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Abstract

Following on the popularity of dynamic simulation for process systems, dynamic optimization

has been identi�ed as an important task for key process applications. In this study, we present

an improved algorithm for simultaneous strategies for dynamic optimization. This approach

addresses two important issues for dynamic optimization. First, an improved nonlinear pro-

gramming strategy is developed based on interior point methods. This approach incorporates

a novel �lter-based line search method as well as preconditioned conjugate gradient method for

computing search directions for control variables. This leads to a signi�cant gain in algorithmic

performance. On a dynamic optimization case study, we show that nonlinear programs (NLPs)

with over 800,000 variables can be solved in less than 67 CPU minutes. Second, we address

the problem of moving �nite elements through an extension of the interior point strategy. With

this approach we develop a reliable and eÆcient algorithm to adjust elements to track optimal

control pro�le breakpoints and to ensure accurate state and control pro�les. This approach is

also demonstrated on a dynamic optimization for two distillation columns.

Key words: interior point; dynamic optimization; nonlinear programming; moving �nite ele-

ments; nonlinear programming; collocation

1 Introduction

Over the past decade, applications in dynamic simulation have increased signi�cantly in the pro-

cess industries. These are driven by strong competitive markets faced by operating companies

along with tighter speci�cations on process performance and regulatory limits. Moreover, the de-

velopment of powerful commercial modeling tools for dynamic simulation, such as ASPEN Custom
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Modeler and gProms, has led to their introduction in industry alongside their widely used steady

state counterparts. Dynamic optimization is the natural extension of these dynamic simulation

tools because it automates many of the decisions required for engineering studies. Applications of

dynamic simulation can be classi�ed into o�-line and on-line tasks. O�-line tasks include:

� Design to avoid undesirable transients for chemical processes, including process startups and

shutdowns, handling of upsets and results of severe disturbances, and transitions to di�erent

operating points [3],

� Design of distributed (e.g., packed bed) unit operations such as reactors, chromatographic

and adsorption separations and detailed heat exchanger models [30],

� Systematic strategies to deal with interactions of process and equipment design, and synthesis

and tuning of controllers [39, 31],

� Design and dynamic operation of batch processes, along with interactions resulting from the

scheduling of these processes [9],

� Process safety studies and the evaluation of control schemes under abnormal operations [3].

On the other hand, on-line tasks include [1, 10]:

� Nonlinear Model Predictive Control (NMPC) requiring the solution of a dynamic optimization

problem with a nonlinear dynamic process model. This problem may be solved o�-line to

determine trajectory information or on-line to update the model with each new set of inputs,

� System identi�cation with nonlinear process models to identify the states and unmeasured

inputs of the process, given measured inputs and outputs,

� Related estimation tasks to identi�cation including data reconciliation and model parameter

estimation.

1.1 Methods for dynamic optimization

Chemical processes are modeled dynamically using di�erential-algebraic equations (DAEs). The

DAE formulation consists of di�erential equations that describe the dynamic behavior of the system,

such as mass and energy balances, and algebraic equations that ensure physical and thermodynamic

relations. To apply these to dynamic optimization a number of approaches can be taken. In

particular, DAE optimization problems can be solved using a variational approach [32] or by various

strategies that apply a Nonlinear Programming (NLP) solver to the DAE model.

The indirect or variational approach is based on the solution of the �rst order necessary con-

ditions for optimality that are obtained from Pontryagin's Maximum Principle [32]. For problems
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without inequality constraints, the optimality conditions can be formulated as a set of di�erential-

algebraic equations. Obtaining a solution to these equations requires careful attention to the

boundary conditions. Often the state variables have speci�ed initial conditions and the adjoint

variables have �nal conditions; the resulting two-point boundary value problem (TPBVP) can

be addressed with di�erent approaches, including single shooting, invariant embedding, multiple

shooting or some discretization method such as collocation on �nite elements or �nite di�erences.

A review of these approaches can be found in [15]. On the other hand, if the problem requires

the handling of active constraints, �nding the correct switching structure as well as suitable initial

guesses for state and adjoint variables is often very diÆcult.

Methods that apply NLP solvers can be separated into two groups: the sequential and the

simultaneous strategies. In the sequential methods, only the control variables are discretized; these

techniques are also known as control variable parametrization methods. Given initial conditions

and a set of control parameters, the process model is integrated with a DAE solver at each iteration.

This produces values of the objective function and constraints (at �xed points) which are used by a

nonlinear programming solver to �nd the optimal parameters in the control parametrization. In this

formulation the control variables are represented as piecewise polynomials [42, 3] and optimization is

performed with respect to the polynomial coeÆcients. The gradients of the objective function with

respect to the control coeÆcients and parameters are calculated either from sensitivity equations

of the DAE system or by integration of the adjoint equations. The sequential approach is a feasible

path method; in every iteration the DAE system is solved. However, this procedure is robust only

when the system contains stable modes. Otherwise, �nding a feasible solution for a given set of

control parameters may be diÆcult. See [15, 42, 39] for a review of these methods.

Multiple shooting serves as a bridge between sequential approaches and simultaneous approaches

that are based on a complete discretization of the state and control variables. Here the time domain

is partitioned into smaller time elements and the DAE models are integrated separately in each

element [11, 27]. Control variables are treated in the same manner as in the sequential approach.

Moreover, to obtain gradient information, sensitivities are obtained for both the control variables

as well as the initial conditions of the states in each element. Finally, equality constraints are added

to the nonlinear program in order to link the elements and ensure that the states are continuous

across each element. With this approach, inequality constraints for states and controls can be

imposed directly at the grid points. For piecewise constant or linear controls this approximation is

accurate enough, but path constraints for the states may not be satis�ed between grid points.

1.2 Simultaneous approach to dynamic optimization

In this study we focus on simultaneous approaches. Also known as direct transcription, these

techniques fully discretize the state and control variables, leading to large-scale NLP problems

which usually require special solution strategies [7, 8, 13, 14, 16]. As a result, these methods
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directly couple the solution of the DAE system with the optimization problem; the DAE system

is solved only once, at the optimal point, and therefore can avoid intermediate solutions that may

not exist or may require excessive computational e�ort. Moreover, simultaneous approaches have

advantages for problems with path constraints and with instabilities that occur for a range of

inputs. Because they can be seen as extensions of robust boundary value solvers, they are able

to "pin down" unstable modes in the forward direction by enforcing the appropriate boundary

condition. In addition, these methods allow the direct enforcement of state and control variable

constraints, at the same level of discretization as the state variables of the DAE system.

On the other hand, there are some disadvantages to the simultaneous approach. First, for

optimal control problems where control variables are discretized at the same level as the state

variables, there are a number of open questions related to convergence to the solution of the orig-

inal variational problem. A number of studies have shown (e.g., [33, 18]) that the Karush Kuhn

Tucker (KKT) conditions of the simultaneous NLP are consistent with the optimality conditions

of the variational problem. However, stability problems remain due to presence of high index con-

straints and singular arcs. In particular, interesting stability questions arise regarding appropriate

discretizations of control and state pro�les. Empirical evidence of this instability and practical

remedies have been given in [28, 16, 5] and special cases of these have been analyzed rigorously in

[6] and [20]. Coupled with this question is the placement of �nite elements in order to maintain

accuracy of the discretized DAE model and to determine the optimal breakpoint location in the

optimal control pro�le.

A second disadvantage arises from the need to solve large nonlinear programs; specialized meth-

ods are required to solve them eÆciently. These NLPs are usually solved using variations of Succes-

sive Quadratic Programming (SQP) and both full-space and reduced space options exist for these

methods. Full-space methods take advantage of the DAE optimization problem structure and the

sparsity of the model. They are best suited for problems where the ratio of state variables to

control variables is small [7, 8]. Here, second derivatives of the objective function and constraints

are usually required, as are measures to deal with directions of negative curvature in the Hessian

matrix [7, 24].

On the other hand, in most process engineering problems, the number of state variables is much

larger than the number of control variables. For dynamic optimization problems, the number of

discretized control variables rarely exceeds a few hundred while the number of state variables could

be over a million. For these cases, a reduced space SQP approach (rSQP) can be more eÆcient.

With this approach, either projected Hessian matrices or their quasi-Newton approximations may

be used, thus avoiding the necessity of second derivatives. An eÆcient algorithm can be constructed

by decoupling the search direction into its range and null space components.

In [14, 16], we present a simultaneous rSQP algorithm that exploits the sparsity of the DAE

system, as well as the almost block diagonal structure of the DAE optimization problem. The DAE
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system is discretized using collocation on �nite elements. The variables are then partitioned into

dependent and independent variables in each element. A Newton step for the dependent variables

is obtained by solving blocks of equations for each element. For this system, unstable modes are

avoided by selecting a numerically stable pivot sequence for the collocation matrix in each element

and consequently by selecting state variables as decisions in the partitioning step. This approach

has the e�ect of imposing stabilizing boundary conditions on the system.

With this decomposition, solution and storage of the large collocation matrix is avoided, but

the size of the reduced subproblem still contains bounds on all of the variables. Solution of this

subproblem with an active-set quadratic programming method can be ineÆcient and interior point

(IP) (or barrier) methods serve as a desirable alternative to eliminate the combinatorial problem

of selecting an active set. IP techniques have been applied to the solution of large NLP problems

[12, 43, 25, 38] and stem from the classical work on penalty-barrier functions [22]. In these ap-

proaches inequality constraints are replaced by logarithmic barrier terms in the objective function

and the resulting equality constrained problem is solved with Newton-type methods applied to the

optimality conditions. These methods were explored for simultaneous dynamic optimization [16],

where the structure of the collocation equations was exploited using the elemental decomposition

[14].

In this study we extend this interior point strategy in three ways. First, we improve the interior

point algorithm through the use of a preconditioned conjugate gradient (PCG) method to update

the control variables. This approach replaces the quasi-Newton step for these variables with a

Newton step. Moreover, by supplying the PCG method with directional di�erenced quantities,

the Newton step is calculated even without exact second derivative information for the projected

Hessian. Consequently, the resulting interior point method requires far fewer iterations than the

quasi-Newton approach in [16].

Second, a novel line search strategy is introduced that is based on a bicriterion minimization,

with the objective function and constraint infeasibility as competing objectives. Termed the �lter

approach, this method was recently developed in a trust region context for SQP and other nonlinear

programming algorithms [23]. Since then the �lter has been adopted for interior point methods as

well [40].

Third, we consider the important issue of moving �nite elements in the simultaneous approach.

Adjusting and adding �nite elements is essential for the representation of accurate state pro�les

and also to optimal breakpoints locations in control pro�les. In a previous study [36] a nested

strategy was developed with elements adjusted in an outer loop while the control and state variables

were optimized in an inner loop. While successful, this approach required repeated nonlinear

programming solutions as well as safeguards to deal with nondi�erentiable functions. In this study

we show that the interior point approach can be extended to deal with moving �nite elements quite

easily.
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In the next section we present some background on the simultaneous optimization approach.

Section 3 then follows with a description of the improved interior point algorithm that includes

a �lter line search as well as preconditioned conjugate gradient solvers. Section 4 demonstrates

this strategy through a medium scale case study based on a distillation column optimization. In

particular, this approach leads to an eÆcient algorithm for solving dynamic optimization problems.

Section 5 then presents an extension of the interior point approach to deal with moving �nite

elements and a demonstration of this approach will be seen in Section 6 for the case study in

Section 4. Finally, the paper is summarized and conclusions are drawn in Section 7.

2 NLP problem formulation

The general DAE optimization problem can be stated as follows:

min
z(t);y(t);u(t);tf ;p

'(z(tf ); y(tf ); u(tf ); tf ; p) (1)

s.t. Semi-explicit DAE model:

dz(t)

dt
= F (z(t); y(t); u(t); t; p) (2)

0 = G (z(t); y(t); u(t); t; p) (3)

Initial conditions:

z(0) = z0 (4)

Point conditions:

Hs (z(ts); y(ts); u(ts); ts; p) = 0 for s 2 f1; : : : ; nSg (5)

Bounds:
zL � z(t) � zU

yL � y(t) � yU

uL � u(t) � uU

pL � p � pU

tLf � tf � tUf

(6)

where
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' is a scalar objective function,

F are the right hand sides of di�erential equation constraints,

G are algebraic equation constraints, assumed to be index one,

Hs are additional point conditions at �xed times ts,

z are di�erential state pro�le vectors,

z0 are the initial values of z,

y are algebraic state pro�le vectors,

u are control pro�le vectors,

p is a time-independent parameter vector,

tf is the �nal time.
The DAE optimization problem is converted into an NLP by approximating state and control

pro�les by a family of polynomials on �nite elements (t0 < t1 < : : : < tne = tf ). Here, we use a

monomial basis representation [2] for the di�erential pro�les, as follows:

z(t) = zi�1 + hi

ncolX
q=1


q

�
t� ti�1
hi

�
dz

dt i;q
(7)

where zi�1 is the value of the di�erential variable at the beginning of element i, hi is the length of

element i, dz=dti;q is the value of its �rst derivative in element i at the collocation point q, and 
q

is a polynomial of order ncol, satisfying


q(0) = 0 for q = 1; : : : ; ncol


0q(�r) = Æq;r for q; r = 1; : : : ; ncol

where �r is the r
th collocation point within each element. Here, Radau collocation points are used

because they allow us to set constraints easily at the end of each element and to stabilize the system

more eÆciently if high index DAEs are present. In addition, the control and algebraic pro�les are

approximated using a similar monomial basis representation which takes the form:

y(t) =

ncolX
q=1

 q

�
t� ti�1
hi

�
yi;q (8)

u(t) =

ncolX
q=1

 q

�
t� ti�1
hi

�
ui;q: (9)

Here yi;q and ui;q represent the values of the algebraic and control variables, respectively, in element

i at collocation point q.  q is a Lagrange polynomial of order ncol satisfying

 q(�r) = Æq;r for q; r = 1; : : : ; ncol:

From (7), the di�erential variables are required to be continuous throughout the time horizon, while

the control and algebraic variables are allowed to have discontinuities at the boundaries of the ele-

ments. It should be mentioned that with representation (7), the bounds on the di�erential variables
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are enforced directly at element boundaries; however, they can be enforced at all collocation points

by writing appropriate point constraints (5).

For now we assume that the number of �nite elements, ne, and their lengths are pre-determined.

Substitution of equations (7){(9) into (1){(6) leads to the following NLP.

min
x2Rn

f(x) (10)

s.t. c(x) = 0 (11)

xL � x � xU (12)

where x =
�
dz
dt i;q

; zi; yi;q; ui;q; t; p
�T

, f : Rn �! R and c : Rn �! R
m .

2.1 Reduced-Hessian Successive Quadratic Programming (rSQP).

The NLP problem, (10){(12), can be solved using an rSQP method [13, 35, 14]. This method

is eÆcient for solving DAE optimization problems, especially when the dimension of the state

variables is much larger than that of the control variables (n � n � m). The eÆciency of the

solution procedure is also improved by performing matrix factorizations in each element. This

allows us to preserve and exploit the structure of the problem and to detect ill-conditioning due

to unstable modes in the DAE system. At each iteration k, a search direction dk is obtained by

solving a quadratic approximation of the original problem (10) to (12)

min
d2Rn

gTk dk +
1

2
dTkHkdk (13)

s.t. ck +AT
k dk = 0 (14)

xL � xk + dk � x
U (15)

where gk = g(xk) is the gradient of f at xk, Hk = H(xk) denotes the Hessian of the Lagrangian

function at xk, and Ak = A(xk) are the gradients of the constraints at iteration k, and ck = c(xk).

The variables are partitioned into m dependent (R space) and n �m independent (Q space)

variables. The independent variable space occupies the null space of AT
k . The complete set of

variables spans the full space. Note that the control variables and parameters are not necessarily

the independent variables. With this partition A takes the form

AT
k =

h
Ck Nk

i
(16)

where the m�m basis matrix Ck is nonsingular. De�ning the matrices

Qk =

"
�C�1k Nk

I

#
Rk =

"
I

0

#
; (17)

the search direction can be written as

dk = RkdR +QkdQ: (18)
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Note that the matrix Qk satis�es

AT
kQk = 0

and is a null-space basis matrix for AT
k .

The range space direction dR is now determined by solving

dR = �C�1k ck; (19)

and the null space direction dQ is obtained from the following reduced QP subproblem

min
dQ2Rn�m

�
QT
k gk +QT

kHkRkdR
�T
dQ +

1

2
dTQ
�
QT
kHkQk

�
dQ (20)

s.t. xL � xk �RkdR � QkdQ � xU � xk �RkdR: (21)

2.2 Elemental decomposition

The partitioning in (18) allows us to perform a special decomposition of the matrix Ak that we will

brie
y explain. In the remainder of this section we will omit the iteration index k in our notation

for simplicity. First, consider the Jacobian of the discretized system of equations.

AT =

2666666666666664

Z0

init
0 0

Z0

1
DZ1

1
Y 1

1
U1

1
P1

1

Z0

2
DZ1

2
Y 1

2
U1

2
P1

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Z0

ncol
DZ1

ncol
Y 1

ncol
U1

ncol
P1

ncol

Z0

a
D1

a
Y 1

a
U1

a
P1

a

I D1
0 �I 0 0

Z1

1
DZ2

1
Y 2

1
0 U2

1
P2

1

.
.
.

.
.
.

.
.
.

.

.

.

.
.
.

.
.
.

.
.
.

.

.

.

Z
ne�1

ncol
DZne

ncol
Y ne

ncol
Une

ncol
Pne

ncol

Zne�1

a
Dne

a
Y ne

a
Une

a
Pne

a

I Dne
0 �I

3777777777777775
(22)

where I represents the identity matrix of appropriate size, and Di is a matrix containing the

coeÆcients of the continuity equations of the ith element. Zi
q, DZ

i
q, Y

i
q , U

i
q and P

i
q represent the

Jacobian of the collocation equations with respect to zi, dz=dti;q, yi;q, ui;q and p, at collocation

point q and element i. Zi
a, D

i
a, Y

i
a , U

i
a and P i

a, correspond to the Jacobian of the additional

constraints. As indicated in (22), it is assumed that these constraints can be separated by elements.

The factorization of this matrix is performed over smaller matrices, each one representing a �nite

element. To explore this decomposition, consider the rows and columns of AT , corresponding to
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element i:

Ai =

26666666664

Zi�1
1 DZi

1 Y i
1 0 U i

1 P i
1

Zi�1
2 DZi

2 Y i
2 0 U i

2 P i
2

...
...

... 0
...

...

Zi�1
ncol DZi

ncol Y i
ncol 0 U i

ncol P i
ncol

Zi�1
a Di

a Y i
a 0 U i

a P i
a

I Di 0 �I 0 0

37777777775
: (23)

If no parameters p are present, the decomposition of this matrix can be performed directly, as

all the variables can be eliminated locally. In the case that a parameter is present, the last column

of Ai, which corresponds to the parameters, will be coupled to the entire system. In this case, we

create separate dummy parameters for each �nite element.

In order to apply a reduced space algorithm, we partition the search direction into the space

spanned by A and its null space. This partition is performed by applying an LU factorization with

partial pivoting on each rectangular system Ai. Following [19], this LU factorization will yield a

dichotomous system in each element. If an unstable mode is present in the DAE, Ai is required

to be partitioned so that the end conditions of any increasing mode are �xed or become decision

variables. Here, if a di�erential variable zj has an increasing mode, dz
dt j;ncol

would be speci�ed and

would correspond to a column in the null space. Correspondingly, a column corresponding to a

control variable or a parameter would be added to the range space. By considering the variables

that span the columns of the null space to be �xed, the decomposition approach is equivalent to

solving a discretized, linear BVP.

After the basis is selected, we can represent the overall matrix A with the following structure

and partition:

AT =

26666666666664

I

T 1 C1

I bC1 �I

T 2 C2

I bC2 �I

T 3 C3

. . .
. . .

j

0

N1bN1

N2bN2

N3

. . .

37777777777775
=
h
C j N

i

and the corresponding right hand sides are

cT =
h
c0 c1 bc1 c2 bc2 c3 � � �

i
:

By premultiplying T i, Ci, and N i by the inverse of Ci in each element, we can develop a

forward decomposition strategy that allows us to calculate C�1N and C�1c. In our previous work,

the dense matrix C�1N was calculated and stored explicitly. However, in our new implementation

for very large problems the sparse LU factors of Ci are stored instead and reused as needed.

10



This decomposition strategy is very eÆcient, but as the number of discretized variables increases,

the active set solution of the reduced QP subproblem can become a bottleneck [37]. This is the result

of the combinatorial problem of choosing an active set from a large number of bound constraints.

To address this issue we replace the QP subproblem (20,21) and apply an interior point algorithm

directly to the NLP problem. Here the inequality constraints (bounds) are eliminated from the

NLP, thus avoiding the need to choose an active set. In the next section we present a detailed

description of this algorithm.

3 Interior point method applied to NLP

In order to simplify the presentation of our algorithm we assume that all variables have only lower

bounds of zero and consider the following problem:

min f(x) (24)

s.t. c(x) = 0 (25)

x � 0 (26)

where f : Rn �! R and c : Rn �! R
m are assumed to be suÆciently smooth. Extending the

approach described below to the general problem formulation (10){(12) is straight-forward. The

algorithm follows a barrier approach, where the bound constraints (26) are replaced by a logarithmic

barrier term which is added to the objective function to give

min '�(x) = f(x)� �

nX
i=1

ln(x(i)) (27)

s.t. c(x) = 0 (28)

with a barrier parameter � > 0. Here, x(i) denotes the ith component of the vector x. Since the

objective function of this barrier problem becomes arbitrarily large as x approaches the boundary

of the nonnegative orthant fx jx � 0g, it is clear that a local solution x�(�) of this problem lies

in the interior of this set, i.e., x�(�) > 0. The degree of in
uence of the barrier is determined

by the size of �, and x�(�) converges to a local solution x� of the original problem (24){(26) as

� ! 0. Consequently, a strategy for solving the original NLP is to solve a sequence of barrier

problems (27)-(28) for decreasing barrier parameters �l, where l is the counter for the sequence

of subproblems. Since the exact solution x�(�l) is not of interest for large �l, the corresponding

barrier problem is solved only to a relaxed accuracy �l, and the approximate solution is then used

as a starting point for the next barrier problem with liml!1 �l = 0.

To solve the barrier problem for a �xed value of �l we follow a primal-dual approach (see

e.g. [21]), that generates search directions for primal variables x > 0 as well as for dual variables

v > 0 which correspond to the Lagrange multipliers to the bound constraints (26) as �l ! 0.
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After de�ning dual variables by v = �X�1e, the optimality conditions of (27), (28) can be

written as:

rf(x) +A(x)�� v = 0 (29)

XV e� �e = 0 (30)

c(x) = 0: (31)

where the components of the vector � are the Lagrange multipliers for the equality constraints

(28). Throughout this section, e denotes the vector of appropriate dimension of all ones, and a

capital letter of a vector name (e.g. X) denotes the diagonal matrix with the vector elements on the

diagonal. Solving this system of nonlinear equations by Newton's method is equivalent to solving

the following quadratic program at (xk; �k; vk):

min
dx2Rn

r'�(xk)
Tdx +

1

2
(dx)T (Hk +�k) d

x (32)

s.t. AT
k d

x + ck = 0 (33)

if the matrix Hk +�k is positive de�nite in the null space of AT
k . Here �k = X�1

k Vk and d
x is the

search direction for x. The similarity of this QP to (13)-(15) allows us to employ the decomposition

presented in Section 2. As in (18), we partition the overall primal step into a range and null space

component, dx = QkdQ+RkdR. The range step can be obtained using (19), while dQ is the solution

of the reduced QP (20). The reduced space QP is now unconstrained and its solution can directly

be computed as

dQ = �[QT
k (Hk +�k)Qk]

�1
�
QT
kr'�(xk) + wk

�
: (34)

with

wk = QT
k (Hk +�k)RkdR: (35)

3.1 Solving for the null space step

In our previous study the reduced Hessian ~Bk = [QT
k (Hk + �k)Qk] in (34) was approximated by

means of a quasi-Newton method. In order to allow for an eÆcient update that adapts to changing

values of �, the two terms in the reduced Hessian were separated, ~Bk = QT
kHkQk + QT

k�kQk,

and only the �rst term Bk � QT
kHkQk was estimated by a quasi-Newton method. The explicit

computation of the second term is easy since �k is diagonal and readily available, and Bk+Q
T
k�kQk

is then used as an estimate for ~Bk in (34). In the previous implementation we used both BFGS

and SR1 quasi-Newton updates for Bk.

On the other hand a direct solution of (34) with an exact reduced Hessian [QT
k (Hk + �k)Qk]

would provide a faster convergence rate and could greatly reduce the number of NLP iterations. This

can be done in two ways. First, the reduced Hessian can be constructed using �nite di�erences.

A slightly more accurate approach is to calculate matrix-vector products of the Hessian of the
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Lagrangian, Hkw for the reduced Hessian. For this task, one may use the ADOL-C package

[26] applied to the model equations (2)-(3). Second, the linear system (34) can be solved with a

preconditioned conjugate gradient (PCG) method. These iterative methods rely on matrix vector

products (e.g., [QT
k (Hk + �k)Qk]w) and many of these products can be substituted by divided

di�erences of �rst derivatives. For instance the �rst term in this product can be approximated by:

QT
kHkQkw �

QT
k (rL(xk + tQkw)�rL(xk))

t

where t is a small scalar. Consequently second derivatives need not be supplied at all.

For eÆcient performance of the conjugate gradient method, it is essential to supply an e�ective

preconditioner. Here the preconditioning matrix Pk needs to approximate [QT
k (Hk + �k)Qk]

�1.

For this task we considered two preconditioners. The �rst is due to Morales and Nocedal [29] and

applies a BFGS update to approximate Bk � [QT
k (Hk+�k)Qk]

�1 based on matrix-vector products,

[QT
k (Hk+�k)Qk]w, supplied from the PCG iterations. The BFGS update to Pk is applied at every

PCG iteration. However, the preconditioner itself is applied once to solve the linear system at xk.

The second preconditioner separates the two terms; here the BFGS update is applied only to the

�rst term Bk � [QT
kHkQk] and the second QT

k�kQk is calculated directly. Once updated, we have

Pk = (Bk+Q
T
k�kQk)

�1. Again the BFGS update to Bk is applied at every PCG iteration and the

preconditioner itself is applied only once to solve the linear system at xk.

3.2 The �lter line search method

Having computed the primal-dual search directions (dxk ; d
v
k) from (19), (34) and (18), we need to

choose a step length �k 2 (0; 1] to obtain the next iterate

xk+1 = xk + �kd
x
k (36)

vk+1 = vk + �̂kd
v
k: (37)

Among other things, we need to ensure that the implicit positivity constraints xk+1 > 0 and

vk+1 > 0 are satis�ed, since a full step with �k = 1 might violate these constraints. For this, we

compute a maximal step sizes ~�; �̂ 2 (0; 1] such that the \fraction-to-the-boundary-rule"

xk + ~�dxk � (1� �)xk (38)

vk + �̂dvk � (1� �)vk (39)

with � = 0:99 is satis�ed. Starting from this maximal step size, a suitable value is then determined

for �. In [16] we performed an Armijo line search using a primal-dual `1-penalty function

��(x; v) = '�(x) + V�(x; v) + ��(x) (40)
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where

V�(x; v) = xT v � �

nX
i=1

ln(x(i)v(i))

and �(x) = kc(x)k. The penalty parameter � can be updated without the explicit knowledge of

the multipliers �. In this study, we apply a line search strategy based on a �lter approach; this

leads to larger stepsizes and more robustness. A detailed derivation and convergence analysis of

this method can be found in [44]. Here we sketch only some of the basic concepts.

The �lter is based on a bicriterion minimization with '�(x) and �(x) as competing objectives.

Instead of decreasing a linear combination of �(x) and '�(x), we require suÆcient decrease in only

one of those objectives. The conditions for suÆcient decrease are given by:

'�(xk + �dxk) � '�(xk)� 
'� [�(xk)] (41)

�(xk + �dxk) � �(xk)� 
�[�(xk)] (42)

where 
'� and 
� are small positive constants. Note that the feasibility measure, �(x) dominates

these conditions. Moreover, to avoid cycling, we store a set of some previous (�(xk); '�(xk))-pairs

(called �lter) and force future points to improve on points in this set. Points that fall in this

category are acceptable to the �lter. Moreover, to avoid convergence to feasible but not optimal

points, we require an Armijo-type decrease in '�(x), i.e.:

'�(xk + �dxk) � '�(xk) + ��r'�(xk)
Tdxk: (43)

instead of (41), (42) if �(xk) is small. Finally, if no admissible step size � can be found that satis�es

the conditions for suÆcient decrease, we switch to a feasibility restoration phase in which �(x) is

minimized directly in order to �nd a less infeasible point.

3.3 Description of the Algorithm

Algorithm:

Given: Initial barrier parameter �0 > 0, initial point x0 2 R
n ; v0 2 R

n with x0; v0 > 0, initial

estimate of the reduced Hessian B0, desired tolerance �, and constants L 2 (0; 1), M > 0.

Initialize iteration counter k := 0.

1. Evaluate f(xk), rf(xk), ck, Ak; compute Rk and Qk from (17).

2. Check convergence of barrier problem

max
�

QT

k (rf(xk)� vk)



1
; kc(xk)k1; kXkVke� �kek1

	
< M�k:

If satis�ed,
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(a) Check convergence of original NLP

max
�

QT

k (rf(xk)� vk)



1
; kc(xk)k1; kXkVkek1

	
< �:

(b) If satis�ed, STOP [converged].

(c) Otherwise, decrease barrier parameter �k  L�k and go back to step 2.

3. Compute range space step from (19).

4. Compute cross term from (35).

5. Compute null space step from

dQ = �[QT
kHkQk +QT

k�kQk]
�1
�
QT
kr'�(xk) + wk

�
:

Here a number of options can be used based on quasi-Newton updates or preconditioned

conjugate gradient methods.

6. Compute primal search direction dxk from (18), and the dual search direction dvk = �kX
�1
k e�

vk � �kd
x
k :

7. Do the line search:

(a) Determine maximal stepsizes ~�k; �̂k 2 (0; 1] that satis�es (38){(39).

(b) Apply back-tracking linesearch to �nd stepsize �k � ~�k acceptable to the �lter mecha-

nism.

8. Accept the new iterate (36){(37).

9. Increase iteration counter k  k + 1, set �k := �k�1, and go back to step 1.

4 Distillation Optimization: A Case Study

In this section we consider the dynamic optimization of a ternary distillation column between two

desired periods of operation. This problem was considered in [16] and here we compare the options

of the improved interior point algorithm derived in the previous section.

The dynamic model for both cases consists of dynamic MESH equations as described in [16].

The general model of the columns consists of the following equations:

dMi

dt
= Fi + Vi+1 + Li�1 � Vi � Li +

nrX
n=1

Ri;n: (44)
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Here, Mi corresponds to the molar holdup on tray i, Vi and Li are the vapor and liquid 
owrates,

Fi is the feed 
ow rate, nr is the number of reactions, and Ri;n is the di�erence between the rates

of production and consumption of each reaction n.

The liquid mole fraction x of each component j can be expressed as

Mi
dxi;j
dt

= Fi(zi;j � xi;j) + Vi+1(yi+1;j � xi;j) + Li�1(xi�1;j � xi;j)� Vi(yi;j � xi;j) + bRi (45)

where bRi =

nrX
n=1

�j;n
Mi

�i
ri;n � xi;j

nrX
n=1

Ri;n: (46)

�i is the liquid molar density, zi;j is the molar fraction of j in the feed, yi;j is the vapor mole

fraction, �j;n is the the stoichiometric coeÆcient, and ri;n is the rate of production per unit volume.

The phase equilibrium relationship is represented by

yi;j = Ki;jxi;j (47)

Ki;j = fj(Ti) (48)

while the sum of the vapor fractions on each tray is required to be equal to one

ncX
j=1

yi;j = 1: (49)

The vapor 
owrates are calculated using a modi�ed index one energy balance (see [13])

1

Mi

 
Vi+1(h

v
i+1) + Li�1(h

v
i�1 � h

l
i)� Vi(h

v
i � h

l
i) +

nrX
n=1

Mi

�i
ri;n�H

R
n

!
= RHSi (50)

where

RHSi =

ncX
j=1

@hli
@xi;j

�
dxi;j
dt

�
@hli
@Ti
�

Pnc
j=1Ki;j

dxi;j
dtPnc

j=1 xi;j
dKi;j

dTi

: (51)

hv and hl are the vapor and liquid enthalpies, and �HR
n is the heat of reaction.

In this example we simulate a simple air separation using a continuous distillation column with

15 trays without the reaction terms. The basic model is given by equations (44)-(51). The feed is

assumed to have a composition of 78.1% Nitrogen, 21% Oxygen, and 0.9% Argon. The purity of

Nitrogen taken out at the top of the column is 99.8%. The complete model consists of 70 di�erential

equations and 356 algebraic equations. Here, we simulate a change of set point in the distillate


ow rate from D(0) = 301:8 mol=s to Dset = 256:0 mol=s. The objective is to minimize the o�set

produced during the change from one steady state to another by controlling the feed 
owrate F .

min

Z tf

0
(D �Dset)2dt

s.t. DAE model (44)-(51) (52)

0 kmol=s � F � 2 kmol=s:
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Elements n/m QN-BFGS QN-SR1 Exact PCG1 PCG2 PCG2*

[Iter/CPU] [Iter/CPU] [Iter/CPU] [Iter/CPU] [Iter/CPU] [Iter/CPU]

50 67620/67470 206/5.0 82/1.93 10/7.35 15/3.78 12/1.45 12/5.98

100 135170/134870 238/11.35 124/6.03 9/25.6 15/13.03 12/3.43 12/19.6

300 405370/404470 288/52.47 151/27.65 11/269.98 17/99.93 16/17.93 16/209.98

600 810670/808870 336/210.52 218/133.83 11/366.67 20/280.6 18/66.22 18/949.62

Table 1: Computational Results for Air Separation Optimization

Here we compare the following cases for solution of this problem:

� The QN-BFGS option uses a BFGS update to approximate QT
kHkQk as in our previous study

[16]. In order to obtain the overall reduced Hessian in (34), the term QT
k�kQk is computed

explicitly.

� Similarly, theQN-SR1 option uses the SR1 update to approximate QT
kHkQk as in our previous

study [16]. Here the overall reduced Hessian is modi�ed if the update is not positive de�nte.

� The exact option uses �nite di�erence approximations to calculate QT
kHkQk.

� The PCG1 option due to [29] constructs a preconditioner from a BFGS update. Here Pk =

Bk �
�
QT
k (Hk +�k)Qk

��1
.

� The PCG2 option applies a damped BFGS for Bk � QT
kHkQk. The preconditioner is con-

structed from Pk =
�
Bk +QT

k�kQk

��1
.

We note that for this example only control variable bounds are imposed on this problem. As

a result QT
k�kQk = �u, which is a diagonal matrix corresponding to the control bounds and their

multipliers, is much cheaper to evaluate. This accounts for the fast performance in options PCG2,

QN-BFGS and QN-SR1. To present more realistic performance behavior (here for the PCG2 case)

for general control problems we also provide the calculation for a complete QT
k�kQk, even though

it is not used. This option is labeled as PCG2�.

All of these cases were run on an 800 MHz Pentium III Intel processor and were initialized to

a feasible solution corresponding to the steady state at t = 0. Table 1 shows the computational

results for this example for three collocation points and for di�erent numbers of elements.

From the results in this table several features are worth noting. First it is clear that the Newton-

based options (exact, PCG1, PCG2 and PCG2* ) require far fewer interior point iterations than

the quasi-Newton methods. In most cases this factor exceeds an order of magnitude. However,

the Newton methods clearly require more work per iteration, with the exact approach incurring

a large cost due to n�m of Hessian vector products for IP iteration. An interesting feature also
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can be seen with the two PCG options. The �rst preconditioner is four to six times slower than

the second one. This can be explained because the �rst preconditioner requires about an order of

magnitude more PCG iterations and Hessian vector products. PCG2 requires less work because

its preconditioner has separated terms which are updated more accurately, particularly when �

changes. On the other hand, PCG2 (as well as QN-BFGS and QN-SR1 ) is greatly aided by the

simple form of QT
k�kQk for this particular example. For more generally constrained problems,

QT
k�kQk is more costly to update. This can be seen with option PCG2*, which requires the same

low number of PCG iterations but is now about four times as expensive as PCG1.

Nevertheless, we see that the improved IP algorithm is quite attractive for solving very large

nonlinear programming problems. As can be seen from the table, even the largest problem with

over 800; 000 variables and 1800 degrees of freedom could be solved in less than 67 CPU minutes.

5 Moving Finite Elements in an Interior Point Strategy

In this section we extend the interior point algorithm to include moving �nite elements. The

sizes of the �nite elements are governed primarily by accuracy and the optimal location of the

control variable breakpoints. By introducing the element lengths �i as variables and aggregating

the variable bounds as inequality constraints (written as Q(zi; yi;j; ui;j ; p) � 0) for convenience, the

nonlinear programming problem takes the form:

min'(zne; yne;ncol; une;ncol; tf ; p) (53)

Semi-explicit DAEs

s:t: dz
d� i;j

= F (zi�1;
dz
d� i;j

; yi;j; ui;j ; p)�i i = 1; :::; ne; j = 1; :::; ncol

G(zi�1;
dz
d� i;j

; yi;j; ui;j ; p) = 0 i = 1; :::; ne j = 1; :::; ncol
(54)

Continuity equations

zi = zi�1 + hoi

ncolX
j=1


j (1)
dz

d� i�1;j
i = 1; :::; ne (55)

Initial conditions

z0 = z(0) (56)

Final time constraints

neX
i=1

hi = tf (57)

Point conditions
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bHs(zi�1;
dz

d� i;j
; yi;j; ui;j ; p) = 0 (58)

Bound constraints

Q(zi; yi;j; ui;j ; p) � 0 i = 1; :::; ne j = 1; :::; ncol (59)

where � is de�ned as

� =
t� ti�1
�i

(60)

and

�i =
hi
hoi

(61)

where hoi is the initial mesh for hi.

This problem has been addressed before in di�erent ways. The initial approaches considered the

solution of this problem in a single stage [41]. Here the element lengths were considered as decision

variables, error constraints are imposed in each �nite element and a larger nonlinear problem was

solved. The error constraints guarantee the accuracy of the discretization while variable elements

lengths locate the optimal breakpoints of the control variables. However, the main diÆculties of

this approach are that the resulting NLP problem is more nonlinear than with �xed elements, and

the error constraints induce inconsistencies in the linearization if the problem is poorly initialized.

In [41] this strategy required good problem initializations to be successful.

To overcome this diÆculty, Tanartkit and Biegler [36] proposed a bi-level strategy in which

the solution of an outer problem determines the element lengths. Then, the solution of an inner

problem (�xed mesh) determines the control and state variables. With this approach, the solution

of a highly nonlinear problem is avoided. However, the outer problem is non-smooth because

the active constraints sets in the inner problem can change from one mesh to another. Thus, an

additional procedure is added to maintain the descent property of the search direction. Here, a

bundle procedure that adds cutting planes at the nondi�erentiabilities is implemented by generating

directional derivatives as local underestimators.

In this study, we develop a new approach that minimizes the nonlinearities created by the

introduction of the elements lengths and at the same time is not a�ected by the discontinuities of

the pro�les. The basic engine of the algorithm is the interior point method. A few modi�cations

allow us to take advantage of the approximate solutions generated after each barrier problem is

solved.

The main idea of the algorithm is to detect active constraints during the solution procedure and

obtain an answer where the active set does not change within any �nite element. With a suÆcient

number of �nite elements to insure accuracy of the state pro�les, a constant active set in each of

the �nite elements is often enough to determine an (arbitrarily) accurate optimal control pro�le.

To ensure this, we apply the procedure used by Tanartkit and Biegler [36].
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By forming the Lagrange function of (53), (59) and simplifying the expression through integra-

tion by parts, the following optimality conditions can be derived for this NLP:

8i :

ncolX
i=1

F (zij ; uij ; p)
T�ij = �� (62)

8i;j(j 6=0) :
@F T

@u
(zij ; uij ; p)�ij +

@GT

@u
(zij ; uij ; p)�ij +

@QT

@u
(zij ; uij ; p)�ij = 0 (63)

8i;j(j 6=0) :
ncolX
k=0

�ik _ k(�j)+hi
@F T

@z
(zij ; uij ; p)�ij+

@GT

@z
(zij ; uij ; p)�ij+hi

@QT

@z
(zij ; uij ; p)�ij = 0 (64)

The above conditions (62), (63) and (64) are always satis�ed by the NLP solver. Moreover, if

the active constraint set remains the same within each element the multipliers can be approximated

by a piecewise polynomial in each element. Consequently, for a suÆcient number of elements, the

construction of an algorithm that guarantees no changes in the active set within each element

should be suÆcient to obtain an accurate optimal control pro�le. Our condition for this control

pro�le is a (discretized) Hamiltonian function that remains constant over time, i.e.:

8i;j : F
T (zij ; uij ; p)�ij = constant (65)

5.1 Main Algorithm

The main idea of the algorithm is presented in Figure 1. Given a �xed number of elements, each

of length hi.

1. Set � = �o, tolerance � = �o and �x all elements to normalized lengths �i = 1.

2. Solve the barrier problem for given � to given tolerance �.

3. Check convergence of NLP. If � � �NLP , stop.

4. For each element i, check for active constraints (bounds) for each discretized state and control

variable, represented by xij at collocation point j, according to the following test:

max
�

xij � xLij

 ;

xij � xUij

� � # � �: (66)

(Here we used # = 0:01)

5. Check for changes in active constraints within any two consecutive elements. If there are no

changes or they are already identi�ed go to 8.
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Initialization

Solve to tolerance, e
Min  f(x) - m Sj  ln sj 

s.t. c(x) = 0      
x - s = 0

Check Convergence 

Check Active Sets

Update m and e 

Free required a's

constant

nonconstant
Stop

Yes

No

Figure 1: Flowchart for moving �nite element elements

6. Otherwise, free the element lengths as variables, �i, that correspond to consecutive elements

in which a change of active set occurs.

7. Initialize additional terms in the reduced Hessian matrix for the new decision variables, �i,

to identity. Go to 2.

8. Decrease � and � according to the barrier method algorithm in Section 3. Go to 2.

This algorithm has the following important characteristics:

� The nonlinear program with a �xed mesh is not solved completely in the inner loop. This

makes the algorithm more eÆcient than the bi-level strategy proposed by Tanartkit [36], in

which each inner loop has to be solved to a tight tolerance.

� Because this is no longer a nested formulation the in
uence of the new variables �i in the

problem is continuous and di�erentiable. As a consequence, a nonsmooth algorithm used for

the nested inner/outer strategy in [36] is no longer needed.

� Because the algorithm introduces new variables �i whenever elements are found with active

set changes, it should converge to solutions that do not allow changes in the active set within

an element.

21



5.2 Element Addition

The above algorithm assumes that a suÆcient number of elements is used for the discretization of

the DAE system. To check that the number of elements is large enough to guarantee optimality

and accuracy, two additional tests have to be performed.

1. Error constraints for the state pro�les need to be imposed and satis�ed.

2. From optimal control theory, the Hamiltonian function should remain constant for the whole

time horizon.

These two tests are performed only after the DAE optimization problem is solved for a given

number of elements. According to our experience, a good initial mesh selection with a suÆcient

number of elements is not diÆcult to �nd and additional elements are rarely required. The mesh

selection can usually be obtained by comparison of the state pro�les with those obtained with an

initial value DAE integrator at the base point for the control pro�les.

5.2.1 Error constraints.

To ensure accurate state pro�les for the �rst test, di�erent kinds of error constraints can be used, as

discussed in [36]. The most common methods include extrapolation techniques and calculation of

residuals bounds. For the �rst group, the problem is solved twice, once for the given mesh size and

a second time for a �ner mesh, usually with twice as many elements. Then, the error is calculated

by comparing the two solutions. Although this technique is the most accurate and most commonly

used, it is also the most expensive.

A less accurate but more eÆcient error constraint can be imposed by calculating the resid-

ual equations r(tnonc) of the DAE system at non-collocation points tnonc (residual bounds). The

residual-based error estimates are incorporated into the algorithm as the following constraint:

kr(tnonc)hk � � (67)

which has to be satis�ed but is not enforced directly in the NLP. We check the constraint satisfaction

by calculating the residuals for each equation, including algebraic equations, at non-collocation

points in each element. If this constraint is not satis�ed for a given element, the element can

be divided into two and the problem resolved, using the previous solution as the starting guess.

According to our experience, this can often be avoided with a good initial mesh selection.

5.3 Hamiltonian Function

Analogous to optimal control theory, a discretized Hamiltonian function can be de�ned as

Hij = �Tijf(zij ; uij ; p) + �TijG(zij ; uij ; p) (68)

22



where � =

"
�

�

#
and f =

"
F

Q

#
The last term is exactly equal to zero because of the complementarity condition. From optimal

control theory, for an autonomous system to be optimal, the Hamiltonian is constant:

8i;j : Hij = constant (69)

The computation of the Hamiltonian function can be performed using the same technique used

by Tanartkit and Biegler [36]. From the KKT conditions of the NLP

� = �rxc
�T (rx'+ v) (70)

where � is a vector of multipliers associated with the states variables, v are the multipliers associated

with variable bounds, and ' is the objective function. Moreover, constraint multipliers are not

required to calculate products with �. Instead, we multiply (70) by fT

fT� = �fTrxc
�T (rx'+ v) = � (rx'+ v)T rxc

�1f (71)

and use the discretized Hamiltonian de�nition (68)

Hij = � (rx'+ v)T rxc
�1fij; (72)

where fij is a vector of the DAE right-hand sides at element i and collocation point j (with all

other vector entries equal to zero). This leads to the following expression for the original NLP (53):

fij =

266666666664

0
...

F (zi�1;
dz
d� i;j

; yi;j; ui;j; p)�i

Q(zi�1;
dz
d� i;j

; yi;j; ui;j ; p)
...

0

377777777775
: (73)

The computation of Hij involves the solution of a linear system of equations at each �nite element

i and collocation point j. As the only change is in the right-hand side, the solution of the system

can be performed eÆciently using the elemental decomposition described in Section 2.

If the computed Hamiltonian function is not constant for all the �nite elements and collocation

points, the solution is not optimal, and the mesh should be re�ned. Here we used the same criteria

used by Tanartkit and Biegler [36] for a constant Hamiltonian:



dH(tij)dt





 � tol (74)

where tol is the desired tolerance de�ned as maxij(0:001; 0:001 kHijk). The location of any addi-

tional elements is determined via heuristics by dividing the element which has the highest dH=dt.
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6 Moving Element Examples

In this section we revisit three process problems solved in [16]. We �rst start with a simple batch

reactor to illustrate the procedure and then follow with a batch reactive distillation. We then

conclude with the distillation optimization problem from Section 4. Because of previous interior

point implementations we used the QN-BFGS option with a merit function substituted for the �lter

line search. In addition to these examples we note that a much larger example was solved with this

moving �nite element algorithm. This example represents an optimal grade transition for a low

density polyethylene process and consists of 532 DAEs and over 83,800 discretized variables. More

details of this case study are reported in [17].

6.1 Batch reactor

We consider a small batch reactor [16], where the following reactions take place.

A! B ! C

The objective is to maximize the mole fraction of B at a given �nal time, by controlling the reactor

temperature T :

max xB(tf ) (75)

s.t.
dxA
dt

= �k1(T )xA (76)

dxB
dt

= k1(T )xA � k2(T )xB (77)

0 = xA + xB + xC � 1 (78)

680K � T � 750K: (79)

Using the moving element interior point algorithm, we solved the problem with 6 �nite elements and

3 collocation points. We initialize the problem with a feasible solution for a constant temperature

value. After 16 iterations the problem is solved to a tolerance � = 0:1; and the algorithm detects two

changes in active sets for the control variable. The �rst change in active set is located between the

�rst and second elements and the second one between the fourth and �fth elements. The objective

function value at this point is 0:539231. The algorithm then frees �1, �2, �4, and �5. The algorithm

continues without any other change in active sets until it satis�es the desired tolerance. The �nal

value of the objective function is 0:539267. The algorithm converged in 50 iterations and 1.23 s of

CPU time on a 400 MHz DEC Alpha workstation. The optimal pro�les are presented in Figure 2.

In order to demonstrate the optimality of the control pro�le the Hamiltonian function was

computed and can be seen in Figure 3. The Hamiltonian remains constant through the time

horizon when the given �i's are free. This can be compared with the Hamiltonian obtained for all

�xed �i's. As it is shown in Figure 3 no elements need to be added after moving the required �i's.
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Figure 2: Element placement for batch reactor problem
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6.2 Batch reactive distillation

This example considers the reversible reaction between acetic acid and ethanol as described in [16],

CH3COOH + CH3CH2OH $ CH3COOCH2CH3 + H2O.

The model consists of 13+5nt di�erential and 6+5nt algebraic equations, where nt is the number

of trays which we set to 8 in this study. The column, in all cases, was fed with an equimolar

mixture of ethanol, acetic acid, ethyl acetate and water. The objective is to maximize the amount

of distillate D produced within one hour by manipulating the re
ux ratio as a function of time, as

follows:

max

Z tf=1

0
Ddt

s.t. DAE model (44)-(51)

xEsterD � 0:4800:

This example considers the reversible reaction between acetic acid and ethanol described [16].

We solved the problem using 7 �nite elements and 3 collocation points. The results are shown

in Figure 4. After reaching a tolerance of 0.1 (76 iterations) the algorithm detects a break point

between elements 2 and 3. The value of the objective function at this point is 6.7965. After 131

iterations and 15.6 s of CPU time, the algorithm reaches the desired tolerance. The �nal optimal

control pro�le is a perfect bang-bang and the objective function value is 6.8308.

When the Hamiltonian function is calculated for �xed and free �i's, it can be seen (Figure 5)

that it is constant through the time horizon and no additional elements are needed.

6.3 Case Study Revisited

In this section we revisit the distillation optimization described in Section 4, see (52). As described

in [16], we observe underdamped oscillations in the control pro�le. This leads to an interesting

study for moving �nite elements.

We started the algorithm with just 12 elements and 3 collocation points, with a feasible solution

and a constant value for the control variable. We also use fewer elements than in Section 4 in order

to test the algorithm. The results are presented in Figure 6. The algorithm reaches a tolerance of

0.1 after 23 iterations and 17.4 s of CPU time with an objective function value of 17.4260. After

freeing �1 and �2, the algorithm continues and after a total of 36 iterations and 40.2 s the desired

tolerance is reached. The value of the objective function is 17.3498. These calculations were done

on a DEC Alpha 400 and the examples were initialized to a feasible solution and the CPU time

includes this computation.

The Hamiltonian function was calculated when the required �i's are free. However, a noncon-

stant Hamiltonian (Figure 7) is obtained with 12 elements. For this reason, elements 2 and 4 are

partitioned and the problem is resolved using the previous solution as the starting point.
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Figure 4: Element Placement Batch Reactive Distillation
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Figure 8: Optimal Feed Pro�le for Air Separation Column with 14 elements

The algorithm now converges in 29 iterations and a CPU time of 29.5 s. The total CPU time for

the solution of the problem is then 69.7 s and the total number of iterations 65. The Hamiltonian

using 14 elements is now constant and the objective function value is 17.3329. The optimal control

pro�les are shown in Figure 8.

7 Conclusions

We have presented a new reduced space NLP interior point algorithm which has proved to be

eÆcient and well suited for the solution of DAE optimization problems. This is especially the case

for large-scale problems and when a large number of bounds are active, as this approach eliminates
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the necessity of choosing an active set. Here, an eÆcient implementation allows us to solve problems

with more than 800,000 variables in less than 67 CPU minutes on an 800 MHz computer. This

algorithm incorporated two new features: solution of exact Newton steps for null space directions

and incorporation of a novel �lter line search. As shown in the case study, this approach led to

signi�cant performance improvements over our earlier algorithm. In addition, we have incorporated

the sizes of one elements as additional decision variables for a moving �nite element strategy. Here

we develop a heuristic strategy that is embedded within the interior point algorithm. Moreover,

by using an estimate of the Hamiltonian function, one can determine the optimum control pro�le

to an arbitrary level of accuracy.

Finally, we are currently studying convergence properties of the improved IP method. These

issues will be addressed in a separate paper [44]. With this approach, we believe that there are a

number of very challenging problems that can now be addressed by simultaneous methods. These

include problems with discrete decisions as well as multistage applications of dynamic optimization.

While aspects of these problems have already been addressed in part by sequential approaches, there

is much more scope for more eÆcient and reliable optimization algorithms in this area.
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