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Abstract

We consider the dynamic optimization of chemical processes with changes in the number of equilibrium phases. Recent work has shown that
transitions in the number of phases can be modeled as a mathematical program with equilibrium constraints (MPEC). This study generalizes
the MPEC to consider dynamic characteristics. In particular, we describe a simultaneous discretization and solution strategy for dynamic
optimization problems with complementarity constraints. These discretized problems are then solved with IPOPT-C, a recently developed
barrier method for MPEC problems. Our approach is applied to two distillation examples. In the first, we consider the optimal startup of a
binary batch distillation problem. In the second, we consider the dynamic operation of a cryogenic column for the separation of natural gas
liquids. Both cases demonstrate the effectiveness of the approach on large scale MPEC problems.
© 2004 Published by Elsevier Ltd.
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1. Introduction

Recent developments in numerical solvers and modeling
platforms have led to widespread interest in the simulation
and optimization of dynamic process models. Along with
the optimization of dynamic models in process engineering,
it becomes important to consider the modeling of discrete
events in many dynamic simulation and optimization prob-
lems. In chemical processes, examples of these phenomena
include phase changes in vapor–liquid equilibrium systems,
changes in modes in the operation of safety and relief valves,
vessels running dry or overflowing, discrete decisions made
by control systems and explosions due to accidents. These
actions can be reversible or irreversible with the state profiles
and should be modeled with appropriate logical constraints.
An interesting presentation on modeling discrete events can
be found inBarton, Allgor, Feehery, and Galan (1998). The
simulation of these events is often triggered by an appropri-
ate discontinuity function which monitors a change in the
condition and leads to a change in the state equations. These
changes can be reformulated either as binary decision vari-
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ables(Barton & Park, 1997)or by using complementarity
conditions (with non-negative continuous variablesx andy

alternately set to zero). These additional variables can then
be embedded within optimization problems.

The incorporation of discrete decisions using either binary
or integer variables leads to mixed integer optimization prob-
lems. Here, several studies have considered the solution of
Mixed Integer Dynamic Optimization (MIDO) problems. In
particular,Avraam, Shah, and Pantelides (1998)developed
a complete discretization of the state and control variables
to form a mixed integer nonlinear program. On the other
hand,Allgor and Barton (1999)apply a sequential strategy
and discretize only the control profile. In this case, careful
attention is paid to the calculation of sensitivity information
across discrete decisions that are triggered in time.

In contrast to mixed integer formulations, many discrete
decisions can be modeled through complementarity rela-
tions. These include recent work in modeling dynamic hy-
brid systems(Heemels, DeSchutter, & Bemporad, 2001;
van der Schaft & Schumacher, 1998), as well as the use of
complementarity to model disjunctions(Stein, Oldenburg,
& Marquardt, 2004). Introducing complementarity relations
leads to a nonlinear programming formulation without in-
teger variables.Stein et al. (2004)also propose alternative
formulations for modeling discrete decisions using comple-
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mentarities. Nevertheless, the introduction of complemen-
tarity conditions does introduce additional nonconvexity into
the problem, which would not be observed, for instance, in
the NLP subproblems of a mixed integer programming ap-
proach.

In leading to a nonlinear programming framework, com-
plementarity conditions can be handled naturally through ap-
plication of barrier methods(Raghunathan & Biegler, 2003).
This class of problems can also be generalized to Mathe-
matical Programs with Equilibrium Constraints (MPECs).
MPECs represent an exciting new field in mathematical pro-
gramming. While applications of MPECs have long been
recognized in game theory, transportation planning, eco-
nomics and engineering design, little work has been done in
developing efficient algorithms for their solution. A broad
survey of these applications can be found in(Harker & Pang,
1990; Luo, Pang, & Ralph, 1996). In process engineer-
ing, these problems stem from bilevel and multilevel opti-
mization problems(Clark & Westerberg, 1990; Floudas &
Grossmann, 1987; Sahin & Ciric, 1998)as well as optimiza-
tion of hybrid (discrete and continuous) systems(Stein et al.,
2004). Included in this class are optimization problems with
phase equilibrium constraints, as in equilibrium stage pro-
cesses(Raghunathan & Biegler, 2003), and cellular models
based on metabolic pathways(Raghunathan, Perez-Correa,
& Biegler, 2003).

In this work, we consider the optimization of differen-
tial algebraic systems with complementarity constraints.
The complementarity constraints posed here model dis-
continuous system behavior such as appearance of phases
and liquid overflows. The dynamic problem is discretized
in time using collocation on finite elements to yield an
MPEC. To solve the MPEC we apply a primal-dual interior
point approach. The interior point approach(Raghunathan
& Biegler, 2003) is particularly useful in the context of
large-scale inequality constrained optimization that often
results from a spatial or temporal discretization(Wächter,
2002). In particular, we have incorporated the MPEC for-
mulation into the IPOPT code(Wächter, 2002; Wächter &
Biegler, 2004)along with algorithmic modifications to treat
the complementarity constraints more efficiently. This code
(called IPOPT-C) has been interfaced to the AMPL model-
ing system and has been tested on a set of library MPEC
problems(Leyffer & Fletcher, 2000). Preliminary results
(Raghunathan & Biegler, 2003)show that this implementa-
tion compares well against competing barrier algorithms. In
previous work, we have tested this approach on a number
of steady state process optimization problems with phase
equilibrium constraints. These include distillation optimiza-
tion problems with disappearing vapor and liquid phases
on equilibrium stages. Preliminary results(Raghunathan &
Biegler, 2003)show that this approach leads to better and
more uniform performance than the smoothing approach
used in our previous studies(Gopal & Biegler, 1999; Lang
& Biegler, 2001). We demonstrate the effectiveness of our
approach on two challenging distillation operations. The

results presented here are the most extensive dynamic opti-
mization applications of nonlinear programming algorithms
with MPEC’s.

The next section provides the general problem statement
for MPECs that occur in dynamic systems as well as our so-
lution strategy for solving these problems. InSection 3, we
outline dynamic optimization problems with complementar-
ity for the distillation cases that we consider. In addition to
a general model that includes vapor holdup we describe a
simplification with only liquid holdup. InSections 5 and 6,
we consider two cases, a batch distillation and a cryogenic
column, respectively. In both cases, the optimal profiles con-
tain transitions with changes in the number of phases on all
of the trays. Concluding remarks are then given inSection 7.

2. Dynamic optimization with complementarity

The general DAE optimization problem can be stated as
follows:

min
zd(t),za(t),u(t),tf ,p

ϕ(zd(tf ), za(tf ), u(tf ), tf , p) (1)

s.t. Semi-explicit DAE model:

dzd(t)

dt
= F(zd(t), za(t), u(t), t, p) (2)

0 = G(zd(t), za(t), u(t), t, p) (3)

0 ≤ za1(t) ⊥ za2 ≥ 0 (4)

Initial conditions:

zd(0) = z0
d (5)

Point conditions:

Hs(zd(ts), za(ts), u(ts), ts, p) = 0 for s ∈ {1, . . . , nS} (6)

Bounds:

zLd ≤ zd(t) ≤ zUd

zLa ≤ za(t) ≤ zUa

uL ≤ u(t) ≤ uU

pL ≤ p ≤ pU

tLf ≤ tf ≤ tUf

(7)

whereϕ is the scalar objective function,F the right hand
sides of differential equation constraints,G the algebraic
equation constraints,Hs the additional point conditions at
fixed timests, zd the differential state profile vectors,z0

d the
initial values of differential state profile vectorzd , assumed
consistent, za the algebraic state profile vectors,zaj the
subvector of algebraic state profiles withj = 1,2, u the
control profile vectors,p the time-independent parameter
vector, andtf is the final time.

Note that bounds on the state variables allow us to handle
path constraints without loss of generality. Included among
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the algebraic constraints are complementarity conditions(4)
betweenza1 and za2 subvectors of the vector of algebraic
variables,za for all time t. We use the “⊥” notation to define
complementarity between the arguments, i.e.,

z(i)a1
(t), z(i)a2

(t) ≥ 0 z(i)a1
(t)z(i)a2

(t) = 0 (8)

for each of the componentsi of the subvectors and all time
t. In the abovez(i)a1 refers to theith component ofza1. Finally
we assume that for specified values ofzd(t), u(t) and p,
the algebraic equations and complementarity constraints can
always be solved for the the algebraic variables,za(t). This
is analogous to theindex 1property for the DAE.

This DAE optimization problem is converted to algebraic
form by approximating state and control profiles by a family
of polynomials on finite elements (t0 < t1 < · · · < tne =
tf ). Here, we use a monomial basis representation(Bader &
Ascher, 1987)for the differential profiles, as follows:

zd(t) = zd,i−1 + hi

ncol∑
q=1

Ωq

(
t − ti−1

hi

)(
dzd
dt

)
i,q

ti−1 ≤ t ≤ ti (9)

wherezd,i−1 is the value of the differential variable at the be-
ginning of elementi, hi the length of elementi, (dzd/dt)i,q is
the value of its first derivative in elementi at the collocation
point q, andΩq is the polynomial of order ncol, satisfying

Ωq(0) = 0 forq = 1, . . . ,ncol
Ω′

q(ρr) = δq,r for q, r = 1, . . . ,ncol

whereδq,r is the Kronecker delta andρr is the location of
therth collocation point within each element. Continuity of
the differential profiles is enforced by

zd,i = zd,i−1 + hi

ncol∑
q=1

Ωq

(
ti − ti−1

hi

)(
dzd
dt

)
i,q

. (10)

Here, Radau collocation points are used because they allow
us to set constraints easily at the end of each element and
they stabilize the system more efficiently if high index DAEs
are present. In addition, the control and algebraic profiles are
approximated using a similar monomial basis representation
which takes the form:

za(t) =
ncol∑
q=1

ψq

(
t − ti−1

hi

)
za,i,q (11)

u(t) =
ncol∑
q=1

ψq

(
t − ti−1

hi

)
ui,q. (12)

Hereza,i,q andui,q represent the values of the algebraic and
control variables, respectively, in elementi at collocation
point q. ψq is the Lagrange polynomial of order ncol satis-
fying

ψq(ρr) = δq,r for q, r = 1, . . . ,ncol.

From(10), the differential variables are required to be con-
tinuous over time, while the control and algebraic variables
are allowed to have discontinuities at the boundaries of the
elements. It should be mentioned that with representation
(10), the bounds on the differential variables are enforced
directly at element boundaries; however, they can be en-
forced at all collocation points by writing appropriate point
constraints(6).

For this study, we assume that the number of finite ele-
ments,ne, and their lengths are pre-determined. Substitution
of Eqs. (9)–(12)into (1)–(7) leads to the MPEC problem
given by:

min
x∈Rn,w∈Rm,y∈Rm

f(x,w, y) (13)

s.t. c(x,w, y) = 0, x, w, y ≥ 0 (14)

w(i)y(i) = 0, i = 1, . . . , m (15)

where we now consider an augmented set of variables
(x,w, y) andw(i) refers toith component ofw. For simplic-
ity of presentation, we assume only simple bounds on the
variables. General inequality constraints can be easily con-
verted to the above form by addition of slack variables. In
the above formulation, we identifyw, y with the discretiza-
tion of za1, za2 respectively. The discretization of the differ-
ential variablezd , algebraic variablesza with the exception
of za1, za2, the controlsu and the parameter vectorp consti-
tute the vectorx. Note that the addition of complementarity
conditions(15) leads to a violation of convergence assump-
tions for most nonlinear programming algorithms (e.g.,
linear independence of the constraint gradients) and can
cause these algorithms to fail.Anitescu (2001)andFletcher,
Leyffer, Ralph, and Scholtes (2002)have shown theoreti-
cal evidence for good local convergence behavior ofactive
setNLP algorithms on MPECs. Sequential Quadratic Pro-
gramming (SQP) algorithms such as filter-SQP(Fletcher,
Gould, Leyffer, Toint, & Wächter, 1999)and SNOPT(Gill,
Murray, & Saunders, 2002)are some examples ofactive
setalgorithms that exhibit favorable convergence behavior
on MPECs. However, active set algorithms are prone to in-
efficiencies on large-scale inequality constrained problems.
This is largely due to the combinatorially intensive subprob-
lem that arises when identifying theactiveconstraints at the
solution. Instead, recent work on interior point algorithms
for NLPs has shown that they greatly reduce this defi-
ciency, paving the way for efficient solution of large-scale
nonlinear programming problems. The effectiveness of in-
terior point methods has been demonstrated on a number of
process engineering problems(Cervantes & Biegler, 1998;
Cervantes, Wächter, Tütüncü, & Biegler, 2000; Wächter,
2002). This has been our motivation in looking to an inte-
rior point algorithm for solving MPECs. More recently, a
large scale interior point algorithm, IPOPT(Wächter, 2002;
Wächter & Biegler, 2004)has been developed with proven
convergence behavior(Wächter & Biegler, 2004)and fa-
vorable practical performance(Wächter, 2002)on a large
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class of problems. In the remainder of the subsection we
present an extension of interior point methods for handling
complementarity constraints and also discuss the issue of
incorporating this extension within an NLP interior point
algorithm such as IPOPT.

2.1. NLP interior point method

A naive application of the NLP interior point algorithm
reformulates the MPEC problem(15)by replacing the bound
constraints with logarithmic barrier terms as,

min
x∈Rn,w∈Rm,y∈Rm

f(x,w, y)

−µ

(
n∑

i=1

ln(x(i)) +
m∑
i=1

ln(w(i)) +
m∑
i=1

ln(y(i))

)

s.t. c(x,w, y) = 0

Wy= 0

(16)

where µ > 0 is the barrier parameter andW :=
diag(w(1), . . . , w(m)) is m × m diagonal matrix with com-
ponents ofy on the diagonal. The algorithm is initialized
with µ > 0 and solved to a tolerance that is proportional
to µ. Subsequently, the barrier parameterµ is reduced and
a sequence of problems is solved for decreasing values of
µ. The limit of the solutions asµ → 0 can be shown to
be the solution to the original problem under reasonable
assumptions. For a positive value of the barrier parameter,
none of the variables can lie at their bound as this will
result in an unbounded objective value. Hence, solutions
lying at a bound can only be obtained in the limit (µ → 0).
Refer toFiacco and McCormick (1968)andForsgren, Gill,
and Wright (2002)for existence of barrier solutions and
convergence of barrier solutions to a solution of the NLP.
Unfortunately, the complementarity constraints in the above
barrier problem(16) requires at least one ofw(i) andy(i) to
vanish, and results in a problem that has no interior feasible
points. This might be considered as a limitation in using a
NLP barrier algorithm for the solution of MPECS which
require the existence of a strictly feasible interior. In the
following we describe a modification to the barrier problem
that avoids this limitation.

2.2. Relaxed barrier problem

The interior point method for NLPs has a straightforward
extension to solving MPEC problems. The complementarity
constraint,

w(i)y(i) = 0 is relaxed as w(i)y(i) ≤ δµ

whereδ > 0 renders the problem strictly feasible. Note that
µ is the same as the barrier parameter. The interior point
algorithm will drive the barrier parameterµ to zero as part
of the solution process and hence, the complementarity con-
straints are recovered in the limit. The strength of the relax-
ation lies in our ability to provide a fast local convergence

guarantee to a smooth solution of the MPEC. A brief sum-
mary of the properties of the algorithm applied to the relaxed
problem will be provided in the following. We can restate
the barrier problem by addition of non-negative slack vari-
ables,s ∈ R

m for the inequality relaxation of the comple-
mentarity constraints and appending the logarithmic barrier
term to the objective as follows:

min
x∈Rn,w∈Rm,y∈Rm,s∈Rm

f(x,w, y)

−µ

(∑n
i=1 ln(x(i)) +∑m

i=1 ln(w(i)) +
m∑
i=1

ln(y(i))

)

−µ
∑m

i=1 ln(s(i))

s.t. c(x,w, y) = 0

Wy+ s = δµ. (17)

Introducing multipliers for variable bounds leads to the fol-
lowing optimality conditions of(17):

∇xf(x,w, y) + ∇xc(x,w, y)λc − λx = 0

∇wf(x,w, y) + ∇wc(x,w, y)λc + Yλcc − λw = 0

∇yf(x,w, y) + ∇yc(x,w, y)λc + Wλcc − λy = 0

Xλx − µen = 0

Wλw − µem = 0

Yλy − µem = 0

Sλcc − µem = 0

c(x) = 0

Wy+ s − δµ = 0

(18)

whereen is a vector of all ones of dimensionn, λx, λw, λy,
λcc are the multipliers for the nonnegativity bounds on vari-
ablesx,w, y, s respectively andλc are multipliers for the
constraintc. The above approach of relaxing the comple-
mentarity constraints can be easily incorporated within most
interior point algorithms with minimal modifications. The
proposed framework for solving MPECs has been incorpo-
rated within such an NLP interior point algorithm, IPOPT.

2.3. IPOPT-C—extension to IPOPT for solving MPECs

IPOPT (Wächter, 2002; Wächter & Biegler, 2004)is a
large-scale interior point algorithm for solving NLPs. The
algorithm solves the problem(17) approximately for a fixed
barrier parameter,µ and then reduces it successively. IPOPT
applies Newton’s method to the optimality conditions of the
barrier problems(18) to determine a search direction which
will yield the next iterate. The step size is first reduced so
that the resulting iterate satisfies the bounds on the vari-
ables. However, this is not sufficient to ensure global con-
vergence of the algorithm for iterates far removed from a
solution. A filter line search method is employed to obtain
an iterate that has sufficiently decreased the objective value
or the constraint infeasibility. More details on the algorithm
and convergence can be obtained fromWächter and Biegler
(2004)and the thesis ofWächter (2002).
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This interior point algorithm has been interfaced to AMPL
(Fourer, Gay, & Kernighan, 2001)which provides the al-
gorithm with exact derivative (first and second) information
and can also easily communicate complementarity between
variables through thecomplementsoperator. The interface
to AMPL has been extended to take advantage of the op-
erator and parse the relaxed complementarity constraint to
IPOPT. We refer to IPOPT with the extended features to
handle complementarity constraints as IPOPT-C. The step
calculation in IPOPT-C differs from IPOPT in that the Jaco-
bian of the optimality conditions(18) is modified so that the
system is nonsingular, even in the limit as the barrier param-
eter is driven to zero,µ → 0. This is necessary to show that
the algorithm solves a well-posed set of equations at every
iteration. Further, the modification is made proportional to
the error in the optimality conditions at the current iterate.
This ensures that the modification decreases as we approach
a solution of the MPEC. IPOPT-C has been shown to be su-
perlinearly convergent(Raghunathan & Biegler, 2004)to a
solution of the MPEC. Encouraging practical performance
on a large class of MPEC test problems is also reported in
the same paper.

3. Distillation models

We now consider two dynamic distillation models used
in our later MPEC case studies. The two models are index
one and index two, respectively, and the second considers
the common simplification of neglecting vapor holdup. In
both cases, we apply a generalization of the complementarity
conditions used for phase equilibrium that is described in
(Raghunathan & Biegler, 2003).

For these models we assume potential feeds on all of the
trays and adopt the following set notation. The number of
trays in the column is assumed to beN inclusive of both the
reboiler and condenser, with trays numbered from the bot-
tom. The set TRAYS := {1, . . . , N} will denote the num-
bered trays and index,i subscripted to a quantity refers to
that quantity associated with tray,i. The set COMP denotes
the components in the column. The superscriptsl andv refer
to the quantities associated with the liquid and vapor phases,
respectively.

The model equations are:
Total Mass balance on each tray

dM1

dt
= L2 − V1 − L1 + F1

dMi

dt
= Vi−1 + Li+1 − Vi − Li + Fi

i ∈ TRAYS \ {1, N}

dMN

dt
= VN−1 − VN − D − LN + FN

Mi(0) = M0
i i ∈ TRAYS

(19)

whereMi,Li, Vi, Fi are the holdup, liquid flowrate, vapor
flowrate and feed rate on theith tray, respectively.

Component balance on each tray
For each componentj ∈ COMP, we have:

dM1,j

dt
= L2x2,j − V1y1,j − L1x1,j + F1z

f

1,j

dMi,j

dt
= Vi−1yi−1,j + Li+1xi+1,j − Viyi,j − Lixi,j

+Fiz
f
i,j i ∈ TRAYS \ {1, N}

dMN,j

dt
= VN−1yN−1,j − VNyN,j − DxN,j − LNxN,j

+FNz
f
N,j

Mi,j(0) = M0
i,j i ∈ TRAYS

(20)

whereMi,j, z
f
i,j, xi,j, yi,j represent the hold-up, feed, liquid

and vapor composition of componentj on theith tray, re-
spectively.

Energy balance on each tray
In the following Ui(xi, yi, Ti), hl

i(xi, Ti) and hv
i (yi, Ti)

define the tray holdup internal energy and the specific heat
content of liquid and vapor emanating from trayi. These are
functions of composition of the mixture and tray tempera-
ture. For brevity we will avoid stating the arguments ofUi,
hl
i andhv

i .

dU1

dt
= L2h

l
2 − V1h

v
1 − L1h

l
1 + F1h

f

1 + Qr

dUi

dt
= Vi−1h

v
i−1 + Li+1h

l
i+1 − Vih

v
i − Lih

l
i + Fih

f
i

i ∈ TRAYS \ {1, N}

dUN

dt
= VN−1h

v
N−1 − VNhv

N − Dhl
N − LNhl

N

+FNh
f
N − Qc

Ui(0) = U0
i i ∈ TRAYS

(21)

with h
f
i representing the specific enthalpy of the feed stream

to tray i andQr andQc are the reboiler and condenser heat
loads.

Thermodynamic equations governing equilibrium
For each trayi ∈ TRAYS

yi,j = βiKi,j(Ti, Pi, xi)xi,j j ∈ COMP

0 =
∑

j∈COMP

yi,j −
∑

j∈COMP

xi,j

βi = 1 − νli + νvi

0 ≤ Ml
i ⊥ νli ≥ 0

0 ≤ Mv
i ⊥ νvi ≥ 0

(22)



2042 A.U. Raghunathan et al. / Computers and Chemical Engineering 28 (2004) 2037–2052

From(22), note that the complementarity constraints imply
the following

Ml
i,M

v
i > 0, thenβi = 1

Ml
i = 0 < Mv

i , thenβi ≤ 1

Ml
i > 0 = Mv

i , thenβi ≥ 1.

(23)

Thus, the equilibrium relation is enforced only when liq-
uid and vapor are present on a tray and relaxed otherwise.
Gopal and Biegler (1999)derive the above conditions(22)
as the reformulation of Gibbs free energy minimization on
each tray,i which is the thermodynamic condition for the
existence of a phase.

Density, holdup, pressure defining equations
For each trayi ∈ TRAYS

ρl
i = 1∑

j∈COMPxi,jρ̄j

ρv
i = Pi

RgasTi

V vol
i = π

(
d

2

)2

Hplate− Ml
i

ρl
i

Mv
i = ρv

i V
vol
i

Mi = Mv
i + Ml

i

Ui = Mv
i (h

v
i − piV

v
i ) + Ml(hl

i − piV
l
i)

≈ Mv
i (h

v
i − RgasTi) + Mlhl

i

(24)

whereRgas is the ideal gas constant,V vol
i denotes the vol-

ume of vapor on each tray,Vli andVvi are the specific molar
volumes for the liquid and vapor, respectively,d is the di-
ameter of the plate,Hplate is the height of the plate and̄ρj

is the liquid density of componentj at some reference tem-
perature. These data are taken from(Pedersen, Fredenslund,
& Thomassen, 1989).

Liquid and Vapor flow definitions
All trays are modeled so that the liquid flow from a

tray occurs only when there is a certain amount of liquid
holdup. The liquid flowrate from trays can be stated as,

Li =
{

0, if Ml
i ≤ Mmin,i

kd(M
l
i − Mmin,i)

1.5, otherwise

i ∈ TRAYS \ {1}

where kd > 0 is a constant andMmin,i is the minimum
holdup required on each tray in order to have a liquid flow
from the tray. This condition can be modeled using comple-

mentarity conditions as,

Ml
i − Mmin,i = M

l,+
i − M

l,−
i

Li = kd(M
l,+
i )1.5

M
l,+
i M

l,−
i = 0

M
l,+
i ,M

l,−
i ≥ 0

(25)

for all i ∈ TRAYS \ {1}. The non-negative variables
M

l,+
i ,M

l,−
i represent respectively the amount of liquid

holdup above and below the threshold for liquid flow. The
complementarity condition ensures that no more than one
of Ml,+

i ,M
l,−
i assume a non-zero value. The vapor flow on

the trays can then be defined as,

Hl
o,i = αl

head
Mi

π(D/2)2ρl
i

i ∈ TRAYS

Hv
o,i = αv

head(Pi−1 − Pi) − Hl
o,i i ∈ TRAYS \ {N}

Hv
o,N = αv

head(PN − Pout)

Vi = αv
weir(H

v
o,i)

0.5 i ∈ TRAYS

(26)

whereαl
head, α

v
head are constants for defining the liquid and

vapor heads,αv
weir is a constant in defining the vapor flow

andPout is the top pressure controlling the withdrawal of
the vapors from trayN.

4. Simplified model equations

The above equations assume vapor holdup. Since this
quantity is typically much smaller than the total holdup, we
can simplify the model considerably by eliminating varia-
tion of pressure on each tray and considering the tray holdup
to be only for the liquid phase. This formulation has the
advantage that the density, holdup, pressure defining equa-
tions can be eliminated and the total mass balanceEq. (19)
remain the same. The remaining equations are now written
as:

Component balance on each tray
For each componentj ∈ COMP, we have:

M1
dx1,j

dt
= L2(x2,j − x1,j) − V1(y1,j − x1,j)

+F1(z
f

1,j − x1,j)

Mi

dxi,j
dt

= Vi−1(yi−1,j − xi,j)

+Li+1(xi+1,j − xi,j) − Vi(yi,j − xi,j)

+Fi(z
f
i,j − xi,j) i ∈ TRAYS \ {1, N}

MN

dxN,j

dt
= VN−1(yN−1,j − xN,j) − VN(yN,j − xN,j)

+FN(z
f
N − xN,j)

(27)
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Energy balance on each tray

M1
dhl

1

dt
= L2(h

l
2 − hl

1) − V1(h
v
1 − hl

1)

+F1(h
f

1 − hl
1) + Qr

Mi

dhl
i

dt
= Vi+1(h

v
i+1 − hl

i)

+Li−1(h
l
i−1 − hl

i) − Vi(h
v
i − hl

i)

+Fi(h
f
i − hl

i) i ∈ TRAYS \ {1, N}

MN

dhl
N

dt
= VN−1(h

v
N−1 − hl

N) − VN(hv
N − hl

N)

+FN(h
f
N − hl

N) − Qc

(28)

The thermodynamic equations are the same as in(22) ex-
cept that there is no need to subscript the pressure variable
with the tray index. Also, for the liquid overflow we use the
same relations(25)as before. However, since we neglect the
vapor holdup, calculation of the vapor flow is a little more
difficult. Here the DAEs form an index 2 system with dif-
ferential variablesMi, xi,j andhl

i. The remaining algebraic
variables need to be solved by the algebraic equations. From
the above system, we see that the vapor flowrateVi cannot
be solved by this system. As a result, a reformulation to an
index one system is required.

For this reformulation we differentiate the summation
equation with respect to time and recover the relation:

d

dt


 ∑

j∈COMP

yi,j −
∑

j∈COMP

xi,j


 = 0

or equivalently(22):

∑
j∈COMP

[
dβi

dt
Ki,jxi,j + βi

∂(Ki,j)

∂Ti

dTi

dt
xi,j

+ βi

∂(Ki,j)

∂xi

T dxi
dt

xi,j − dxi,j
dt

]
= 0

This allows us to write, fori ∈ TRAYS:

dTi

dt
= −

∑
j∈COMP[(dβi/dt)Ki,jxi,j + βi(∂(Ki,j)/∂xi)

T(dxi/dt)xi,j − (dxi,j/dt)]∑
j∈COMPβi(∂(Ki,j)/∂Ti)xi,j

(29)

where∂(Ki,j)/∂xi represents the Jacobian of equilibrium ra-
tio Ki,j with respect to the liquid mole fractions. We also
note that the left hand side of the heat balance can be rewrit-
ten as:

Mi

dhl
i

dt
= Mi

(
∂hl

i

∂Ti

dTi

dt
+ ∂hl

i

∂xi

T
dxi
dt

)
(30)

By introducing dummy variables for dTi/dt and dxi,j/dt, as
in the method ofMattson and Soderlind (1993), we can add
the following algebraic equations:

T̄i = −
∑

j∈COMP[((dβi/dt)Ki,j + βi(∂(Ki,j)/∂xi)
Tx̄i)xi,j − x̄i,j]∑

j∈COMPβi(∂(Ki,j)/∂Ti)xi,j
(31)

M1x̄1,j = L2(x2,j − x1,j) − V1(y1,j − x1,j)

+F1(z
f

1,j − x1,j) (32)

Mix̄i,j = Vi−1(yi−1,j − xi,j)

+Li+1(xi+1,j − xi,j) − Vi(yi,j − xi,j)

+Fi(z
f
i,j − xi,j) i ∈ TRAYS \ {1, N} (33)

MNx̄N,j = VN−1(yN−1,j − xN,j)

−VN(yN,j − xN,j) + FN(z
f
N,j − xN,j) (34)

M1

(
∂hl

1

∂T1
T̄1 + ∂hl

1

∂x1

T

x̄1

)
= L2(h

l
2 − hl

1) − V1(h
v
1 − hl

1)

+F1(h
f

1 − hl
1) + Qr (35)

Mi

(
∂hl

i

∂Ti

T̄i + ∂hl
i

∂xi

T

x̄i

)

= Vi−1(h
v
i−1 − hl

i) + Li+1(h
l
i+1 − hl

i) − Vi(h
v
i − hl

i)

+Fi(h
f
i − hl

i) i ∈ TRAYS \ {1, N} (36)

MN

(
∂hl

N

∂TN

T̄N + ∂hl
N

∂xN

T

x̄N

)

= VN−1(h
v
N−1 − hl

N) − VN(hv
N − hl

N)

+FN(h
f
N − hl

N) − Qc (37)

and also drop the heatEq. (28). Note that these last alge-
braic equations are explicit inVi and this leads to an index
one system. This approach was used in(Biegler, Cervantes,
& Wächter, 2002; Cervantes et al., 2000). However, in our
complementarity formulation we note that there is no rela-
tion that defines dβi/dt. To deal with this term we consider
three cases:

• When two phases are present,β = 1, dβ/dt = 0 and
therefore

∑
j∈COMP(dβi/dt)Ki,jxi,j = 0.

• When only the vapor phase is present, we haveβ ≤ 1 and
from complementarity,Mi = Ml

i = 0 for i = 1, . . . , N.
As a result, the left hand sides of the heat and mass balance
equations disappear and the values of dβ/dt and x̄i are
unimportant.

• On the other hand, when only the liquid phase is present,
we haveβ ≥ 1. For this, one needs to derive additional
expressions for dβ/dt using the complementarity equa-
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tions. Because of the ill-conditioned limiting behavior of
these equations, we believe that this represents an unnec-
essarily difficult case. Instead, the index one formulation
in Section 3should be considered for this case.

As a result of these arguments, we consider only transitions
from all vapor to two phase (and vice versa) with this sim-
plified model.

The results we present in the next two sections are from
optimization of the start-up of the columns described above.
The results are quite interesting in that the presence and
absence of phases can be captured naturally using a single
set of equations in a dynamic setting.

5. Example problem: batch distillation

We first consider a batch distillation column withFi(t) =
0, i ∈ TRAYS. The batch column is charged with feed con-
sisting of a mixture of benzene and toluene in the bottom
tray, i = 1. The mole fraction of the benzene in the feed is
0.58 and the column is operated at a pressure of 100 kPa.
The column consists ofN = 12 trays (including the re-
boiler and condenser). The initial charge to the column is
M1(0) = 8 kmol and the maximum reboiler heat duty is set
to 600 kJ/h. The minimum holdup required for liquid flow
from a tray are chosen as,

Mmin,i =
{

0.3 i ∈ TRAYS \ {N}
0.5 i = N.

The column is fitted with a complete condenser. As a result,
VN = 0 and the (bubble point) phase equilibrium relations
in (22) for the condenser(i = N) can be posed as,

yN,j = KN,j(TN, PN, xN)xN,j j ∈ COMP

0 =
∑

j∈COMP

yN,j −
∑

j∈COMP

xN,j. (38)

Similarly, the equation for̄TN in (31) can be simplified for
i = N as,

T̄N = −
∑

j∈COMP[((∂(KN,j)/∂xN)Tx̄N)xN,j − x̄N,j]∑
j∈COMP(∂(KN,j)/∂TN)xN,j

. (39)

At initial time, the holdup on the trays,i ∈ TRAYS \ {1}
in the column are set to zero and the composition of the
liquid on the trays is set to that of the feed. In other words,

Ml
i(0) =

{
8 if i = 1
0 if i ∈ TRAYS \ {1}

xi(0) = [0.58,0.42]T i ∈ TRAYS
(40)

The control variables in the column operation are the dis-
tillate withdrawal,D and the reboiler heat duty,Qr. The
start-up of the column is posed as a free end-time problem
which maximizes the average rate of product withdrawal
over the time of operationtf as follows,

max
1

tf

(∫ tf

0
D(t)dt + Ml

N(tf )

)

− ε
1

tf

∫ tf

0
(Qr(t) − Qmax

r )2dt

s.t. Eqs. (19), (25)(27), (31)(37), (40)∫ tf
0 D(t)xN,benzene(t)dt + Ml

N(tf )xN,benzene(tf )∫ tf
0 D(t)dt + Ml

N(tf )

≥ 0.95.

(41)

where ε > 0 is a small parameter serving to regularize
the singular control problem. The first term in the objective
function is clearly bounded above since the amount of ini-
tial feed to the batch column is fixed. On the other hand,
the second term is bounded above by zero and attempts to
find controls,Qr(t) that are “close” toQmax

r for all time
t. In the above formulation, the total product at final time
is defined as the sum of the condenser holdup at final time
and the total distillate withdrawal over time. The total prod-
uct that is withdrawn from the column is required to have a
certain purity of benzene as indicated by the last constraint
of the optimization problem(41). A lower bound of 10 kJ/h
is placed on the reboiler heat duty,Qr to prevent the vapor
flowrate from vanishing.

The optimal control problem is discretized over 30 ele-
ments with 2 collocation points leading to a problem with
22226 variables and 20125 constraints including 2040 com-
plementarity constraints. The problem solved to a tolerance
of 10−5 in the optimality conditions using a 2.2 GHz Intel
Pentium IV processor running LINUX as the operating sys-
tem. IPOPT-C required 153 iterations and 3.1 CPU hours to
obtain the solution.

The optimization yields the time for operation as 28.8 h.
The profiles of liquid holdup, liquid flows and vapor flows
in the optimal solution are shown inFigs. 1, 3 and 4respec-
tively. The trays have no liquid holdup at initial time(40),
hence no liquid flows from the trays until the liquid holdup
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Fig. 1. Liquid holdup profile on trays,i ∈ TRAYS\{1, N} in batch column.
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Fig. 2. Liquid holdup and flow from the condenser in the batch column.

(seeFig. 3) is at least equal to the minimum threshold (see
Fig. 1). Since the model assumes no vapor holdup the vapor
flow is the same throughout the column, seeFig. 4. The va-
por from the bottom is completely condensed on trayN and
refluxed to the column at initial time. This helps to increase
the holdup on the trays. The holdups on the trays increase
in the decreasing order of tray number (seeFig. 1 and 2).
The overall fluctuations in the liquid holdup correspond to
the fluctuations in vapor flowrate (seeFigs. 3 and 4).

Note that the trends in vapor flowrate correspond to that
of the reboiler heat duty,Qr. The optimal profile of heat
duty is shown inFig. 5. The profile of benzene compositions
in the holdups on trays are provided inFig. 6. When no
tray holdup is present, the liquid composition on trays is
similar to the bottom composition. This is also true of the
vapor composition on trays without holdup and hence, the
attainment of equilibrium on all trays is instantaneous. The
benzene composition in the condenser initially increases and
subsequently, takes a downturn as the bottom becomes leaner
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Fig. 3. Liquid flow from trays,i ∈ TRAYS\ {1, N} in the batch column.
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Fig. 4. Vapor flow in the batch column.
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Fig. 5. Optimal reboiler heat duty profile in the batch column.
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batch column.
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Fig. 7. Liquid holdup on the trays whenQr = 600 kJ/h in the batch
column.

in benzene. At final time, the composition of benzene in
the condenser holdup is lower than the required 0.95 mole
fraction of benzene. However, the distillate withdrawn has
a much higher benzene composition, so that the required
purity constraint is exactly satisfied at the solution.

The optimal reboiler heat duty profile seems to counter
intuition. The intuitive notion might be to operate at maxi-
mum reboiler heat duty and withdraw distillate only when
the required purity is reached. Unfortunately, such a policy
will not be successful. Either no holdup appears on some
trays or the condenser composition at final time will be less
than 0.95 in benzene.Fig. 7shows that tray 2 has no holdup
when all of the initial charge in the bottoms has vaporized.
The composition of benzene in the condenser (seeFig. 8)
is lower than 0.95 at this time. In addition, the trays 1, 2
and 3 are much leaner in benzene. This implies that we will
have to shut down the reboiler heat duty and opt for build-
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Fig. 8. Composition profile of benzene in liquid holdup on trays in the
batch column whenQr = 600 kJ/h.

ing more product in the bottoms using the liquid overflow
from the trays above. The maximum boilup policy possesses
some drawbacks,

• the case of no vapor flowrate cannot be handled by the
model

• mole fraction of benzene in the bottoms charge will be
much lower.

This indicates that a maximum reboiler heat duty operating
policy is undesirable.

In fact, the counter intuitive optimal reboiler heat duty
profile indicates an over-capacity due to a poor design. A
reduction in the maximum reboiler heat duty toQmax

r =
300 kJ/h and a reduction in the tray hold-ups (Mmin,N =
0.3,Mmin,i = 0.1 otherwise) does lead to the intuitive op-
erating policy, with the heat duty at the upper bound, as the
optimal policy.

6. Case study: switching operating modes in cryogenic
plants

This section addresses dynamic optimization of a
large-scale natural gas processing plant through the formu-
lation of detailed dynamic models. In previous work(Diaz,
Tonelli, Bandoni, & Biegler, 2003), a dynamic optimization
problem was formulated and solved using SRK thermo-
dynamics and CO2 solubility predictions. However, two
phases were assumed at all times on the trays. Our study
generalizes this work to deal with changes in the number of
phases during startup and transition of operating conditions.

Natural Gas Liquids (NGL) are light hydrocarbons in the
range of ethane through hexane plus, which may be recov-
ered as liquids from a natural gas source. NGL processing
plants provide feed-stock, mainly ethane and propane, for
production of olefins and other petrochemicals. Turboexpan-
sion processes are currently the most efficient ones for ob-
taining high ethane recovery. The separation is performed
at high pressure and cryogenic conditions.Wilkinson and
Hudson (1982)have proposed different turboexpansion plant
designs to improve ethane recovery.Diaz, Serrani, Bandoni,
and Brignole (1997)have solved the debottlenecking prob-
lem of an ethane extraction plant as a Mixed Integer Non-
linear Programming (MINLP) model. Dynamic simulation
of complex cryogenic processes has been studied by a few
authors.Mandler (2000)has studied dynamic simulation of
liquefied natural gas plants and air separation plants for con-
trol analysis and design in liquefaction processes. However,
dynamic optimization of entire plants has not been addressed
until the last decade. This work addresses the dynamic op-
timization of a part of the cryogenic section in a natural gas
processing plant. The demethanizing column, together with
the turboexpander, constitutes the main part of the cryo-
genic separation. The model comprises differential energy
and mass balances, hydraulic correlations and ideal thermo-
dynamic predictions. In this section, inlet gas is cooled by
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Fig. 9. Schematic of a cryogenic distillation column.

heat exchange with residual gas and demethanizer side and
bottom reboilers. The partially condensed gas feed is then
sent to a high-pressure separator. The vapor is expanded
through a turboexpander to obtain the low temperatures re-
quired for high ethane recovery and is then fed to the top of
the demethanizer column. The liquid from the high pressure
separator enters the demethanizer at its lowest feed point.
Methane and lighter components constitute the top product
and ethane and heavier hydrocarbons are obtained as bot-
toms product. Carbon dioxide is distributed between top and
bottom streams.

The cryogenic column is used for the stripping of a
mixture consisting of nitrogen, methane, ethane, propane,
carbon-dioxide, n-butane, iso-butane, n-pentane, iso-
pentaneand hexane. A schematic of the cryogenic distilla-
tion column is provided in Fig. 9. The column has N = 8
trays and is also started with no initial component holdup on
the trays and a charge on the bottom tray alone. The charge
in the bottom consists predominantly of liquid in equi-
librium with its vapors. The dynamics differ substantially
from the previous column due to modeling of the vapor
holdup and variable pressure on trays. The total volume on
each tray is assumed to consist of volumes of the liquid and
vapor holdups (refer (24)). However, if no initial compo-
nent holdup is assumed, then the equation defining liquid

Table 1
Optimization formulation for different periods

Period 1 Period 2 Period 3

Objective min tf min tf + 0.1
∫ tf

0 Qr(t)dt min
∫ tf

0

(
L1(t)x1,C2

F7z
f

7,C2 + F8z
f

8,C2

− 1

)2

dt

Controls Qr Pout,Qr Pout,Qr

Feed F7 = 0, F8 = 0 F7 = 30, F8 = 100 F7 = 60, F8 = 250
Final time constraint Ml

6(tf ) ≥ 10−4 L2(tf ) ≥ 1 x1,C2(tf ) ≥ 0.5

and vapor densities (24) cannot be satisfied. To circumvent
this, we have assumed that all the trays except the bottom
have vapor holdup consisting of an inert component alone,
as suggested by Marquardt (personal communication). The
equilibrium constant for the inert (Ki,inert) is taken to be a
large quantity indicating that it is not condensible, accumu-
lating preferentially in the vapor phase.

The control variables in the column are the top withdrawal
pressure (Pout) and the bottom reboiler heat duty (Qr). For
this case the feeds F7 and F8 are specified, Fi = 0, i ∈
TRAYS\{7, 8} and Qc = 0. Due to the increased number of
components the discretized problem scales up faster than the
previous model. Further, the stiff dynamics resulting from
the modeling of the vapor flows need to be resolved using
a fine mesh. With this in mind, we have split the short term
start-up operation into the following three time periods.

1. The first period aims to form liquid on all but the feed
trays (i = {7, 8}) by evaporating the bottoms charge.
There is no feed to the column and no product with-
drawal from the bottoms. The withdrawal side pressure is
maintained constant at Pout = 18 bar and hence, the liq-
uid build-up needs to be achieved using the reboiler heat
duty as a control variable. The amount of liquid holdup
required is very small but sufficient to ensure equilibrium
on all the trays as modeled by the equations in (22). The
objective is to minimize time needed to accomplish this.

2. Next we increase the holdup levels so that we have liquid
flowing from all the trays. For this we supply feed on
both trays, i = {7, 8} with molar flowrates of F7 = 30
and F8 = 100 kmol/min. For this operation we use both
withdrawal pressure and reboiler heat duty as control
variables. We aim to minimize the operation time through
minimal use of reboiler heat duty.

3. Finally, we aim to achieve a steady state where we can
recover most of the ethane in the feeds as the bottoms
product. The optimal control is performed over a fixed
time horizon of tf = 10 min for this stage.

The optimization problem for the three periods are given
in Table 1. These also include the Eqs. (19)–(26) in addi-
tion to the constraints in Table 1. The problems are dis-
cretized over 12 finite elements with 2 collocation points to
yield a NLP. Information on problem size on discretization
and computational requirements for the solution of the three
cases is provided in Table 2. All problems have been solved
to a tolerance of 10−4 in the optimality conditions. Observe
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Table 2
Problem characteristics and computational requirements for IPOPT-C on
the cryogenic distillation case study

Period 1 Period 2 Period 3

# variables 17918 17942 17944
# constraints 17318 17330 17344
# complementarity cons. 575 575 576
# iterations 624 104 97
# CPU time (h) 30 3.8 8.4

The results are obtained on a 2.2 GHz Intel Xeon processor running
LINUX as the operating system.

that the solution for Period 1 requires more iterations for its
solution and amply reflects the nature of the problem that
is solved. One cause for the difficulty in solving the Period
1 problem is that most of the compositions (except for in-
ert) are zero. This results in poor conditioning of the matrix
(also called the KKT matrix) in the linear system that cal-
culates the search direction. Nevertheless, by inertia correc-
tions in IPOPT, a nonsingular system is solved to obtain a
stable solution. The computationally intensive step in each
iteration is the factorization of the KKT matrix to obtain a
search direction. The KKT matrix requires modification and
re-factorization if some heuristics on the inertia of the lin-
ear system (Wächter, 2002; Wächter & Biegler, 2004) are
not satisfied. This leads to the large computational time per
iteration. This is also the cause for Period 3 requiring more
time per iteration as compared to Period 2.

We first present results for Period 1. The minimum time
is achieved by supplying the maximum reboiler duty to the
bottom which is 550 MJ/min. The formation of liquid occurs
by a different process as compared to the previous column.
Liquid is formed on a tray when the higher temperature
vapors from the bottom contact with the cold inert vapor on
the trays above. Hence, the formation of liquid (see Fig. 10)
and achievement of equilibrium on trays (see Fig. 11) occur
sequentially starting from the lower numbered trays. Further,
the inert composition on each tray decreases with time, refer
Fig. 12.
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Fig. 10. Liquid holdup profiles in Period 1 solution.
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Fig. 11. Equilibrium indicator (βi) profiles in Period 1 solution.

In the second period, we minimize the operation time by
using the reboiler heat duty and withdrawal side pressure
profiles as depicted in Figs. 13 and 14, respectively. The
feed to the top trays of the column and changing withdrawal
pressure play the pivotal role in ensuring liquid holdup on all
trays (see Fig. 15). In contrast to Period 1, the holdup now
increases in decreasing order of tray number. The liquid flow
from the trays corresponds to the liquid holdup as observed
from Fig. 16. The feed F7 is just liquid while F8 consists
predominantly of vapor. As a result, tray 7 builds up faster
than tray 8 and also has a higher liquid flowrate as can be
seen from Figs. 15 and 16. The composition of inert in the
vapor on trays further decreases to negligible levels, refer
Fig. 17.

Finally, the third period brings the column to steady state
operation. The objective in the third period reflects the re-
covery of ethane in the feed that is required in the bottom
products. The optimal control problem also includes a final
time constraint on the mole fraction of ethane in the bot-
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Fig. 12. Inert composition profiles in Period 1 solution.
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Fig. 13. Reboiler heat duty (Qr) profile in Period 2 solution.
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Fig. 14. Withdrawal side pressure (Pout) profile in Period 2 solution.
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Fig. 15. Liquid holdup (Ml
i ) profiles in Period 2 solution.
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Fig. 16. Liquid flow (Li) profiles in Period 2 solution.
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Fig. 17. Profiles of inert composition in vapors (yi,inert) in Period 2
solution.
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Fig. 18. Reboiler heat duty (Qr) profile in Period 3 solution.
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Fig. 19. Top withdrawal pressure (Pout) profile in Period 3 solution.
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Fig. 20. Profile of feed ethane recovery in the bottoms product of Period
3 solution.
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Fig. 21. Profile of ethane composition in vapors from the trays of column
in Period 3 solution.
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Fig. 22. Profile of ethane composition in liquid from the trays of column
in Period 3 solution.

toms product. The feed flowrates for this period are nearly
2.5 times that in the second period. The optimal profiles of
the reboiler heat duty, Qr and the withdrawal pressure, Pout
are provided in Figs. 18 and 19 respectively. The optimal
recovery of feed ethane in the bottoms product is presented
in Fig. 20. The recovery of ethane in the bottoms product
increases steadily towards 1. It is clear that in the final solu-
tion all of the feed ethane is in the bottoms product. Hence,
the mole fraction of ethane in the vapors exiting from the
column is negligible (refer Fig. 21) while the composition
of ethane in the bottoms product is much greater than the
requirement at final time (refer Fig. 22).

7. Conclusions

With growing interest in dynamic optimization in pro-
cess engineering, hybrid systems and discrete events are also
starting to be considered. This study explores the use of com-
plementarity formulations to deal with one class of dynamic
hybrid systems: phase transitions in the dynamic operation
of distillation columns. Here we introduce complementarity
relations through a simple modification of the tray equilib-
rium equations. The resulting mathematical program with
equilibrium constraints (MPEC) is a single, large-scale, con-
tinuous variable formulation. While the MPEC formulation
does not satisfy nonlinear programming constraint qualifi-
cations, we show how it can be solved by using IPOPT-C,
an extension of the large-scale NLP algorithm IPOPT.

This study considers both index one and index two formu-
lations for the dynamic distillation models (with and with-
out vapor holdup on trays, respectively). Our first applica-
tion uses the simpler model (without vapor holdup) to deal
with the optimal (cold) startup of a binary batch distillation
column, initially with no liquid on the trays. In the second
study, we consider the more detailed model for the startup
of a cryogenic multicomponent separation of natural gas liq-
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uids. Enabled by the complementarity formulations and the
IPOPT-C solver, this approach allows us to model the ap-
pearance and disappearance of phases during the dynamic
optimization. This approach leads to very interesting and
often counter-intuitive solution profiles.

The results presented here are some of the first for the op-
timization of hybrid dynamical systems modeled through a
complementarity formulation. This study raises interesting
questions on the applicability of the complementarity for-
mulation to other classes of hybrid systems. It is imperative
to identify the classes of discontinuous systems that can be
modeled effectively using a complementarity formulation.
Issues of stability and convergence of the discretization are
also important.

In future work, we intend to explore several issues that
will improve the performance of the IPOPT-C solver. These
include improved linear factorizations, parallel decompo-
sition strategies for the discretized dynamic equations and
refinement of IPOPT-C algorithm. Additionally, better han-
dling of negative curvature is required to avoid excessive
linear factorizations on large systems. These developments
will also be augmented through the integration of process
modeling tools, graphical interfaces and nonlinear solvers.
Finally, we intend to consider a wider class of hybrid sys-
tem applications, including the incorporation of stability
and controllability constraints within the DAE model.
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