey and then reduces it successively. IPOPT

The interior point method for NLPs has a straightforward  g5pjies Newton’s method to the optimality conditions of the
extension to solving MPEC problems. The complementarity parrier problemg¢18) to determine a search direction which
constraint, will yield the next iterate. The step size is first reduced so
that the resulting iterate satisfies the bounds on the vari-
ables. However, this is not sufficient to ensure global con-
wheres > 0 renders the problem strictly feasible. Note that vergence of the algorithm for iterates far removed from a
u is the same as the barrier parameter. The interior point solution. A filter line search method is employed to obtain
algorithm will drive the barrier parameterto zero as part  an iterate that has sufficiently decreased the objective value
of the solution process and hence, the complementarity con-or the constraint infeasibility. More details on the algorithm
straints are recovered in the limit. The strength of the relax- and convergence can be obtained frdfachter and Biegler
ation lies in our ability to provide a fast local convergence (2004)and the thesis dfVachter (2002)

w?yD =0 isrelaxedas w®y? < su
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This interior point algorithm has been interfaced to AMPL where M;, L;, V;, F; are the holdup, liquid flowrate, vapor
(Fourer, Gay, & Kernighan, 2004yhich provides the al-  flowrate and feed rate on thith tray, respectively.
gorithm with exact derivative (first and second) information =~ Component balance on each tray
and can also easily communicate complementarity between For each componente COMP, we have:
variables through theomplement®perator. The interface _
to AMPL has been extended to take advantage of the op- — >/ — Loxp j— Viy1j — Lix1j + Flz{/
erator and parse the relaxed complementarity constraint to '
IPOPT. We refer to IPOPT with the extended features to d; ;

handle complementarity constraints as IPOPT-C. The step gy — /- 1Yi-Lj T Lita¥ivsj = Viyij — Lixij
calculation in IPOPT-C differs from IPOPT in that the Jaco- +F,-z{j i € TRAYS\ {1, N}
bian of the optimality condition§l8) is modified so that the (20)

system is nonsingular, even in the limit as the barrier param- dMy;

eter is driven to zerqy — 0. This is necessary to show that ~ dr VN‘?yN‘1’<i = VNN = DXnj = Lnxw,j

the algorithm solves a well-posed set of equations at every +FNZ{VJ

iteration. Further, the modification is made proportional to

the error in the optimality conditions at the current iterate. M; ;(0) = Ml?j i € TRAYS

This ensures that the modification decreases as we approach

a solution of the MPEC. IPOPT-C has been shown to be su-wherep; ;, z,f xi. j, vi.; represent the hold-up, feed, liquid

perlinearly convergenfRaghunathan & Biegler, 20049 a  and vapor composition of componejbn theith tray, re-

solution of the MPEC. Encouraging practical performance spectively.

on a large class of MPEC test problems is also reported in Energy balance on each tray

the same paper. In the following U;(x;, y;, T;), hﬁ(x,-, T;) and i} (y;, Tp)
define the tray holdup internal energy and the specific heat
content of liquid and vapor emanating from tiayrhese are

3. Digtillation models functions of composition of the mixture and tray tempera-

ture. For brevity we will avoid stating the argumentsigf

We now consider two dynamic distillation models used hf andh?.
in our later MPEC case studies. The two models are index U
one and mdex_two_, _res_pecnvely, and_the second considers 2%1 _ L2h12 — Vihy — Llhll + F1h{ +0,
the common simplification of neglecting vapor holdup. In  df
both cases, we apply a generalization of the complementarity ¢, ) . ) . 7
conditions used for phase equilibrium that is described in —5~ = Vi-thi_1 + Litahig — Vil — Lihi + Fih;
(Raghunathan & Biegler, 2003) _

For these models we assume potential feeds on all of the i € TRAYS\ {1, N}
trays and adopt the following set notation. The number of

, i X . dUy
trays in the column is assumed to Nenclusive of both the —N — Vy_1hY% . — VyhY% — Dhly — Lk
. . _dr —1PN-1 N N N

reboiler and condenser, with trays numbered from the bot
tom. The set TRAYS= {1, ..., N} will denote the num- JrFNhf — 0.
bered trays and index,subscripted to a quantity refers to N
that quantity asspmated with tray,The set COMP denotes Ui(0) = U9 i e TRAYS
the components in the column. The superscriptsdv refer !
to the quantities associated with the liquid and vapor phases
respectively.

The model equations are:

(21)

‘with hlf representing the specific enthalpy of the feed stream
to trayi and Q, and Q. are the reboiler and condenser heat

loads.
Total Mass balance on each tray . . . _—
Thermodynamic equations governing equilibrium

dm

dtl Ly Vi—Li+ P For each tray € TRAYS
iy vi,j = BiKi j(Ti, P;, xj)x;j; j€ COMP

i

— =Via+Lia—Vi—-Li+F

dr i—-1 i+1 i i i 0= Z Vij— Z Xij

i € TRAYS\ {1, N} (19) JeCOMP jeCOMP

dam
TN:VN_l—VN—D—LN+FN o<M 1v>0

M;(0) =M i€ TRAYS 0<M! LV =0
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From (22), note that the complementarity constraints imply mentarity conditions as,

the following
1
M;, M} > 0, theng; =1
=0< M}, theng <1 (23)
M!>0=M}, theng; >1.

Thus, the equilibrium relation is enforced only when lig-

uid and vapor are present on a tray and relaxed otherwise. M’ + M

Gopal and Biegler (1999 erive the above condition22)

as the reformulation of Gibbs free energy minimization on

each tray; which is the thermodynamic condition for the
existence of a phase.

Density, holdup, pressure defining equations

For each tray € TRAYS

; 1
P —
Z./ecompxi,jpj
pi = i
Ryasl;
d\? m!
V,-VOI =7 <§) leate— 7;
i
MY = vVvol (24)
i =PV
M; =M+ M!

Ui = MP(h? — pV?) + M (hl — p;V)

~ MP(h! — RgasT;) + M'h!

where Ryss is the ideal gas constant® denotes the vol-
ume of vapor on each tray! andV¥ are the specific molar
volumes for the liquid and vapor, respectivelyjs the di-
ameter of the platef/pjate is the height of the plate angl;
is the liquid density of componentat some reference tem-
perature. These data are taken fr@@edersen, Fredenslund,
& Thomassen, 1989)

Liquid and Vapor flow definitions

All trays are modeled so that the liquid flow from a

tray occurs only when there is a certain amount of liquid

holdup. The liquid flowrate from trays can be stated as,

0, if M,l < Mmin,i
L; =

kg(M! — Mmin )15, otherwise

i € TRAYS\ {1}

wherek; > 0 is a constant and/min; iS the minimum

holdup required on each tray in order to have a liquid flow
from the tray. This condition can be modeled using comple-

Mh=

M} — Mini = M;™ = M,
Li = ka(M; )™ .
LA+ gl — (25)
M "My =0

Mt M >0

for all i € TRAYS \ {1}. The non-negative variables
represent respectively the amount of liquid
holdup above and below the threshold for liquid flow. The
complementarity condition ensures that no more than one
of Mf’*, Mf’_ assume a non-zero value. The vapor flow on
the trays can then be defined as,

M;

H, i € TRAYS
head(l)/—2)2
H'; =l {Pi1— P)— H), i€ TRAYS\ (N}
' ’ 26)
Hg,N = aﬁeacﬁPN — Pout
Vi = e (HL )%° i € TRAYS

Whereozf1ead Apead are constants _for de_fiping the liquid and
vapor headsqy ;. is @ constant in defining the vapor flow
and Pyt is the top pressure controlling the withdrawal of

the vapors from trayv.

4. Simplified model equations

The above equations assume vapor holdup. Since this
guantity is typically much smaller than the total holdup, we
can simplify the model considerably by eliminating varia-
tion of pressure on each tray and considering the tray holdup
to be only for the liquid phase. This formulation has the
advantage that the density, holdup, pressure defining equa-
tions can be eliminated and the total mass baldfaqe(19)
remain the same. The remaining equations are now written
as:

Component balance on each tray

For each componente COMP, we have:

d)C]_’/'
M3 i Lo(xzj —x1,j) — Vi(y,j — x1,j)
+F] —x1))
dx; ;
Mi——= d = Vi—1(yi-1,j — Xi,j)
t
+Liva(xit1,j — Xij) — Vi(yi,j — xi,j) (27)
+F(];—xi)) i€ TRAYS\ {1 N}
dxy

dt’] = Vy_1(yn-1,j —xn,j)) — VN(IN,j — XN, )

+FN(Z]</ — XN, j)
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Energy balance on each tray MiXxyj=La(x2j — x1,j) — Va(y1,j — X1,))

dnt +FI(z]  —x1)) (32)
My—2 = Lo(hl, — hY) — va(hl — hb) Li /

dr
f l
1 thithy —h)+ O, M j=Vi_1(yi—1,j — Xi,j)

Mid_ti = Viga(hl g — ) +Liva(xita,j — xij) — Vi(yi,j — i j)
FLia(h_y —hb) = Vi(h! — kb (28) +Fi(c, —xij) i€ TRAYS\ ({1 N} (33)
+Fi(h! —hl) e TRAYS\ {1, N}

dhl, , 1 , ) Mnxn, j=VN_1(yn-1,j — XN,j)
My—N — Yy 1y — hh) — V(RY — h
N ar N1y g = Hy) = Vi Gy = ki) VNGO, —xN,j) + FN(Zﬁ F— XN, ) (34)
f l »J
Ryl -l — 0,

The thermodynamic equations are the same §3dhex- anl _ anl T
cept that there is no need to subscript the pressure variableV1 (8_Tl T+ 8_1 561) = La(hly — 1Y) — Va(h} — h)
with the tray index. Also, for the liquid overflow we use the ! 1

same relation§25) as before. However, since we neglect the +F1(h{ — hé) + O, (35)
vapor holdup, calculation of the vapor flow is a little more

difficult. Here the DAEs form an index 2 system with dif- -

ferential variables\s;, x; ; andhﬁ. The remaining algebraic M (3_th n B_hf )_C.)
variables need to be solved by the algebraic equations. From ' \ 37, ' = ax;
the above system, we see that the vapor flowbateannot

_ . v gl . 1 N _vionv 5l
be solved by this system. As a result, a reformulation to an = Vicalhiy — hy) + Liga(hipg — hy) = Vilhi — hy)

index one system is required. +F,-(hlf —hly ieTRAYS\ {1, N} (36)
For this reformulation we differentiate the summation T
equation with respect to time and recover the relation: dnly - hly
My | —Tn + — XN
d 8TN BxN
3 > vij— Y. xj|=0 = Viv_1(h%_y — k) — Viy(RY — Bhy)
j€COMP j€COMP ¥ ;
+FN(hN_hN)_ Qc (37)
or equivalently(22):
and also drop the hedtq. (28) Note that these last alge-
dg; d(K; ) dT; braic equations are explicit il; and this leads to an index
Z EKi,jxi,j + ﬁia—TiExi’j one system. This approach was use¢Biegler, Cervantes,
jeCOMP & Wachter, 2002; Cervantes et al., 200Bjowever, in our
A(K; ) Tdx; dx; ; complementarity formulation we note that there is no rela-
+ Bi ax; T e | T 0 tion that defines d;/dr. To deal with this term we consider
' three cases:

This allows us to write, fof € TRAYS:
dT; X jecompl(@Bi/d K jxi j + Bi(3(K; j)/0xi)T (dx; /dD)x; j — (dx; j/dD)] 29)
dr > jccomp Bi(3(Ki j)/dT))xi |

whered(K;, ;)/dx; represents the Jacobian of equilibriumra- ¢ When two phases are presefit= 1, dg/dr = 0 and
tio K; ; with respect to the liquid mole fractions. We also therefore) ;.comp(dBi/dn K jxi j = 0.
note that the left hand side of the heat balance can be rewrit-e \When only the vapor phase is present, we have 1 and

ten as: from complementarityM; = M! =0 fori =1,... N.

il <8hl. ar.  on! dei) As a r_esult, t_he left hand sides of the heat and mass balance
Mi—=M|-—+-—"L — (30) equations disappear and the values gfdl and x; are

dr OT; dr ~ dx; dr unimportant.

e On the other hand, when only the liquid phase is present,
we haveg > 1. For this, one needs to derive additional
expressions for g/dr using the complementarity equa-

By introducing dummy variables forfd/dr and d; ;/dt, as

in the method oMattson and Soderlind (1993)e can add

the following algebraic equations:

> jccompl((ABi/dN K j + Bi(d(Ki j)/0xi) T Xi)xi j — Xi )]
ZJ'ECOMP,Bi(a(Ki,j)/aTi)xi,j

Ti=— (1)
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these equations, we believe that this represents an unnecMaX

essarily difficult case. Instead, the index one formulation .
in Section 3should be considered for this case. _ Gi / (0,(t) — Q;nax)Zd,
lf 0

tions. Because of the ill-conditioned limiting behavior of 1 iy ;
— </ D(ndt+ MN(tf)>

As a result of these arguments, we consider only transitions

from all vapor to two pghase (and vice versa) wit)rlw this sim- Eqs (19). (29(27). (31)(37). (40)

plified model. f(;/ D(#)xN,benzenét)dt + Mgv(tf)XN,benzenétf)

The results we present in the next two sections are from T Dodr + M

optimization of the start-up of the columns described above. o DOdr+ My (y)

The results are quite interesting in that the presence and

absence of phases can be captured naturally using a singlevheree > 0 is a small parameter serving to regularize

set of equations in a dynamic setting. the singular control problem. The first term in the objective
function is clearly bounded above since the amount of ini-
tial feed to the batch column is fixed. On the other hand,

(41)

> 0.95.

5. Example problem: batch distillation the second term is bounded above by zero and attempts to
find controls, Q,(r) that are “close” toQ!"® for all time
We first consider a batch distillation column witfa(r) = t. In the above formulation, the total product at final time

0,i € TRAYS. The batch column is charged with feed con- is defined as the sum of the condenser holdup at final time
sisting of a mixture of benzene and toluene in the bottom and the total distillate withdrawal over time. The total prod-
tray,i = 1. The mole fraction of the benzene in the feed is uct that is withdrawn from the column is required to have a
0.58 and the column is operated at a pressure of 100 kPacertain purity of benzene as indicated by the last constraint
The column consists oV = 12 trays (including the re-  of the optimization probleni1). A lower bound of 10 kJ/h
boiler and condenser). The initial charge to the column is is placed on the reboiler heat duty, to prevent the vapor
M1(0) = 8kmol and the maximum reboiler heat duty is set flowrate from vanishing.

to 600 kJ/h. The minimum holdup required for liquid flow The optimal control problem is discretized over 30 ele-

from a tray are chosen as, ments with 2 collocation points leading to a problem with
22226 variables and 20125 constraints including 2040 com-
Mo = { 0.3 i€ TRAYS\ {N} plementarity constraints. The problem solved to a tolerance
’ 05 i=N. of 107° in the optimality conditions using a 2.2 GHz Intel

The columnis fited ith a comlete condenser. As a resul, "\ or SRR IO OB PTG S
_VN = 0 and the (bubble point) phase equilibrium relations obtain the solution.
in (22) for the condensefi = N) can be posed as, The optimization yields the time for operation as 28.8 h.
yv.j = Kn j(Tn, Py, xy)xy,; j € COMP The profiles of liquid holdup, liquid flows and vapor flows
0= Z YN — Z XN (38) in the optimal solution are shown Figs. 1, 3 and 4espec-

' ' tively. The trays have no liquid holdup at initial tin{é0),

j€COMP j€COMP o : oo
hence no liquid flows from the trays until the liquid holdup

Similarly, the equation fofy in (31) can be simplified for

i =N as, 1
T X jecompl(B(Kn.j)/0xn) RN j — En,j] (39) 0.9
N Y jccomp(d(KN, ))/0TN)xN,j ‘ 08

0.7}
At initial time, the holdup on the tray$,e TRAYS\ {1}

in the column are set to zero and the composition of the
liquid on the trays is set to that of the feed. In other words,

o
o))

Liquid Holdup (kmol)
o
Ul

PN 0.4 - -Tray2

M0 = { oot |1

i 0ifi € TRAYS\ {1} (40) 0.3 | e

xi(0) =[0.58,0.42]" e TRAYS 0l dBs:

! | = Tray10|

The control variables in the column operation are the dis- 0.1 | = Trayll

tillate withdrawal, D and the reboiler heat duty),. The 0] PRV, 2 I S Y . L ‘ ‘

start-up of the column is posed as a free end-time problem 5 10 Tirri(hrs) 20 25 30

which maximizes the average rate of product withdrawal
over the time of operatiory as follows, Fig. 1. Liquid holdup profile on trays,e TRAYS\{1, N} in batch column.
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Fig. 2. Liquid holdup and flow from the condenser in the batch column. Fig. 4. Vapor flow in the batch column.
(seeFig. J is at least equal to the minimum threshold (see
Fig. 1). Since the model assumes no vapor holdup the vapor 600
flow is the same throughout the column, $ég. 4. The va-
por from the bottom is completely condensed on tvagnd 500+ 1
refluxed to the column at initial time. This helps to increase ¢
the holdup on the trays. The holdups on the trays increase 3 400} 1
in the decreasing order of tray number ($ég. 1 and 2. >
. . . . =}
The overall fluctuations in the liquid holdup correspond to S 300} ]
the fluctuations in vapor flowrate (ségys. 3 and % %
Note that the trends in vapor flowrate correspond to that é 200| l
of the reboiler heat dutyQ,. The optimal profile of heat
duty is shown irFig. 5. The profile of benzene compositions 100l |
in the holdups on trays are provided fig. 6. When no
tray holdup is present, the liquid composition on trays is 0
similar to the bottom composition. This is also true of the 0 5 10 15 20 25 30
vapor composition on trays without holdup and hence, the Time (hrs)

attainment of equilibrium on all trays is instantaneous. The
benzene composition in the condenser initially increases and
subsequently, takes a downturn as the bottom becomes leaner

Fig. 5. Optimal reboiler heat duty profile in the batch column.
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Fig. 6. Composition profile of benzene in liquid holdup on trays in the

Fig. 3. Liquid flow from trays; € TRAYS\ {1, N} in the batch column. batch column.
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Fig. 7. Liquid holdup on the trays whe@, = 600kJ/h in the batch
column.

in benzene. At final time, the composition of benzene in

the condenser holdup is lower than the required 0.95 mole

fraction of benzene. However, the distillate withdrawn has

a much higher benzene composition, so that the required

purity constraint is exactly satisfied at the solution.

The optimal reboiler heat duty profile seems to counter
intuition. The intuitive notion might be to operate at maxi-
mum reboiler heat duty and withdraw distillate only when
the required purity is reached. Unfortunately, such a policy

will not be successful. Either no holdup appears on some

trays or the condenser composition at final time will be less
than 0.95 in benzen€&ig. 7 shows that tray 2 has no holdup
when all of the initial charge in the bottoms has vaporized.
The composition of benzene in the condenser (Sge 8

is lower than 0.95 at this time. In addition, the trays 1, 2
and 3 are much leaner in benzene. This implies that we will
have to shut down the reboiler heat duty and opt for build-

Molefraction of Benzene in Liquid

Time (hrs)

Fig. 8. Composition profile of benzene in liquid holdup on trays in the
batch column wherQ, = 600 kJ/h.
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ing more product in the bottoms using the liquid overflow
from the trays above. The maximum boilup policy possesses
some drawbacks,

e the case of no vapor flowrate cannot be handled by the
model

e mole fraction of benzene in the bottoms charge will be
much lower.

This indicates that a maximum reboiler heat duty operating
policy is undesirable.

In fact, the counter intuitive optimal reboiler heat duty
profile indicates an over-capacity due to a poor design. A
reduction in the maximum reboiler heat duty @"® =
300kJ/h and a reduction in the tray hold-ug8n(in.y =
0.3, Mmin; = 0.1 otherwise) does lead to the intuitive op-
erating policy, with the heat duty at the upper bound, as the
optimal policy.

6. Case study: switching operating modes in cryogenic
plants

This section addresses dynamic optimization of a
large-scale natural gas processing plant through the formu-
lation of detailed dynamic models. In previous wdikaz,
Tonelli, Bandoni, & Biegler, 2003)a dynamic optimization
problem was formulated and solved using SRK thermo-
dynamics and C® solubility predictions. However, two
phases were assumed at all times on the trays. Our study
generalizes this work to deal with changes in the number of
phases during startup and transition of operating conditions.

Natural Gas Liquids (NGL) are light hydrocarbons in the
range of ethane through hexane plus, which may be recov-
ered as liquids from a natural gas source. NGL processing
plants provide feed-stock, mainly ethane and propane, for
production of olefins and other petrochemicals. Turboexpan-
sion processes are currently the most efficient ones for ob-
taining high ethane recovery. The separation is performed
at high pressure and cryogenic conditiokglkinson and
Hudson (1982have proposed different turboexpansion plant
designs to improve ethane recovddyaz, Serrani, Bandoni,
and Brignole (1997have solved the debottlenecking prob-
lem of an ethane extraction plant as a Mixed Integer Non-
linear Programming (MINLP) model. Dynamic simulation
of complex cryogenic processes has been studied by a few
authors.Mandler (2000has studied dynamic simulation of
liquefied natural gas plants and air separation plants for con-
trol analysis and design in liquefaction processes. However,
dynamic optimization of entire plants has not been addressed
until the last decade. This work addresses the dynamic op-
timization of a part of the cryogenic section in a natural gas
processing plant. The demethanizing column, together with
the turboexpander, constitutes the main part of the cryo-
genic separation. The model comprises differential energy
and mass balances, hydraulic correlations and ideal thermo-
dynamic predictions. In this section, inlet gas is cooled by
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Fig. 9. Schematic of a cryogenic distillation column.

heat exchange with residual gas and demethanizer side and
bottom reboilers. The partially condensed gas feed is then
sent to a high-pressure separator. The vapor is expanded
through a turboexpander to obtain the low temperatures re-
quired for high ethane recovery and is then fed to the top of
the demethanizer column. The liquid from the high pressure
Separator enters the demethanizer at its lowest feed point.
Methane and lighter components constitute the top product
and ethane and heavier hydrocarbons are obtained as bot-
toms product. Carbon dioxide is distributed between top and
bottom streams.

The cryogenic column is used for the stripping of a
mixture consisting of nitrogen methane ethang propane
carbon-dioxide n-butane iso-butane n-pentane iso-
pentaneand hexane A schematic of the cryogenic distilla-
tion column is provided in Fig. 9. The column has N = 8
traysand is also started with no initial component holdup on
the trays and a charge on the bottom tray alone. The charge
in the bottom consists predominantly of liquid in egui-
librium with its vapors. The dynamics differ substantially
from the previous column due to modeling of the vapor
holdup and variable pressure on trays. The total volume on
each tray is assumed to consist of volumes of the liquid and
vapor holdups (refer (24)). However, if no initial compo-
nent holdup is assumed, then the equation defining liquid

and vapor densities (24) cannot be satisfied. To circumvent
this, we have assumed that all the trays except the bottom
have vapor holdup consisting of an inert component alone,
as suggested by Marquardt (personal communication). The
equilibrium constant for the inert (K; inert) IS taken to be a
large quantity indicating that it is not condensible, accumu-
lating preferentially in the vapor phase.

The control variablesin the column are the top withdrawal
pressure (Poyt) and the bottom reboiler heat duty (Q,). For
this case the feeds F;7 and Fg are specified, F; = 0,i €
TRAY S\ {7, 8} and Q. = 0. Dueto the increased number of
components the discretized problem scales up faster than the
previous model. Further, the stiff dynamics resulting from
the modeling of the vapor flows need to be resolved using
a fine mesh. With this in mind, we have split the short term
start-up operation into the following three time periods.

1. The first period aims to form liquid on all but the feed
trays (i = {7, 8}) by evaporating the bottoms charge.
There is no feed to the column and no product with-
drawal from the bottoms. The withdrawal side pressureis
maintained constant at P, = 18 bar and hence, the lig-
uid build-up needs to be achieved using the reboiler heat
duty as a control variable. The amount of liquid holdup
required is very small but sufficient to ensure equilibrium
on all the trays as modeled by the equations in (22). The
objective is to minimize time needed to accomplish this.

2. Next weincrease the holdup levels so that we have liquid
flowing from al the trays. For this we supply feed on
both trays, i = {7, 8} with molar flowrates of F; = 30
and Fg = 100 kmol/min. For this operation we use both
withdrawal pressure and reboiler heat duty as control
variables. We aim to minimize the operation time through
minimal use of reboiler heat duty.

3. Finaly, we aim to achieve a steady state where we can
recover most of the ethane in the feeds as the bottoms
product. The optimal control is performed over a fixed
time horizon of ¢, = 10min for this stage.

The optimization problem for the three periods are given
in Table 1. These also include the Egs. (19)—(26) in addi-
tion to the constraints in Table 1. The problems are dis-
cretized over 12 finite elements with 2 collocation points to
yield a NLP. Information on problem size on discretization
and computational requirements for the solution of the three
cases is provided in Table 2. All problems have been solved
to atolerance of 10~* in the optimality conditions. Observe

Table 1
Optimization formulation for different periods

Period 1 Period 2 Period 3

Lq( 2
3
Objective minz; mint +O.1féf 0, dr min éf <f1)mczf - 1) dt
Frz7 0o + Fezg oo

Controls 0, Pout, Or Pout, Or
Feed F;,=0Fg=0 F7 =30, Fg = 100 F7 =60, Fg = 250
Fina time constraint ML) > 1074 La(ty) > 1 x1c2(7f) = 0.5
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Table 2
Problem characteristics and computational requirements for IPOPT-C on
the cryogenic distillation case study

Period 1 Period 2 Period 3
# variables 17918 17942 17944
# congtraints 17318 17330 17344
# complementarity cons. 575 575 576
# iterations 624 104 97
# CPU time (h) 30 3.8 8.4

The results are obtained on a 22GHz Intel Xeon processor running
LINUX as the operating system.

that the solution for Period 1 requires more iterations for its
solution and amply reflects the nature of the problem that
is solved. One cause for the difficulty in solving the Period
1 problem is that most of the compositions (except for in-
ert) are zero. This results in poor conditioning of the matrix
(also called the KKT matrix) in the linear system that cal-
culates the search direction. Nevertheless, by inertia correc-
tions in IPOPT, a nonsingular system is solved to obtain a
stable solution. The computationally intensive step in each
iteration is the factorization of the KKT matrix to obtain a
search direction. The KKT matrix requires modification and
re-factorization if some heuristics on the inertia of the lin-
ear system (Wéchter, 2002; Wéchter & Biegler, 2004) are
not satisfied. This leads to the large computational time per
iteration. Thisis aso the cause for Period 3 requiring more
time per iteration as compared to Period 2.

We first present results for Period 1. The minimum time
is achieved by supplying the maximum reboiler duty to the
bottom which is 550 MJmin. The formation of liquid occurs
by a different process as compared to the previous column.
Liquid is formed on a tray when the higher temperature
vapors from the bottom contact with the cold inert vapor on
the trays above. Hence, the formation of liquid (see Fig. 10)
and achievement of equilibrium on trays (see Fig. 11) occur
sequentially starting from the lower numbered trays. Further,
the inert composition on each tray decreases with time, refer
Fig. 12.
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Fig. 10. Liquid holdup profiles in Period 1 solution.
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Fig. 11. Equilibrium indicator (8;) profiles in Period 1 solution.

In the second period, we minimize the operation time by
using the reboiler heat duty and withdrawal side pressure
profiles as depicted in Figs. 13 and 14, respectively. The
feed to the top trays of the column and changing withdrawal
pressure play the pivotal rolein ensuring liquid holdup on al
trays (see Fig. 15). In contrast to Period 1, the holdup now
increasesin decreasing order of tray number. Theliquid flow
from the trays corresponds to the liquid holdup as observed
from Fig. 16. The feed F7 is just liquid while Fg consists
predominantly of vapor. As aresult, tray 7 builds up faster
than tray 8 and aso has a higher liquid flowrate as can be
seen from Figs. 15 and 16. The composition of inert in the
vapor on trays further decreases to negligible levels, refer
Fig. 17.

Finally, the third period brings the column to steady state
operation. The objective in the third period reflects the re-
covery of ethane in the feed that is required in the bottom
products. The optimal control problem also includes afinal
time constraint on the mole fraction of ethane in the bot-
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Fig. 12. Inert composition profiles in Period 1 solution.
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Fig. 14. Withdrawal side pressure (Poyt) profile in Period 2 solution.
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Fig. 18. Reboiler heat duty (Q,) profile in Period 3 solution.
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Fig. 21. Profile of ethane composition in vapors from the trays of column
in Period 3 solution.

o
3

©
o

— Trayl
- Tray2|
- - Tray3
— Tray4
- Tray5
Tray6
-~ Tray7
- Tray8|

o
4]

I
IS

o
w

©
N}

Molefraction of ethane in liquid from trays
IS}
S

0 1 2 3 4 5 6 7 8 9 10
Time (mins)

Fig. 22. Profile of ethane composition in liquid from the trays of column
in Period 3 solution.

toms product. The feed flowrates for this period are nearly
2.5 times that in the second period. The optimal profiles of
the reboiler heat duty, Q, and the withdrawal pressure, Poyt
are provided in Figs. 18 and 19 respectively. The optimal
recovery of feed ethane in the bottoms product is presented
in Fig. 20. The recovery of ethane in the bottoms product
increases steadily towards 1. It is clear that in the final solu-
tion all of the feed ethane is in the bottoms product. Hence,
the mole fraction of ethane in the vapors exiting from the
column is negligible (refer Fig. 21) while the composition
of ethane in the bottoms product is much greater than the
requirement at final time (refer Fig. 22).

7. Conclusions

With growing interest in dynamic optimization in pro-
cess engineering, hybrid systems and discrete events are also
starting to be considered. This study exploresthe use of com-
plementarity formulations to deal with one class of dynamic
hybrid systems: phase transitions in the dynamic operation
of digtillation columns. Here we introduce complementarity
relations through a simple modification of the tray equilib-
rium equations. The resulting mathematical program with
equilibrium constraints (MPEC) isasingle, large-scale, con-
tinuous variable formulation. While the MPEC formulation
does not satisfy nonlinear programming constraint qualifi-
cations, we show how it can be solved by using IPOPT-C,
an extension of the large-scale NLP agorithm | POPT.

This study considers both index one and index two formu-
lations for the dynamic digtillation models (with and with-
out vapor holdup on trays, respectively). Our first applica-
tion uses the ssmpler model (without vapor holdup) to deal
with the optimal (cold) startup of a binary batch distillation
column, initially with no liquid on the trays. In the second
study, we consider the more detailed model for the startup
of acryogenic multicomponent separation of natural gaslig-
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uids. Enabled by the complementarity formulations and the
IPOPT-C solver, this approach allows us to model the ap-
pearance and disappearance of phases during the dynamic
optimization. This approach leads to very interesting and
often counter-intuitive solution profiles.

The results presented here are some of the first for the op-
timization of hybrid dynamical systems modeled through a
complementarity formulation. This study raises interesting
guestions on the applicability of the complementarity for-
mulation to other classes of hybrid systems. It is imperative
to identify the classes of discontinuous systems that can be
modeled effectively using a complementarity formulation.
Issues of stability and convergence of the discretization are
also important.

In future work, we intend to explore several issues that
will improve the performance of the |POPT-C solver. These
include improved linear factorizations, parallel decompo-
sition strategies for the discretized dynamic eguations and
refinement of IPOPT-C algorithm. Additionally, better han-
dling of negative curvature is required to avoid excessive
linear factorizations on large systems. These devel opments
will aso be augmented through the integration of process
modeling tools, graphical interfaces and nonlinear solvers.
Finally, we intend to consider a wider class of hybrid sys-
tem applications, including the incorporation of stability
and controllability constraints within the DAE model.
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